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ABSTRACT

In this paper, we investigate the behavior of gradient descent algorithms in
physics-informed machine learning methods like PINNs, which minimize resid-
uals connected to partial differential equations (PDEs). Our key result is that
the difficulty in training these models is closely related to the conditioning of a
specific differential operator. This operator, in turn, is associated to the Hermi-
tian square of the differential operator of the underlying PDE. If this operator is
ill-conditioned, it results in slow or infeasible training. Therefore, precondition-
ing this operator is crucial. We employ both rigorous mathematical analysis and
empirical evaluations to investigate various strategies, explaining how they better
condition this critical operator, and consequently improve training.

1 INTRODUCTION

Partial Differential Equations (PDEs) are ubiquitous as mathematical models of interesting phe-
nomena in science and engineering (Evans, 2010). Traditionally, numerical methods such as finite
difference, finite element etc (Quarteroni & Valli, 1994) are used to simulate PDEs. However, given
the prohibitive cost of these methods for a variety of PDE problems such as those with multiple
scales, in high dimensions or involving multiple calls to the PDE solver like in UQ, control and in-
verse problems, machine learning based alternatives are finding increasing traction as efficient PDE
simulators, see Karniadakis et al. (2021) and references therein.

Within the plethora of approaches that leverage machine learning techniques to solve PDEs, models
which directly incorporate the underlying PDE into the loss function are widely popular. A promi-
nent example of this framework, often referred to as physics-informed machine learning, are physics-
informed neural networks or PINNs (Dissanayake & Phan-Thien, 1994; Lagaris et al., 2000a;b;
Raissi et al., 2019), which minimize the PDE residual within the ansatz space of neural networks.
Related approaches in which the weak or variational form of the PDE residual is minimized in-
clude Deep Ritz (E & Yu, 2018), neural Galerkin (Bruna et al., 2022), variational PINNs (Kharazmi
et al., 2019) and weak PINNs (De Ryck et al., 2022). Similarly, PDE residual minimization methods
for other ansatz spaces such as Gaussian processes (Raissi & Karniadakis, 2018), Fourier features
(Tancik et al., 2020), random features (Ye et al., 2023) etc have also been considered.

Despite the considerable success of PINNs and their afore-mentioned variants in solving numerous
types of PDE forward and inverse problems (see Karniadakis et al. (2021); Cuomo et al. (2022) and
references therein for extensive reviews), significant problems have been identified with physics-
informed machine learning. Arguably, the foremost problem lies with the training these frameworks
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with (variants of) gradient descent methods (Krishnapriyan et al., 2021; Moseley et al., 2021; Wang
et al., 2021a; 2022b). It has been increasingly observed that PINNs and their variants are slow, even
infeasible, to train even on certain model problems (Krishnapriyan et al., 2021), with the training
process either not converging or converging to unacceptably large loss values.

What is the reason behind the issues observed with training physics-informed machine learning
algorithms? Empirical studies such as Krishnapriyan et al. (2021) attribute failure modes to the
non-convex loss landscape, which is much more complex when compared to the loss landscape of
supervised learning. Others like Moseley et al. (2021); Dolean et al. (2023) have implicated the
well-known spectral bias (Rahaman et al. (2019)) of neural networks as being a cause for poor
training whereas Wang et al. (2021a;b) used infinite-width NTK theory to propose that the subtle
balance between the PDE residual and supervised components of the loss function could explain and
possibly ameliorate training issues. Nevertheless, it is fair to say that there is a paucity of principled
analysis of the training process for gradient descent algorithms in the context of physics-informed
machine learning. This provides the context for the current work where we aim to rigorously analyze
gradient descent based training in physics-informed machine learning, identify a potential cause of
slow training and provide possible strategies to alleviate it. To this end, our main contributions are,

• We derive precise conditions under which gradient descent for a physics-informed loss
function can be approximated by a simplified gradient descent algorithm, which amounts
to the gradient descent update for a linearized form of the training dynamics.

• Consequently, we prove that the speed of convergence of the gradient descent is related to
the condition number of an operator, which in turn is composed of the Hermitian square
(D∗D) of the differential operator (D) of the underlying PDE and a kernel integral opera-
tor, associated to the tangent kernel for the underlying model.

• This analysis automatically suggests that preconditioning the resulting operator is neces-
sary to alleviate training issues for physics-informed machine learning.

• By a combination of rigorous analysis and empirical evaluation, we examine how differ-
ent preconditioning strategies can overcome training bottlenecks and also investigate how
existing techniques, proposed in the literature for improving training, can be viewed from
this new operator preconditioning perspective.

2 ANALYZING TRAINING FOR PHYSICS-INFORMED MACHINE LEARNING IN
TERMS OF OPERATOR CONDITIONING.

Setting. Our underlying PDE is the following abstract equation,

Du(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
(2.1)

Here, Ω ⊂ Rd is an open bounded subset of either space or space-time, depending on whether the
PDE depends on time or not. The PDE (2.1) is specified in terms of the differential operator D and
the boundary conditions given by g. Specific forms of the differential operator D are presented later
on, whereas for simplicity, we fix Dirichlet-type boundary conditions in (2.1), while other types of
boundary conditions can be similarly treated. Finally, we consider the solution u : Ω → R as a
scalar for simplicity although all the considerations below also for apply to the case of a vector u.

Physics-informed machine learning relies on an ansatz space of parametric functions, u(· ; θ) :
Ω 7→ R for all θ ∈ Σ ⊂ Rn. This ansatz space could consist of linear (affine) combinations of basis
functions

∑n
k=1 θkϕk, with possible basis functions as trigonometric functions or finite-element

type piecewise polynomial functions or it could consist of nonlinear parametric functions such as
neural networks (Goodfellow et al., 2016) or Gaussian processes (Rasmussen, 2003).

The aim is to find parameters θ ∈ Σ such that the resulting parametric function u(· ; θ) ≈ u, ap-
proximates the solution u of the PDE (2.1). In contrast to supervised learning, where the parameters
θ would be chosen to fit (possibly noisy) data u(xi) with xi ∈ D, the key ingredient in physics-
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informed machine learning is to consider the loss function

L(θ) =
1

2

ˆ

Ω

∣∣Du(x)− f(x)
∣∣2 dx

︸ ︷︷ ︸
R(θ)

+
λ

2

ˆ

∂Ω

∣∣u(x)− g(x)
∣∣2 dσ(x)

︸ ︷︷ ︸
B(θ)

, (2.2)

with PDE residual R, supervised loss B at the boundary and a parameter λ > 0 that relatively
weighs the two components of the loss function. In practice, the integrals in the loss function (2.2)
need to replaced by suitable quadratures, but as long as the number of quadrature (sampling) points
is sufficiently large, the corresponding generalization errors (Mishra & Molinaro, 2020; De Ryck &
Mishra, 2021) can be made arbitrarily small.

Characterization of Gradient Descent for Physics-informed Machine Learning. Physics-
informed machine learning boils down to minimizing the physics-informed loss (2.2), i.e. to find,

θ† = argmin
θ∈Σ

L(θ). (2.3)

Once such an (approximate) minimizer θ† is obtained, one appeals to theoretical results such as
those in Mishra & Molinaro (2020); De Ryck & Mishra (2021); De Ryck et al. (2021) to show
that u(· ; θ†) approximates the solution u of the PDE (2.1) to high accuracy. Moreover, explicit
error estimates in terms of the training error L(θ†) can also be obtained (Mishra & Molinaro, 2020;
De Ryck & Mishra, 2021). As is customary in machine learning (Goodfellow et al., 2016), the non-
convex optimization problem (2.3) is solved with (variants of) a gradient descent algorithm which
takes the following generic form,

θk+1 = θk − η∇θL(θk), (2.4)

with descent steps k > 0, learning rate η > 0, loss L (2.2) and the initialization θ0 chosen randomly.

Our aim here is to analyze whether this gradient descent algorithm (2.4) converges as k → ∞ to
a minimizer of (2.3). Moreover, we want to investigate the rate of convergence to ascertain the
computational cost of training. As the loss L (2.4) is non-convex, it is hard to rigorously analyze the
training process in complete generality. One needs to make certain assumptions on (2.4) to make the
problem tractable. To this end, we fix step k in (2.4) and start with the following Taylor expansion,

u(x; θk) = u(x; θ0) +∇θu(x; θ0)
⊤(θk − θ0) +

1
2 (θk − θ0)

⊤Hk(x)(θk − θ0). (2.5)

Here, Hk(x) := Hessθ(u(x; τkθ0 + (1− τk)θk) is the Hessian of u(· , θ) evaluated at intermediate
values, with 0 ≤ τk ≤ 1. Now introducing the notation ϕi(x) = ∂θiu(x; θ0), and assuming that
Dϕi ∈ L2(Ω), we define the matrix A ∈ Rn×n and the vector B ∈ Rn as,

Ai,j = ⟨Dϕi,Dϕj⟩L2(Ω) + λ⟨ϕi, ϕj⟩L2(∂Ω),

Bi = ⟨f −Duθ0 ,Dϕi⟩L2(Ω) + λ⟨u− uθ0 , ϕi⟩L2(∂Ω).
(2.6)

Substituting the above formulas in the GD algorithm (2.4), we can rewrite it identically as,

θk+1 = θk − η∇θL(θk) = (I − ηA)θk + η(Aθ0 + B) + ηεk, (2.7)

where εk is an error term that collects all terms that depend on the Hessians Hk and DHk. A full
definition and further calculations can be found in SM A.1. From this characterization of gradient
descent (2.4), we clearly see that (2.4) is related to a simplified version of gradient descent given by,

θ̃k+1 = (I − ηA)θ̃k + η(Aθ̃0 + B), θ̃0 = θ0, (2.8)

modulo the error term εk defined in (2.7).

In the following Lemma (proved in SM A.2), we show that this simplified GD dynamics (2.8)
approximates the full GD dynamics (2.4) to desired accuracy as long as the error term εk is small.
Lemma 2.1. Let δ > 0 be such that maxk ∥εk∥2 ≤ δ. If A is invertible and η = c/maxj

∣∣λj(A)∣∣
for some 0 < c < 1 then it holds for any k ∈ N that,

∥θk − θ̃k∥2 ≤ δ/min
j

∣∣λj(A)∣∣. (2.9)
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The key assumption in Lemma 2.1 is the smallness of the error term εk (2.7) for all k. This is trivially
satisfied for linear models uθ(x) =

∑
k θkϕk as εk = 0 for all k in this case. From the definition

of εk (SM (A.1), we see that a more general sufficient condition for ensuring this smallness is to
ensure that the Hessians of uθ and Duθ (resp. Hk and DHk in (2.5)) are small during training. This
amounts to requiring approximate linearity of the parametric function u(· ; θ) near the initial value
θ0 of the parameter θ. For any differentiable parametrized function fθ, its linearity is equivalent to
the constancy of the associated tangent kernel Θ[fθ](x, y) := ∇θfθ(x)

⊤∇θfθ(y) (Liu et al., 2020).
Hence, it follows that if the tangent kernel associated to uθ and Duθ is (approximately) constant
along the optimization path, then the error term εk will be small.

For neural networks this entails that the neural tangent kernels (NTK) Θ[uθ] and Θ[Duθ] stay ap-
proximately constant along the optimization path. The following informal lemma, based on Wang
et al. (2022b), confirms that this is indeed the case for wide enough neural networks. A rigorous
version of the result and its proof can be found in SM A.3.
Lemma 2.2. For a neural network uθ with one hidden layer of width m and a linear differ-
ential operator D it holds that limm→∞ Θ[uθk ] = limm→∞ Θ[uθ0 ] and limm→∞ Θ[Duθk ] =
limm→∞ Θ[Duθ0 ] for all k. Consequently, the error term εk (2.7) is small for wide neural net-
works, limm→∞ maxk ∥εk∥2 = 0.

Convergence of Simplified Gradient Descent Iterations (2.8). Given the much simpler struc-
ture of (2.8), when compared to (2.4), we can study the corresponding gradient descent dynamics
explicitly and obtain the following convergence theorem (proved in SMA.4),
Theorem 2.3. Let A in (2.8) be invertible with condition number κ(A),

κ(A) = λmax(A)/λmin(A) = max
j

∣∣λj(A)∣∣/min
j

∣∣λj(A)∣∣, (2.10)

and let 0 < c < 1. Set η = c/λmax(A) and θ∗ = θ0 + A−1B. It holds for any k ∈ N that,

∥θ̃k − θ∗∥2 ≤
(
1− c/κ(A)

)k ∥θ0 − θ∗∥2. (2.11)

An immediate consequence of the quantitative convergence rate (2.11) is as follows: to obtain an
error of size ε, i.e., ∥θ̃k − θ∗∥2 ≤ ε, we can readily calculate the number of GD steps N(ε) as,

N(ε) = ln
(
ε/∥θ0 − θ∗∥2

)
/ ln
(
1− c/κ(A)

)
= O

(
κ(A) ln 1

ε

)
. (2.12)

Hence, for a fixed value c, large values of the condition number κ(A) will severely impede conver-
gence of the simplified gradient descent (2.8) by requiring a much larger number of steps.

Operator Conditioning. So far, we have established that, under suitable assumptions, the rate of
convergence of the gradient descent algorithm for physics-informed machine learning boils down to
the conditioning of the matrix A (2.6). However, at first sight, this matrix is not very intuitive and we
want to relate it to the differential operator D from the underlying PDE (2.1). To this end, we first
introduce the so-called Hermitian square A given by A = D∗D, in the sense of operators, where D∗

is the adjoint operator for the differential operator D. Note that this definition implicitly assumes
that the adjoint D∗ exists and the Hermitian square operator A is defined on an appropriate function
space. As an example, consider as differential operator the Laplacian, i.e., Du = −∆u, defined for
instance on u ∈ H1(Ω), then the corresponding Hermitian square is Au = ∆2u, identified as the
bi-Laplacian that is well defined on u ∈ H2(Ω).

Next for notational simplicity, we set λ = 0 in (2.2) and omit boundary terms in the following. Let
H be the span of the functions ϕk := ∂θku(·; θ0). Define the maps T : Rn → H, v →

∑n
k=1 vkϕk

and T ∗ : L2(Ω) → Rn; f → {⟨ϕk, f⟩}k=1,...,n. We define the following scalar product on L2(Ω),

⟨f, g⟩H := ⟨f, TT ∗g⟩L2(Ω) = ⟨T ∗f, T ∗g⟩Rn . (2.13)

Note that the maps T, T ∗ provide a correspondence between the continuous space (L2) and discrete
space (H) spanned by the functions ϕk. This continuous-discrete correspondence allows us to relate
the conditioning of the matrix A in (2.6) to the conditioning of the Hermitian square operator A =
D∗D through the following theorem (proved in SM A.5).
Theorem 2.4. It holds for the operator A ◦ TT ∗ : L2(Ω) → L2(Ω) that κ(A) ≥ κ(A ◦ TT ∗).
Moreover, if the Gram matrix ⟨ϕ, ϕ⟩H is invertible then equality holds, i.e., κ(A) = κ(A ◦ TT ∗).
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Thus, we show that the conditioning of the matrix A that determines the speed of convergence of
the simplified gradient descent algorithm (2.8) for physics-informed machine learning is intimately
tied with the conditioning of the operator A ◦ TT ∗. This operator, in turn, composes the Hermitian
square of the underlying differential operator of the PDE (2.1), with the so-called Kernel Integral
operator TT ∗, associated with the (neural) tangent kernel Θ[uθ]. Theorem 2.4 implies in particular
that if the operator A ◦ TT ∗ is ill-conditioned, then the matrix A is ill-conditioned and the gradient
descent algorithm (2.8) for physics-informed machine learning will converge very slowly.
Remark 2.5. One can readily generalize Theorem 2.4 to the setting with boundary conditions (i.e.,
with λ > 0 in the loss (2.2)). In this case one can prove for the operator A = 1Ω̊ ·D∗D+λ1∂Ω · Id,
and its corresponding matrix A (as in (2.6)) that κ(A) ≥ κ(A ◦ TT ∗) in the general case and
κ(A) = κ(A ◦ TT ∗) if the relevant Gram matrix is invertible. The proof is given in SM A.6.
Remark 2.6. It is instructive to compare physics-informed machine learning with standard super-
vised learning through the prism of the analysis presented here. It is straightforward to see that for
supervised learning, i.e., when the physics-informed loss in (2.2) is replaced with the supervised loss
1
2∥u− uθ∥2L2(Ω by simply setting D = Id, the corresponding operator in Theorem 2.4 is simply the
kernel integral operator TT ∗, associated with the tangent kernel as A = Id. Thus, the complexity
in training physics-informed machine learning models is entirely due to the spectral properties of
the Hermitian square A of the underlying differential operator D.

3 PRECONDITIONING AND IMPROVING TRAINING IN PHYSICS-INFORMED
MACHINE LEARNING.

Having established in the previous section that, under suitable assumptions, the speed of training
physics-informed machine learning models depends on the condition number of the operator A ◦
TT ∗ or, equivalently the matrix A (2.6), we now investigate whether this operator is ill-conditioned
and if so, how can we better condition it by reducing the condition number. The fact that A ◦ TT ∗

(equiv. A) is very poorly conditioned for most PDEs of practical interest will be demonstrated both
theoretically and empirically below. This makes preconditioning, i.e., strategies to improve (reduce)
the conditioning of the underlying operator (matrix), a key component in improving training for
physics-informed machine learning models.

Intuitively, reducing the condition number of the underlying operator A◦TT ∗ can amount to finding
new maps T̃ , T̃ ∗ for which the kernel integral operator T̃ T̃ ∗ ≈ A−1, i.e., choosing the architecture
and initialization of the parametrized model uθ such that the associated Kernel Integral operator
T̃ T̃ ∗ is an (approximate) Green’s function for the Hermitian square A of the differential operator D.
For an operator A with well-defined eigenvectors ψk and eigenvalues ωk, the ideal case T̃ T̃ ∗ = A−1

is realized when T̃ T̃ ∗ϕk = 1
ωk
ψk.

Explicit preconditioning by linearly transforming parameters. The above ideal case can be
achieved by transforming ϕ (in (2.6) linearly with a (positive definite) matrix P such that (P⊤ϕ)k =

1√
ωk
ψk, which corresponds to the change of variables Puθ := uPθ. Assuming the invertibility of

⟨ϕ, ϕ⟩H, Theorem 2.4 then shows that κ(A ◦ T̃ T̃ ∗) = κ(Ã) for a new matrix Ã, which can be
computed as,

Ã := ⟨D∇θuPθ0 ,D∇θuPθ0⟩L2(Ω) = ⟨DP⊤∇θuθ0 ,DP⊤∇θuθ0⟩L2(Ω) = P⊤AP. (3.1)

This implies a general approach for preconditioning, namely linearly transforming the parameters
of the model, i.e. considering Puθ := uPθ instead of uθ, which corresponds to replacing the
matrix A by its preconditioned variant Ã = P⊤AP. The new simplified GD update rule is then
θk+1 = θk − ηÃ(θk − θ0) + B̃. Hence, finding T̃ T̃ ∗ ≈ A−1, which is the aim of preconditioning,
reduces to constructing a matrix P such that 1 ≈ κ(Ã) ≪ κ(A). We emphasize that T̃ T̃ ∗ need not
serve as the exact inverse of A; even an approximate inverse can lead to significant performance
improvements, this is the foundational principle of preconditioning.

Explicit preconditioning by linearly transforming the gradients. Given that any positive def-
inite matrix can be written as PP⊤, linearly transforming the parameters is equivalent to precondi-
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tioning the gradient of the loss by multiplying with a positive definite matrix, in the sense:

θ̂k+1 = Pθk+1 = Pθk − ηPP⊤∇θL(Pθk) = θ̂k − ηPP⊤∇θL(θ̂k), (3.2)

which corresponds to performing gradient descent using the transformed parameters θ̂k := Pθk.
Hence, parameter transformations are all that are needed in this context.

Analysis of the impact of preconditioning for the Poisson equation. As an example, we start
with linear parametrized models of the form uθ(x) =

∑
k θkϕk(x), where ϕ1, . . . , ϕn are any

smooth functions. A corresponding preconditioned model, as explained above, would have the
form ũθ(x) =

∑
k(Pθ)kϕk(x), where P ∈ Rn×n is the preconditioner. We motivate the choice of

this preconditioner with a simple, yet widely used example.
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Figure 1: Poisson equation with Fourier features. Left: Optimal condition number vs. Number of
Fourier features. Right: Training for the unpreconditioned and preconditioned Fourier features.

Our differential operator is the one-dimensional Laplacian D = d2

dx2 , defined on the domain (−π, π),
for simplicity with periodic zero boundary conditions. Consequently, the corresponding PDE (2.1)
is the Poisson equation. As the machine learning model, we choose uθ(x) =

∑K
k=−K θkϕk(x),

with ϕ0(x) = 1√
2π

, ϕ−k(x) =
1√
π
cos(kx) and ϕk(x) = 1√

π
sin(kx) for 1 ≤ k ≤ K. This model

corresponds to the widely used learnable Fourier Features in the machine learning literature (Tancik
et al., 2020) or spectral methods in numerical analysis (Hesthaven et al., 2007). We can readily
verify that the resulting matrix A (2.6) is given by A = D + λvv⊤, where D is a diagonal matrix
with Dkk = k4 and v := ϕ(π). Preconditioning solely based on D∗D would correspond to finding
a matrix P such that PDP⊤ = Id. However, given that D00 = 0, this is not possible. We therefore
set Pkk = 1/k2 for k ̸= 0 and P00 = γ ∈ R. The preconditioned matrix is therefore

Ã(λ, γ) = PDP⊤ + λPv(Pv)⊤. (3.3)

The conditioning of the unpreconditioned and preconditioned matrices considered above are sum-
marized in the theorem (proved in SM B.1) below,
Theorem 3.1. The following statements hold for all K ∈ N:

1. The condition number of the unpreconditioned matrix above satisfies κ(A(λ)) ≥ K4.

2. There exists a constant C(λ, γ) > 0 that is independent of K such that κ(Ã(λ, γ) ≤ C.

3. It holds that κ(Ã(2π/γ2, γ)) = 1 +O(1/γ) and hence limγ→+∞ κ(Ã(2π/γ2, γ)) = 1.

We observe from Theorem 3.1 that (i) the matrix A, which governs gradient descent dynamics for
approximating the Poisson equation with learnable Fourier features, is very poorly conditioned and
(ii) we can (optimally) precondition it by rescaling the Fourier features based on the eigenvalues of
the underlying differential operator (or its Hermitian square).

These conclusions are also observed empirically. In Figure 1 (left), we plot the condition number of
the matrix A, minimized over λ (see SM Figure 8 and SM C for details), as a function of maximum
frequency K and verify that this condition number increases as K4, as predicted by the Theorem
3.1. Consequently as shown in Figure 1 (right), where we plot the loss function in terms of increas-
ing training epochs, the underlying Fourier features model is very hard to train with large losses
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(particularly for higher values of K), showing a very slow decay of the loss function as the number
of frequencies is increased. On the other hand, in Figure 1 (left), we also show that the condition
number (minimized over λ) of the preconditioned matrix (3.3) remains constant with increasing fre-
quency and is very close to the optimal value of 1, verifying Theorem 3.1. As a result, we observe
from Figure 1 (right) that the loss in the preconditioned case decays exponentially fast as the num-
ber of epochs are increased. This decay is independent of the maximum frequency of the model.
The results demonstrate that the preconditioned version of the Fourier features model can learn the
solution of the Poisson equation efficiently, in contrast to the failure of the unpreconditioned model
to do so. Entirely analogous results are obtained with the Helmholtz equation (see SM C).
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Figure 2: Linear advection equation with Fourier features. Left: Optimal condition number vs. β.
Right: Training for the unpreconditioned and preconditioned Fourier features.

As a different example, we consider the linear advection equation ut + βux = 0 on the one-
dimensional spatial domain x ∈ [0, 2π] and with 2π-periodic solutions in time with t ∈ [0, 1].
As in Krishnapriyan et al. (2021), our focus in this case is to study how physics-informed machine
learning models train when the advection speed β > 0 is increased. To empirically evaluate this
example, we again choose learnable time-dependent Fourier features as the model and precondition
the resulting matrix A (2.6) as described in SM B.2.2, see also SM C. In Figure 2 (left), we see
that the condition number of A(β) ∼ β2 grows quadratically with advection speed. On the other
hand, the condition number of the preconditioned model remains constant. Consequently as shown
in Figure 2 (right), the unpreconditioned model trains very slowly (particularly for increasing values
of the advection speed β) with losses remaining high despite being trained for a large number of
epochs. In complete contrast, the preconditioned model trains very fast, irrespective of the values
of the advection speed β. Further details including visualizations of the resulting solutions and a
comparison with a MLP are presented in SM B.2.2 and Figure 13. In particular, we show that the
preconditioned Fourier model readily outperforms the MLP. Other additional experiments can be
found in SM C.

Viewing available strategies for improving training in physics-informed machine learning
models through the lens of operator (pre-)conditioning. Given the difficulties encountered in
training physics-informed machine learning models, several ad-hoc strategies have been proposed
in the recent literature to improve training. It turns out that many of these strategies can also be
interpreted using the framework of preconditioning that we have proposed. We provide a succinct
summary below while postponing the details to the SM.

Choice of λ. The parameter λ in the loss (2.2) plays a crucial role as it balances the relative
contributions of the physics-informed loss R and the supervised loss at the boundary B. Given our
framework, it is natural to suggest that this parameter should be chosen as λ∗ := minλ κ(A(λ)),
in order to obtain the smallest condition number of A and accelerate convergence. In SM B.2, we
present λ∗ for the 1-D Poisson equation with learnable Fourier features to find that λ∗(K) ∼ K2,
with K being the maximum frequency. In turns out that finding suitable values of λ has been widely
proposed as a strategy, see for instance Wang et al. (2021a; 2022b) which propose algorithms
to iteratively learn λ during training. It turns out that applying these strategies leads to different
scalings of λ with respect to increasing K for the Fourier features model (see SM B.2 for details),
distinguishing our approach for selecting λ.
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Hard boundary conditions. From the very advent of PINNs (Lagaris et al., 2000a;b), sev-
eral authors have advocated modifying machine learning models such that the boundary conditions
in PDE (2.1) can be imposed exactly and the boundary loss in (2.2) is zero. Such hard imposition of
boundary conditions (BCs) has been empirically shown to aid training, e.g. Moseley et al. (2021);
Dolean et al. (2023) and references therein. In SM B.3, we present an example where the linear
advection equation is solved with learnable Fourier features and show that imposing hard BCs
reduces the condition number of A, when compared to soft BCs. Thus, hard BCs can improve
training by better conditioning the gradient descent dynamics, at least in some cases.

Second-order optimizers. There are many empirical studies which demonstrate that first-order
optimizers such as (stochastic) gradient descent or ADAM are not suitable for physics-informed
machine learning and one needs to use second-order (quasi-)Newton type optimizers such as
L-BGFS in order to make training of physics-informed machine learning models feasible. In
SM B.4, we examine this issue for linear physics-informed models and show that as the Hessian
of the loss is identical to the matrix A (2.6) in this case, (quasi-)Newton methods automatically
compute an (approximate) inverse of the Hessian and hence, precondition the matrix A, relating the
use of (quasi-)Newton type optimizers to preconditioning operators in this context.

Domain decomposition. Domain decomposition (DD) is a widely used technique in numer-
ical analysis to precondition linear systems that arise out of classical methods such as finite
elements (Dolean et al., 2015). Recently, there have been attempts to use DD-inspired methods
within physics-informed machine learning, see Moseley et al. (2021); Dolean et al. (2023) and
references therein, although no explicit link with preconditioning the models was established. In
SM B.2.2, we re-examine the case of linear advection equation with learnable Fourier features
to demonstrate that increasing the number of Fourier features in time by decomposing the time
domain simply amounts to changing the effective advection speed β and reducing the condition
number, leading to a better-conditioned model. Moreover, in this case, this algorithm also correlates
the causal learning based training of PINNs (Wang et al., 2022a), which also can be viewed as
improving the condition number.

4 DISCUSSION.

Summary. Physics-informed machine learning models are notoriously hard to train with gradient
descent methods. In this paper, we aim for a rigorous explanation of the underlying causes as well as
examining possible strategies to mitigate them. To this end, under suitable assumptions that coincide
with approximate linearity of models, we prove that gradient descent with physics-informed losses
is approximated well by a novel simplified gradient descent procedure, whose rate of convergence
can be completely characterized in terms of the conditioning of an operator, composing the Hermi-
tian square of the underlying differential operator with the Kernel integral operator associated with
the underlying tangent kernel. Thus, the ill-conditioning of this Hermitian square operator can ex-
plain issues with training of physics-informed learning models. Consequently, preconditioning this
operator (equivalently the associated matrix) could improve training. By a combination of rigorous
analysis and empirical evaluation, we examine strategies with a view of how one can precondition
the associated operators. In particular, we find that rescaling the model parameters, as dictated by the
spectral properties of the underlying differential operator, was effective in significantly improving
training of physics-informed models for the Poisson, Helmholtz and linear advection equations.

Related Work. While many studies explore the mathematical aspects of PINNs, the majority fo-
cus on approximation techniques or generalization properties (De Ryck & Mishra, 2021; Doumèche
et al., 2023). Few works have targeted training error and training dynamics, even though it stands
as a significant source of overall error (Krishnapriyan et al., 2021). Some exceptions include Jiang
et al. (2023), who examine global convergence for linear elliptic PDEs in the NTK regime. However
equations are derived in continuous time, thereby sidestepping ill-conditioning (which is intrinsi-
cally linked to discrete time) and thus potential training issues. Wang et al. (2021a) identified that
PINNs might converge slowly due to a stiff gradient flow ODE. Our work allows to interpret their
proposed novel architecture, which reduces the maximum eigenvalue of the Hessian, as a way to pre-
condition TT ∗, as the Hessian of the loss equals A (SM B.4), thereby improving the convergence
rate (Theorems 2.3 and 2.4). Wang et al. (2022b) derive a continuous-time evolution equation exclu-
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sively for the residual during training, leaving out a direct exposition of the Hermitian square term,
and contrasting our discrete evolution equation in parameter space, as opposed to function space.
Wang et al. (2021a; 2022b) also propose algorithms to adjust the λ multiplier between boundary
and residual loss terms, which we assess within the context of operator preconditioning in SM B.2.
Works aiming to improve convergence of PINNs based on domain decomposition strategies include
Jagtap & Karniadakis (2020); Jagtap et al. (2020); Wang et al. (2022a); Kopaničáková et al. (2023),
some of which can be reinterpreted as methods to precondition A by changing A or TT ∗.

Limitations and Future Work. In this work, our examples for elucidating the challenges in train-
ing physics-informed machine learning models focussed on linear PDEs. Nevertheless, the analysis
already revealed the key role played by equation-dependent preconditioning. Extending our results
to nonlinear PDEs is a direction for future work. Moreover, while highlighting the necessity of
preconditioning, the current work does not claim to provide a universal preconditioning strategy,
particularly for nonlinear models such as neural networks.

We strongly believe that the complications arising from ill-conditioning merit further scrutiny from
the scientific computing community, such as those specializing in domain and operator precondition-
ing. There is much work in this domain (Mardal & Winther, 2011; Hiptmair, 2006) and references
therein, providing a fertile ground for innovative approaches, including the potential application of
non-linear preconditioning techniques commonly used in these fields. However, extending our work
to these settings exceeds the scope of this paper and remains a direction for future inquiry.

Another aspect worth discussing pertains to our linearized training dynamics (NTK regime), in
which feature learning is absent (Chizat et al., 2019). For low-dimensional problems typical in
many scientific settings (1-3D), the lack of feature learning may not be a significant handicap, as
one can discretize the underlying domains. Extensive evidence in this paper has shown that the
linear bases often outperform nonlinear models. However, neural networks might still outperform
linear models high-dimensional problems (Mishra & Molinaro, 2021), highlighting the significance
of deviations from the lazy training regime.

Finally, we would like to point that our analysis can be readily extended to cover physics-informed
operator learning models such as those considered in Li et al. (2023); Goswami et al. (2022)
by adopting the theoretical framework of representative neural operators (Bartolucci et al., 2023;
Raonić et al., 2023).
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Supplementary material for:
An operator preconditioning perspective on training in physics-informed machine learning

A DETAILS FOR SECTION 2

A.1 DERIVATION OF EQUATION (2.7)

We provide detailed calculations for how to obtain (2.7). First of all, plugging in (2.5) into (2.2) and
calculating yields,

∇θR(θk) =

ˆ
Ω

(Du(x; θ0)− f(x))D∇θu(x; θ0)dx+

ˆ
Ω

D∇θu(x; θ0)D∇θu(x; θ0)
⊤(θk − θ0)dx

+
1

2

ˆ
Ω

(Du(x; θk)− f(x))DHk(θk − θ0)dx+
1

2

ˆ
Ω

(θk − θ0)
⊤DHk(θk − θ0)D∇θu(x; θ0).

∇θB(θk) =

ˆ
∂Ω

(u(x; θ0)− u(x))∇θu(x; θ0)dx+

ˆ
∂Ω

∇θu(x; θ0)∇θu(x; θ0)
⊤(θk − θ0)dx

+
1

2

ˆ
∂Ω

(u(x; θk)− u(x))Hk(θk − θ0)dx+
1

2

ˆ
∂Ω

(θk − θ0)
⊤Hk(θk − θ0)∇θu(x; θ0).

Now introducing the notation ϕi(x) = ∂θiu(x; θ0), we define the vector εk ∈ Rn as,

εk = −1

2

[
⟨Duθk − f,DHk(θk − θ0)⟩L2(Ω) + λ⟨uθk − u,Hk(θk − θ0)⟩L2(∂Ω)

+ ⟨(θk − θ0)
⊤DHk(θk − θ0),D∇θuθ0⟩L2(Ω) + λ⟨(θk − θ0)

⊤Hk(θk − θ0),∇θuθ0⟩L2(∂Ω)

]
.

(A.1)
Combining this definition with those of A and B gives rise to equation 2.7.

A.2 PROOF OF LEMMA 2.1

Proof. If maxk ∥εk∥2 ≤ δ then the error one makes compared to the simplified GD update rule is
bounded by

∥θl − θ̃l∥2 =

∥∥∥∥∥∥
l∑

k=0

(I − ηA)kηεk

∥∥∥∥∥∥
2

≤ η

l∑
k=0

∥I − hA∥k2∥εk∥2 (A.2)

≤ η

l∑
k=0

max
j

|1− λj(A)η|k2δ ≤ η

l∑
k=0

(1− c/κ(A))kδ (A.3)

≤ κ(A)ηδ
c

=
δ

minj
∣∣λj(A)∣∣ . (A.4)

A.3 PROOF OF LEMMA 2.2

We first provide a rigorous version of the statement of Lemma 2.2 which includes all technical de-
tails. To do so, we follow the setting of (Wang et al., 2022b, Section 4). The result is a generalization
of (Wang et al., 2022b, Theorem 4.4) that is suggested in Wang et al. (2022b) itself.
Lemma A.1. Let D be a linear differential operator, σ a smooth function and m,K ∈ N. Let
W 0 ∈ R1×m, W 1 ∈ Rm×1 the weights and b0 ∈ Rm and b1 ∈ R the biases that constitute the
parameters θ = (W 0,W 1, b0, b1) of the neural network uθ : R → R defined by,

uθ(x) = u(x; θ) =
1√
m
W 1σ(W 0x+ b0) + b1. (A.5)

Let (θk)k be the series of parameters one obtains from performing gradient descent on the loss L(θ),
where all entries of the parameters are initialized as iid N (0, 1) random variables. Furthermore,
assume that,

13



Published as a conference paper at ICLR 2024

1. The parameters stay uniformly bounded during training, i.e. there is a constant C > 0
independent of K such that max1≤k≤K ∥θk∥∞ ≤ C.

2. There exists a constant C > 0 such that
∑K

k=1 L(θk) ≤ C.

3. If D is an n-th order differential operator, then there exists a constant C > 0 such that
|σ(l)(x)| ≤ C for all x and 0 ≤ l ≤ 2 + n.

Under these conditions it holds for all k that,

lim
m→∞

Θ[uθk ] = lim
m→∞

Θ[uθ0 ] and lim
m→∞

Θ[Duθk ] = lim
m→∞

Θ[Duθ0 ]. (A.6)

Hence, the error term εk (A.1) is small for wide neural networks, limm→∞ maxk ∥εk∥2 = 0.

Proof. In (Wang et al., 2022b, Theorem 4.4) they proved that limm→∞ Θ[uθk ] = limm→∞ Θ[uθ0 ]
and limm→∞ Θ[Duθk ] = limm→∞ Θ[Duθ0 ] in the case that D = ∂2xx and state that it can be
generalized to more general linear differential operators. We provide the steps to how this more
general result can be proven, by summarizing all necessary changes in the proof of (Wang et al.,
2022b, Theorem 4.4).

Changes to(Wang et al., 2022b, Lemma D.1). Instead of uxx(x; θ) one needs to provide a formula
for Du(x; θ). This can be done by noting that,

∂nxu(x; θ) =
1√
m

∑
k

W 1
kσ

(n)(W 0
kx+ b0k)(W

0
k )

n, (A.7)

where we slightly abuse notation by letting W i
k and bik be the k-th components of the respec-

tive vectors, i.e. they do not correspond to the k-th gradient descent update θk. The bounds on
∂∂nxu(x; θ)/∂θ

l then follow in a similar way from the boundedness of both θ and σ and its deriva-
tives.

Changes to(Wang et al., 2022b, Lemma D.2). Here we replace the gradient flow by the gradient
descent formula θk+1 = θk − η∇θL(θk). The rest of the calculations are in the same spirit, with
the only difference that we consider a problem that is discrete in (training) time (as we are using
gradient descent).

Changes to(Wang et al., 2022b, Lemma D.4). The calculations are completely analogous, only
that one needs to replace the formulas for ∇θuxx(x; θ) by formulas for ∇θDu(x; θ). Again in our
simplified case that D = ∂nx we find that,

∂Du(x; θ)
∂W 0

k

=
(W 0

k )
n−1W 1

k√
m

[
nσ(n)(W 0

kx+ b0k) + (W 0
k )

2σ(n+1)(W 0
kx+ b0k)

]
(A.8)

∂Du(x; θ)
∂W 1

k

=
1√
m
σ(n)(W 0

kx+ b0k)(W
0
k )

n (A.9)

∂Du(x; θ)
∂b0k

=
1√
m
W 1

kσ
(n+1)(W 0

kx+ b0k)(W
0
k )

n (A.10)

∂Du(x; θ)
∂b1k

= 0. (A.11)

The rest of the proof is a matter of calculations that are analogous to those in Wang et al. (2022b).
One can conclude that in the limit m → ∞ the tangent kernel of both uθ and Duθ is constant dur-
ing training. As (approximate) NTK constancy is equivalent to (approximate) linearity Liu et al.
(2020), we find that the Hessians Hk and DHk, and consequently the error term εk must be (ap-
proximately) zero. More concretely, the error term εk (A.1) is small for wide neural networks,
limm→∞ maxk ∥εk∥2 = 0.
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A.4 PROOF OF THEOREM 2.3

Proof. We calculate that,

θ̃k = (I − ηA)θ̃k−1 + η(Aθ̃0 + B) (A.12)

= (I − Aη)kθ̃0 +
k−1∑
ℓ=0

(I − Aη)ℓη(Aθ̃0 + B) (A.13)

= (I − Aη)kθ̃0 + (Aη)−1(I − (I − Aη)k)η(Aθ̃0 + B) (A.14)

= (I − Aη)kθ̃0 + (I − (I − Aη)k)θ∗ (A.15)

and hence

θ̃k − θ∗ = (I − Aη)k(θ̃0 − θ∗). (A.16)

We can then take the norm, use that η = c/λmax(A) and calculate,

∥θ̃k − θ∗∥2 ≤ ∥I − ηA∥k2∥θ̃0 − θ∗∥2 ≤ max
j

|1− λj(A)η|k∥θ̃0 − θ∗∥2 (A.17)

≤
(
1− cλmin(A)

λmax(A)

)k

∥θ̃0 − θ∗∥2 =

(
1− c

κ(A)

)k

∥θ̃0 − θ∗∥2. (A.18)

A.5 PROOF OF THEOREM 2.4

Proof. Using that A = T ∗AT we find,

λmax(A) = max
∥v∥=1

v⊤Av ≥ sup
f∈L2: ∥T∗f∥=1

(T ∗f)⊤A(T ∗f) (A.19)

= sup
f∈L2: ∥T∗f∥=1

(T ∗f)⊤(T ∗ATT ∗f) = sup
f∈L2: ∥T∗f∥=1

⟨f, TT ∗A ◦ TT ∗f⟩L2 (A.20)

= sup
f∈L2: ∥T∗f∥=1

⟨f,A ◦ TT ∗f⟩H = λmax(A ◦ TT ∗) (A.21)

The last equality holds by the minmax theorem since A◦TT ∗ is a self-adjoint operator. Indeed, this
operator is self-adjoint since A is symmetric and given that for f, g ∈ H we find that,

⟨f,A ◦ TT ∗g⟩H = (T ∗f)⊤A(T ∗g). (A.22)

One can do a similar calculation for λmin (with the reverse inequality), which concludes the proof.

Now let M = ⟨ϕ, ϕ⟩H be the Gram matrix, i.e. Mij = ⟨ϕi, ϕj⟩H, and we assume it is invertible. For
any parameter vector v we can define fv = TM−1v ∈ H ⊂ L2(Ω). One can verify that T ∗fv = v.
As a result we have the chain of inequalities,

sup
f∈L2: ∥T∗f∥=1

(T ∗f)⊤A(T ∗f) ≤ max
∥v∥=1

v⊤Av (A.23)

= max
∥v∥=1

(T ∗fv)
⊤A(T ∗fv) (A.24)

≤ sup
f∈L2: ∥T∗f∥=1

(T ∗f)⊤A(T ∗f), (A.25)

and hence supf∈L2: ∥T∗f∥=1(T
∗f)⊤A(T ∗f) = max∥v∥=1 v

⊤Av. Doing an analogous calculation
to the one above, we find that κ(A ◦ TT ∗) = κ(A).

A.6 PROOF OF REMARK 2.5

Let H be the span of the ϕk := ∂θku(·; θ0). Define the maps T : Rn → H, v →
∑n

k=1 vkϕk and
T ∗ : L2(Ω) → Rn; v → {⟨ϕk, f⟩L2(Ω) + λ⟨ϕk, f⟩L2(∂Ω)}k=1,...,n. We define the following scalar
product on L2(Ω):

⟨f, g⟩H := ⟨f, TT ∗g⟩L2(Ω) + λ⟨f, TT ∗g⟩L2(∂Ω) = ⟨T ∗f, T ∗g⟩Rn . (A.26)
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We define the operator A as,

A = 1Ω̊ · D∗D + λ1∂Ω · Id, (A.27)

and the matrix A as,

Akl = ⟨ϕk,D∗Dϕl⟩L2(Ω) + λ⟨ϕk, ϕl⟩L2(∂Ω). (A.28)

Let M = ⟨ϕ, ϕ⟩H be the Gram matrix, i.e. Mij = ⟨ϕi, ϕj⟩H. If it is invertible then for any parameter
vector v we can define fv = TM−1v ∈ H ⊂ L2(Ω). One can also verify that T ∗fv = v.

We give the proof in the case where M is invertible. The general case is similar to the proof of
Theorem 2.4.

Proof. We calculate that for any vector w ∈ Rn it holds that,

(T ∗ATw)k = ⟨ϕk,ATw⟩L2(Ω) + λ⟨ϕk,ATw⟩L2(∂Ω) (A.29)

= ⟨ϕk,D∗DTw⟩L2(Ω) + λ⟨ϕk, Tw⟩L2(∂Ω) (A.30)

=
∑
l

[
⟨ϕk,D∗Dϕl⟩L2(Ω) + λ⟨ϕk, ϕl⟩L2(∂Ω)

]
wl (A.31)

= (Aw)k, (A.32)

where we used that the measure of ∂Ω is zero with respect to the Lebesgue measure on Ω and that
1Ω̊ is zero on ∂Ω. Using this and the definition of the scalar product on H we find that,

λmax(A) = max
∥v∥=1

v⊤Av (A.33)

= sup
∥v∥=1

(T ∗fv)
⊤A(T ∗fv) (A.34)

= sup
∥v∥=1

(T ∗fv)
⊤(T ∗ATT ∗fv) (A.35)

= sup
∥v∥=1

⟨fv,A ◦ TT ∗fv⟩H (A.36)

= λmax(A ◦ TT ∗). (A.37)

This concludes the proof, as a similar calculation can be done for λmin(A).

B DETAILS FOR SECTION 3

B.1 PROOF OF THEOREM 3.1

We first the state the following auxiliary result.
Lemma B.1 (Section 5, Golub (1973)). Let λ ≥ 0, let u ∈ Rn, let D ∈ Rn×n be a diagonal matrix
with eigenvalues di such that di ≤ di+1 and let C = D + λuu⊤. The eigenvalues ω1, . . . , ωn of C
(in ascending order) are the roots of

p(ω) =

n∏
i=1

(di − ω) + λ

n∑
i=1

u2i

n∏
j=1,j ̸=i

(dj − ω) = 0, (B.1)

and it holds that di ≤ ωi ≤ di+1 and dn ≤ ωn ≤ dn + λu⊤u.

We now prove Theorem 3.1. In Figure 3 we also plot the condition number of Ã(λ, γ) for various
values of λ, γ and K.

Proof. We first prove statement (1). Denote by ωi resp. di the i-th eigenvalue (in ascending order)
of A resp. D. It follows from Lemma B.1 that ω1 ≤ d2 = 1 and ω2K+1 ≥ d2K+1 = K4. Hence we
find that for any λ ≥ 0 it holds that,

κ(A(λ)) =
ω2K+1

ω1
≥ d2K+1

d2
= K4. (B.2)
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We continue with statement (2). It is easy to verify that PDP has eigenvalues 1 (multiplicity 2K)
and 0 (multiplicity 1) and that the vector v = ϕ(π) has entries v−k = (−1)k/

√
π, v0 = 1/

√
2π,

vk = 0 for 1 ≤ k ≤ K. Define η :=
∑K

k=1 1/k
4 and note that 1 ≤ η ≤ π4/90 ≈ 1.08.

Now, by Lemma B.1 the eigenvalues of Ã are given by the roots of,

p2K+1(ω) = −ω(1− ω)2K +
λ

π

(
γ2

2
(1− ω)2K − ηω(1− ω)2K−1

)
(B.3)

=
1

2π
(1− ω)2K−1

(
−2πω(1− ω) + λγ2(1− ω)− 2λωη

)
(B.4)

=
1

2π
(1− ω)2K−1

(
2πω2 − (2π + λγ2 + 2λη)ω + λγ2

)
. (B.5)

We can already see that 1 is an eigenvalue with multiplicity at least 2K − 1. The other two eigen-
values are given by,

ω±(η) :=
1

4π

(
2π + λγ2 + 2λη ±

√
(2π + λγ2 + 2λη)2 − 8λπγ2

)
. (B.6)

Now since 1 ≤ η ≤ π4/90 there exists a constant C > 0 independent of K such that,

∀K ∈ N : κ(Ã(λ, c)) =
max{1, ω+}
min{1, ω−}

≤ C. (B.7)

Now suppose that one sets λ = 2π/γ2. Then we find that

ω±(η) := 1 + η/γ2 ±
√
2η/γ2 + η2/γ4, (B.8)

and hence,

κ(Ã(λ, γ)) =
1 +

√
2η/c+O(1/γ2)

1−
√
2η/γ +O(1/γ2)

= 1 +O(1/γ) for γ → ∞. (B.9)

As a result, limγ→+∞ κ(Ã(2π/γ2, γ)) = 1.
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Figure 3: Evolution of condition number of preconditioned matrix for different γ and λ (left) and
for different γ for the optimal λ (right).

B.2 CHOOSING λ

As mentioned in the main text, it seems natural to suggest that the parameter λ in loss (2.2) should
be chosen as

λ∗ := min
λ
κ(A(λ)), (B.10)

in order to obtain the smallest condition number of A and accelerate convergence, provided that it
can be calculcated in a numerically stable way.
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B.2.1 POISSON EQUATION

As a first example, we revisit the setting of Theorem 3.1 where we considered solving the Poisson
equation in one dimension by learning the coefficients of a basis of Fourier features (see formulas in
main text).

In Figure 8, it was already shown how the condition number of A(λ) changes for various values of
λ and K. In particular, there is a very clear minimum in condition number for every K. In Figure 4
we can clearly see that the optimal λ∗ scales as K2.
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Figure 4: Left: optimal λ in terms of K. Right: Evolution of condition number of A(λ) in terms of
model size K for multiple choices of λ.

We now compare our choice of λ as in equation B.10 with related work. We first compare with Wang
et al. (2021a). In this work, the authors propose a learning rate annealing algorithm to iteratively
update λ throughout training. At each iteration, they define

λ∗ =
maxk

∣∣(∇θR(θ))k
∣∣

(2K + 1)−1
∑

k

∣∣(∇θB(θ))k
∣∣ . (B.11)

In our example it holds that (∇θR(θ))k = k4θk for k ̸= ℓ and (∇θR(θ))ℓ = ℓ4(θk − 1). We find
that maxk

∣∣(∇θR(θ))k
∣∣ ∼ K4 at initialization. Next we calculate that (given that at initialization it

holds that θm ∼ N (0, 1) iid),

E
∑
k

∣∣(∇θB(θ))k
∣∣ = K∑

k=0

E

∣∣∣∣∣∣
K∑

m=0

θm(−1)k+m

∣∣∣∣∣∣ =
K∑

k=0

E

∣∣∣∣∣∣
K∑

m=0

θm

∣∣∣∣∣∣ = (K + 1)3/2 (B.12)

This brings us to the rough estimate that (2K + 1)−1
∑

k

∣∣(∇θB(θ))k
∣∣ ∼ √

K. So in total we find
that λ∗ ∼ K3.5.

Next, we compare with the proposed algorithm of Wang et al. (2022b). They propose to set

λ∗ =
Tr(Krr(n))

Tr(Kuu(n))
≈
´
Ω
∇θDu⊤θ ∇θDuθ´
∂Ω

∇θu⊤θ ∇θuθ
=

2π
∑K

k=1 k
4

K + 1
∼ K4. (B.13)

So, both works propose a choice of λ that increases a lot faster inK than the optimal choice in terms
of the condition number (λ∗ ∼ K2). In Figure 4 (right) we compare the obtained the condition
numbers for the various choices of λ∗ and we observe that the relative difference is however small
for small K but increases for larger K. This phenomenon can be explained by the fact that κ(A(λ))
has a relatively wide minimum for larger K.

B.2.2 LINEAR ADVECTION EQUATION

As a second example, we revisit the linear advection equation that was studied in Section 3. The
PDE is given by ut+βux = 0 on (−π, π)2 and we use periodic boundary conditions. As a model we
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use uθ(x, t) =
∑

k∈Z2,∥k∥∞≤K ek(x, t), where for instance ek(x) = sin(k1x+ k2t) when k1 < 0

and ek(x) = cos(k1x+ k2t) when k2 ≥ 0.

One can calculate that Akm = (k2+βk1)
2δkm+λδk1m1

, where the boundary term now comes form
the initial condition for uθ(x, 0), and where we rescaled A and λ to get rid of any multiplicative
factors stemming from the fact that we use unnormalized Fourier features. Re-indexing from a
matrix A with indices in Z2 to a matrix A′ with indices in Z such that A′

Kk1+k2,Km1+m2
= Akm

then gives the formula A′(λ) = Id⊗ C2 + 2βC ⊗ C + β2C2 ⊗ Id + λId⊗ (1 · 1⊤), where C is a
diagonal matrix with Cℓℓ = ℓ.

In Figure 5 we plot the condition number of A′ for various values of λ and β. We see that the
condition number increases with increasing β and that for each β there is a clear optimal λ∗. In
Figure 6 we verify that λ∗ indeed scales as β2, which was already observed in Figure 2.
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Figure 5: Evolution of condition number of A′ for soft boundary conditions (full lines) and hard
boundary conditions (dotted lines) in terms of β and λ for K = 3

This analysis also raises the questions what happens if T is increased. This depends on whether the
model size K is changed along with K or not.

• T is increased but the number of used Fourier basis functions is unchanged. The first part
of A′, i.e. the one coming from D∗D, is independent of λ and scales linear in T . As a
result, rescaling T corresponds to rescaling λ. Thus, the optimal λ∗ will change but the
optimal condition number will not depend on T .

• T is increased and the number of Fourier basis functions is increased accordingly in time.
This essentially corresponds to changing β and rescaling the measure. Moreover, this is
intrinsically connected to what happens for domain decomposition in the time dimension,
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Figure 6: For each β we have minimized the condition number in terms of λ and displayed it.
Growth is approximately quadratic for large β.
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which on its own can be seen as a form of a causal learning strategy (Wang et al., 2022a).
Since the condition number scales as β2 one can argue that splitting the time domain in N
parts will reduce the condition number of each individual submodel by a factor of N2.

B.3 HARD BOUNDARY CONDITIONS

In the previous section, we have seen how varying the weighting parameter λ of the boundary term
can influence the condition number of A. In view of Theorem 2.4 this is due to the fact that one
changes the operator A. In this section, we argue that different choices to implement hard boundary
conditions can also change the condition number of A, through changing the operator TT ∗. We also
give some examples where the condition number for hard boundary conditions is strictly smaller
than for soft boundary conditions i.e., κ(Ahard BC) < minλ κ(Asoft BC(λ)).

Demonstrative examples. We first consider a toy model to demonstrate these phenomena in a
straightforward way. We consider again the Poisson equation −∆u = − sin with zero Dirichlet
boundary conditions. We choose as model uθ(x) = θ−1 cos(x) + θ0 + θ1 sin(x) and compare the
condition number between various options.

• Soft boundary conditions. Using the approach discussed in Section B.2 we find that the
condition number for the optimal λ∗ is given by 3 + 2

√
2 ≈ 5.83.

• Hard boundary conditions - variant 1. A first common method to implement hard boundary
conditions is to multiply the model with a function η(x) so that the product exactly satisfies
the boundary conditions, regardless of uθ. In our setting, we could consider η(x)uθ(x) with
η(±π) = 0. For η = sin the total model is given by

η(x)uθ(x) = −θ−1

2
cos(2x) +

θ−1

2
+ θ0 sin(x) +

θ1
2
sin(2x), (B.14)

and gives rise to a condition number of 4. Different choices of η will inevitably lead to
different condition numbers.

• Hard boundary conditions - variant 2. Another option would be to subtract uθ(π) from the
model so that the boundary conditions are exactly satisfied. This corresponds to the model,

uθ(x)− uθ(π) = θ−1(cos(x) + 1) + θ1 sin(x) (B.15)

Note that this implies that one can discard θ0 as parameter, leaving only two trainable
parameters. The corresponding condition number is 1.

Linear advection equation. With these instructive examples in place, we once again revisit the
linear advection equation (as in SM B.2.2). If u(x, 0) = sin(ax) then we could define our model as,

uθ(x) =
∑
k

θk(ek(x)− ek(x, 0)) + sin(ax), (B.16)

and correspondingly,

Duθ(x) =
∑
k

θk((k2 + βk1)ek(x)− βk1ek(x, 0)) + βa cos(ax), (B.17)

and hence,

Akm = (k2 + βk1)
2δkm − βk1(k2 + βk1)δk1m1 [δk20 + δm20] + (βk1)

2δk1m1 . (B.18)

If we define the matrix E = 1 · eT0 by Eab = δa0 then we can write the re-indexed matrix A′ as,

A′ = Id⊗ C2 + 2βC ⊗ C + β2C2 ⊗ Id− β(βC ⊗ C + βC2 ⊗ Id)(Id⊗ (E + E⊤)) + C2 ⊗ (1 · 1⊤).
(B.19)

We find that for this specific case the condition number of A′ with hard boundary conditions is
always smaller than that with soft boundary conditions, for any β or λ (see Figure 5).
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B.4 SECOND-ORDER OPTIMIZERS

Second-order optimizers distinguish themselves from first-order optimizers, such as gradient de-
scent, by using information of the Hessian in their update formula. In the case of Newton’s method,
the Hessian is used to precondition the gradient. We explore the connection of preconditioning based
on our matrix A (2.6) with Newton’s method.

Given any loss J (θ), Newton’s method’s gradient flow is given by
dθ(t)

dt
= −γH[J (θ(t))]−1∇θJ (θ(t)), (B.20)

where H is the Hessian. In our case, we consider the physics-informed loss L(θ) = R(θ) + λB(θ)
(2.2) and consider the model uθ(x) =

∑
ℓ θℓϕℓ(x), which corresponds to a linear model or a neural

network in the NTK regime (e.g. Lemma 2.2).

Using that ∂θi∂θjuθ = 0, we calculate,

∂θi∂θjL(θ) =

ˆ
Ω

(L∂θiuθ(x)) · L∂θjuθ(x)dx+ λ

ˆ
∂Ω

∂θiuθ(t)(x) · ∂θjuθ(x)dx

=

ˆ
Ω

Dϕi(x) · Dϕj(x)dx+ λ

ˆ
∂Ω

ϕi(x) · ϕj(x)dx

= Aij .

(B.21)

We conclude that A is identical to the Hessian of the loss. Hence, using Newton’s method auto-
matically leads to perfect preconditioning. However, the high potential cost of computing the exact
Hessian inhibits the use of these class of optimizers in practice.

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS
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Figure 7: Helmholtz equation with Fourier features. Left: Optimal condition number vs. No. Fourier
features. Right: Training curves for the unpreconditioned and preconditioned Fourier features.

Throughout all the experiments, we use torch version 2.0.1 and incorporate functional routines
from torch.func. The matrix A is computed using the formula

Ai,j = ⟨Dϕi,Dϕj⟩L2(Ω) + λ⟨ϕi, ϕj⟩L2(∂Ω).

Here, ϕk := ∂θku(·; θ0) is initially obtained through autograd. Subsequently, the differential opera-
tor D is applied, also leveraging autodiff. For the scalar product, we employ Monte Carlo approx-
imation and can utilize the same input coordinates used for training. In scenarios where the matrix
becomes too large—often the case for large networks—numerical approximations of the D operator
can be employed to reduce both computational and memory load.

For training, in order to avoid random errors we fix the grid to an equispaced grid of a size large
enough to resolve the neural network/linear function.

Once the matrix A is computed, for the linear models we use a routine to compute its condition
number and find the optimal λ before training using the black-box gradient free 1d optimisation
method from scipy.optimize.golden. The learning rate is then chosen as 1/λmax. For models
with MLPs this is no longer possible because of the zero eigenvalues that are plaguing the matrix;
we resort to grid search sweeping wide ranges of learning rates and λ values.
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Figure 8: Sensitivity of the condition number on parameter λ, the multiplier between boundary and
residual loss. In the non-preconditioned and preconditioned case (left and right, respectively), λ has
a non-negligible impact on the condition number. However, in the preconditioned case, this impact
is always the same for different Fourier features, and thus plots for different Fourier features overlap.
This implies that the optimal λ will not have to be adjusted when changing this hyperparameter, as
opposed to the non-preconditioned case.

C.1 POISSON AND HELMHOLTZ, 1D

We solve the following boundary value problems on the domain [−π, π]. For the experiments with
Fourier features the network is already periodic and thus there is no need to enforce these conditions.

Poisson equation, 1d. The solution is given by u(x) = sin(kx).

u′′(x) = −k2 sin(kx),
u(−π) = 0, u(π) = 0. (C.1)

Helmholtz equation, 1d. The solution is given by u(x) = cos(ωx).

u′′(x) + ω2u(x) = 0,

u(0) = 1, u′(0) = 0,

u(−π) = u(π), u′(−π) = u′(π). (C.2)

For the Fourier features approximating the Helmholtz equation, we use exactly the same formulation
as for the Poisson equation in the main text and a similar preconditioning matrix as in (3.3), but
with diagonal entries scaling as 1

|k2−ω2| . The results for Helmholtz equation, presented in Figure
7, are entirely analogous to the observations for the Poisson equation in Main text Figure 1. All
the observations done on those two cases in the main paper and the appendices are also valid when
looking at the mean squared error, see Figure 10 and 11. In Table 1 we report the computational time
for one epoch in the preconditioned and unpreconditioned cases where, for fairness, we computed
the preconditioning at each step instead of computing it once for all at the beginning of the training.

Architectural Details. For the MLP we used a 3 hidden neural network with a hidden dimension
of 64 and a hyperbolic tangent tanh activation function. All models are optimized using SGD.

C.2 LINEAR ADVECTION EQUATION, 2D

We solve the following boundary value problems on the domain Ω := [0, 2π]× [0, 1]:

∂u

∂t
+ β

∂u

∂x
= 0

u(x, 0) = sin(x), x ∈ [0, 2π]

u(0, t) = u(2π, t), t ∈ [0, 1] (C.3)
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(b) β = 30π

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

1

2

3

4

5

6

Sp
ac

e

Exact solution for = 60

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

1

2

3

4

5

6

Sp
ac

e

Fourier features, parameter preconditioning

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

1

2

3

4

5

6

Sp
ac

e

Fourier features, no preconditioning

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

1

2

3

4

5

6

Sp
ac

e

MLP, no preconditioning

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

(c) β = 60π

Figure 9: Solutions for the linear advection experiment
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Figure 10: Training curves and mean squared error for the Fourier basis in the Poisson problem for
different numbers of Fourier features using preconditioned SGD and Adam.
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Figure 11: Training curves and mean squared error for the Fourier basis in the Helmholtz problem
for different numbers of Fourier features using preconditioned SGD and Adam.

where β is the speed of advection.

Each model uθ, with θ the set of its parameters, is trained with a Physics-Informed Loss defined as:

R(θ) =

ˆ
Ω

|∂tuθ + β∂xuθ|2 dxdt

B(θ) =

ˆ
[0,2π]

∣∣uθ(x, 0)− sin(x)
∣∣2 dx+

ˆ
[0,1]

∣∣uθ(0, t)− uθ(2π, t)
∣∣2 dt

L(θ) = R(θ) + λB(θ) (C.4)

The solution of such differential equation is (x, t) 7→ sin(x− βt).

Architectural Details. We test two models, a linear model via a two-dimensional Fourier series
with bounded spectrum and a MLP with 5 layers, 50 neurons per hidden layer, and tanh activation
function as used in Krishnapriyan et al. (2021). More explicitly, the ansatz for the linear model is:

uθ(x, t) =
1√
π

5∑
k=−5

30∑
m=0

(
θcosk,m cos(kx+ 2πmt) + θsink,m sin(kx+ 2πmt)

)
(C.5)

with θ :=
{
θcosk,m, θ

sin
k,m

}
k,m

.

In the preconditioned case, the preconditioning matrix is set to a diagonal matrix with diagonal terms
1

|m+βk| for (k,m) ̸= (0, 0). For the parameter θcos0,0 we set the preconditioning factor to 1.

Training details. We discretize the domain Ω on a grid of size 256× 100 for the learning process
to be consistent with the configuration proposed in Krishnapriyan et al. (2021) and a grid of size
256× 2048 to compute the matrix A defined in 2.6 with finite differences.

For the linear model, we use classical batch gradient descent on the full grid with and without
preconditioning for 200 epochs. The learning rate and λ are automatically defined to minimize the
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Table 1: Computational time per step in milliseconds. The preconditioning time refers to the param-
eters preconditioning of the Fourier basis via the approximate analytical conditioning described in
the Appendices.

Problem Preconditioning SGD

Poisson 1D 14.1± 2.1 8.9± 2.2
Helmholtz 1D 15.9± 3.2 11.2± 2.8
Advection 2D 17.2± 1.5 10.9± 0.7

condition number of A via a Golden section method. For the MLP, we use Adam on the full grid
without preconditioning for 10000 epochs. The learning rate is set to 0.0001 and λ is set to 1 via
grid search as we encountered out-of-memory errors when computing A. Training curves for the
linear model with and without conditioning for different β and a plot of the condition number with
respect to β is given in Figure 2. Training curves for the MLP for different β are given in Figure 13.

Results. The behavior of condition numbers and loss functions for the linear model and its precon-
ditioned version were already shown in Figure 2 and discussed in the main text. The loss functions
with MLPs (trained with ADAM), for different β’s are shown in Figure 13 and we observe that the
MLP (trained with ADAM) converged very slowly to an unacceptably large loss function of ampli-
tude 10−2, which can be contrasted with the very fast decay of the loss function to 10−10 for the
preconditioned Fourier model (Figure 2 (right)). These issues in training severely impact the overall
quality of the results with the three models considered (unpreconditioned Fourier, preconditioned
Fourier and MLP). In Figure 9, we plot the exact solution (in space-time) and compared it with
the solutions obtained with the three models, at three different advection speeds β = 6π, 30π, 60π.
We see from this figure that the unpreconditioned Fourier model fails completely, even at the slow-
est considered speed β = 6π. MLP (trained with ADAM) is better at the slowest speed than the
unpreconditioned Fourier model but fails completely at the higher speeds, as already observed in
Krishnapriyan et al. (2021). On the other hand, consistent with our theory and the low values of the
loss function observed in Figure 2 (right), the preconditioned Fourier model was able to approximate
the solution (in space-time) with high-accuracy, even for the fastest considered advection speed of
β = 60π. This example clearly demonstrates the superiority of the preconditioned linear models
over their unconditioned versions as well as over nonlinear neural network models. All of this ob-
servations are also valid when looking at the mean squared error (computed at the same collocation
points as the training loss), see Figure 12. In Table 1 the computational time is reported for each
method where, for fairness, we computed the preconditioning at each step instead of computing it
once for all at the beginning of the training.
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Figure 12: Training curves and mean squared error for the Fourier basis in the advection problem
for different β using preconditioned SGD and Adam.
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Figure 13: Training curves for the MLP in the advection problem for different β using Adam.

C.3 PRECONDITIONING VIA DIRECT INVERSION OF THE MATRIX A

In this section, we wish to validate the theory and assess the assumptions made in a practical, non-
linear scenario. To this extent, we propose to directly precondition the gradient using the inverse of
the matrix A defined in (2.6), recalled below:

Ai,j = ⟨Dϕi,Dϕj⟩L2(Ω) + λ⟨ϕi, ϕj⟩L2(∂Ω), (C.6)

where ϕi(x) = ∂θiu(x; θ0). Given that the simplified gradient assumption holds, i.e. the smallness
of the error term ε in (2.7), (non-)convergence is entirely governed by the conditioning of the matrix
A. This matrix can be readily computed using autodifferentiation, first differentiating w.r.t. θ, then
w.r.t. the coordinates for the differential operator D. The scalar products are then computed using a
Monte Carlo approximation on the training points.

We then precondition the gradients, using the regularized inverse A−1
ε := (A+ εI)

−1, the parameter
updates given by:

θ̂k+1 = θ̂k − ηA−1
ε ∇θL(θ̂k). (C.7)

Recalling equations (3.2) and (3.1), the conditioning of the problem now is governed by the matrix
Ã := A− 1

2
ε AA− 1

2
ε ≈ I , whose condition number is thus approximately optimal. Experiments are

conducted using a one-hidden layer, 32 neurons, tanh MLP, using a regularization parameter ε ∈
[0.0001, 0.004], and double precision.

The preconditioned gradient is directly numerically computed via the resolution of a least-square
problem of the form:

argmin
x

∥Aεx−∇θL(θ̂k)∥2. (C.8)

We must underline that the regularizing term εI and the double precision are crucial for numerical
stability as the matrix A is highly ill-conditioned for such MLP. Also, we computed the matrix A
for each new set of parameters, solving the least-square problem at each epoch instead of solving it
only at the initialization.

For Poisson, Helmholtz, and Advection, we compare the convergence of the preconditioned MLP
to a non-preconditioned MLP, trained with SGD and Adam respectively. In figures 14, 15, 16, we
report training curves (left) as well as mean squared errors (right) for different PDE parameters.
We observe that preconditioning with this strategy not only consistently yields much lower errors,
but also much faster training times. Solutions for the advection equation can be visually inspected
in Figures 18 and 19: consistent with findings in Krishnapriyan et al. (2021), the MLP trained
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with no preconditioning does not converge to the true solution, even after an indefinite number of
timesteps. In contrast, solutions with the preconditioned MLP are visually indistinguishable from
the true solution. However, this preconditioning strategy comes at a price, as computational costs
are higher (as opposed to the preconditioning strategy described in the main paper), as reported in
Table 2.
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Figure 14: Training curves and mean squared error for the shallow MLP in the advection problem
for different β using preconditioned SGD and Adam.
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Figure 15: Training curves and mean squared error for the shallow MLP in the Poisson problem for
different k using preconditioned SGD and Adam.
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Figure 16: Training curves and mean squared error for the shallow MLP in the Helmholtz problem
for different ω using preconditioned SGD and Adam.

C.4 PRECONDITIONING NONLINEAR PHYSICS-INFORMED MACHINE LEARNING MODELS

We investigate conditioning of nonlinear models by considering the Poisson equation on (−π, π)
and learning its solution with neural networks of the form uθ(x) = Φθ(x), with x ∈ (−π, π) and
Φθ being a three hidden layer MLP. We compute the resulting matrix A (2.6) and plot its normalized
eigenvalues in Figure 20 (left) to observe that most of the eigenvalues are clustered near zero, in
accordance with the fact that Hessians (which are correlated with A) for neural networks have a
large number of (near) zero eigenvalues (Ghorbani et al., 2019). Consequently, it is difficult to
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Figure 17: Left: Normalized Spectrum of the shallow MLP and preconditioned shallow MLP for
the Poisson Equation. Right: Training loss for the shallow MLP and preconditioned shallow MLP
for the Poisson Equation.
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Figure 18: Comparison of the solutions for the shallow MLP in the advection problem using pre-
conditioned SGD and Adam with β = 10.
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Figure 19: Comparison of the solutions for the shallow MLP in the advection problem using pre-
conditioned SGD and Adam with β = 30.

Table 2: Computational time per step in milliseconds. The preconditioning time refers to the gradient
preconditioning of the shallow MLP via inversing the A matrix.

Problem Preconditioning Adam

Poisson 1D 16.2± 2.0 8.2± 1.8
Helmholtz 1D 20.5± 3.6 9.7± 2.0
Advection 2D 200.0± 25.8 5.9± 1.1

analyze the condition number per se. However, we also observe from this figure that there are only a
couple of large non-zero eigenvalues of A indicating a very uneven spread of the spectrum. It is well-
known in classical numerical analysis (Trefethen & Embree, 2005) that such spread-out spectra are
very poorly conditioned and this will impede training with gradient descent. This is corroborated
in Figure 20 (right) where the physics-informed MLP trains very slowly. Moreover, it turns out
that preconditioning also localizes the spectrum (Trefethen & Embree, 2005). This is attested in
Figure 20 (left) where we see the localized spectrum of the preconditioned Fourier features model
considered previously, which is also correlated with its fast training (Figure 1 (right)).
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Figure 20: Poisson equation with MLPs. Left: Histogram of normalized spectrum (eigenvalues
multiplied with learning rate). Right: Loss vs. number of epochs.

However, preconditioning A for nonlinear models such as neural networks can, in general, be hard.
Here, we consider a simple strategy by coupling the MLP with Fourier features ϕk defined above,
i.e., setting uθ = Φθ

(∑
k αkϕk

)
. Intuitively, one must carefully choose αk to control d2n

dx2nuθ(x)

as it will include terms such as (
∑

k ̸=0 αk(−k)2nϕk)Φ(2n)
θ

(∑
k αkϕk

)
. Hence, such rescaling can

better condition the Hermitian square of the differential operator. To test this for Poisson’s equation,
we choose αk = 1/k2 (for k ̸= 0) in this FF-MLP model and present the eigenvalues in Figure
20 (left) to observe that although there are still quite a few (near)-zero eigenvalues, the number of
non-zero eigenvalues is significantly increased leading to a much more even spread in the spectrum,
when compared to the unpreconditioned MLP case. This possibly accounts for the fact that the
resulting loss function decays much more rapidly, as shown in Figure 20 (right), when compared to
unpreconditioned MLP.
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