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Abstract

Popular iterative algorithms such as boosting methods and coordinate descent on linear
models converge to the maximum ¢;-margin classifier, a.k.a. sparse hard-margin SVM, in
high dimensional regimes where the data is linearly separable. Previous works consistently
show that many estimators relying on the ¢;-norm achieve improved statistical rates for
hard sparse ground truths. We show that surprisingly, this adaptivity does not apply to the
maximum ¢;-margin classifier for a standard discriminative setting. In particular, for the

noiseless setting, we prove tight upper and lower bounds for the prediction error that match
«112/3
existing rates of order \IU;lllé for general ground truths. To complete the picture, we show
1
Vlog(d/n)

We are therefore first to show benign overfitting for the maximum ¢;-margin classifier.

that when interpolating noisy observations, the error vanishes at a rate of order

1 Introduction

The ability to generalize in high-dimensional learning tasks is crucially based on structural assumptions on
the underlying ground truth. Probably the most commonly studied assumption is that the observations
only depend on few input features, also called sparsity of the ground truth. Popular iterative algorithms
widely used in practice to train models in such settings include coordinate descent (see |Wright| (2015)) for
a survey) and boosting methods (e.g., Adaboost [Freund and Schapire| (1997)). Numerous influential works
(Bartlett et al., |1998; Rudin et al., |2004; |Zhang and Yu, |2005; |Shalev-Shwartz and Singer}, [2010; [Schapire
and Freund, |2013; Telgarskyl, [2013} |Gunasekar et al., |2018) make an important step towards mathematically
understanding these algorithms by showing that these solutions have the implicit bias of converging to the
maximum ¢;-margin classifier (sparse hard-margin SVM).

However, so far, there exists relatively little analysis on the generalization capabilities of the maximum
¢1-margin classifier; existing nonasymptotic results only consider general (non-sparse) ground truths and
adversarial corruptions (Chinot et al |2021)), while asymptotic results consider regimes where the prediction
error does not vanish (Liang and Sur}|2022)). In this paper, we derive tight matching upper and lower bounds
for the prediction error in a high-dimensional discriminative classification setting with (hard) sparse ground
truths. Our theory holds for Gaussian covariate distributions and the tightness of our bounds crucially rely on
Gaussian comparison results (Gordon, |1988; |Thrampoulidis et al.l|2015)) (for comparison with previous work,
see Section. Our tight non-asymptotic bounds allow us to answer two open problems regarding maximum
¢1-margin classifier related to its adaptivity to sparsity (Problem 1) and benign overfitting (Problem 2).

Problem 1: adaptivity to sparsity Intuitively, linear estimators relying on the ¢;-norm should adapt
to (hard) sparse ground truths by achieving faster rates than for ground truths where only the ¢;-norm is
bounded. For instance, this gap has been proven for ¢;-norm penalized maximum average margin classifiers
(Zhang et al.l [2014]), as well as basis pursuit (which achieves exact recovery only under sparsity assumptions
(Donoho, 2006; |[Candes and Tao, [2006])) and the LASSO (Tibshirani, [1996; [Van de Geer}, 2008) in linear
regression settings.

However, so far there are no results in the literature that show adaptivity to sparsity of the (interpolating)
maximum ¢;-margin classifier in high-dimensional discriminative learning tasks. In fact, recent work (Chinot
et al.l [2021)) posed the following open problem:
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(Q1): Is the mazimum {1-margin classifier adaptive to sparsity for noiseless data?
«112/3
In Section we show that surprisingly, the answer is negative: The tight rate HU;LJ/I; for (hard-) sparse
normalized ground truths w* in Theorem [I]is of the same order as the upper bounds in (Chinot et all, 2021)
that hold for general ground truths.

Problem 2: benign overfitting Motivated by empirical observations for largely over-parameterized mod-
els (Zhang et all 2021} [Belkin et al. [2019), a line of research recently emerged showing “benign overfitting”
(Bartlett et al. [2020) for linear interpolating classifiers. More specifically, these papers show that the pre-
diction error yields vanishing rates, although the model interpolates noisy observations, where a constant
fraction of labels are randomly corrupted (Muthukumar et al., |2021} |[Donhauser et al.| 2022; Shamir} |2022).

However, so far no such results exist for the maximum ¢;-margin classifier. Existing upper bounds in
(Chinot et all) 2021) are tight for arbitrary (adversarial) corruptions but require the fraction of corrupted
labels to go to zero to reach vanishing rates. It is unclear whether these rates can be improved for random
(non-adversarial) corruptions:

(Q2): Does the prediction error for the maximum {1-margin classifier yield vanishing rates when a constant
fraction of the labels are randomly corrupted?

In Section we show that this is indeed true: The maximum ¢;-margin classifier achieves a logarithmic
rate of order L in Theorem [2] — which is much slower than for the noiseless case and far from

og(d/n)

being minimax optimal (Wainwright, 2009; |Abramovich and Grinshtein, 2018)), but nonetheless vanishing in
high-dimensional regimes when d > n'*¢. We therefore complement the literature on benign overfitting for
maximum ¢,-margin classifiers with p > 1, which can even achieve much faster polynomial rates (Donhauser:

et al 2022)

2 Setting

In this section we introduce the data model, prediction error and maximum ¢;-margin classifier. We study
a standard discriminative data model which is commonly studied in the 1-bit compressed sensing literature
(see e.g., [Boufounos and Baraniuk| (2008); Plan and Vershynin| (2012) and references therein).

We assume that we observe n pairs of i.i.d. input features x; B Ve (0,1;) and associated labels y; =
sgn((x;, w*))& where w* is the (normalized) ground truth (i.e., ||w*||, = 1). Unlike previous works (Chinot|
2021)), our proofs crucially rely on the Gaussianity of the input features (see Sectionfor a comparison
with existing proof techniques). We say that the label y; is clean if & = 1 and corrupted if §&; = —1. We
study the two cases where either all labels are clean (noiseless), i.e. Vi : & = 1, or where the corruptions
& € {—1,1} are randomly drawn from a distribution P, (noisy) only depending on the features in the
direction of the ground truth:
iid. X

&ilwi = Py (5 (i, w")). (1)
As proposed in (Donhauser et al., 2022), we make the following technical assumption on the noise distribu-
tion P,:

Assumption 1 (Noise model). The function z — P, (£ = 1;2) is a piece-wise continuous function such that
the minimum vy := argmin Ez. n0,1)Eenp, (;2) (1 — §V|Z\)i exists and is positive vy > 0.

This assumption is rather weak and satisfied by most noise models in the literature, such as

e Logistic regression with P, (&; = 1;2) = h(z0) and h(z) = 15;‘2‘ and o > 0.

 Random label flips with P, (¢ = 1; (z;,w*)) =1 — 0 and o € (0, 1).

’2

 Random noise before quantization where y; = sgn((w*, z;) + &) with &|z; ~ N(0,02) and o2 > 0.
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Given the data set {(z;,vy;)}", the goal is to obtain an estimate @ that directionally aligns with the
normalized ground truth w* and thus has a small prediction error:

R R 1 ) .
R(9) = Eo o1, sen((2, 8)) # sen((z,w))] = T arccos (<w” w >) | 2)
2
By the Taylor series approximation, one can directly see that a small prediction error corresponds to a small
directional estimation error, which is commonly studied in the 1-bit compressed sensing literature (Boufounos
and Baraniuk}, |2008)) since

A~

1 w

s

R(w) =~ *

3)

[xal(® 2

We study the mazimum ¢1-margin interpolators, or equivalently, the sparse hard-margin SVM solution
defined by

W =argmin||w|; st Vi: y(x;,w) > 1.
w

Remark 1. While our two main results in Section [3, Theorem [1] and [3, are stated for the mazimum (;-
margin classifier, the bounds in the theorems hold uniformly for all interpolating classifiers with large (close
to the optimal) £1-margin (see Proposition @ and@

3 Main Results

In this section we state our main result for the noiseless (Theorem [1| in Section and noisy setting
(Theorem [2| in Section . For both results, we assume that the data is distributed as described in
Section 2] Furthermore, we present a discussion comparing our main results with existing results based on
hyperplane tessellation in Section 3.3

3.1 Main result for noiseless observations

Our first main result stated in the following theorem provides tight upper and lower bounds in the noiseless
setting:
Theorem 1 (Noiseless classification). Assume that Vi, & = 1 and w* is a s-sparse vector with s <

n2/3 1og714/3 d. There exist universal constants ki, kKo, Ks,c1,C2,¢c3 > 0 such that for any n > k1 and
Komy, < d < exp(fignl/u), the prediction error is upper- and lower-bounded by

2 2
ro [[w* |y [y

1/3 1/3
6~ (Gratbite) |3 (i)

with probability at least 1 — c1d™! — cyexp (—03@%) over the draws of the data set where we define
Ko = ﬁ and my, =< (n||w*||,)?/? log'/3(d/(n | w*|[,)?/3) (the ezact expression is given in Equation
in Section @

The proof of the theorem is deferred to Appendix [B]and an overview is given in Section[d] Furthermore, we
refer to Appendix for a discussion of the assumptions. We now discuss the implications of the theorem
in the following paragraphs.

Adaptivity to sparsity Existing upper bounds (Chinot et al.,|2021)) for the maximum ¢;-margin classifier
1/3
up to

* (12
hold for any normalized ground truth w* (with ||w*||]2 = 1) and are of order R(w) = O %
logarithmic factors. Our matching upper and lower bounds in Theorem [I] show that these rates can only be
improved by logarithmic factors under the assumption that the ground truth is sparse. Maybe unexpectedly,
we therefore conclude that the maximum ¢;-norm classifier cannot (or only very mildly) adapt to sparsity

of the ground truth!
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Suboptimality of maximum /;-margin This lack of adaptivity stands in stark contrast to other /;-norm

lw™ [lo log(d)
n

constrained classifiers from the one-bit CS literature that can e.g. achieve rates of order under

sparsity assumptions (e.g.,|Zhang et al. (2014); |Awasthi et al.[ (2016)). We remark that even faster min-max
optimal bounds of order M can be obtained by other classifiers (Gopi et al 2013; [Jacques et al.,
2013)). Intuitively, the reason for the suboptimality of the rates for the maximum ¢;-margin classifier can be

explained by the fact that the ground truth w* has a small margin of order @(ﬁ) with high probability,

while the maximum ¢;-margin classifier has a larger margin at least of order [| Q( . That is, the

1
(n\lw*lll)l/S)
max-£1-margin classifier overfits to samples close to the decision boundary.

3.2 Main result for noisy observations

Our second main result considers the high noise regime where a constant fraction of the labels are (randomly)
corrupted with high probability. We show in the following theorem that the prediction error vanishes for
this setting at a logarithmic rate:

Theorem 2 (Noisy classification). Assume that the corruptions §; follow the law in Equation with P,
independent of n, d and satisfy Assumption. Furthermore, assume that w* is s-sparse with s < n/ 10g4(d/n).
There exist universal constants k1, k2, K3, C1, - . .,cq4 > 0 such that for anyn > k1 and kon < d < exp(ﬁ3n1/5),
the prediction error is upper- and lower-bounded by

1
log*"(d/n)

Ko

log(d/n)

<

~

‘R(ﬁ)) -

with probability at least 1 — ¢y exp (—02 m) —c3exp (—04 m) over the draws of the data set
and with k, a constant only depending on P, (see Equation n Appendix@for the definition).

The proof of the theorem is deferred to Appendix [C]and an overview is given in Section [l Furthermore, we
refer to Appendix [3.4] for a discussion of the assumptions. We now discuss the implications of the theorem
in the following paragraphs.

Benign overfitting: We are the first to show that the prediction error of the max-¢;-margin classifier
vanishes albeit interpolating a constant fraction of (randomly) corrupted labels, and thus exhibits benign
overfitting Bartlett et al.| (2020). Therefore, our work complements recent work studying maximum ¢,-margin
classifiers with p > 1 that can achieve polynomial rates (Donhauser et al., [2022).

Comparison with optimal rates: Although vanishing, the rates in Theorem [2] are only of logarithmic
orders and therefore far from being min-max optimal. Indeed min-max optimal lower bounds for the noisy
setting are of order % (Wainwright, 2009; |Abramovich and Grinshtein) [2018)) and attained by

regularized (non-interpolating) classifiers maximizing the average margin under ¢;-norm constraints (see,
e.g., (Zhang et al., |2014)). Theorem [2| can therefore also be understood as a negative result showing that
the maximum ¢;-margin classifier suffers from overfitting the noise, in the sense that, although consistent,
the rates are far from min-max optimal.

3.3 Comparison with bounds relying on hyperplane tessellation

We now discuss the limitations of proofs relying on hyperplane tessellation (see e.g. [Plan and Vershynin
(2014)) — a standard tool to bound the prediction error of linear classifier in high-dimensional settings, e.g.
in (Chinot et al., 2021)).

First, define the Hamming distance of two vectors wi,ws to be the fraction of training samples where the
corresponding classifiers differ:

dy (wy,we) = %Z {sign({z;, w1) # sign({x;, wa))}.

(2

Iwhere we make use of Proposition [4|and Lemma 4.1 in [Chinot et al.| (2021))
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Note that dg(@,w*) corresponds exactly to the fraction of corrupted labels ie., dy(w,w*) =
%ZZ 1{& = —1}. The high-level idea of hyperplane tessellation is to bound the directional estimation
error (which in turn gives a bound on the prediction error ) via the Hamming distance by uniformly
bounding the difference between the Euclidean and scaled Hamming distance

sup  [Adp (w1, w2) — [[wy — wall2|, (4)
wi,w2 €T

over some large enough set 7 C S9! that contains the normalized classifier Hi’l%UHQ with high probability.

Here, )\ is some universal constant.

Observe that this approach only leads to tight bounds if the difference in Equation is small. This,
however, is not the case for the settings studied in our main results. Indeed, for noisy data (Theorem , by
definition of the interpolating classifier we have that

Ay <w2w> =0(1)

]

while ||-2- — w*||» vanishes at a logarithmic rate. Furthermore, in the noiseless case (Theorem 1)), the
BB

Hamming distance dg (m,w*) is zero — meaning that we cannot obtain any lower bounds for the

directional estimation error using a hyperplane tessellation argument.

This “weakness” of proofs relying on uniform hyperplane tessellation bounds is also not surprising since such
approaches do not take the distributional assumptions of the noise into account — in particular, we cannot
distinguish between adversarial and non-adversarial noise. In contrast, the logarithmic rates in Theorem
crucially rely on Assumption [I] for the distribution of the corruptions.

In defense of hyperplane tessellation bounds, we finally mention that unlike the proofs presented in this paper
(see Section , results relying on hyperplane tessellation bounds give guarantees for arbitrary corruptions
and can also be generalized to non-Gaussian features (Chinot et al.,|2021). Yet, in order to capture the rates
in Theorem [T and 2] new proof techniques are needed.

3.4 Discussion of the assumptions in Theorem [1] and [2]

In this section we discuss the assumptions in our main theorems on the sparsity of the ground truth and the
data distribution and their limitations.

Sparsity of the ground truth w* While the upper bound in Theorem [1| can be generalized at the cost
of a logarithmic factor (i.e. as in |Chinot et al. (2021)), the lower bound requires a very tight analysis
(proof of Proposition [5in Appendix and strongly relies on the sparsity of the ground truth. We would
like to note at this place that only few high-probability lower bounds are known in the literature (beyond
classifiers/regression estimators relying on the o-norm) and leave lower bounds for non-sparse ground truths
as an exciting and important future work.

Moreover, we mention that the constraint on the degree of the sparsity of the ground truth in Theorem [2]
cannot be relaxed without affecting the upper bound. However, it is an open question whether one can relax

the constraint with a soft-sparsity constraint on the ground truth of the form ||w*||; < ToardsmT- We note

that the bound in Theorem [2| does not depend on the ground truth, assuming that the degree of sparsity
is sufficiently small. Morally, this is because the effect of fitting the noise dominates the prediction error,
similar to the rates for the prediction error of the minimum-¢;-norm interpolator (Basis pursuit) in (Wang
et al., 2022).

Gaussian distribution of the data The assumption that the data is normally distributed is a major
limitation of the results presented in Theorem [1| and Attempts to generalize this assumption face the
fundamental issue that the analysis needs to be tight including multiplicative constants. However, so far,
the only technique that allows us to capture this tightness relies on Gaussian comparison inequalities (e.g.,



Under review as submission to TMLR

the (C)GMT (Gordon, {1988} [Thrampoulidis et al., |2015))), and generalizations to non-Gaussian data come
at a price of a multiplicative constant.

We further remark that any previous work presenting a tight analysis of min-norm/max-margin interpolators
(see, e.g., (Donhauser et al.l 2022; Wang et al., [2022; Koehler et al. 2021; Zhou et al., 2022} |[2021))) crucially
relies on Gaussian input data, with the min-¢>-norm/max-fs-margin interpolators (Bartlett et all [2020
Muthukumar et all, 2021)) as the only exceptions. Deriving tight generalizations of the (C)GMT (Gordon
1988} (Thrampoulidis et al., [2015) to non-Gaussian data is a promising direction for extending our main
results, with the first results in this direction in (Han and Shen| 2022]).

Isotropic features In this paper, we only consider isotropic input features x;. Technically, we believe
that our methodology could also be extended to non-isotropic features (see (Koehler et al.,2021; Zhou et al.,
for related works in this direction). However, such an extension comes at the price of technically
more involved proofs and theorem statements — and therefore at a cost of readability. We believe that,
despite the less general setting, our results already reveal interesting novel insights.

4 Proof overview

In this section, we give an overview of the proofs of the main results, Theorem [l and Theorem [2| and
summarize the main tools used in the proof. Both proofs rely on a standard localization/ uniform convergence
argument (see e.g., Koehler et al| (2021); Zhou et al. (2021); Wang et al.| (2022); Donhauser et al. (2022)),

where:

1. (Localization) we derive a high-probability upper bound on the ¢;-norm of the maximum ¢;-margin
interpolator w over the draws of X and &, by finding M > 0 such that

min |lw|, =:®x <M.
Vi yi(w,w)>1

2. (Uniform convergence) we derive high-probability uniform bounds over X and ¢ for all interpolators
w with [|w||; < M. Namely, we find a high-probability lower and upper bound, respectively, for the
minimum (maximum) alignment

E3

_:= min fw, w?) st Vi oye,w) > 1,

lwll, <M [w]],

lwll;>6

(w, w*) ,

®, := max — s.t. Vi: y{x;,w) >1
" S Tl {0 w)

lwll,>6

with some § > 0 arbitrarily small, which in turn gives us high probability bounds for the prediction

error using that
1 N
R(w) = — arccos (<7:U,w*>> )
x G

Remark 2. The constraint |w||y > 0 in the definition of ®,,®_ is only added to ensure the optimization
problems are well defined. In particular, we can choose 6 > 0 arbitrarily small and, therefore, neglect this
constraint in the remainder of the analysis.

The remainder of this section is structured as follows. We first present in Section [£.I] an application of
Gaussian comparison (Proposition , which allows us to reduce the optimization problems ®p,®_ and
®, to simpler auxiliary optimization problems ¢y, ¢_ and ¢4. We then describe in Section how these
auxiliary optimization problems can be further simplified using the localized Gaussian width (Proposition
2). Finally, in Section we give a sketch of the remaining proofs of Theorem [] and Theorem
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Notation We define the function (+);+ : R — R4, (z)4+ = z1{x > 0}. We denote by s the sparsity ({p-norm)
of w* and assume w.l.o.g. that the nonzero entries of w* are exactly the first s-entries. Moreover, we use
the following notation for components of the vector w: w) € R? and w; € R? for components parallel
and perpendicular to w*, respectively. Furthermore, we use w(f) € R? for the first s-entries of w,, and
w(f ) € R4 for the last d — s entries of w .

We denote by Bj, By unit balls with respect to the ¢; and ¢3-norms, respectively. We use k1, Ko, ... and
1, C2, ... for generic universal positive constants independent of d, n, whose values may change from display
to display throughout the derivations. The standard notations O(-),0(-), Q(:),w(-) and O(-), as well as <, 2>
and =, are utilized to hide universal constants, without any hidden dependence on d or n.

4.1 Preliminary Step 1: application of the (C)GMT

The proofs of both main results rely on the following application of the Gaussian Minmax Theorem (GMT)
(Gordon, |1988) and its convex variant (CGMT) (Thrampoulidis et al., [2015]), which is a commonly used tool
when studying linear min-norm/max-margin interpolators (see e.g., (Deng et al. [2021; Donhauser et al.,
2022; [Koehler et al.| [2021; [Zhou et al., 2021; [Wang et al. |2022)).

Recap: (C)GMT For completeness, we first summarize the following variant of the (C)GMT.

Lemma 1. (Corollary of (Gordon, 1988; | Thrampoulidis et al., |2015)) Let X, € R"> =% be a matriz with
i.i.d. N(0,1) entries and let g ~ N(0,1,) and h ~ N(0,I4_5) be independent random vectors. Let S, C
R* x R4™% and S, C R™ be compact sets, and let ¥ : Sy, x S, — R be a continuous function. Then for the
following two optimization problems:

®= min max (v, Xjw) +Y((w,ws),v
(wl’w2)€Swv€Sv< 1w1) + Y((wr, we), v)

= i b) 7h b) b)
¢ (wlfggeswggg\\wl\lz<v g9) + llvlly (wr, k) + (w1, w2), v)

and any t € R holds that:
P(® < t) <2P(¢p <)

If in addition 1 is a convez-concave function, we also have for any t € R:
P(® > t) < 2P(¢ > t)
In both inequalities the probabilities in the LHS and RHS are over the draws of X1, and of g, h, respectively.

We see that ¢ controls the upper and lower tail of ®. Importantly, the inequality is sharp, including
multiplicative constants — a high probability upper (lower) bound for ¢ is also a high probability upper
(lower) bound for ®. Moreover, ¢ no longer depends on a random matrix X; but only on two random vectors
g and h, which substantially simplifies the search for bounds for ¢ compared to ®.

Application of the (C)GMT We can now use Lemma [l| to simplify the problem of bounding the maxi-
mum norm P and the minimum (maximum) alignment ®_, @, . For this, we first define the corresponding
auxiliary optimization problems ¢. Let z(1), 2(2) € R, h; € R®, hy € R%* be i.i.d. isotropic zero mean unit
variance Gaussian random vectors and define the function f, : R x Ry — Ry,

fn(Vﬂ?) =

SRS

S -V - 2P (5)
=1

Similar to the analysis in (Deng et al.| [2022) for the related minimum-£5-margin classifier, the key insight is
now that we can use Lagrange multipliers to apply Lemma [I] to "replace’ the data-dependent interpolation
constraint Vi : y;{x;,w) > 1in ®n,P_, &, with the simpler constraint,

S S¢
(W, hy) + (W), ho))?
n

2 fa({wy, ), [Jwpl],). (6)
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Analyzing this new constraint will make up the heart of the proofs of Theorem [1]and [2] While it will turn
out that the constraint in Equation @ "captures" the interpolation constraint Vi : y;{z;,w) > 1 very well,
there is only very limited geometrical intuition for why this is the case.

Formally, we show Proposition [1| (see Appendix for the proof) for the auxiliary optimization problemsﬂ

¢y =min|lw|; s.t Eq. (6) holds and <w(f),h1> + (w(fw),hg} >0

{wy, w*) . o {wp,w) -
max ———— st wel' and ¢_-= min —— st wel.
lwllzzs  [|wll2 il 25 [Jwl]]2

o4 =
with set I’ ¢ R,
I ={weR? st Eq. (6) holds and |w|, < M}.

Proposition 1. For any t € R we have:

P(@y > t[¢) < 2P(dy > 1)6)
P(@, > t]¢) < 2P(6 > tf¢)
P(@_ < t|e) < 2P(p_ < 1]¢),

where the probabilities in LHS and RHS are over the draws of X and of 2V, 22 hy, hy, respectively.

4.2 Preliminary Step 2: simplification of the auxiliary optimization problems

In a second step, we reduce the auxiliary optimization problems ¢y, ¢_ and ¢, to low-dimensional opti-
mization problems. While a similar approach has also been used in other papers studying maximum-margin
classifiers based on the (C)GMT (see e.g., (Donhauser et al., 2022; |Deng et al.,|[2022} |Zhou et al.| 2022), us-
ing the reduction in the mentioned papers would only yield loose bounds (not yielding sharp rates). Instead,
we propose a much tighter reduction relying on the localized Gaussian width.

Part 1: ¢_ and ¢4 In order to reduce the two optimization problems to low-dimensional optimization
problems, we relax the constraint in Equation (6)) by bounding the stochastic term <w(f), hi) + (wﬁ_‘s ), ho)

only using the ¢; and /- normb of wS_'S) and w(sc) The first term <wJ_S ,h1) can be simply upper-bounded
using Cauchy Schwartz: (wJ_ yhi) < lhq]l2 ||wJ_ )Hg where we recall that hy € R®. However, doing the same
for the second term <w5_ ,ha) Would result in loose bounds since hy € R?™* and d > s. In fact, using

Hoelders inequality to bound (w h h2> < ||wS_S )||1||h2||oo would still result in loose bounds. Instead, we
make use of a more refined (tight) upper bound:

(8%)
c w
(W) hg) < [Jw'®7)1 85, (”({Sc)th N Bl) (7)
lwi™ "l
where we use the localized Gaussian width /7 : [%, 1] =Ry,

622 (6B2 N Bl) = ‘maxﬁ <w, h2> .
lwll<1

As a result, we can now relax the constraint in Equation @ occurring in I' to:

2
5° " w S
(nw‘ e, (: <sc>}:232 mBl) + 1A fl2 e )||2)

_ 2fn(w| W)\ Il + ||2)

In particular, we note that the resulting relaxed optimization problems for ¢_ and ¢ only depend on the

¢1 and f3-norms of wﬂ_s) and wﬂ_sc)

and are therefore low-dimensional.

2We define &, ®_, N, p— = 0o and P4, ¢y = —oo if the corresponding optimization problems have no feasible solution.
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Part 2: ¢n A similar argument can also be used to convert ¢y into a low-dimensional optimization
problem. However, instead of relaxing the constraint in Equation @, we now need to tighten it. We can
do this by setting wﬂ_s) = 0 (which is negligible assuming that s < n) and choosing wﬁ_‘sc) as a function of g
to be the optimizer of the optimization problem defining ¢; (8B2 N By) for which Equation holds with

equality.

Reduction to low dimensional problems It will be useful throughout the analysis to slightly change
the parameterization: Instead of directly using the localized Gaussian width £;_ (3B2 N By), we will use the

following (equivalent) curve v : o € [1, apax] = y(a) € R4™%,

(w, |ha]) > ||h2[|oo

~v(a) = arg min ||w||§ st Cw>0 , (8)
w
[wll, = a
with amax = (d— 8) H\I’;LZHHT' By Lagrange duality, it is then straightforward to show that for any § € [ﬁ, 1],

there exists @ € [1, Qmax| such that % is an optimal solution for the optimization problem that defines

¢, (BB N By) (see Wang et al| (2022)).

In summary, we obtain the upper (lower) bounds in Proposition [2| where we use the following notation;
. se s w9

define v = (w, w*), nse 1= iz, ns 1= 0t 2, = w2 = /g + % and b= L,

Proposition 2. Let sy.x € Ny and let w* be any s-sparse vector with s < Spmax. Then, the optimization
problems ¢y, p4 and ¢_ can be bounded by:

1
< : * b 4 =0 hellZ = fu(v,b ]
on < V7b20,crflel[rll,anxax]|y“‘w 1 +blv(e)lly st —bh2llse 2 fu(v, Bllv(a)ll2)
by < max -
(v,b,ams)el’ \/yz + b2 ||’y(0()”§ + 77‘29
b > min .

~ (v,b,a, r 2
(bt ET U2 142 ()12 +

where the last two inequalities hold with probability at least 1 — 2 exp(—c1Smax ), with universal constant ¢y,
and constraint set I' defined by:

I = {(1/, b,a,ns) s.t ns>0,b>0,a € [1, max)

2 SmaxT]S +b h oo 2
! L0l 5 g, Jo @3 + n2)
and max {|v|||w* |1 — V/sns,0} + ba < M} (9)

The proof follows from the above discussion and by applying Gaussian concentration to control the tail of
the term ||hy||2-

4.3 Proof sketch for bounding the auxiliary optimization problems

We now describe how we obtain the desired bounds in Theorem [1f and [2l Recall that by Proposition |1} it
suffices to find high probability bounds for ¢, ¢_, ¢ using the low-dimensional relaxations in Proposition
We now present the main idea for the proof which is rigorously described in Appendices [B]and [C] We only
discuss lower bounding ¢_.



Under review as submission to TMLR

Step 1: reducing the problem to bounding the set I' We first reduce the problem of bounding ¢_
to one bounding I' in Equation @ (where we use Proposition :

9 —-1/2
2% b |lv(a)l3 + max nE
o> |1+ —— (10)
min v
vell

Hence, it suffices to bound the maximum (minimum) of the variables b2 ||7(oz)||g7 n% and v?. Perhaps
surprisingly, this seemingly loose lower bound will turn out to be tight.

Step 2: controlling f,, One of the main contributions to the analysis in this paper arises from controlling
the function f, (Equation (B)). To do so, we first show that I' (from Equation (4.1)) is contained in a
sufficiently small set. We can then carefully apply concentration arguments to show uniform convergence of
fn — Ef,. The key insight is then that, using a series expansion, the expectation Ef, can be approximated
by the terms in the following equation:

2
noiseless Ef,(v,n) ~ V2 1 — /== (11)

ENGE)
noisy Efn(v,n) ~ (s + 56717772 + ijsz (12)

where Av = v — vy and vy, (y, (o are constants arising from the series expansion (only depending on P, ).
Morcover, by definition 1 := 62[[7(a) 3 + 3 = [l |3 + s := [ [3.

While the dependency in n is quadratic in both cases, the dependency in v strongly differs between the
noiseless case (Equation ) and the noisy case (Equation ) To give an intuitive explanation, note
that the expectation Ef, is

Ef, =E(1 - ¢&vlz'| - 2°n)%

In the noisy case, by assumption, we have that both £ =1 and £ = —1 occur with constant (nonvanishing)
probability. Therefore, we can lower the bound with a quadratic E (1 — &v|2!| — 22n)3 2 (14 v* 4+ 7?). In
contrast, in the noiseless case, we have & =1 a.s. Instead, we lower-bound (1 — v|z'| — 2%n)3 2 (1+7*) on
the event |2!| < 1/v, which happens with probability inversely dependent on v. For more details, we refer
the reader to the proofs of Lemma [6] and Proposition

Step 3: bounding the set I' In the noisy case (Theorem , the quadratic approximation from Equa-
tion allows us to utilize parts of the analysis in (Wang et al.,|2022) for the minimum-¢;-norm interpolator
in regression. For example, we can bound the term maxy qer b%[|v(a)||3 from Equation as follows: we
can relax the set I' in Equation @D by replacing the third condition by baw < M and using the quadratic
form from Equation for the second condition. We then obtain

b2 ho
I c{(wb,ans) st ba <M and

Pl » 4 2t + I @l) + Swlar),
which resembles the term in Equation (4) in (Wang et al.,2022). In the noiseless case (Theorem [1)) such a
simplification is not applicable due to the inverse dependency of Ef,, on v from Equation . In fact, we
would only obtain a trivial (loose) bound when again using the relaxation bae < M for the third equation in
Equation (9)). Instead, we need to simultaneously control (b, &) and v by iteratively bounding either of them
(Appendl, which is the second major technical contribution of the paper.

5 Related Work

In this section, we discuss related work on existing bounds for the prediction error of linear maximum-margin
classifiers, as well as tools that have so far been used to bound it.

10
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Related work on error bounds for maximum-margin classifiers Existing non-asymptotic upper
bounds for the maximum ¢;-margin classifier in high-dimensional settings hold for arbitrary (adversarial)
corruptions and are discussed in detail in Section Furthermore, complementary work (Liang and Sur,
2022)) studies asymptotic proportional regimes (n,d — oo and % — ¢) where the prediction error does not
vanish.

Beyond the ¢; norm, several works present non-asymptotic bounds for the related maximum ¢,-margin
classifiers for p > 1. The paper (Donhauser et al [2022) studies the case where p € (1,2) for 1-sparse ground
truths and shows that the prediction error can even vanish at polynomial rates close to the min-max lower
bounds when trained on a noisy dataset. Furthermore, the papers (Muthukumar et al., |2021; Wang et al.,
2021; |[Shamir, [2022) present bounds for the case where p = 2 based on specific proof techniques relying
on the geometry of the Euclidean 5 norm. However, they only obtain vanishing rates, i.e. achieve benign
overfitting, when assuming that the covariance matrix is spiked (i.e., for non-isotropic features).

Related work on proof techniques The proofs in this paper rely on Gaussian comparison results (Gor-
donl, [1988; Thrampoulidis et al.l |2015)) described in detail in Section [4| and popularized for non-asymptotic
bounds for linear interpolators in (Koehler et al., [2021)). This technique has also recently been used in the
paper (Donhauser et al., [2022) to bound the prediction error of the maximum ¢,-margin classifier when
p € (1,2). However, the analysis presented in the mentioned paper would yield loose bounds when p = 1
and is limited to noisy regimes and 1-sparse ground truths.

Other common proof techniques for bounding the prediction error of interpolating linear classifiers include
hyperplane tessellation bounds (Plan and Vershynin, |2014; |Chinot et al., [2021)), discussed in detail in Sec-
tion and proliferation of support vector results (Muthukumar et al., 2021; Hsu et al., |2021}; [Wang et al.|
2021; |Ardeshir et al., [2021)). The idea of the latter approach is essentially to reduce the maximum-margin
classifier to an (approximately) equivalent minimum-norm interpolating classifier. The resulting “simpler”
classifier can then be analyzed using tools from regression (Muthukumar et al.l |2021} Bartlett et al., |2020)).
However, so far, such an approach only exists for the maximum #s-margin classifiers, and it is an open con-
jecture to prove that proliferation of support vector results also apply to the maximum ¢;-margin classifier
(Ardeshir et al. [2021)).

6 Future work

In this section, we discuss potentially interesting avenues for future work.

Early stopped coordinate descent The bounds presented in this paper imply that the maximum /¢;-
margin classifier are not only only sub-optimal in noisy settings (Theorem , but also for noiseless data
(Theorem. As discussed in Section this is because the classifier overfits on samples close to the decision
boundary. In contrast, ¢1-norm penalized classifiers which maximize the average margin (Zhang et al., 2014)

achieve much faster rates than ||w* ||§/ *n=1/3. An interesting question for future work is whether these faster
rates can be obtained for early stopped coordinate descent on exponential losses, where we recall that the
solutions of these algorithms converge (after infinite steps) to the maximum ¢;-margin classifier (Telgarskyy,
2013).

Future work on “better” implicit biases When samples in the training data have a small margin
to the ground truth (see discussion in Section , our results in this paper suggest that the implicit bias
of boosting methods with exponential loss functions and coordinate descent is suboptimal. Indeed, the
maximum ¢;-margin classifier which is obtained at convergence (Telgarskyl 2013)) only achieves suboptimal
rates even in the noiseless setting (see Theorem [I| and subsequent discussion). An interesting direction for
future work is therefore to investigate whether the implicit bias of the mentioned iterative training algorithms
with other loss functions such as polynomial losses would yield faster rates.

11
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7 Conclusion

In our main results, Theorems [I| and [2], we present tight matching non-asymptotic upper and lower bounds
for the prediction error of the maximum ¢;-margin classifier, both in noiseless and noisy regimes. We thereby
answer two open problems in the literature: perhaps surprisingly, as a first result (Theorem , we show
that the classifier is not adaptive to sparsity in a standard (noiseless) discriminate data model. Furthermore,
as a second result (Theorem 7 we show that the prediction error vanishes at a logarithmic rate despite
interpolating a constant fraction of (randomly) corrupted labels, and thus that the classifier attains benign
overfitting.
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A Preliminary technical tools

The purpose of this section is to cite existing technical tools and simple corollaries of these results. In
subsection We give some properties of the parametric path y(«) introduced in |Wang et al.|(2022), which
we used for reparameterization of optimization problems in preliminary step 2 in Section Afterwards,
in subsection we recall some concentration results, which we make use of when proving the localization
and uniform convergence propositions (see section [B]and [C]) of Theorems [1] and
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A.1 A few helpful properties of v(«)

First, recall from Section that hy € R%™5 contains samples of i.i.d. standard Gaussian random variables,
and for the sake of brevity of notation, we define h := |ha|. Moreover, recall the definition of the function
v(a) : R — R*~* from Equation (8):

(w, h) = [Pl
() = arg min Hw||§ st Sw>0
w
1Tw = Jull, = a

for some scalar variables b > 0, « € [1,(d — s) ”H};LHH‘”]. Without loss of generality, we can assume that h; > h;
1

for all ¢ > j (see also |[Wang et al.| (2022))). Furthermore, the results of the main theorems do not change by
considering y(a) : R — R? since by our assumptions on the sparsity s, we have d — s = d. Therefore, in all
discussion that follows, we will assume that y(a) : R — R%.

In order to study the optimization problem in Proposition 2], we make use of the following three properties

of the path y(«):

Concentration of ||y(«a)||; and ||y(a)|l,. As proven in Section 3.4 in [Wang et al.| (2022) the path () is
a piecewise linear with breakpoints at «, for integers m = 2,...,d, with

~ ([Ppm |l = mhan) lIAll
- 2
[ty |5 = Vagm [l Pom

m

where hj, € R? denotes vector which is equal to h € R? on first m components and zero elsewhere.
Furthermore, the following concentration result holds as shown in Proposition 4 in Wang et al.| (2022).

Proposition 3. Let t,, be given by 2<I>E(tm) =m/d. There exist universal positive constants ci,ca,cz,cq >0
such that for any m,d with m > c¢; and com < d < exp(03m1/5) we have that:

’nv(am)nl ) (1 ) 2)‘ _a
Wl \tw &)15 %

with probability at least 1 — 6 exp (_1%52(%) over the draws of h.

2
[(am)ll; 2

[/

Cq

— 4 b
miy,

Convexity and monotonicity of ~(a). According to Lemma 4 in Wang et al.| (2022) the mapping
a— ||’y(a)||§ is convex over [1, amax), decreasing over [1,ag41/2] and increasing over [cgy1/2, tmax] Where

S 111 Py [ isfi Iv(@)5 _ vl -
Qdt1/2 7= ) satisfies oy < ag41/2 < @gq1. Furthermore the map o @ = o 8 monoton-
2 1

ically decreasing.

Inequality constraint at optimal point. According to Claim 3 in Wang et al. (2022) the inequality
constraint in the definition of v(«) is tight for the optimal solution, i.e., (y(a), h) = ||h|| -

Furthermore we define t,,, as solution to equation
288 (t,,) = m/d (13)

for some integer m € [2,d] where ®¢(.) = P(Z > .) with Z ~ N(0,1) is the complementary cumulative
distribution function. We use the following two characterizations of ¢,,:

Approximation of ¢,,. From Remark 2 in Wang et al.| (2022 there exists universal constant x such that,
for all m < d/k it holds that

2 _921]o m) — loglo m) — log(m M ;
fim = 2log(d/m) —loglog(d/m) —log(m) + 1S +O(log(d/m)>'
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Upper and lower bounds of ¢,,,. Following the same argument as in Claim 7 and Claim 9 in Wang et al.
(2022), we can prove the following lemma:

Lemma 2. Let m, be fixed and assume ksm, < d. Let any fized constant k > 0 and assume that parameter
A satisfies 0 < X < (log(k3))*/?, and let m, be the largest integer m such that tf/ﬁ > 12, + 2. Then,

t;‘"n*

A 1 , , A 1
= - — .- )< .
n, m*EXp( Qtfn*><1+0<t%*>) R (tm*thfm)‘O(m*)

Moreover, let T, be the smallest integer m such that t%} < t?n* — A Then,

tﬁ/
_ A 1
M = My €XP (2#{ ) (1 + O (ﬁ)) and
My Mx

Furthermore, analogously as in proof of Claim 8 in |Wang et al.| (2022) we get:

2. — (13, — A <0 L)
T m.
t2 1 A 1 A2
o= N N = 1- 2+K+O<tz>+0<4+zm>-
w14 e+ 0 () i, . T tm.

2
tm*m*

A similar result holds for 7.

A.2 Concentration results
Pointwise convergence

Lemmas in this section are used in the proofs of Propositions [4] and |§| (localization step). We recall two
standard lemmas for pointwise convergence of functions of random variables to their expectation:

Lemma 3 (Concentration of Lipschitz functions, Ledoux| (1992)); Wainwright| (2019)). Let X = (X1,...,X,)
be a vector of i.i.d. N(0,1) random variables and let f : R™ — R be Lipschitz continuous with Lipschitz
constant L. Then

P(|f(X) —Ef(X)| > €) < 2exp <_2L>

for any e > 0.

Lemma 4 (Bernstein’s inequality for sub-exponentials, |Vershynin| (2018)). Let Xi,..., X, be mean zero
i.9.d. random variables with sub-exponential norm k = ||XH¢1. Then for any e > 0

P liX > <2e —cnmin £ i
n i=e )= 2exp Kk’ K2

i=1
for some universal constant ¢ > 0.

Uniform convergence

Results from this section are used in the proofs of Propositions [5| and [7| (uniform convergence), and more
specifically, for proving Propositions [0] and

Let Xq,...,X, be real i.i.d. random variables with continuous distribution function F' and let F;, be the
empirical distribution function defined by F,,(z) = £ S  1{X; < x}. Then we have:

n 7
Lemma 5 (Dvoretzky-Kiefer-Wolfowitz inequality, [Dvoretzky et al.| (1956)); Massart| (1990)). For any e > 0
holds:

€

P (sgp |Fpo(z) — F(x)] > Tn

) < 2exp(—2€%)
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Before we recall a result about uniform convergence of functions from a parametrized set, let us introduce
an additional notation. Let G be a countable class of functions g : R — R. For a function g € G we write
Pg=Eg(X), and P,g = £+ 3", g(x;). Moreover, define || P, — P||g := sup,c¢ |(P, — P)gl.

Let €1,...,€, be independent Rademacher random variables. Define Pig = =37 | €;g(x;) and || PSllg =
sup,eg |Psgl- We also recall the definition of the Orlicz norm [|-[|y, . Let a > 0 and define the Orlicz function
Vo : Ry = Ry by o (x) = exp(z®) — 1. The Orlicz norm of the random variable X is given by:

[ X1y, :=nf{A>0:Egq(X[/A) <1}

For the setting defined in this section we have:

Theorem 3 (Corollary of Theorem 4 in |Adamczak| (2008))). For any0 <t <1, >0, a € (0,1] there exists
a constant C = C(a,t,d) such that

ne2 € “
_ > — < — s o -
]P’(Hpn P||g_(1+t)E||Pn P||g+6) _exp( 2(1+6)05> +3€Xp( (C’l/Jg) )
with

1
max sup —

og =supVar[g(X)] and g = jpax sup
<isn g

geg

o) — Ex[g(X)]]

\II(!

B Proof of Theorem 1]

In this section, we present the proof of Theorem [I| By Proposition [1} in order to give bounds for prediction
error, it suffices to bound ¢n, ¢4 and ¢_ (defined in Section . Furthermore, we make use of the simpli-
fications in Proposition [2} which allow us to study low-dimensional stochastic optimization problems. In a
first step (localization), we derive an upper bound for ¢n:

Proposition 4. Let the assumptions of Theorem hold, and let Ky = 3(7271')71/6 and m,, be the solution
of equation

2 .
my = \/;(m)”ﬁ(ntmn lw*[,)%2, (14)

where tp,,, is defined as in Equation n Appendz'x. There exists universal positive constants ci,ca, C3
such that

n 1/3 21 c
on < rar (55— Il ) (1 + 1>—;M

Tgy2 a4
Mn 3 tmn tmn

/3

703m) over the draws of hi, ha, 2V, 2.

holds with probability at least 1 — cg exp (

The proof of the proposition is deferred to Appendix The second step (uniform convergence) gives the
following bounds on the elements of the set I' from Proposition

Proposition 5. Let the assumptions of Theorem hold. Let Ty be a set of all (v,b,a,ns) that satisfy:

—-1/3,,2/3 2/3
v2 (%/8377) 2/371 < 4/;’ and 7% < — e
HW*H1 log™*(d/m.,) ||w*||1 log(d/m.) log"®(d/my)
1 1 1
and |b? A== ’5
@l 3log(d/mn) |~ log™%(d/m,,)

where my, is the solution of Equation (L4]). Then there exist positive universal constants c1,ca,cs such that

I' C Ty with probability at least 1 — cyd™ — ¢y exp 703%) over the draws of hy, ha, 2V, 2(2).
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The proof is deferred to Appendix From the Propositions |2[ and |5| and using that 77?9 > 0, we get the
following bounds on ¢4 and ¢_:

—1/2

min b2 |y(a)|> + min 72
b < |1+ (b,a)€To I )||2 ns€lo s <1 4||U)*||? ( ¢ >
< <1- _
b v s log"/(d/m,)
—1/2
max B2 [(0)|2 + max 73 :
(b,a)€ly ns€lo 4lw* Iy ¢
$-2 |1+ min 2 =1- My b log®(d/my) |’
vely "

and the statement of Theorem [I] follows straightforwardly when applying Proposition [I] and using that

R(w) = %arccos (<||§}”2,w*>) = 71r\/2 (1 - <§H2,w*>) +0 (1 - <”g}”2,w*>>3/2. (15)

B.1 Proof of Localization Proposition [4]

Recall the upper bound of ¢ from Proposition [2, and note that to upper bound ¢y it is sufficient to find
a feasible point (7, b, &) which satisfies the constraint, i.e. we have:

T OV 3 s
on <Tfwrfl +ba i —b? P12 = fu(@, BI(@)ll2) (16)

holds with high probability for some 7 > 0. We further recall that in the noiseless setting we have
2
Jw,m) =Efu (v,m) =E (1= 0|20 = 2) .
+
with f,, from Equation (5). Next, note that the random variable (1 — v|Z(M| —nZ®)2 for fixed (v,7) is a
sub-exponential random variable. Furthermore, since (1 —v|ZM| —nZ#)2 <1+ n%(Z2)? we see that the

subexponential norm of this random variable is bounded by a constant for n < ¢. We can therefore apply
Lemma (4] to show that for fixed v, n < ¢ and m,, given in Equation we have

1 n
P (|fn(1/’77) _Efn(yan)| 5 Vt;;ﬂﬂ) Z 1- 2€Xp (_Clyzt%n) !

Since f is an infinitely differentiable function, we can use the Taylor expansion of the function f = Ef,
around 1 = 0 from Equation which holds for v large. Combining the last two results we obtain that

with probability 1 — 2exp (—cl ﬁ) holds:

bl < g2t 1 2P o 4 o, (17)

where O, := O (V%, 174“1#)”3) and O. := O (%n)

We claim that for our choice of point (7,b,&) we get Op + O, = 10 (t%) Once we have established
inequality , the claim that the point (7, b, @) satisfies constraint from is implied by proving the

following inequality:
Loy . V21 \/552|7(a)||2 1 1
—b2||h|% > == S22 O —— 18
i ”°°—3\/7?17+ T ¥ 7Y\ @ (18)

Mn
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Defining bNa = ba and rearranging the terms in Equation we obtain the following lower bound for l;;:
~2_ na? 34 (1+0(5))

@ = 2 &) 112
2 n V(@]
Il 1 /22 THI,

From Section we have that vy(«) is a piecewise linear function with breakpoints at a.,, for m =2,...,d,
and thus, we can optimize over integers m instead of . Using concentration results from Proposition [3] we
get the following result:

b“fznl(l 4+0<1)>1 2 (o (a)) (19)

T2 4
TR ) g (o)

with probability at least 1 — 6 exp <_log52(%)' Similarly, as in Remark 1 in [Wang et al.| (2022), we choose

m, which approximately minimizes the expression above, i.e. to maximize:

2 (1—\F7f 2 ) %210g(d) P EN
T U mt2, m T om

This gives m = m,,(?) := %% We claim that for our choice of 7 we can set m,, as the solution of equation

2
m

My = \/2(727r)1/6(ntmn [[w*||,)?/3 which is exactly m,, given in Equation (I4). For such m = m,, we have

from Equation :
~2 2 n 2 1
bo >——|1——+0|—
—Mﬂtznn( 2, " (tm>)

~ V2 n 2 1
(7)) = | e 1- = —
ba?) =\ 3 v, ( 2 +O<t%n>>

Now we choose 7 which minimizes the upper bound on ¢y in Equation as follows:

So we let:

~ V2 n 2 1
= i * b = i . e (- TO0 (g
v :=argminv ||w*||; + ba(v) argnglnl/Hw I, + NG 2 +

v> v> tilnn

After minimization, we get that o is given by:

1/6 =2/3 (1 v 2 !
7= (72m) M0 |lw|; (g) (1_t2+0<t4>>>0

Note that indeed m,, () = m,, for this choice of 7. Returning to by, we obtain the following;

- - 1/6 13 ( N 1/3 1
b = 0u0) =272 0 o () (140 (51 ))

My Mn

Summing up the two terms, we obtain a bound from the proposition. Also, note that for m = m,, we get:

Blv@ll, = 5% = ﬁt; (1 +0 (;))

So, we have O, = O (%, Z—i) =0 (T) as we assumed at the beginning of the proof. Thus, the point

(7,b,@) indeed satisfies the inequality with high probability, and we define the upper bound M :=
U+ bi > ¢n.
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B.2 Proof of Uniform Convergence Proposition [5]

For the sake of completeness, let us recall the definition of set I' from Proposition [2}

I'= {(1/, b,a,mns) st ns>0,b0>0,a € [1, tmax]

1
and —(2/Smaxtis + bllhlloc)” = fu vy /0?17 (@) + 15)

and max {|v|[|w*||; — Vsns,0} + b [|v(a)]; < M}

with M given in Propositionand Smax = @(n2/3 log_14/3 d). We further recall the notation nse = b||y(a)||,
and 7 = \/m in Section

The proof consists of three steps where we iteratively bound the set I': for every step, we use different
approximations of f,, and based on them, we develop tighter bounds for v, nsc,ns. Finally, the statement
of the proposition follows from the last, tightest bound. We start with the following bound:

. 1/3
Bound 1: VH’LU ||1 S M,V Z m

In order to derive the bounds in this section, we first need to simplify the constraints from the definition of
the set I'. First, note that we can relax the second constraint to the following two constraints: ba < M and
v]w*|l; £ M + \/sns. Then, the first constraint is simplified by deriving an upper bound on the term from
the LHS as follows. By using simple quadratic inequality, we have that for any (v, b, a,ns) € I it holds that:

1 2 8

5(2\/ Smaxtls + 0| H|oo)? < ﬁbQ ||h||io + ﬁsmaxn?s (20)
Now, recall that t2, > log(d/my) > logrg and a > 1, both from Section We can further bound the
first term from Equation with probability > 1 — 3 as follows:

2 9 2 9 QM2 5 2 9
2R h|E < R h|E < 22 02 = EM2h
- l IIm_(V,bgl%m I IIOO_rgggcn o2 15 - 1A]15
2/3

Jlw* |13

L\
$3 () et s o toga

where we used the concentration of the maximum of i.i.d. Gaussian random variables in the second line. We
can now define the following (larger) set:

2/3
w3/

Smax
F1 = {(V7b7a7775) s.t n‘ZS'Ta + T/;logd Z fTL(V7 b2 ||’Y(OK)H§ +77?S‘)

and ba <M and uw*||1§M—|—\/§775}.

From our discussion above it follows that I' C I'y with high probability. The goal of this first step is to show

1/3

that the bounds v ||w*||; S M and v 2 1/2761 hold uniformly over all v € 'y, implying that they also hold

max O,

uniformly for all v € I with high probability.

Step 1.1: Upper bound v |w*||; $ M. In all of Step 1.1 we assume that (v,b,a,ns) € I'1 that is, we
bound these variables only if they are contained in I';. Since by the last constraint of I'y it holds that
viw*|l, £ M + /sns, showing that \/sns < c¢M for some universal constant ¢ > 0 is sufficient to deduce

that v ||w*|; < (c+1)M.

20
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Assume by contradiction that v/sns > ¢M for any constant ¢ > 0. Then, we can relax the first constraint of
T'y as follows:

S [ [ 2 1 . :
S T osd 2 v, b2\\v(a)llz+n§):gz(1 vlo” = 2012 (@) l3 +n2)%
=1
0 2 2
Z*Z v = 2OVB (@) 3+ 72)2 1= < a1}
1N 0 @)
0 2 2
= ﬁ;(_'/"” |+ ems)i e < —er}

2

M+

\[ns| 2] +0177$> 12 < —e1}
[|w* I, N

ii(

=1

\/>775 ? (1) e [Jw* |l (2)
+ 1 < ——1 - 7L L Y«
||w Il |Z ‘ ctls = 21+ c1)y/s &7 < —a}

1 e ||Jw*|

2 (1) 1 1 (2)

Ns— E 1 {'Zz | < 1 Hz,” < —a}
n 2(14+c¢1)y/s

v

Vv

where in the fourth line we used that v < %7 and in fifth that M < ¢~ 'y/sns. Next, we use that
1

e [lwlly

T+c s

[wlly < Jw*lly

Vs ™ \/Smax

P2 < 5 )2

and P(Z @ < —c1) > ¢o and thus, from Lemma [5{ with € = ¢, /ﬁ, we obtain the following inequality holds

with probability > 1 — exp (—63 5:3 ):

2/3 *
o Smax | [lw*[ly o 1wl
T]ST + 1/3 logd Z C4nsm (21)

First note that smax = o((n ||w*||1)2/3) and thus n3omes < Sp2 lw”lh - Thus in order for inequality

S V/Emax
. /Smax log d V/Smax
to hold, we need that ”wlllg logd > C;ngll/% or equivalently n% < nl/ss\lw:ﬁm = :1/3 logd. But

then /sns < s3ldn~1/6,/Togd, which is in contradiction with our assumption that Vsns > c¢M, since
1/3
s¥an=1/6/logd < (ﬁ) < M for syax = O(n?/3log™14/3 4).

Hence we conclude that \/sns < ¢M, and furthermore v |jw*||; < éM for some universal constants ¢, ¢ > 0,
which is exactly what we wanted to show in this step.

/3

Step 1.2: Lower bound v 2 R
max 10g

In order to show this lower bound, we first lower bound the function f, for any v,n as follows:

1 < 1 2 1 & 1 2 2
Favin) = = 3=z = )2 = = 31—l = )2 = <0}

1

i=1 7

>

~

1
1 -]V

SRS

=1
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with probability > 1 — exp(—cin) for some positive universal constant ¢;. Combining this inequality with
the first constraint of 'y we have that any (v,b, a,ns) € T'y must satisfy with high probability that:

2/3
= V=D S Fale B2 (o)l + 1) < n “““+” 1“3 logd
/
SR T N
S max § 7, 1/‘Slogd SEYe log d (22)

where in the second line we used that smaxng <ctM? < (n,/smax)Q/ 3 shown in the previous step, and that
(3% < (sma) /2

Now, define F(3) = £ 30, 1{[2{V] < £} and F(5) := P(1Z0)] < &) = erf(525-) by the definition of
the error function. We can further simplify inequality as follows:

1/3
Sde 1 d

173 108 2

n n

S -] > Z v|2{)21{1 - 202V ]}

i=1 i=

() on ()

where we used that the number of activated indicators of the set {1{1— 21/|z( )|}} ', is equal to nF,(5) and
that (1 —v| l( )|)+ > 1 when 1— 21/|z§1)| > 0. Then, according to the Dvoretzky-Kiefer-Wolfowitz inequality
from Lemma [5| we have with probability at least 1 — 2 exp(—cnl/ ?’sfﬂ/dgx log? d) that

1 1 1 1 sil3
) _ — ) = - < b
o (3) 7 ()| = () o (7 )| = S s

S|
3\'—‘

v

sup
v

nl/3

Thus we can use the Taylor series approximation of erf(-) around zero to show that v 2> T ogd’ as we
wanted to show. -
Bound 2: e, s = O(1), v [Jw*]l, = kM
For this bound we use results from the previous steps. Restricting to the set where v 2> ljglifd, and
SII]B.X Og
v < ﬁ < n!/3, we can use the lower bound from Proposition
1
1 772
Fuv,n) 2 Kyt hz= (23)

which holds with probability > 1 — 2 exp(—cyn'/?).

Now we further simplify the LHS of the first constraint in the definition of set I';. Combining the upper
bound from Equation with the lower bound , we have

b2 ||y(a)||? + n2
Ko [Iv( )VHz Ns (24)

2 2 8 1
*bz h *max2> n > -
= [R5 + ~ smand 2 fulvim) 2 m1 +

As before we have Smex — @(m) from the definition of sy,.x, and, as noted above, we have that

% 2 7i73- Thus, for n > ¢ we have that 8‘5"““‘ < 52, and hence:

2 1 b2 ||v()|? Ko SSmax 1 b2 ||lv(a)?
me&>al+«2”“)“+m§(2—)>m+@’”>%+ﬁﬂs
n 1% 14 14 12 12

v n
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where we set k3 = “2. Since the above inequalities hold with high probability, we define a set I'y as the set
of all (v,b, @, ns) that satisfy:

2 1 b2 2 2 1/3 M
22 R, > a4y @ TS g by < A and T —— SVS T
" v v Smax logd H’LU ||1

and by the above discussion we have that with high probability, I' C I';. Hence, by bounding the variables
v,n from T'y, we will also obtain valid upper bounds in I' as well.

Step 2.1: Upper bound ns. = O(1). Recall that we use the parameterization of ns. such that ns. =
b||y(a)|ly- Thus, we bound nse as follows:

5o < max B2 |lv(a)?
s T (vbans)eTy (o)l

2
ngXPHW@wﬁ st (@)l < ——vhlZ, and ba <M and v|w*|, <cM
v,0, Kaon

2c M 2

17115

2
(6%
=qypﬁ”gmstmmM< (25)

nflw* |y

2
As we mentioned in Section the function H’Y(a% is a monotonically decreasing function in «, while

H'y(a)”g is a convex function. Thus, similarly to the proofs in [Wang et al.| (2022), it is sufficient to find
Qm < Qy,,, such that

Ivtom)lly _ 2c u

Ihl2,  ~ man lw

2
H“/(;;)Hz (

to obtain an upper bound on where we implicitly make use of the fact that the set I' contains the

point (7, ba = Qm,, , 0) from Proposition . Using the concentration results from Section we can rewrite
the above inequality as follows:

1/3
2 1 2c KM n 1
1+0 S 2 0
m%<*_(ﬁ>> WWWMB@%) <+ Q%)>

After recalling that t2, = 21log(d/m) + O(loglog(d/m)) from Section it is straightforward to show that

t
substituting this choice of m into the upper bound from Equation to get:

2 N 2/3
2. 2”7 Hz o [n]w 1 2 1 . p2

Step 2.2: Upper bound ns = O(1). Similarly as in the previous step we use the relaxations of the
constraints from the set I's to bound 7s as follows:

. 3
we can choose m = A (M) with sufficiently small universal constant A > 0. We finish this step by

77?; < max
(v,b,o,ms )€l

v,b,a,ms

2 2 2 2 2
< max [77% s 13 < Fu_Tnvlﬁl\hlloo and [ly(@)]l; = v bl

and ba < M and 1/||w*||1§cM]

2 , 2 ) M M
< max [/{gnyb ||h|| st v < @V |h|lS, and b< — and v < C||w*H1
2 cM 2 1 2 2c
— M?||h — st
< T nnm%xazs|mm2—ﬁmmwln}
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Now note that 2 is monotonically decreasing function, while the last constraint is identical to constralnt
from Equation 1.} Thus using exactly the same arguments as in the previous step we upper bound 7% as
follows:

2¢ M3 |h|? 2 11
W‘QSS - " 200 = —K Tt2 (1+O 22 12 ):: B'r2]5 :O(l)
Kan |lw*]|; g, K3n tmn 2, tm
where we again used concentration results from Proposition and approximation 2, = 2log(d/m) +

O(loglog(d/m)) from Section

Step 2.3: Lower bound v |w*||; > M. This bound follows the same reasoning as the previous two steps.
Namely, we find a lower bound on v as follows:

v > min v
(v,b,a,ns )€l

. K1 n
> min |v st v >

2 2
-0 - d 2o 2 uln d ba < M d N, < eM
min Z 3P ||h||2 and ||y(a)|l5 < H2n1/|| | and ba < and v|w*|; <c¢ ]

2 M
n [’“" st [ly(@))?< —v k)% and b<=— and v|w*|, SCM]
Kom o

2
2 2 Al
L U [oﬂ st )< 22 My ||io}
2M?2 ||h|%, ron |lw*[|;

Similarly as in the previous two steps, since o is monotonically increasing function, the minimum is lower

bounded by o? > oz2m and after substitution of m as defined above, we have:

2 1/3 42
K1 am —2/3 ( ) t ( 1 > M
> = 1+0 =K
2M? ||n )%, 2 H I £, b ) [[w=l

m

where once again we applied Proposition [3) and used that 2, = 2log(d/m) + O(loglog(d/m)) from Sec-
tion After noting that we have shown v ||w*||; > &M with high probability, we conclude this part of
the proof.

Bound 3: Tight bounds

From Step 2.2 in the previous bound we have ns = O(1) and thus v/sns < \/Smaxfis = O(n'/? log_7/3 d).
1/3
Combining this bound with the lower bound M > (ﬁ) , we obtain that:

1/3 2 1 —
ol <+ ons < 0 (14 25 ) < w (g ol) (1= 3 4 ) =0T 2o

for some fixed universal constant c;,co > 0. Moreover, in Step 2.3 of the previous bound we have shown
that v|w*||; > &M, and thus v|w*||; > KM for some 0 < £ < k. Combining both results, we have

vilw|l, € [£,1]M.
Now we show how we can relax and simplify the first constraint of the set I'. Recall Equation (24)) and note

that it implies 2b? ||h|| + B smaxn? > K11, Moreover, since v ||w*||; < M, and ns < B, from Step 2.2, we
have:
b2 ||h||oo > 11 4smax 2 5 K1 ||w* ||1 g2 Smex s 1 B 1 S 1
2 n ns 2 M sy Y opl/3 nl/3 10g14/3d ~ pl/3

for n large enough, since Syax = O (712/3 log~14/3 d) and ”wA;Il‘l > 1wl >

1 . . .
> 577+ 2 —i75- Thus, using this lower

bound on b|A|,, and upper bound ns < B, we have:

1 1 2/Emaxnts \© _ 1
= (2v/Smacts + blIhlle)? =~ 1A%, (1 + M”S) < 01l (1+ 00)°
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where we defined O, = clog_7/ 3 d for some universal constant ¢ > 0. This finishes our relaxation of the LHS

of the first constraint from the definition of I'.

For the RHS of this constraint, we can apply Corollary H with € < —75—— to obtain that the inequality
V21 Uk
v 2 222+ 2T

holds with probability at least 1 — ¢; exp (—02 ;‘sll)

Now we use the derived relaxations of the first constraint of I' to define a new set I's:

1 V21 20 |y ()3 + n?
Iy = t =B |hlx (1 2 I)lls T s
3 {(VJLCW?S) st —b% [|hlls (14 Op) 2 3\Fu+ >

and ba+v w'll, < M and v |, € [51M and blly(@)]s +ns S %
Again, we have that with high probability I' C I's and in the following four steps we bound variables
a,v,mse,ns such that (v,b,«,nse) € I's. Furthermore, in the following steps we will use multiple times the
fact that:
22
th, "~ log®(d/my) ~ log®d
which follows from characterization of t2, from Section

In order to derive tight bounds on v, nsc,ns in Steps 3.3, 3.4. and 3.5, respectively, we first need to show an
upper and lower bound on « in Steps 3.1 and 3.2, respectively.

Step 3.1: Upper bound o < ayy,, (A > 1).

We upper bound « uniformly over I's as follows:

a? < max o?

(v,b,0,ms ) €T3

[ 2 1 2 2 f * T * ~ 7

Smgxx a® st =b7 A, (1 +O) > 3\77—6 and ba+v|w*l; <M and v|w*|, € [k, 1]M
v,b,a | n

1(M-v|w .
ST?(f&tn<2W|v|MFO+O)_£;—emﬂvhﬂhemﬂM

a? ( 37 > 3Tl —~ o~
<max [a? st —— (11— Y=ev ) < e —v(M —v|jw*],)*(1 4+ Op) and v|w*||, € [E, 1]M
e I\ V2 V2 1 1

[ V)

o2 1271 M3 ( 1 )
<max |a® s.t < = (1+0 ) (27)
a | [n)%, ~ 27v2nlw, th,

where in the second line we used the second constraint to upper bound b, and in the last line we used

that (1 4+ Op)(1 — %eu) ! <1+ O(—) and that the function 1/(1\7 — v|jw*||,)? under the constraint

v|w*|, € [R, 1}M is maximized for v ||w*||; = M/S Furthermore, note that 1/3 € [k, 1] since I' C I's and
point v = € I' by arguments from the proof of the localization proposition

[ V)

3wy
Similarly as in the previous bounds, we use that a? is a monotonically increasing convex function, and thus in
order to lower bound ||y(«) Hg, it is sufficient to find a point a7 such that oz > au, for which the constraint

of Equation does not hold. Now, using concentration result from Proposition |3|and definition of M , we
have that o = az; does not satisfy the constraint if:

1 4 1 1 2 1
t?n(l t?*o(#))%(l‘aw(m))
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We can choose m = Am, for some constant A > 1 since using characterization of ¢,, from Section we

have:
t2, 2log A 1
~ =1 O|——
2= e <t4 )

mMn Mn

Thus we finally obtain that a < o, as we wanted to show.

Step 3.2: Lower bound a > oy, (A € (0,1))

The bound in this step is derived similarly to the bound in Step 3.1. However, in this step we cannot neglect

2 b [|v(e)

the term IF from the first constraint of I's, as we did in the previous step. For the sake of shorter

equations, we will write only relaxations of constraints that « needs to satisfy and skip writing that we
minimize over a? like we did previously.

We start by rewriting and relaxing the first constraint from I's as follows:

QOﬂéu+Ow¢iMfmﬂ :x%i+¢%

V2 1 V2 1 0( 1>)

v

3/ ¢ —&Eyﬁ

). Now, using the second constraint of I's, we can further relax the LHS of

e

™Mn

(28)

where we used that ev = O(t4

the previous inequality as follows:

b(ﬁﬂ ¢|w u>< —ww|><mn1+o ¢|w m) (29)

Combining inequalities and , and plugging in v ||[w*||, = kM for K € [E, 1] yields:

V2 [l 1 (lff-f) L[ (e Hzllw I
NG O<t4 )= ( R e )

After multiplying the previous inequality by Hw and rearranging terms, we obtain:

2
*H 1 M2(1—k)2

IRl%, V2 —o(-L
2t < B i o et o () )

Note that only the right hand side depends on v (and thus on k). Hence maximizing over  the right hand
side we obtain:

1/3 1/3
24/2 na? |w* 1 24/2 naz? ||lw* 1 1
3V ||h))2, M3 . 3vVm ||n|%, M3 o 3

where we used that « > az derived in the previous step. Moreover, note that € [E, 1]M , by the proof of
our localization proposition. Substituting this x into we get the following inequality:

1/3 —~
o (9ﬂ> (1O<1))+"2/3 2ot )”2 w7 < Y14 0,)
|R|[2/? \4v/m th, T )2 n3 (|| }?

Now we further relax the constraint by raising the previous inequality to the third power and keeping only
the first two terms to get:

Oé2 9\[+3 ||’Y( )”2 || ||2/3 2/3 a4/3 (9\[>
NG T ||h|2, |h]|2? \4v/m

2/3 —.
1 M 1
<1 +o< )>

n [lw*[|; ty

My,
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o N\ 2/3
We can further relax this constraint by using the that o > v, with m = A (%) as shown in the

Bound 2. Then, we have substitute this value of a only in the second term as follows:
o OVE |y [PIN@IE w2 s <9f )
% Avm Vol [nlI3* \ 4T

Now, note that the term on the left hand side is a sum of two convex functions in « and thus is convex.
Similarly, as before, we look for ., < a;, so that the previous inequality is not satisfied. Using concentration

2/3 o~
1 M 1
<1 140 ( )

n T, i)

Mn

results from Proposition [3] we get:

2/3
2 (9V2 a/3 2n?/ 1 1 81 1
2222 1 _ 1= == _
3\/; <4ﬁ) e "o\ ) ) ap e 0\

s <1é+o<1>> M (o ()

and we can choose m = Am, with A € (0,1). This gives us a lower bound on a which is tight enough to
obtain bounds on v with a right multiplicative constant.

Step 3.3: Tight bounds in v

Now consider a set I'y :=I's N {(v,b,,ns) s.t « > au} with m given in the previous step. Furthermore,
from the arguments in the previous step it holds that I' C Ty with high probability.

Now, similarly to Step 3.1 we can relax the first constraint of I's to 15 Hh||c2>o > %%(1 -0 (ﬂ%))

Combining this lower bound on b with the second constraint of I's we have:

M — v |w* o V2 Vo L
Fvwlh 2002 2 Ep -0 ()

Rearranging the terms we obtain that for any (v, b, o, ns) € I'y must hold that:

— V2 1
0> o2 Jur], - M2+ [ Yo vm Y1 -0 ())
1 NG "

&fnhn (-0 (t:l>)

where we used that o > a,, Thus, the constraint must hold uniformly for all v € T'§. Setting v ||w*||; =

> V2 ||, — My'? 4

k2M with k2 € [K, 1] we obtain the following constraint on x:
2 *l, %o 1
HB — k4 f n ||/’L\U/ ||1 m ( —0 ) S 0
CIVE VE B 1] th,

Using definition of M from Equation and concentration inequality from Proposition [3| we obtain

2t 2 1 1
3 mn
- —_— 1-— O 1 O <0
8 wr 3v3 tm ( t2 - <t4 )) < i t%nn * (tilnn>> o

and after substituting m = Am,, with A <1 we get the following:

2 2 logA—1 1

3

K®— K+ + +O0 |4 <0
3v3  3V3 2 (4 )

My,

Thus, we obtain x2 € {1 — 2 i 2)‘/3] for some positive universal constant A\, which we can write as

vlwll, = 21+ 0(ta2)).
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Step 3.4: Tight bounds on 7s.
. Since inequality holds for I's, it also

Define I'}*° := T'3 N {(I/,b,a,ng) st |v|w]; — %’ ;\2 5
holds for I'}*°. Multiplying this inequality by ;f”\lll;ll\lll (1 — k)21 + Op)~ 1, we get:
2 [ly(@)ll3 7w 2 1, V2 et 1
—(1— 14+0,)" "+ (1+0 A
P ar OO a0
4
1—-k)?< —
sa(l-r) < o
and using our established bound on v [|w*||; we get (1 —x)* > (1 -4 — tfn:\/,3) 51— tfy{g + O( )) and
hence we obtain:
A 1 2 o * 1
Zhilinlly (5o L)) 22 nlvh o ( LY,y
T bl M . 3 W nls,  M? tm,,
Note that the function is convex in «. Using concentration, we get for o = ay,
2 ()" (tm, 0] 1 35 |
? mt?, <1 o (%)) b 23 o 3
2, 4 2 1
g (-gro(g) (va o) =

Now we claim that the m, < m,,m. > m,, given in Lemma [2| respectively, with x = 1/3 and parameter pu

do not satisfy this ineqt?ality for the well-chosen universal constant u since

( 3 +O<1>>+t’2”" (zola))

1/3 *
2(2)""* (b, )2 (|
4/3 t%n*

2
m*tgn* t%f e
2 2 3 2
B 1 Lo 2u° — 6 1 B 2u% — 6 1
_1_t7/3<1_t2*>+ .2 t2/3 +0 10/3 =1+ t8/3 +0 (10/3 > 1
Moy m m* Mn Mp

1- =22

2/3
Mn

for p > v 3. Similarly, for 7, we get:
2 ()" (b, 0”102 (3 1)) & 2 |
’ o))+ (- voli)

m*t%* tons
2 2 _ a3 2
" 2 202 — 6X 1 202 — 6X 1
1+< ”>+ +0 =1+~ +0 >1
tr? t2- 2123 a3 £5/3 1073
In order to bound nse we use that b < W, a >y ,and v > ]/\\4/(% — t25)3 ), respectively, to obtain:

2
2 Iv(a)l3

2 r *
B (o) 2 < max(3T — v "1 %

2
TS S s
1 * vow.)ll3
2 m, /12

and after application of concentration Proposition |3| and definition of M we obtain
1
_|_
tm

2 1 W 1 21 o
2
Nse < 55— exp 140 | - =-—— |1+ —F=
TN (21&1/3) ( (%)) 3, ( o7 O\

My
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and
i 2 n (@)l 1
2@ > min b2 o 2 min f A2 1— O
ez i Bz ezt TSka o ()
V2 nftl, o R } 1
ng < N . )m*tfn* (1+O<t72n*)> _3t2 exp m 1-0 t2/3
2/3 n

[ \/

2 1 " 1
382, (1 2157 - (t”‘”’))’

which are the upper and lower bound claimed in the Proposition [}

Step 3.5: Tight upper bound on 7s

mn

Define I'}° :=T'3N {(V, b,a,ns) s.t ‘1/ llw*|l; — %’ <A t2 M and a<om, and a> Q. } In this step

2
we keep the term "75 from the first constraint of I's, and repeat the same steps leading to Equation (30) to

obtain constraint:
V2 nfwt] o® < 1 ) \F s anjlw
— 1-0(—))+4/=n —! 1+0,)7 "
37 (L — n)? [ ) Ve thn? 3 <1—H>2( )

TL w*

As in the Step 3.3 we have that k(1 — k)% < % and k < % + % Plugging these two bounds into the

Moy,

inequality above, we further relax the constraint to:

N N Y T 1 ||1(13A+0< ! >>
t

SInl a7 VT A, M o 8
2 a? * 1
_9\[ C¥2 n||:L\U/|1(1_O(4>)
W nls, M3 tm,,
At the end we use derived bounds on « to upper bound 7s as follows:
MR, [ 2 ||y (am, )|l5 n[|w* 3) 1
2 < M 2 1 1 - == O
T N T |k M ( tore e :

- e ba-o ()

Finally, after application of concentration Proposition 3 and definitions of ay, ,am, and M we obtain
nE < ﬁ%’ which finishes the proof of this proposition.

C Proof of Theorem

In this section we present the proof of Theorem We begin by recalling some definitions: f,(v,n) =
2 .
LS - 521/|z(0)| (1) n)2 and f(l/ 77) Ef, (v,n) =E (1 —&v|ZzW)| - Z(2)77)+ and vy := argmin f(v, 0).

Further, define ¢; = f(z/f, 0), Gy = d2 \(,,f o f@,n), G = ddTi\(yf,o)f(l/, n). which are all non-zero positive
constants. We define the constant ., in Theorem 2] by:

%
- (31)

o
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In a first localization step, we bound ® . By proposition [I], it suffices to the upper bound ¢, which by
Proposition [2| can be reduced to a low-dimensional stochastic optimization problem. We show:

Proposition 6. Let the assumptions of Theorem@ hold. Let t,,, (as in Equation n Appendix be
such that 2<I>E(tmn) = my/d with m,, = nly,,/2. There exist universal positive constants ci,ca,c3 > 0 such
that

with probability at least 1 — co exp (—c;:,W) over the draws of hi, ha, 21,23 and ¢.

The proof of the proposition is deferred to Appendix As described in Section in a second uniform
convergence step, we bound the constraint set I' from Equation @:

Proposition 7. Let the assumptions of Theorem @ hold and let T be as in Equation @ with M from
Proposition @ Define a set Ty as a set of all (v,b,a,ns) that satisfy:

1
v—vi?<———— and 93 < ———
| RS log(d/mn) s ~ log®*(d/m.,)
2( !
and  |b?[|v(e)3 — y
||'Y( )HQ CY]’? log(d/mn) ~ 10g5/4(d/mn)

with m,, = nl,,/2. There exist universal constants c1, ca,c3,ca > 0 such that T' C Ty with probability at least

1—crexp (7CQW) — c3exp (704m) over the draws of hi, ha, 2V, 23 and €.

The proof of the proposition is deferred to Appendix As a consequence, when applying Proposition
we can upper and lower bound ¢4 and ¢_:

4 —1/2
min b2 ||v(a)|? + min 72
(b < |1t (b,a) €T ||’Y( )HQ ns €l Ns o1 Cf 1 - c
= Héé%X v? N me]% log(d/mn) IOg(d/mn)1/4
v 0 N
max B y(a)[2 + max 2]
¢ > |14 (b,a)eTg ns€lo >1- Cf 1 14 c
T Helll“n V2 - cnnVJ% log(d/my,) IOg(d/mn)1/4
velo

Where we slightly abuse the notation by writing (b, «) € I'g and similar for v € Ty and ns € T'y. Finally,
the proof follows when applying Proposition [I| and using the exact same series expansion for risk as in

Equation .

C.1 Proof of Localization Proposition [6]

Recall the upper bound for ¢y from Proposition Since w* is s-sparse vector, we have that ||w*[|; < /s,
and we can further upper bound ¢y as follows:

. 1
on < min V5 b1y (@l st B RI% = fu (b)) (32)

Given that (i7,b, @) is a feasible point for a given upper bound, we have ¢n < |#]y/s + b|y(@)||;. Thus, in
the following discussion, our goal is to find a single feasible point of the constraint set from Equation .

In order to show that a point satisfies the constraint above, it is necessary to evaluate the function

fa(@,b|lv(a)|ly) at this point. We do this by using the concentration of Lipschitz continuous function from

Lemma [3] Namely, recall that we defined f = E[f,,] and thus according to Lemma [3| for any v, 7 holds that:
2

P (Uf () = £ 040)| 2 ) < 200 (e ) (53)
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with some universal constant ¢ > 0. Therefore, with high probability we can approximate the evaluation of
the function f,, at a point by the evaluation of the function f at the same point.

From definition of y(«) we know that [|7(c)||; = a and hence we can upper bound ¢ by an optimization
problem over v > 0 and b, := ba as follows:

ox < gin V5 ba st 225 A > £y (o, )12 (39

V,bo
Using Equation with € = ( ft,_ni and for a feasible point (v, ba%) we have that:

B2 IIhlloo >f< |7 (« )2> +§7f (35)

na? (&%

Mn

. o1 _ n
with probability at least 1 — 2 exp ( t?nn (V2+b%”’y(a)|§/a2)>.
Recall that we defined vy := argmin f(r,0). Now, let us choose 7 = v; and show that there exists a pair
(b, @) such that (vy,b, ) is feasible for constraint . We propose to search for a point with parameter
(b, &) such that b ||y(c) ||y = ba% is close to zero. We show in Lemmathat f is infinitely differentiable
function and thus, using Taylor series approximation of the function f(vy,-) : n — f(vy,n) around the point
(vf,0) we can rewrite the constraint as:

b2 lInll 2 Iy (@l sl @l &
L Cnnb el tE (36)
with ¢, := %jy‘")‘ = 0 and where we recall that by definition ¢; = f (v7,0), Gy = 2242 and
n=0 n=0
my, = %Cnnn-
As we mentioned in Section v(«) is a piecewise linear function with break points at a,,, form =2,...,d.

Therefore, instead of optimizing over «, we optimize over m. Rearranging the terms from Equation we
get:

> o naZ, < (1+ Bn ) (37)
a < I (m) Iy (o)l
31 1 = 4, PLan)lE _ 0 (5,0 lsn)IE)

Note that we have only one constraint but two free variables (b, ) and so we can set & = auy, with
My = %an. To gain an intuition for why this choice is approximately optimal, one can follow a similar
argument as in Remark 1 in [Wang et al.| (2022) and show that m,, approximately maximizes expression:

[ 1 v ()i Iy (em)ll3
1 — =nCpp——2 — O | bgn—""22
az, 27" |n)2, am ||h|I2,

Thus, m,, approximately minimizes expression on the right hand side of Equation and maximally relaxes
this constraint on b2. We now claim that

na? Cr (1 + t3 )

72 My mn

o 2 [RICESI[E: 1
||h||oo ]- - 2 Crm ”hH2 2 — O (tgn,n)

satisfies inequality with probability at least 1 — 6 exp (—mf&%). Using Proposition [3| we have with
high probability that:

Lo Ilemdls o LYo, L 2 1 2 1

Mn Mn Mp
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for d, n sufficiently large. Applying Proposition [3{ once again we can upper bound by:

~ n(y 1 4 c 1 n(y 2 c
b2§(1+)<1 +— <2 (1- =4+ =
ca e )\UTa e T o) Ta T E T

Now applying Proposition [3| we see that O (b n%) = O( - mm/%t%n) =0 (ﬁ;) and b2

indeed satisfy Equation . From the upper bound of the sparsity, we have v
a feasible point, from Equation and derived bounds on vyy/s and ba follows that

E
)

is an upper bound on ¢y with probability at least 1 — 2exp <_Cl PETET| 2+b2ﬁ7( ez )) _
o n)(v+b3, amy )3/ 0,

6 exp <fcm>. The proposition is proved after noting that v7 + 02 ||y (aum, )|l /a2, = O(1).

C.2 Proof of Uniform Convergence Proposition [7]

The proof of the proposition follows from several steps where in each step we approximate f, using the
bounds on (v,nse,ns) from the previous steps to obtain a tighter bound on (v,7nsc,ns) using the tools
developed in |Wang et al.| (2022). The probability statement in Proposition [7| follows when taking the union
bound over all equations which we condition on throughout the proof.

Furthermore, we note that the set I' from Proposition [2| is not empty as clearly the choice (7, l~), @,0) from
Section [C]] leads with high probability to a feasible point due to the choice of M. Moreover, we can even
relax set I' from Proposition [2] and bound the variables that are elements of the following set:

1
{0biains) st L @vEmmns + 0102 2 fulv [EI@IB+2) and ba<arpoT. (38)

where we implicitly assume bounds ns > 0,b > 0, € [1, amax] in all of the following discussion. The
inclusion of T" in the above set holds, since any point satisfying max {|z/|||w>(k8)||1 - \/5775,0} +ba < M
satisfies ba < M as well. In what follows, we bound the variables of interest from Proposition m if they are

elements of the above given set, which, by inclusion, implies high probability bounds of the same variables
in the set I'.

Bound 1: v% nZ.,n% = O(1)

In order to apply Lemma [7] in the next step, which gives tight bounds for f,, we first need to show that,
with high probability, v2, 72, n:‘; = O(1). This is the goal of this first step. More specifically, the goal of this
first step is to show that there exist universal constants B, 1, Byg. 1, Bys,1 > 0 such that for any element
(v,b,a,ms) of Ty we have v? < B2, nse = b|y(a)lly, < Bpse,1 and ns < By, 1 with high probability over
the draws of hy, ha, 21, 2(2) and €.

For this first step, we use the fact that in the presence of label noise, f, is lower bounded by a quadratic
function as stated in Lemma [6li.e. we have that

Faw /R @13+ 13) = e? + ¢y (0% Iy(a)ll; +n03) > ey

holds with probability > 1 — exp(—cn). As a result, we can relax the first constraint in Definition of T
to

1 2
- (2/5maxi)s +b 1All0)? = eor® + epb® 7() I3 + eqn (39)
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This implies that ¢;n% < L(2y/Smaxns 0 [|h]l)? < 2 smaxns + 202 Hh||iO Thus for some universal constants
c1,c2 > 0 we have

-1
2 2 8 2 2 c1 C2 2
s < —b*|Ihll, (1 - smax> < —¥lhls (1 ta ) < =0 Al
cyn cyn cyn 1288 n

n
18

mn,

where we used that sp.c = © ( ) Now define universal constant ¢ > 0 as the smallest constant satisfying

1 2 4c c
Vs + 01 < 201 (14 22 ) < S22 L, (10)
n n n n

Combining Equations (39) and (40) we can relax the first constraint of I" to

C 2 2
ﬁb2 ”hHoo > CVV2 + Cnbz H’Y(O‘)”2 + Cnn?s-

This approximation leads to an optimization problem similar to the one discussed in Lemma 1 in|Wang et al.
(2022). After further relaxations we obtain exactly the same form of the inequality, and hence we can use
the arguments from Wang et al| (2022). Define the following set:

r, = {(V,b,a,ng) s.t %bz ||h\|io > ¢, V% + ¢, b Hv(a)”i +¢,m3 and ba < M}

It is evident from the previous discussion that I' C Iy with high probability. Thus, deriving high-probability
bounds on I'y gives valid bounds for I' as well. In the following three steps, we bound variables nsc, v, ns
from the set 'y, respectively.

Step 1.1: Upper bound on 7ns.. In this step, as well as in almost every step that follows, we use the
fact that, by relaxing constraints from the definition of the set I'y and bounding the variables on this larger
set, we obtain valid bounds for the variables in I'y and, more specifically, in I'. Moreover, recall that by
our reparametrization from Section we have n2. = Hw(fc)H% = b? ||'y(a)|\§ Hence, we relax the first
constraint in definition of I'; to show that:

2 2 c 2 2
ng < omax B ()3 < max [ (@)l st S0 R = e? ly(@)ll} and ba < M|
(v,b,a,ns)€T b, n

Iy(@)l3 €2 2
= _max [MQQ st IRl 2 e (@)l (41)

1<a<omax o?

Now note that as discussed in Section H’y(a)||§ is convex. Therefore, the set of feasible « that satisfy the
last constraint is a nonempty interval. Indeed, to see that the interval is not empty, recall that we defined
M in such a way that (b, a,,,) € I' with high probability for ba,,, < M. AsT'C Ty C {a st £ ||hHio >

2
cn Hv(a)H;}, with high probability ., satisfies the constraint in Equation (4I)). Furthermore, since HVE}%

is monotonically decreasing, to upper bound Equation it is sufficient to find a < oy, such that the
constraint from Equation does not hold, i.e. we should have:
2

5 .
[hll ™
It is sufficient to only consider the discretized version of «, i.e., a,,, for which we have access to the tight

concentration inequalities from Proposition E} We now claim that a,, with m = AQW satisfies the

inequality for some positive universal constant A,, > 0. Using the characterization t2, = 2log(d/m) +
O(loglog(d/m)) and concentration inequalities from Section we show that m satisfies Equation

since
2 1 1 loglog(d/n) .
mt2, <1 © <tﬁn>> ” nAm (1 © ( log(d/n) ” eyn’
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where last inequality holds for d/n sufficiently large and A, small enough.
Therefore, from Equation and the concentration inequality from Proposition |3 we get:

(o 2 1
77 <M2|| 3 HQZCfm(l"_O(tz >>_B3501a

Oé

with By .1 = ©O(1), as desired.

Step 1.2: Upper bound on v. Similarly as in the previous step, we first relax the first constraint from
definition of I'; and use obtained constraints to upper bound v as follows:

V2 < max V2
(v,b,a,ns)€T

< max [1/2 st b2 |h)% > e and B2 [|h[% > b [y(@)|? and bagM}
n n

T wbans

e (e max [57 st =Bl = e [y(@)lf3 and ba < ]

1 & 2 2
= Cae i min | st S 2 o @] (43)
Since 1 is a monotonically decreasing functlon we can use exactly the same reasomng as in the Step 1.1 to
obtam a high probability upper bound —z < —». Hence, using Equation (43) and the concentration results

from Proposition [3] we upper bound v as followgr

h ton 1
e ol et (oYY
ne, a2, cy t%nn 2, ’

and in particular, after using the characterization t2, = 2log(d/m) + O(loglog(d/m)) from Section we
have again that B,; = ©(1).

Step 1.3: Upper bound on ns. Replacing v by ns and applying exactly the same procedure as in the
Step 1.2, we obtain that with high probability:

2 2Hh|| CCf m 1 . n2
s = nch a2, = 0 12, 1+0 12 = Bus.as

for B,z 1 = O(1), which completes the first part of the proof.

Bound 2: Av? n.,n% =0 (m)

Recall that vy := argmin f(v,0) and define Av = v —vy. Conditioning on the event where the bounds from
the first step hold for v, nse, ns, the goal of this second step is to show that for any element (v, b, o, ns) of T

we have Av? = O (W) 2 =B ()| = O (W) and 72 = O (W) with high probability

over the draws of hi, ha, 21, 2() and ¢.

From the previous step, we know that, with high probability, v < B2, ns. < Bys.1 and ns < B, 1. Hence
we can use Lemma [7] to obtain a tight lower bound for f,, which is based on uniform convergence of f, to
its expectation in Proposition and relax the constraint from definition of the set I' as follows:

1
~ (2y/maeis + b [Al0)® 2 ful BRI +73) 2 0\ (@)1} + 1) — O (44)
> (4 8 8 (@2 + S — O

where we choose O, = O ( tgl

mn

) and hence the bound holds uniformly with probability at least 1 —

n
exX —C275 — ) — €X —C33 o
p( Qt%n) p( 3t§nn10gn
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Now we show how we can relax and simplify the LHS from Equation . Since cym,, < d, we have, according
to Equation that (2y/Smaxns + b||hl|)? = 3. As before, we also have X (2\/Smaxnis + b |h]| )2 <
Bsmax 2 4 22 ||h||io Combining last two expressions with the bound ns < B, 1 from Step 1.3 we have:

1 9 1 45 max 1
ng A5 > sz - na 325,1 > éCf

for n,d large enough since syax = © (tsi) Thus we have:

mn

1 1 2 Smax’]S ?
~(2V/smaxtis + b [[hllo0)* = ~0% [RIIS, (1 + m>

2
1 2 8 Smax

= |hll% [ 1+ 2Bysa1y/—1/

n || |oo< + ns,1 Cf n )

and 2(2\/5mannis + blA)l ) < 102 |[A]%, (1 4 ¢,/Z2%) for a large enough constant ¢ > 0. Furthermore,

define Op = ¢\/Z22x = © (t%) '

mn

IN

Motivated by Equation and discussion after it, we define the following set:
1 ~ ~ -
P = {beans) 56 LI (14 03) 2 G+ 8,80% 4+t (@ + 53 — O
and ba < M}

Again, from the discussion in this section, we have that with high probability I' C T's. Similarly as in the
previous bound, we will bound variables of interest i.e. ngse,v,ns in the set I's and use the inclusion of the
set I' in I'; to claim that these bounds are valid even in I'.

Step 2.1: Upper bound on 7s.. Similarly to the Equation in Step 1.1, we relax constraints of I'y
to obtain:

2 2 2
e < max b «
Mse S, max [v(e)]l3

IN

1 ~
max b [y(@)[; st ~b? (A%, (1+O) > ¢ +Eb* [[y(a)ll; — O and baSM}

-1
1 - M
< max |b [y(a)ll; st 0P > (¢~ O) (n IAl1% (1+0p) ~ ||v<a)|§) and b<a]
:M2 1 M? _ M?
=max |5 [1(@)ll; st = Al (1+08) > ¢+ w(a)n;oc] (45)

Multiplying the constraint on both sides with a? and using the fact that ||7(a)\|§ is convex shows that the

2
set of feasible « is again a (non-empty) interval. Thus, by the monotonicity of H"/(a% the problem reduces
again to finding a,, < am,, (where we use again that a,, satisfies the constraints with high probability)
such that o, violates the constraint in Equation , ie.,

~ 2
(= 0. mog, & e,
1+ 0, M2|h)%,  1+0s ||n|2%

(46)

We now show that we can choose m = \,,m,, with a universal constant \,,, € (0,1). Indeed, applying Propo-

sition [3{ and using the characterization 2, = 2log(d/m) — loglog(d/m) — log(n) + lggié(;g(((i%g) +0 (log(;/m))
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from Section we get:

~ 0, na? 21log A\ — 2 1
3, mo 2B m o
L+ 0y M2 |12, tn tonn
¢, O 1 4c, 1
and " nH7 ||2 _ B S (4)
1 + Ob ||h||oo mn CTIW tmn

where O(.) has hidden dependencies on A,,. Hence, it is straight forward to see that for any d > cn with
universal constant ¢ > 0 (and thus t¢,,, lower bounded), we can find a universal constant A, such that
Equation holds.

Hence, we can upper bound n%. in Equation as follows:

m 1 20y 1 B
QC < M2 ||7 @ ||2 < an 1 < f 1 = ns
flise = az, 2, m +0 t2 = CypAm log(d/n) +0 log(d/n)

t2
with B2 =0(1).

My,
nse,2 T

Step 2.2: Upper bound on Awv.

Instead of directly bounding v, here we upper bound Av? with v =
vy + Av and thus obtain both an upper and a lower bound for v. Similarly as before, we have

Av? < max

Av? < max

1
Av? st BB (14+0y) > Cr + ¢, A% — O,
(v,b,a,ms)€ET? T vba { n IRl € ) 2 s

and Ezﬂ [R]1%, (14 Op) > ¢+ Eb? [y(@)]|5 — O and bagM}
ax | 2 1b2||h\|2 (1+0)—C¢4+0

=max |— | — -
b,a Cy n o0 b ! ¢

st P I (1 00) > ¢+ & @)l - 0, and ba< M|

1 /1M
— e [ (12D iR+ 00 - +0,)

1 M? 2 _ M? 2
st ——5 A5, (1+0p) > (5 + &~ [7(@)]l5 — O (47)
n o @
As in Step 1.2 we use that 5 is a monotonically decreasing function and the fact that vy, from the previous
step, with m = A,ym, and Q< Quy,,,, does not satisfy the constraint in Equation (47)). Thus we can upper
bound Av? as follows:

1 M?

Crtr 2 ¢ 1
A< — It 9 < 2m oy 2 ) S _—
e e A N A GRS V2
GO 280w ([ (L V) Bl
¢,2log(d/n) log(d/n) 2

for some B%,, = ©(1).

Step 2.3: Upper bound on ns. Following the same steps as in Step 2.2 with v replaced by ns we can
show that there exists universal constant B,z > = ©(1) such that

s 1 M2 Cf (£ (2 —2log(Am)) 1 _ Bl
< o I 00— o 2 < Tt (140 (igam)) = 2
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Bound 3: Proof of the proposition

We already know that v is concentrated around v;. However, to obtain a tight expression for the risk and
also a valid lower bound, we need to obtain tighter bounds for n%. and n% conditioning on the bounds of the
previous step, leading to Proposition [7]

Note that f is an infinitely differentiable function as we prove in Lemma |8 Thus, in this part of the proof
we can use the Taylor series approximation of the function f where we use the result from the last step
to bound the higher-order terms involving Av,ns. and ns. Similarly as in equation , we obtain from
Proposition and the second order Taylor series approximation of f around the point (vy,0) that with
high probability,

1 1 1 1
07 (|3 (14 Ob) > Cp o+ 56 0% 4 S Cnb? V(@) + 5 Gl = Oc = Oy
with Oy = O(A® + g +13) = O (=) and 0,0, = 0 (7).

Step 3.1: Upper and lower bound on ns.. We proceed in the same manner as in the previous two
steps. We relax the constraint in definition of I' and define the following set:

c 1 1
Iy {<u,b,a,ns> st —b?[|RlIZ, (1+0p) > ¢ + 5o [1(@)ll; = O — Oy and baéM}

Clearly, we have again with high probability that I' C T'75°. The only difference between I'°° and I's lies in
the constant ¢, which is replaced by the tighter constant (,, /2. However, this makes a big difference, as this
allows us to choose m < m,, < m much tighter. Similar to Equation we again require that m = m,m
satisfies

~0,- 05 a? )|l
1+00  lhfls, M? 20+ 0s) Al
However, this expression allows us to choose m and T as in Lemma [2| with x := 1/2, m, := m,, and

parameter A > 0. We only show it for m as the same argument holds for m. Applying Proposition [3] the
LHS from Equation can be bounded by

—0,—-0; &2 12 4 2 1
“ o = 1+ +0( 5

A 2 1 1
Br e (t%ln>+ (tznnm)

2
G [v(am)]ly, i A A2 1 1
Moo e o, tep T T\ ) P o\e

with O(.) having hidden dependencies on universal constant A. In particular, as a result, we see that we can
choose A such that Equation holds for any d > c¢n with universal constant ¢ > 0. Hence we can upper
bound n%. as follows:

vam)|l, _ ng 1 a1 A 1
2. < M2H7*2 <12 (10 <=L = (1 0
778 o 0672” B tmn m * t'?nn o <7I’fl Moy, MW 2\/ Mn * mn

Furthermore, we also obtain a lower bound for nZ.. Similar as in Lemma 5/6 Wang et al. (2022), we can

lower bound (using again the monotonicity of % and the fact that any feasible o < az)

e Z e [bQ tom)ll st b2 g o 2]
b L (1+0y) — 16 I
— 0. — i 1 )
BRIE s (901 Or zl\v(am)HizC—CftT (1 2\/L+O( ))
2= (1+ 0p) = 3G [ (em) |l nm Um, T,
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Step 3.2: Upper bound on 7s. In order to upper bound 7ns we further constrain I'1°° and define a set:

1 1 1
rge = {nbans) 56 LTI (L4 00) 2 ¢+ S0n? (@)l + 56t — 0. - O

and baSM}

Note that I'J° C I'1*° and thus we can use bounds m,m from the previous part. Upper bounding 7s by

2
other variables from the first constraint of I'1° and using that é and —”'Y(a#“z are monotonically decreasing

and increasing in «, respectively, we obtain the following high probability bound:

2 (M2 [|h)? 1 am) |3
T’?S'S(n(H m(1+0b)2<nn”w> Cf+0c+of>

G o, O

26 | 1 2 ¢ 9 4 Co 2m,, c3 1
st A R . B N - i 1+3)) -1 +0(—

G [%( t%ﬁt%)(m et ) wm U O\a,

where the second line follows again from concentration results from Proposition [3] Multiplying all the terms
gives 7]?9 < ts%, as we wanted to show.

Note that we could prove in the exact same way that Av? = O (fp), but this does not change tightness

mnp

of our result in Theorem [2] and hence we skip this step and conclude the proof of Proposition [7]

D Technical Lemmas

D.1 Application of CGMT: Proof of Proposition [T]

The proof essentially follows exactly the same steps as in [Koehler et al.| (2021)) and (Donhauser et al.| |2022])
except for a few simple modifications, which we describe next.

In order to apply Lemma [I] we first rewrite ® 5 using the Lagrange multipliers v € R™ as follows:

& = min max llwlly + (v, 1 — Dy Xw)

= ( min )Hl;l(})( ||wH + wLHl + <1}, 1-— DyXHw||> — <U,DyXle>
wH,wL v=2

where D, = diag(y1,y2,...,yn). Since D, and X, are independent, we note that D, X, € R™*4 has

ii.d. entries distributed according to the standard normal distribution, and hence Dy, X | 4 X | with 4
denoting equivalence of random variables in distribution. When comparing the expression obtained with
the definition of ® from Lemma [I] it is obvious that we should take X; := X |, w; = w,,wq := w)| and
the function ¢(w,v) := |lwy + w |1 + (v,1 — Dy Xw)), which is a continuous convex-concave function on
the whole domain since every norm is a convex function. Motivated by expression for ¢ from Lemma [I] we
further define

¢n = min max|jw) +wi|: + <v7 1— DyXHwH> — w2 (v, g) — ||v]]2 (wi, k)
(w),wy) v=0

= min max fwy +w i = A (k) = | (L= D, Xpwy = gllwsll), | )

(w,wi) A=

= min Juy+wif st (wih) > [0 DyXjuy —glhwwly) ||

(wu ,'IUJ_)
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(S) (8%

where in the second equality we set \ := |[v||,. Define w}”’ = Ilsw,,w}” ’ = Ilscw where Ils and Ilsc are
projections on supp(w*) and the other d — s entries, respectively. So we can rewrite ¢y as:
- ) s s
on= min _fwp+ o+ [0
(wp (P w)

S S¢ S S¢
st (W™ hy) + @ hy) > ||<1—Dyxuwu—gwwi)u%+\|wi 12))+ 112

with hy ~ N(0,1;) and hy ~ N (0, I4—s), independent of each other. Under the constraint that (w(f), hi) +

<wg_sc), he) > 0 we can square the last inequality and scale with % to obtain the following RHS:

1 S Sc
0~ Dy Xiug—gy/ 10f 713 + 113+ 13
1 & s
= > (1= &sgn(((@))s, o)) wy) — gillw 2%,
=1

which is exactly the function f,({wy,w*),||w.]|,), as defined in Equation (5). Therefore, comparing with
the expression for ¢ from Proposition || we note that ¢ = @ .

In order to complete the proof of the proposition, we need to discuss the compactness of the feasible sets in
the optimization problem so that we can apply Lemma [If to ®5 and ¢n. For this purpose, we define the
following truncated optimization problems @’ (¢) and ¢y (t) for some r,¢ > 0:

N(t) ;= min max |w|; + (v,1 — D, Xw)
T wlsegse T !
vz

rf) - (5) (5°)
P (1) nw”+wf>|?ffﬁwf°>||lgtOg?fwuw”H” I+l

1 .
A (G ) + @) - V).
By definition it follows that ¢ (t) > @73 (t) for any 71 > ro, and thus we have that
Plon > 1) > lim B(h (1) > t]o). (49)

Furthermore, by making use of the simple (linear) dependency on A in the optimization objective in the
definition of @y, a standard limit argument as in the proof of Lemma 7 in Koehler et al.| (2021)) shows that:

Tim B(®}(1) > €) = P(x > 1]¢).

Finally, the proof follows when noting that we can apply Lemma [I| directly to @’ (¢) and ¢} (¢) for any
r,t > 0, which gives us P(®%, > t|¢) < 2P(¢h > t|¢). Combining the last inequality with Equations and
D3] completes the proof for @ .

The proof for & and ®_ uses the same steps as discussed above. We only detail the proof for ®_ here, as
the proof for @, follows from the exact same reasoning.

Now, let MB; = {w € R? : |jw||; < M} be an ¢;-ball of radius M and note that we optimize over
(wH,w(f),w(f )) € Sy where S, = {w s.t |w|, > ¢} N MB; is a compact set. Furthermore, define the

s
(w) 1w5« )

function ¢ by ¥ (w,v) := il

2
Similarly as above, we can overcome the issue of the compactness of the set S, by using a truncation argument
as proposed in Lemma 4 in [Koehler et al.| (2021)). In particular, we define

) + <v, 1-— DyX”wH>, which is a continuous function on S, since ||w||y > 0.

O = {w, w") + (v,1 - Dy Xw),

min max ——

wESy ||v||<r ||wH2
v>0

{wp, w”)

¢" := min ax
weS, 0<A<nr ||,

A (:L«wf),hﬁ + (™, ha)) - fn(w)> :
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for which we have
P(®_ <t|f) < lim P(®” < t|§) and lim P(¢" < t|€) =P(o- < t[E).
rT—>00 ™00

We note that the first statement follows from the definition of ®_ and the monotonicity of ®” in r, while
the second statement follows from a limit argument as in Lemma 4 in Koehler et al| (2021). Finally, we
conclude the proof by applying the first part of Lemma [I| to ®" and ¢" and defining 2! = (X, w*) with
X the row-wise projection of X in the subspace spanned by w*

D.2 Lower bounds for f, in noiseless setting

Recall that v = <w|‘,w£8)>,775 = ||w5_3)||2,775c = ||w5_$c)||2 and n = |lwi|l2 = /1% + n%.. In the noiseless
setting we defined the following two functions:

n

1 1 2
Falvym) =~ P R )
=1

fw,n) =Efn(v,n) = IEZ<1>,Z<2)~/\/(0,1)(1 - V|Z(1)| - Z<2)77)i~
In this section we show multiple lower bounds of f,,. First, we show a bound with non-tight constants and

then show a tight result based on uniform convergence of f, to f. At the end we give a corollary of the
uniform convergence proposition which is used in the proof of the Proposition

Lower bounding f,, with non-tight constants

We show the following proposition:

Proposition 8. Assume that v satisfies ¢; < v < Umax for some universal constant ¢; > 0. There exist
universal constants ki, ke, co such that for any v,n that satisfy the given assumption, the inequality
2

1
fn(vin) > k1= + 521
v v
holds with probability > 1 — 2 exp (—cz ﬁ) over the draws of z(1), 2(2).

Proof. Similarly to the above, we have the following:

n

ST - vz an?1{z? < —a}
=1

1
=iz =2t >~

fn(Vv 77) =

S|

@
Il
-

1
(=l e’ {1 = vlgY | 2 5,27 <~}

2
S|
-

1

1 & 1
)= > 1= vl = 5 2P < —er)

i=1

-
Il

—

2 (

Moreover, from independence of ZW and Z(2), the fact that P (Z(z) < fcl) =t (¢1) > ¢ and concentration

of Bernoulli random variables we obtain that f,(v,n) 2 (1+n*)1Y" 1{1 - V\z§1)| > 1} with probability
> 1 —exp(—csn). Now in order to lower bound the last term we note that:

1 1 1
P Z(l) <>—erf( )>
<| = 2v 2w /)~ v

where we used Taylor approximation erf ( 2\/%”) > L for any v > ¢; with ¢; > 0 sufficiently large. From

~ v

Lemma 5| with € < /1/tmax we obtain that uniformly over v,n fu(v,n) 2 L + 7772 with probability at least
1 — 2exp(—can/(Vmax)?)-
O
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Uniform convergence of f, to f

Similarly as in Section [D| we define a random variable X = (Z(),Z(®) and a set of functions Gy :=
{(Z(l)aZ(z)) — (1 - V|Z ! | - Z(Q)n)a_ ‘Vmax Z v Z Vmin, 7] S nmax} Wlth Vmin = e(Vmax)anin = Q(n1/6)
and Npmax < co for some universal constant co > 0. Using notation of Section @ we have that Pg, , =
Eg,.,(ZW,Z2) = f(v,n) and Pngy., = fn(v,n), we show the following result:

Proposition 9. There exist positive universal constants ci,ca,c3 > 0 such that for any € 2, M% holds

logn
Vn

Proof. The proof is based on Theorem [3} We choose o« = 1 and show that the condition from Theorem
requiring finite Orlicz norms is satisfied for this choice of «. We divide the proof into three steps, where in a
first step we bound the variable g, , then we bound R,,(Gop), and finally we bound 050 and apply Theorem

P (||Pn —Pllg, < + e) > 1—cyexp (—czne?).

Step 1: Bounding g, By the definition of Orlicz norms, g, is given by:

1 1
g, = inf{\ > 0: Elexp(~ max sup \gl,n(zgl), zi(z)) —Elgy]| —1]) <1} (50)
A 1<i<n 9u,n€Go T ' '

Note that (1 —v|z(M|); <1 and thus we have g,.,, (2™, 2?) = (1 —v|zV| - 2@n)2 <1+ (2)2)2 for any
2 23 v, implying that

max sup \gum(zl(l), (2) )| = maxsup [(1— 1/|z \ - z§2)
v v,n v,m

3l < e128)

max

with vector z\ody = maxj<i<n |Z¢(2)|' Furthermore, it also holds E[g, ] <1+ n*E(Z®)2 <1+ 52, <cj for
some universal constant c3 > 0.

Using these results and applying the triangle inequality, the term inside of expectation in Equation can
be bounded as:

1
E{exp (}\ maxsup —|(1— V|Z \ - z§2)n)i —E[(1-v|Z2W| - Z(Q)n)i]D]

z v,m

1
< E{exp (—)\ max sup(l — V‘Z§1)| - 21(2)77)1)}
n [ v
n

- exp (% S;/u};)E[(l —v|zW| - Z(Q)n)i]) <E [exp ( . fnaxﬂ exp (nA) (51)

for some positive universal constants ci, c3. Now we split the expectation from the above inequality into two
terms:

E {1 {zmax < 2log(n)} exp ( C;\ z?naxﬂ < exp (201:/?”)

and

E [1[2max > v/21og 0] exp (522 )} _an[ [zmax = |l 21| = V2logn] exp (53]

< n/ / / exp )
z1= 210gn

(- O

l'n
n

_1
2z

—= dz ]dzl

where we assumed that A > 2% Now choosmg A=
find that the condition in Equahty is satisfied for this \, which implies that ¢g, < c) %"
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Step 2: Bounding R, (Go) In order to apply Theorem [3{ we need to upper bound E || P, — P[5 . Since
E||P, — Plg, < 2Rn(Go), we can instead upper bound the Rademacher complexity R, (Go), which we do
next. Recall the definition of the Rademacher complexity:

n

1
sup | — Zeigu,n(zi(l)azz@))

gu.nEgO n i=1

] e

Define random variable # = [z(D|1{]z(1)| < ZmaxV3Io87 Y o114 note that for all v,m and 1 < i < n holds

Vmin

(1- V|Z§1)‘ — zz@ 1{zmax </3logn} =(1—-vz — z 1{2;maX < /3logn}.

We now apply the triangle inequality to Equation to obtain:

n

1
Esup ‘f € (1 — V|z§1)| - zgz)n)i‘ < Esup ‘f e(l—vz; — z m21{zZ, < \/3logn}‘
=1 v TV
1
+ Esup ‘f e(1— 1/|z(1)| (2) 1{zmaX v/ 3log n}‘ (54)
vy 1T

i=1

Then, using that (-)4 is 1-Lipschitz, we can bound expectation of the first term from Equation (54) as
follows:

n

1
IEsup = ZEZ 1—-vz — z 21{z2) < \/3logn}
n
i=1
1 n
S Esup|— Zei(l —VE — i n)21{z2), < +/3logn}
v |V
1 n
= Esup - Zel [(1 —vE)? —2(1 —v%) Z( )n—i—( (2))2 2} 1{z2) < \/3logn}
VT i=1

We use again the triangle inequality and consider each of the three terms above:

 Note that |vZ;| < “mexp,../3logn < vlogn and using concentration of sub-exponential random
variables from Lemma [ we obtain:
6i(1—v7)21{z3) < \/3logn}

Esup |— <Esup
v on

[
]\'M:
o

n
Z e?221{z) < \/3logn}
i=1

log n

+ Esup ei(—202)1{z%) < /3logn}|+E|-

Z e1{z2)_ < /3logn}| <

i=1

| —
H'M:
)

e Similarly as in the previous case, we use triangle 1nequahty to split expectation into two terms and

then use that |z(2 n| < zmgxnmax < /logn and |VZZ 77| < 3imaxp2  Jogn < logn, and apply

me
concentration from Lemma El to get:

2262 1—-vZ)z Z)nl{zr(fgx < +/3logn}| <

log n

E sup

o Last, use that n? (z§2))2 < nfnax(zgo)\xf < logn, and again concentration of sub-exponential random
variables from Lemma [ to obtain:

n

1
~Dalm PGk < V3logn}| S

E sup
n i=1

T
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Thus, we bounded the first term from Equation . Now, we bound the second term. Since |e;(1— y|z£1)| -
( )77)2+| <1+ 22(2)17)2 we obtain:

n

1
- Z € (1 — 1/|zi(1)| 1{z§j§x > 4/3logn}

E sup
v,n

< Esup Z n)?1{z2), > v/3logn}

% Zl-l— (2) 1H1{z2). > \/310gn}§E[(z(2 213 > \/310gn}}

e V1
sn f S exp(~2}/2)dz 5 VB
z1=4/3logn \/ﬁ

where in the last step we used the same approach as for obtaining Equation (52). After adding all terms,

we obtain R, (Go) < l(z/g»"

Step 3: Proof of the statement To apply Theorem |3] we also need to bound the variance O’éo. But,

it is straightforward that there exists some positive universal constant ¢, > 0 such that the variance is
bounded as follows:

050 S sup E [gl/ 7]] < CUQO (1 +77max)
gv,n€G0

logn .
Vi

Substituting all derived bounds into the probability statement from Theorem [3| we obtain for € 2

P(|Pn = Pllg, 2 201+ 1)Rq, +€) < exp (—cane’) + 3exp <_C3 107;6n

) < ¢q exp(—cane?)

with c; ' = 2(1 + 6)Cog, (14 nta.y) and ;' = Cey, which concludes the proof. O

Corollary 1. There exist positive universal constants cy,ce such that for any v,n satisfying constraint in
Go and € 2 k\)gf", inequality

2
Mz 221 TP

holds with probability at least 1 — c1 exp(—cone?) over the draws of 20 22,

Proof. Recall that f(v,n) = E[f,.(v,n)]. From Proposition@we have f,(v,n) > f(v,n) — € uniformly over all
admissible (v, ) with probability > 1—c; exp(—cane?). According to Lemma f is an infinitely differentiable
function and thus we can express it by Taylor series. First, we determine the coefficients of the series of

f(l/7'):77'_>f(1/a77)'

The constant coefficient is given by:

f(r,0) =EQ1 —v|ZzW )2 \ﬁ/w 1 —vz)?exp (-) dz

st () o2 (o () 2) = 220 ()

where we used the Taylor expansion around 0 for functions erf and exp. The first derivative coefficient is
given by

0
877f(% M=o = —2E[Z (1 —v|ZV] = nZ®)1]lj—0 = 0
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since Z(1) and Z(?) are independent random variables and E[Z(?)] = 0. Now consider the second derivative
coeflicient:

9?2 1
gl (=0 = 28 [1{1 = 1|20 2@} (ZC)] |, = 2P (|Z<1>| < )

caute( 5} 3L vo (L)

where in the last step we used the Taylor series approximation of the error function around zero. Now, in
order to analyze higher order derivatives, we show using Leibniz integral rule that:

o o “ "Zm)/” 722 L @2 M W) gz7@)
a 3f - ™ 877 /(2):—00 /Z(l) =0 ) P <_2(Z ) ) P < 2<Z ) ) 12z
9 [l/m 1 1/1—nZ@\?
- 7(2))3 — (722 = dz(2) 55
o Z(z):_m( ) exp | =5 (Z7)7 Jexp | —3 V (55)

Now, note that for higher order derivatives, the term that comes from differentiating the upper bound 1/7 is
equal 0 for n = 0 since it is of the form poly(1/n)exp(—1/(2n?)) which is zero for any polynomial. Thus, the

)
main term which we need to consider comes from the term exp < 1 (ﬂ) ) Note that after taking

the differential with respect to this term, we obtain an additional multiplicative factor 1/v2. However, we
also obtain the multiplicative term (1 —vZ(?), which can be further differentiated with respect to 7. Taking
n=0

all this into account one can show that for k = 2,3, ...
1 [ 1 1 [(1-nZ®\?
7CN2k (1 _ p7(2) ——(7(2)2 _Z dz)
0 ( [ (20— e (~5 2 ) exp 3 (<L .

a2k
with all other terms either vanishing at 7 = 0 or having in front of the integral multiplicative constant V%,

Wf(’/ﬂ?)‘ =

with p > 2k—1. Thus, forn =0, using that the Gaussian moments are bounded, we obtain % fw,m)ly=0 =
O (5z=). Similarly to Equation (58], one can show that every odd differential at n = 0 is equal to the

scaled odd moments of the standard Gaussian random variable, implying that 3 2k T f (v,m)|p=0 = 0.

Taking all derived coefficients into consideration, we can express f using the followmg Taylor series:

V2 1 \[772 Lot
fv.n) = 3ﬁ1/+ 7r+0<1/3’1/3> (56)
At the end, since n = O(1) and v = Q(n'/®) we have O (713_, Z—i) = o(¢), which finishes the proof. O

D.3 Lower bounds for f, in noisy setting

Recall that we have defined v = (wj, w*),ns = ||w5_3)|\2,773¢ = ||w(fc)\|2 and 7 = |w |2 = /1% + n3., and
also the following two functions:

1 n
falvin) = =371 =&l | = 2Pn)}

i=1
Fw.n) =Efn (v,0) =Bz 2@ opr0,1) By 200y (1 = Erv| 20 = ZG)p)3. (57)

In this section we show three lower bounds for f,, of increasing tightness. First, we show a lower bound by
a quadratic form in v and 7, after that we bound f,, by a sum of a quadratic form and a constant, and the
last bound is based on the uniform convergence of f, to f which we prove at the end of this subsection.
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Lower bounding f, by a quadratic form

We show the following lemma.

Lemma 6. There exist universal positive constants c,,c, only depending on Py and c such that for any v,n
we have that:

fav,m) > e + e

with probability at least 1 — exp (—cn) over the draws of 2D () ¢

Proof. We can assume that v > 0 since the other cases follow exactly from the same argument. First,
we show an auxiliary statement which we use later in the proof. Namely, we claim that there exists some
positive constant ¢; such that for all z € [21, 23], P, (€ = —1; 2) > ¢ for some 21,22 € R and 21 # 2. Let us
prove this statement by contradiction and assume that there exists no z € [z1, 23] that satisfies the previous
equation. Then, for almost any z ~ N(0, 1), we have P, (&;2) = +1 and hence the minimum of the function
fv,n) = Ef,(v,n) is obtained for v = co. However, this is in contradiction with Assumption [1|in Section
Hence there exists some z for which P (£ = —1;2) > ¢;. By the assumption on P, in Section we
assume piecewise continuity of z — P, (£ = —1; z) and hence there exists some interval [z — 6, 24 0] =: [21, 22]
in which the given probability is bounded away from zero.

We can assume without loss of generality that this interval does not contain zero, since in that case we can
always define a new interval of the form [e, z9] or [z1, —€] for € > 0 small enough, which does not contain
zero. Let us define Z = min{|z|, |22}

We can now bound f,(v,n) as follows:

Fulvn) = le—wz“ 2202

Y

n LS 1 = —150 € o) < b1 — €= — P
i=1

1 n
Z(1+21/+02772521 & =—-1,29 €[z, 2], %M < —c3]
=1

From Section we have that Z( is independent of &gy and Z(). Hence:
P(gRV = —1, Z(l) S [21722},2(2) < —02)
= P(ery = —11Z) € [21, P20 € [0, 22)P(Z) < —c2) 2 1 (@F(21) = 08 (z2) ) @B(cz) =

for some positive universal constant c. Now using concentration of i.i.d. Bernoulli random variables we
obtain:

falvyn) = (L+ 20+ can)® = 2 02 +

NN

with probability at least 1 — exp (—cn). O

Lower bounding f, by a quadratic form with constant

Recall that Av = v — v¢. We show the following lemma.

Lemma 7. Let B,, B, > 0 be universal positive constants. Then, there exist positive constants ¢,, ¢, > 0
and ¢y, co,c3 > 0 only depending on P,, such that for any € > % and any v* < B2 n < B, we have that:

Fav,m) > G+ (D)2 +Em? — ¢

with probability at least 1 — exp (7027162) — exp (ﬂ:g 107;677,) over the draws of 2V, 2(?) ¢.
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Proof. First note that from the uniform convergence result in Propositionwe have that f(v,n) > fn(v,n)—
€, with f from Equation , with high probability. Thus, it is sufficient to study f. Clearly, by the convexity
of f we have that f > (; with ¢; = f(vy,0) where we use the simple fact that (v, 0) is the global minimizer
of f, which follows from the assumption on P, in Section [3.2] Furthermore, it is not difficult to check that
for for any v,n, V2f(v,n) = 0 and therefore, f is strictly convex on every compact set. Hence, the proof
follows. O

Uniform convergence of f,, to f

Recall that Z(M), Z2(2) ~ N (0,1) are independent Gaussian random variables and &gy a random variable with
Erv|ZM) ~ P, (.; ZW). Using notation introduced in Section with random variable X = (Z(1), Z(?) ¢gy),
and G, = {gv, | [v| < B,,n < By}, we note that

Pgyy =Eguy(Z2V), 2% &rv) = f(v.n) and Pagyy = fu(v.1).
We show the following result:

Proposition 10. There exist positive universal constants cy,ca,c3 > 0 such that

1

C ne
P <||Pn — P||gg < ﬁ + e) >1—exp (—02n62) —exp (—03 logn)

Proof. The proof of the proposition is based on the application of Theorem [3| and follows exactly the same
steps as proof of Proposition 9} In order to apply Theorem |3| we need to upper bound three terms - vg_, O’gg
and R, (G,). Similarly as in proof of Proposition |§| we split proof into three steps:

Step 1: Bounding g, Recall the definition of wga from Theorem

. 1
g, = nf{A>0: E[exp()\maxsuug g, (o0, 22, €0) — Elgu)| - 1)) < 1)

Since |v|,n are bounded by constants, we have that
Elgu.) = E[(1 — &y 20| = ZOn)2] < c(1 + B2+ B2) < 3 (58)
for some positive universal constants co that may depend on B, B,,. Furthermore, we have:

< clzr2nax (59)

(1= &l =22 < (1 + (B + B?)

max)
where zp.x = maxlgiggn{|z§l)|, |zl(2)|} Similarly to inequality 7 we apply the triangle inequality and
bound the two terms using Equations and to obtain:

E{exp (imaxsupf' 1—§I/|z(1)| (2) ) [(1—£RV1/|Z(1)| AC) n)? ]D}

<2 o ()] o0 (2)

Thus we obtain that 1g, < inf{\ > 0: Elexp(22,,)exp(<2)—1] < 1}, which is similar to expression

1
&% for some

in the proof of Proposition @ Hence following the same argument we conclude that g, < cy
universal constant cy > 0.

Step 2: Bounding R,(G,) The upper bound on the Rademacher complexity is derived as follows. First
use the fact that (-)4 is 1-Lipschitz to obtain:
1 n

=3 a1 = gl - 2Py

n
=1

n

Rn(ga):El sup lZezgun( i 7 752)

gu,nega ni 1

< 2E sup

[v|<B,,n<By

] ; (60)
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then expand quadratic form and apply triangle inequality for every term to obtain that is upper bounded
by:

IERS Ly (1),
2E [|= ) €| +2E sup = 2|z |z )

i ”; [v|<B,,n<B, ”;
B n 1 n

+2E | sup |— ei(—2z§2)n) +2E | sup |— Z ei(zgz))%]z
[n<By |1 i n<By | M
[ 1 1

+2E | sup |— ei(—2fi1/|zi(l)|) +2E | sup fZeil/Q(zEl)ﬁ
[v|<B, i=1 lvi<B, |4

Finally, since sums above do not depend on v and n any more, we can use standard concentration results
for sub-exponential random variables to obtain that R, (G,) < ﬁ

Step 3: Proof of the statement Similarly to Equation , we can bound the variance straightforwardly
as follows:

O’ég < ) suepg E [ggm] < ¢Coq, (1 + B,‘f + Bﬁ)
Guv,n o

for some positive universal constant c,, > 0.

Combining all derived bounds and using that E [P, — Pl < 2R,(G,) we obtain from Theorem

P (| P, —Pllg, >2(1+t)Rg, +€) <exp (—cane®) + 3exp (—03 lorgn)

with ¢; ' = 2(14 6)cog, (14 Bj+ Bj) and 5" = Ccy, which concludes the proof.

D.4 Additional lemmas

Lemma 8. The function (v,n) = Eza) ze)on1)(1 — v|ZW| — Z@n)2 s an infinitely differentiable
function.  Furthermore, under Assumption 1 from Section @ the function (v,n) — Ezm,z@n0,1)
Egpy~p(jz0) (1 = Ervv|ZW| — ZPn)2 s also an infinitely differentiable function.

Proof. Note that the conditional expectation of the first function is given by:

Ez@|z0=m[(1 —v|zM] = nZ@)3]

— O L @2 (€] ()24,
= ex z 1—-v|z z dz
/_oo V2 P ( 2( ) ) ( |21 = =)

1 1
=11 = w0 exp (= (1= D)2 ) 4 (2 e (20w

which is an infinitely differentiable function in v and 7. Since the function given in the lemma is an
expectation of an infinitely differentiable function, it is also infinitely differentiable, which finishes the first
part of the proof.

Now, note that using Assumption 1 we can rewrite the second function as:

Ezw |P(éry = 1ZW)E ) 200 [(1 — v|ZW] = nZ )]

+P(bpy = —1ZME @) 20 [(1+v|ZW] = nZ@)3]]

But, similarly to above, we can show that E )|z [(14v|Z(M]|—nZ®)3] is infinitely differentiable, implying
that the whole function is also infinitely differentiable. O
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