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Abstract

Popular iterative algorithms such as boosting methods and coordinate descent on linear
models converge to the maximum ℓ1-margin classifier, a.k.a. sparse hard-margin SVM, in
high dimensional regimes where the data is linearly separable. Previous works consistently
show that many estimators relying on the ℓ1-norm achieve improved statistical rates for
hard sparse ground truths. We show that surprisingly, this adaptivity does not apply to the
maximum ℓ1-margin classifier for a standard discriminative setting. In particular, for the
noiseless setting, we prove tight upper and lower bounds for the prediction error that match
existing rates of order ∥w∗∥2/3

1
n1/3 for general ground truths. To complete the picture, we show

that when interpolating noisy observations, the error vanishes at a rate of order 1√
log(d/n)

.
We are therefore first to show benign overfitting for the maximum ℓ1-margin classifier.

1 Introduction

The ability to generalize in high-dimensional learning tasks is crucially based on structural assumptions on
the underlying ground truth. Probably the most commonly studied assumption is that the observations
only depend on few input features, also called sparsity of the ground truth. Popular iterative algorithms
widely used in practice to train models in such settings include coordinate descent (see Wright (2015) for
a survey) and boosting methods (e.g., Adaboost Freund and Schapire (1997)). Numerous influential works
(Bartlett et al., 1998; Rudin et al., 2004; Zhang and Yu, 2005; Shalev-Shwartz and Singer, 2010; Schapire
and Freund, 2013; Telgarsky, 2013; Gunasekar et al., 2018) make an important step towards mathematically
understanding these algorithms by showing that these solutions have the implicit bias of converging to the
maximum ℓ1-margin classifier (sparse hard-margin SVM).

However, so far, there exists relatively little analysis on the generalization capabilities of the maximum
ℓ1-margin classifier; existing nonasymptotic results only consider general (non-sparse) ground truths and
adversarial corruptions (Chinot et al., 2021), while asymptotic results consider regimes where the prediction
error does not vanish (Liang and Sur, 2022). In this paper, we derive tight matching upper and lower bounds
for the prediction error in a high-dimensional discriminative classification setting with (hard) sparse ground
truths. Our theory holds for Gaussian covariate distributions and the tightness of our bounds crucially rely on
Gaussian comparison results (Gordon, 1988; Thrampoulidis et al., 2015) (for comparison with previous work,
see Section 3.3). Our tight non-asymptotic bounds allow us to answer two open problems regarding maximum
ℓ1-margin classifier related to its adaptivity to sparsity (Problem 1) and benign overfitting (Problem 2).

Problem 1: adaptivity to sparsity Intuitively, linear estimators relying on the ℓ1-norm should adapt
to (hard) sparse ground truths by achieving faster rates than for ground truths where only the ℓ1-norm is
bounded. For instance, this gap has been proven for ℓ1-norm penalized maximum average margin classifiers
(Zhang et al., 2014), as well as basis pursuit (which achieves exact recovery only under sparsity assumptions
(Donoho, 2006; Candes and Tao, 2006)) and the LASSO (Tibshirani, 1996; Van de Geer, 2008) in linear
regression settings.

However, so far there are no results in the literature that show adaptivity to sparsity of the (interpolating)
maximum ℓ1-margin classifier in high-dimensional discriminative learning tasks. In fact, recent work (Chinot
et al., 2021) posed the following open problem:
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(Q1): Is the maximum ℓ1-margin classifier adaptive to sparsity for noiseless data?

In Section 3.1 we show that surprisingly, the answer is negative: The tight rate ∥w∗∥2/3
1

n1/3 for (hard-) sparse
normalized ground truths w∗ in Theorem 1 is of the same order as the upper bounds in (Chinot et al., 2021)
that hold for general ground truths.

Problem 2: benign overfitting Motivated by empirical observations for largely over-parameterized mod-
els (Zhang et al., 2021; Belkin et al., 2019), a line of research recently emerged showing “benign overfitting”
(Bartlett et al., 2020) for linear interpolating classifiers. More specifically, these papers show that the pre-
diction error yields vanishing rates, although the model interpolates noisy observations, where a constant
fraction of labels are randomly corrupted (Muthukumar et al., 2021; Donhauser et al., 2022; Shamir, 2022).

However, so far no such results exist for the maximum ℓ1-margin classifier. Existing upper bounds in
(Chinot et al., 2021) are tight for arbitrary (adversarial) corruptions but require the fraction of corrupted
labels to go to zero to reach vanishing rates. It is unclear whether these rates can be improved for random
(non-adversarial) corruptions:

(Q2): Does the prediction error for the maximum ℓ1-margin classifier yield vanishing rates when a constant
fraction of the labels are randomly corrupted?

In Section 3.2, we show that this is indeed true: The maximum ℓ1-margin classifier achieves a logarithmic
rate of order 1√

log(d/n)
in Theorem 2 — which is much slower than for the noiseless case and far from

being minimax optimal (Wainwright, 2009; Abramovich and Grinshtein, 2018), but nonetheless vanishing in
high-dimensional regimes when d > n1+ϵ. We therefore complement the literature on benign overfitting for
maximum ℓp-margin classifiers with p > 1, which can even achieve much faster polynomial rates (Donhauser
et al., 2022).

2 Setting

In this section we introduce the data model, prediction error and maximum ℓ1-margin classifier. We study
a standard discriminative data model which is commonly studied in the 1-bit compressed sensing literature
(see e.g., Boufounos and Baraniuk (2008); Plan and Vershynin (2012) and references therein).

We assume that we observe n pairs of i.i.d. input features xi
i.i.d.∼ N (0, Id) and associated labels yi =

sgn(⟨xi, w∗⟩)ξi where w∗ is the (normalized) ground truth (i.e., ∥w∗∥2 = 1). Unlike previous works (Chinot
et al., 2021), our proofs crucially rely on the Gaussianity of the input features (see Section 3.3 for a comparison
with existing proof techniques). We say that the label yi is clean if ξi = 1 and corrupted if ξi = −1. We
study the two cases where either all labels are clean (noiseless), i.e. ∀i : ξi = 1, or where the corruptions
ξi ∈ {−1, 1} are randomly drawn from a distribution Pσ (noisy) only depending on the features in the
direction of the ground truth:

ξi|xi
i.i.d.∼ Pσ(·; ⟨xi, w∗⟩). (1)

As proposed in (Donhauser et al., 2022), we make the following technical assumption on the noise distribu-
tion Pσ:
Assumption 1 (Noise model). The function z 7→ Pσ(ξ = 1; z) is a piece-wise continuous function such that
the minimum νf := arg min

ν
EZ∼N (0,1)Eξ∼Pσ(·;Z) (1 − ξν|Z|)2

+ exists and is positive νf > 0.

This assumption is rather weak and satisfied by most noise models in the literature, such as

• Logistic regression with Pσ(ξi = 1; z) = h(zσ) and h(z) = e|z|

1+e|z| and σ > 0.

• Random label flips with Pσ(ξ = 1; ⟨xi, w⋆⟩) = 1 − σ and σ ∈ (0, 1
2 ).

• Random noise before quantization where yi = sgn(⟨w∗, xi⟩ + ξ̃i) with ξ̃i|xi ∼ N (0, σ2) and σ2 > 0.
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Given the data set {(xi, yi)}ni=1, the goal is to obtain an estimate ŵ that directionally aligns with the
normalized ground truth w∗ and thus has a small prediction error:

R(ŵ) := Ex∼N (0,Id)1[sgn(⟨x, ŵ⟩) ̸= sgn(⟨x,w∗⟩)] = 1
π

arccos
(〈

ŵ

∥ŵ∥2
, w∗

〉)
. (2)

By the Taylor series approximation, one can directly see that a small prediction error corresponds to a small
directional estimation error, which is commonly studied in the 1-bit compressed sensing literature (Boufounos
and Baraniuk, 2008) since

R(ŵ) ≈ 1
π

∥∥∥∥ ŵ

∥ŵ∥2
− w∗

∥∥∥∥
2
. (3)

We study the maximum ℓ1-margin interpolators, or equivalently, the sparse hard-margin SVM solution
defined by

ŵ = arg min
w

∥w∥1 s.t ∀i : yi⟨xi, w⟩ ≥ 1.

Remark 1. While our two main results in Section 3, Theorem 1 and 2, are stated for the maximum ℓ1-
margin classifier, the bounds in the theorems hold uniformly for all interpolating classifiers with large (close
to the optimal) ℓ1-margin (see Proposition 5 and 7)

3 Main Results

In this section we state our main result for the noiseless (Theorem 1 in Section 3.1) and noisy setting
(Theorem 2 in Section 3.2). For both results, we assume that the data is distributed as described in
Section 2. Furthermore, we present a discussion comparing our main results with existing results based on
hyperplane tessellation in Section 3.3.

3.1 Main result for noiseless observations

Our first main result stated in the following theorem provides tight upper and lower bounds in the noiseless
setting:
Theorem 1 (Noiseless classification). Assume that ∀i, ξi = 1 and w∗ is a s-sparse vector with s ≤
n2/3 log−14/3 d. There exist universal constants κ1, κ2, κ3, c1, c2, c3 > 0 such that for any n ≥ κ1 and
κ2mn ≤ d ≤ exp(κ3n

1/12), the prediction error is upper- and lower-bounded by∣∣∣∣∣∣R(ŵ) −

(
κ0 ∥w∗∥2

1

n log1/2(d/mn)

)1/3
∣∣∣∣∣∣ ≲

(
∥w∗∥2

1
n log(d/mn)

)1/3

,

with probability at least 1 − c1d
−1 − c2 exp

(
−c3

n1/3

log4(d/mn)

)
over the draws of the data set where we define

κ0 = 8√
3π5/2 and mn ≍ (n ∥w∗∥1)2/3 log1/3(d/(n ∥w∗∥1)2/3) (the exact expression is given in Equation (14)

in Section B).

The proof of the theorem is deferred to Appendix B and an overview is given in Section 4. Furthermore, we
refer to Appendix 3.4 for a discussion of the assumptions. We now discuss the implications of the theorem
in the following paragraphs.

Adaptivity to sparsity Existing upper bounds (Chinot et al., 2021) for the maximum ℓ1-margin classifier

hold for any normalized ground truth w⋆ (with ∥w⋆∥2 = 1) and are of order R(ŵ) = O
(

∥w∗∥2
1

n

)1/3
up to

logarithmic factors. Our matching upper and lower bounds in Theorem 1 show that these rates can only be
improved by logarithmic factors under the assumption that the ground truth is sparse. Maybe unexpectedly,
we therefore conclude that the maximum ℓ1-norm classifier cannot (or only very mildly) adapt to sparsity
of the ground truth!
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Suboptimality of maximum ℓ1-margin This lack of adaptivity stands in stark contrast to other ℓ1-norm
constrained classifiers from the one-bit CS literature that can e.g. achieve rates of order ∥w∗∥0 log(d)√

n
under

sparsity assumptions (e.g., Zhang et al. (2014); Awasthi et al. (2016)). We remark that even faster min-max
optimal bounds of order ∥w∗∥0 log(d)

n can be obtained by other classifiers (Gopi et al., 2013; Jacques et al.,
2013). Intuitively, the reason for the suboptimality of the rates for the maximum ℓ1-margin classifier can be
explained by the fact that the ground truth w∗ has a small margin of order Θ( 1√

n
) with high probability,

while the maximum ℓ1-margin classifier has a larger margin at least of order 1 Ω( 1
(n∥w∗∥1)1/3 ). That is, the

max-ℓ1-margin classifier overfits to samples close to the decision boundary.

3.2 Main result for noisy observations

Our second main result considers the high noise regime where a constant fraction of the labels are (randomly)
corrupted with high probability. We show in the following theorem that the prediction error vanishes for
this setting at a logarithmic rate:
Theorem 2 (Noisy classification). Assume that the corruptions ξi follow the law in Equation (1) with Pσ
independent of n, d and satisfy Assumption 1. Furthermore, assume that w∗ is s-sparse with s ≲ n/ log4(d/n).
There exist universal constants κ1, κ2, κ3, c1, . . . , c4 > 0 such that for any n ≥ κ1 and κ2n ≤ d ≤ exp(κ3n

1/5),
the prediction error is upper- and lower-bounded by∣∣∣∣R(ŵ) −

√
κσ

log(d/n)

∣∣∣∣ ≲ 1
log3/4(d/n)

,

with probability at least 1 − c1 exp
(

−c2
n

log5(d/n)

)
− c3 exp

(
−c4

n
logn log3/2(d/n)

)
over the draws of the data set

and with κσ a constant only depending on Pσ (see Equation (31) in Appendix C for the definition).

The proof of the theorem is deferred to Appendix C and an overview is given in Section 4. Furthermore, we
refer to Appendix 3.4 for a discussion of the assumptions. We now discuss the implications of the theorem
in the following paragraphs.

Benign overfitting: We are the first to show that the prediction error of the max-ℓ1-margin classifier
vanishes albeit interpolating a constant fraction of (randomly) corrupted labels, and thus exhibits benign
overfitting Bartlett et al. (2020). Therefore, our work complements recent work studying maximum ℓp-margin
classifiers with p > 1 that can achieve polynomial rates (Donhauser et al., 2022).

Comparison with optimal rates: Although vanishing, the rates in Theorem 2 are only of logarithmic
orders and therefore far from being min-max optimal. Indeed min-max optimal lower bounds for the noisy
setting are of order ∥w∗∥0 log(d)√

n
(Wainwright, 2009; Abramovich and Grinshtein, 2018) and attained by

regularized (non-interpolating) classifiers maximizing the average margin under ℓ1-norm constraints (see,
e.g., (Zhang et al., 2014)). Theorem 2 can therefore also be understood as a negative result showing that
the maximum ℓ1-margin classifier suffers from overfitting the noise, in the sense that, although consistent,
the rates are far from min-max optimal.

3.3 Comparison with bounds relying on hyperplane tessellation

We now discuss the limitations of proofs relying on hyperplane tessellation (see e.g. Plan and Vershynin
(2014)) – a standard tool to bound the prediction error of linear classifier in high-dimensional settings, e.g.
in (Chinot et al., 2021).

First, define the Hamming distance of two vectors w1, w2 to be the fraction of training samples where the
corresponding classifiers differ:

dH(w1, w2) = 1
n

∑
i

1{sign(⟨xi, w1⟩ ≠ sign(⟨xi, w2⟩)}.

1where we make use of Proposition 4 and Lemma 4.1 in Chinot et al. (2021)
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Note that dH(ŵ, w⋆) corresponds exactly to the fraction of corrupted labels i.e., dH(ŵ, w⋆) =
1
n

∑
i 1{ξi = −1}. The high-level idea of hyperplane tessellation is to bound the directional estimation

error (3) (which in turn gives a bound on the prediction error (2)) via the Hamming distance by uniformly
bounding the difference between the Euclidean and scaled Hamming distance

sup
w1,w2∈T

|λdH(w1, w2) − ∥w1 − w2∥2|, (4)

over some large enough set T ⊂ Sd−1 that contains the normalized classifier ŵ
∥ŵ∥2

with high probability.
Here, λ is some universal constant.

Observe that this approach only leads to tight bounds if the difference in Equation (4) is small. This,
however, is not the case for the settings studied in our main results. Indeed, for noisy data (Theorem 2), by
definition of the interpolating classifier we have that

λdH

(
ŵ

∥ŵ∥2
, w∗

)
= Θ(1)

while ∥ ŵ
∥ŵ∥2

− w∗∥2 vanishes at a logarithmic rate. Furthermore, in the noiseless case (Theorem 1), the
Hamming distance dH

(
ŵ

∥ŵ∥2
, w∗

)
is zero — meaning that we cannot obtain any lower bounds for the

directional estimation error using a hyperplane tessellation argument.

This “weakness” of proofs relying on uniform hyperplane tessellation bounds is also not surprising since such
approaches do not take the distributional assumptions of the noise into account — in particular, we cannot
distinguish between adversarial and non-adversarial noise. In contrast, the logarithmic rates in Theorem 2
crucially rely on Assumption 1 for the distribution of the corruptions.

In defense of hyperplane tessellation bounds, we finally mention that unlike the proofs presented in this paper
(see Section 4), results relying on hyperplane tessellation bounds give guarantees for arbitrary corruptions
and can also be generalized to non-Gaussian features (Chinot et al., 2021). Yet, in order to capture the rates
in Theorem 1 and 2, new proof techniques are needed.

3.4 Discussion of the assumptions in Theorem 1 and 2

In this section we discuss the assumptions in our main theorems on the sparsity of the ground truth and the
data distribution and their limitations.

Sparsity of the ground truth w∗ While the upper bound in Theorem 1 can be generalized at the cost
of a logarithmic factor (i.e. as in Chinot et al. (2021)), the lower bound requires a very tight analysis
(proof of Proposition 5 in Appendix B.2) and strongly relies on the sparsity of the ground truth. We would
like to note at this place that only few high-probability lower bounds are known in the literature (beyond
classifiers/regression estimators relying on the ℓ2-norm) and leave lower bounds for non-sparse ground truths
as an exciting and important future work.

Moreover, we mention that the constraint on the degree of the sparsity of the ground truth in Theorem 2
cannot be relaxed without affecting the upper bound. However, it is an open question whether one can relax
the constraint with a soft-sparsity constraint on the ground truth of the form ∥w∗∥1 ≤

√
n

log(d/n)4 . We note
that the bound in Theorem 2 does not depend on the ground truth, assuming that the degree of sparsity
is sufficiently small. Morally, this is because the effect of fitting the noise dominates the prediction error,
similar to the rates for the prediction error of the minimum-ℓ1-norm interpolator (Basis pursuit) in (Wang
et al., 2022).

Gaussian distribution of the data The assumption that the data is normally distributed is a major
limitation of the results presented in Theorem 1 and 2. Attempts to generalize this assumption face the
fundamental issue that the analysis needs to be tight including multiplicative constants. However, so far,
the only technique that allows us to capture this tightness relies on Gaussian comparison inequalities (e.g.,
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the (C)GMT (Gordon, 1988; Thrampoulidis et al., 2015)), and generalizations to non-Gaussian data come
at a price of a multiplicative constant.

We further remark that any previous work presenting a tight analysis of min-norm/max-margin interpolators
(see, e.g., (Donhauser et al., 2022; Wang et al., 2022; Koehler et al., 2021; Zhou et al., 2022; 2021)) crucially
relies on Gaussian input data, with the min-ℓ2-norm/max-ℓ2-margin interpolators (Bartlett et al., 2020;
Muthukumar et al., 2021) as the only exceptions. Deriving tight generalizations of the (C)GMT (Gordon,
1988; Thrampoulidis et al., 2015) to non-Gaussian data is a promising direction for extending our main
results, with the first results in this direction in (Han and Shen, 2022).

Isotropic features In this paper, we only consider isotropic input features xi. Technically, we believe
that our methodology could also be extended to non-isotropic features (see (Koehler et al., 2021; Zhou et al.,
2021; 2022) for related works in this direction). However, such an extension comes at the price of technically
more involved proofs and theorem statements — and therefore at a cost of readability. We believe that,
despite the less general setting, our results already reveal interesting novel insights.

4 Proof overview

In this section, we give an overview of the proofs of the main results, Theorem 1 and Theorem 2, and
summarize the main tools used in the proof. Both proofs rely on a standard localization/ uniform convergence
argument (see e.g., Koehler et al. (2021); Zhou et al. (2021); Wang et al. (2022); Donhauser et al. (2022)),
where:

1. (Localization) we derive a high-probability upper bound on the ℓ1-norm of the maximum ℓ1-margin
interpolator ŵ over the draws of X and ξ, by finding M > 0 such that

min
∀i: yi⟨xi,w⟩≥1

∥w∥1 =: ΦN ≤ M.

2. (Uniform convergence) we derive high-probability uniform bounds over X and ξ for all interpolators
w with ∥w∥1 ≤ M . Namely, we find a high-probability lower and upper bound, respectively, for the
minimum (maximum) alignment

Φ− : = min
∥w∥1≤M
∥w∥2≥δ

⟨w,w∗⟩
∥w∥2

s.t. ∀i : yi⟨xi, w⟩ ≥ 1,

Φ+ : = max
∥w∥1≤M
∥w∥2≥δ

⟨w,w∗⟩
∥w∥2

s.t. ∀i : yi⟨xi, w⟩ ≥ 1

with some δ > 0 arbitrarily small, which in turn gives us high probability bounds for the prediction
error using that

R(ŵ) = 1
π

arccos
(〈

ŵ

∥ŵ∥2
, w∗

〉)
.

Remark 2. The constraint ∥w∥2 ≥ δ in the definition of Φ+,Φ− is only added to ensure the optimization
problems are well defined. In particular, we can choose δ > 0 arbitrarily small and, therefore, neglect this
constraint in the remainder of the analysis.

The remainder of this section is structured as follows. We first present in Section 4.1 an application of
Gaussian comparison (Proposition 1), which allows us to reduce the optimization problems ΦN ,Φ− and
Φ+ to simpler auxiliary optimization problems ϕN , ϕ− and ϕ+. We then describe in Section 4.2 how these
auxiliary optimization problems can be further simplified using the localized Gaussian width (Proposition
2). Finally, in Section 4.3, we give a sketch of the remaining proofs of Theorem 1 and Theorem 2.
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Notation We define the function (·)+ : R → R+, (x)+ = x1{x ≥ 0}. We denote by s the sparsity (ℓ0-norm)
of w∗ and assume w.l.o.g. that the nonzero entries of w∗ are exactly the first s-entries. Moreover, we use
the following notation for components of the vector w: w∥ ∈ Rd and w⊥ ∈ Rd for components parallel
and perpendicular to w∗, respectively. Furthermore, we use w(S)

⊥ ∈ Rs for the first s-entries of w⊥, and
w

(Sc)
⊥ ∈ Rd−s for the last d− s entries of w⊥.

We denote by B1, B2 unit balls with respect to the ℓ1 and ℓ2-norms, respectively. We use κ1, κ2, ... and
c1, c2, ... for generic universal positive constants independent of d, n, whose values may change from display
to display throughout the derivations. The standard notations O(·), o(·), Ω(·), w(·) and Θ(·), as well as ≲,≳
and ≍, are utilized to hide universal constants, without any hidden dependence on d or n.

4.1 Preliminary Step 1: application of the (C)GMT

The proofs of both main results rely on the following application of the Gaussian Minmax Theorem (GMT)
(Gordon, 1988) and its convex variant (CGMT) (Thrampoulidis et al., 2015), which is a commonly used tool
when studying linear min-norm/max-margin interpolators (see e.g., (Deng et al., 2021; Donhauser et al.,
2022; Koehler et al., 2021; Zhou et al., 2021; Wang et al., 2022)).

Recap: (C)GMT For completeness, we first summarize the following variant of the (C)GMT.
Lemma 1. (Corollary of (Gordon, 1988; Thrampoulidis et al., 2015)) Let X1 ∈ Rn×d−s be a matrix with
i.i.d. N (0, 1) entries and let g ∼ N (0, In) and h ∼ N (0, Id−s) be independent random vectors. Let Sw ⊂
Rs × Rd−s and Sv ⊂ Rn be compact sets, and let ψ : Sw × Sv → R be a continuous function. Then for the
following two optimization problems:

Φ = min
(w1,w2)∈Sw

max
v∈Sv

⟨v,X1w1⟩ + ψ((w1, w2), v)

ϕ = min
(w1,w2)∈Sw

max
v∈Sv

∥w1∥2 ⟨v, g⟩ + ∥v∥2 ⟨w1, h⟩ + ψ((w1, w2), v)

and any t ∈ R holds that:
P(Φ < t) ≤ 2P(ϕ ≤ t)

If in addition ψ is a convex-concave function, we also have for any t ∈ R:

P(Φ > t) ≤ 2P(ϕ ≥ t)

In both inequalities the probabilities in the LHS and RHS are over the draws of X1, and of g, h, respectively.

We see that ϕ controls the upper and lower tail of Φ. Importantly, the inequality is sharp, including
multiplicative constants — a high probability upper (lower) bound for ϕ is also a high probability upper
(lower) bound for Φ. Moreover, ϕ no longer depends on a random matrix X1 but only on two random vectors
g and h, which substantially simplifies the search for bounds for ϕ compared to Φ.

Application of the (C)GMT We can now use Lemma 1 to simplify the problem of bounding the maxi-
mum norm ΦN and the minimum (maximum) alignment Φ−,Φ+. For this, we first define the corresponding
auxiliary optimization problems ϕ. Let z(1), z(2) ∈ Rn, h1 ∈ Rs, h2 ∈ Rd−s be i.i.d. isotropic zero mean unit
variance Gaussian random vectors and define the function fn : R × R+ → R+,

fn(ν, η) = 1
n

n∑
i=1

(1 − ξiν|z(1)
i | − z

(2)
i η)2

+. (5)

Similar to the analysis in (Deng et al., 2022) for the related minimum-ℓ2-margin classifier, the key insight is
now that we can use Lagrange multipliers to apply Lemma 1 to ”replace" the data-dependent interpolation
constraint ∀i : yi⟨xi, w⟩ ≥ 1 in ΦN ,Φ−,Φ+ with the simpler constraint,

(⟨w(S)
⊥ , h1⟩ + ⟨w(Sc)

⊥ , h2⟩)2

n
≥ fn(⟨w∥, w

∗⟩, ∥w⊥∥2). (6)
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Analyzing this new constraint will make up the heart of the proofs of Theorem 1 and 2. While it will turn
out that the constraint in Equation (6) ”captures" the interpolation constraint ∀i : yi⟨xi, w⟩ ≥ 1 very well,
there is only very limited geometrical intuition for why this is the case.

Formally, we show Proposition 1 (see Appendix D.1 for the proof) for the auxiliary optimization problems:2

ϕN = min
w

∥w∥1 s.t Eq. (6) holds and ⟨w(S)
⊥ , h1⟩ + ⟨w(Sc)

⊥ , h2⟩ ≥ 0

ϕ+ = max
∥w∥2≥δ

⟨w∥, w
∗⟩

∥w∥2
s.t w ∈ Γ̃ and ϕ− = min

∥w∥2≥δ

⟨w∥, w
∗⟩

∥w∥2
s.t w ∈ Γ̃.

with set Γ̃ ⊂ Rd,

Γ̃ = {w ∈ Rd s.t Eq. (6) holds and ∥w∥1 ≤ M}.

Proposition 1. For any t ∈ R we have:

P(ΦN > t|ξ) ≤ 2P(ϕN ≥ t|ξ)
P(Φ+ > t|ξ) ≤ 2P(ϕ+ ≥ t|ξ)
P(Φ− < t|ξ) ≤ 2P(ϕ− ≤ t|ξ),

where the probabilities in LHS and RHS are over the draws of X and of z(1), z(2), h1, h2, respectively.

4.2 Preliminary Step 2: simplification of the auxiliary optimization problems

In a second step, we reduce the auxiliary optimization problems ϕN , ϕ− and ϕ+ to low-dimensional opti-
mization problems. While a similar approach has also been used in other papers studying maximum-margin
classifiers based on the (C)GMT (see e.g., (Donhauser et al., 2022; Deng et al., 2022; Zhou et al., 2022)), us-
ing the reduction in the mentioned papers would only yield loose bounds (not yielding sharp rates). Instead,
we propose a much tighter reduction relying on the localized Gaussian width.

Part 1: ϕ− and ϕ+ In order to reduce the two optimization problems to low-dimensional optimization
problems, we relax the constraint in Equation (6) by bounding the stochastic term ⟨w(S)

⊥ , h1⟩ + ⟨w(Sc)
⊥ , h2⟩

only using the ℓ1 and ℓ2-norms of w(S)
⊥ and w

(Sc)
⊥ . The first term ⟨w(S)

⊥ , h1⟩ can be simply upper-bounded
using Cauchy Schwartz: ⟨w(S)

⊥ , h1⟩ ≤ ∥h1∥2∥w(S)
⊥ ∥2 where we recall that h1 ∈ Rs. However, doing the same

for the second term ⟨w(Sc)
⊥ , h2⟩ would result in loose bounds since h2 ∈ Rd−s and d ≫ s. In fact, using

Hoelders inequality to bound ⟨w(Sc)
⊥ , h2⟩ ≤ ∥w(Sc)

⊥ ∥1∥h2∥∞ would still result in loose bounds. Instead, we
make use of a more refined (tight) upper bound:

⟨w(Sc)
⊥ , h2⟩ ≤ ∥w(Sc)

⊥ ∥1ℓ
∗
h2

(
∥w(Sc)

⊥ ∥2

∥w(Sc)
⊥ ∥1

B2 ∩B1

)
(7)

where we use the localized Gaussian width ℓ∗
h2

: [ 1√
d
, 1] → R+ ,

ℓ∗
h2

(βB2 ∩B1) := max
∥w∥2≤β
∥w∥1≤1

⟨w, h2⟩ .

As a result, we can now relax the constraint in Equation (6) occurring in Γ̃ to:(
∥w(Sc)

⊥ ∥1ℓ
∗
h2

(
∥w(Sc)

⊥ ∥2

∥w(Sc)
⊥ ∥1

B2 ∩B1

)
+ ∥h1∥2∥w(S)

⊥ ∥2

)2

n
≥ fn

(
⟨w∥, w

(S)
∗ ⟩,

√
∥w(Sc)

⊥ ∥2
2 + ∥w(S)

⊥ ∥2
2

)
.

In particular, we note that the resulting relaxed optimization problems for ϕ− and ϕ+ only depend on the
ℓ1 and ℓ2-norms of w(S)

⊥ and w
(Sc)
⊥ and are therefore low-dimensional.

2We define ΦN , Φ−, ϕN , ϕ− = ∞ and Φ+, ϕ+ = −∞ if the corresponding optimization problems have no feasible solution.
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Part 2: ϕN A similar argument can also be used to convert ϕN into a low-dimensional optimization
problem. However, instead of relaxing the constraint in Equation (6), we now need to tighten it. We can
do this by setting w(S)

⊥ = 0 (which is negligible assuming that s ≪ n) and choosing w(Sc)
⊥ as a function of β

to be the optimizer of the optimization problem defining ℓ∗
h2

(βB2 ∩B1) for which Equation (7) holds with
equality.

Reduction to low dimensional problems It will be useful throughout the analysis to slightly change
the parameterization: Instead of directly using the localized Gaussian width ℓ∗

h2
(βB2 ∩B1), we will use the

following (equivalent) curve γ : α ∈ [1, αmax] 7→ γ(α) ∈ Rd−s,

γ(α) = arg min
w

∥w∥2
2 s.t


⟨w, |h2|⟩ ≥ ∥h2∥∞

w ≥ 0
∥w∥1 = α

, (8)

with αmax = (d− s) ∥h2∥∞
∥h2∥1

. By Lagrange duality, it is then straightforward to show that for any β ∈ [ 1√
d
, 1],

there exists α ∈ [1, αmax] such that γ(α)
α is an optimal solution for the optimization problem that defines

ℓ∗
h2

(βB2 ∩B1) (see Wang et al. (2022)).

In summary, we obtain the upper (lower) bounds in Proposition 2, where we use the following notation;
define ν := ⟨w∥, w

∗⟩, ηSc := ∥w(Sc)
⊥ ∥2, ηS := ∥w(S)

⊥ ∥2, η := ∥w⊥∥2 =
√
η2

Sc + η2
S and b = ∥w(Sc)

⊥ ∥1
α .

Proposition 2. Let smax ∈ N+ and let w∗ be any s-sparse vector with s ≤ smax. Then, the optimization
problems ϕN , ϕ+ and ϕ− can be bounded by:

ϕN ≤
[

min
ν,b≥0,α∈[1,αmax]

|ν|∥w∗∥1 + b ∥γ(α)∥1 s.t 1
n
b2∥h2∥2

∞ ≥ fn(ν, b∥γ(α)∥2)
]

ϕ+ ≤ max
(ν,b,α,ηS)∈Γ

ν√
ν2 + b2 ∥γ(α)∥2

2 + η2
S

ϕ− ≥ min
(ν,b,α,ηS )∈Γ

ν√
ν2 + b2 ∥γ(α)∥2

2 + η2
S

where the last two inequalities hold with probability at least 1 − 2 exp(−c1smax), with universal constant c1,
and constraint set Γ defined by:

Γ =
{

(ν, b, α, ηS) s.t ηS ≥ 0, b ≥ 0, α ∈ [1, αmax]

and (2√
smaxηS + b∥h2∥∞)2

n
≥ fn(ν,

√
b2∥γ(α)∥2

2 + η2
S)

and max
{

|ν|∥w∗∥1 −
√
sηS , 0

}
+ bα ≤ M

}
. (9)

The proof follows from the above discussion and by applying Gaussian concentration to control the tail of
the term ∥h1∥2.

4.3 Proof sketch for bounding the auxiliary optimization problems

We now describe how we obtain the desired bounds in Theorem 1 and 2. Recall that by Proposition 1, it
suffices to find high probability bounds for ϕN , ϕ−, ϕ+ using the low-dimensional relaxations in Proposition 2.
We now present the main idea for the proof which is rigorously described in Appendices B and C. We only
discuss lower bounding ϕ−.

9
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Step 1: reducing the problem to bounding the set Γ We first reduce the problem of bounding ϕ−
to one bounding Γ in Equation (9) (where we use Proposition 2):

ϕ− ≥

1 +
max

(b,α)∈Γ
b2 ∥γ(α)∥2

2 + max
ηS ∈Γ

η2
S

min
ν∈Γ

ν2


−1/2

. (10)

Hence, it suffices to bound the maximum (minimum) of the variables b2 ∥γ(α)∥2
2, η2

S and ν2. Perhaps
surprisingly, this seemingly loose lower bound will turn out to be tight.

Step 2: controlling fn One of the main contributions to the analysis in this paper arises from controlling
the function fn (Equation (5)). To do so, we first show that Γ (from Equation (4.1)) is contained in a
sufficiently small set. We can then carefully apply concentration arguments to show uniform convergence of
fn → Efn. The key insight is then that, using a series expansion, the expectation Efn can be approximated
by the terms in the following equation:

noiseless Efn(ν, η) ≈
√

2
3
√
π

1
ν

+
√

2
π

η2

ν
(11)

noisy Efn(ν, η) ≈ ζf + 1
2ζηηη

2 + 1
2ζνν△ν2 (12)

where △ν = ν − νf and νf , ζηη, ζνν are constants arising from the series expansion (only depending on Pσ).
Moreover, by definition η2 := b2∥γ(α)∥2

2 + η2
S = ∥w(Sc)

⊥ ∥2
2 + ηS := ∥w(S)

⊥ ∥2
2.

While the dependency in η is quadratic in both cases, the dependency in ν strongly differs between the
noiseless case (Equation (11)) and the noisy case (Equation (12)). To give an intuitive explanation, note
that the expectation Efn is

Efn = E(1 − ξν|z1| − z2η)2
+.

In the noisy case, by assumption, we have that both ξ = 1 and ξ = −1 occur with constant (nonvanishing)
probability. Therefore, we can lower the bound with a quadratic E (1 − ξν|z1| − z2η)2

+ ≳ (1 + ν2 + η2). In
contrast, in the noiseless case, we have ξi = 1 a.s. Instead, we lower-bound (1 − ν|z1| − z2η)2

+ ≳ (1 + η2) on
the event |z1| ≤ 1/ν, which happens with probability inversely dependent on ν. For more details, we refer
the reader to the proofs of Lemma 6 and Proposition 8.

Step 3: bounding the set Γ In the noisy case (Theorem 2), the quadratic approximation from Equa-
tion (12) allows us to utilize parts of the analysis in (Wang et al., 2022) for the minimum-ℓ1-norm interpolator
in regression. For example, we can bound the term maxb,α∈Γ b

2∥γ(α)∥2
2 from Equation (10) as follows: we

can relax the set Γ in Equation (9) by replacing the third condition by bα ≤ M and using the quadratic
form from Equation (12) for the second condition. We then obtain

Γ ⊂ {(ν, b, α, ηS) s.t bα ≤ M and b2∥h2∥2
∞

n
≥ ζf + 1

2ζηη(η2
Sc + b2∥γ(α)∥2

2) + 1
2ζνν△ν2},

which resembles the term in Equation (4) in (Wang et al., 2022). In the noiseless case (Theorem 1) such a
simplification is not applicable due to the inverse dependency of Efn on ν from Equation (11). In fact, we
would only obtain a trivial (loose) bound when again using the relaxation bα ≤ M for the third equation in
Equation (9). Instead, we need to simultaneously control (b, α) and ν by iteratively bounding either of them
(Appendix B.2), which is the second major technical contribution of the paper.

5 Related Work

In this section, we discuss related work on existing bounds for the prediction error of linear maximum-margin
classifiers, as well as tools that have so far been used to bound it.

10
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Related work on error bounds for maximum-margin classifiers Existing non-asymptotic upper
bounds for the maximum ℓ1-margin classifier in high-dimensional settings hold for arbitrary (adversarial)
corruptions and are discussed in detail in Section 3.3. Furthermore, complementary work (Liang and Sur,
2022) studies asymptotic proportional regimes (n, d → ∞ and d

n → c) where the prediction error does not
vanish.

Beyond the ℓ1 norm, several works present non-asymptotic bounds for the related maximum ℓp-margin
classifiers for p > 1. The paper (Donhauser et al., 2022) studies the case where p ∈ (1, 2) for 1-sparse ground
truths and shows that the prediction error can even vanish at polynomial rates close to the min-max lower
bounds when trained on a noisy dataset. Furthermore, the papers (Muthukumar et al., 2021; Wang et al.,
2021; Shamir, 2022) present bounds for the case where p = 2 based on specific proof techniques relying
on the geometry of the Euclidean ℓ2 norm. However, they only obtain vanishing rates, i.e. achieve benign
overfitting, when assuming that the covariance matrix is spiked (i.e., for non-isotropic features).

Related work on proof techniques The proofs in this paper rely on Gaussian comparison results (Gor-
don, 1988; Thrampoulidis et al., 2015) described in detail in Section 4 and popularized for non-asymptotic
bounds for linear interpolators in (Koehler et al., 2021). This technique has also recently been used in the
paper (Donhauser et al., 2022) to bound the prediction error of the maximum ℓp-margin classifier when
p ∈ (1, 2). However, the analysis presented in the mentioned paper would yield loose bounds when p = 1
and is limited to noisy regimes and 1-sparse ground truths.

Other common proof techniques for bounding the prediction error of interpolating linear classifiers include
hyperplane tessellation bounds (Plan and Vershynin, 2014; Chinot et al., 2021), discussed in detail in Sec-
tion 3.3, and proliferation of support vector results (Muthukumar et al., 2021; Hsu et al., 2021; Wang et al.,
2021; Ardeshir et al., 2021). The idea of the latter approach is essentially to reduce the maximum-margin
classifier to an (approximately) equivalent minimum-norm interpolating classifier. The resulting “simpler”
classifier can then be analyzed using tools from regression (Muthukumar et al., 2021; Bartlett et al., 2020).
However, so far, such an approach only exists for the maximum ℓ2-margin classifiers, and it is an open con-
jecture to prove that proliferation of support vector results also apply to the maximum ℓ1-margin classifier
(Ardeshir et al., 2021).

6 Future work

In this section, we discuss potentially interesting avenues for future work.

Early stopped coordinate descent The bounds presented in this paper imply that the maximum ℓ1-
margin classifier are not only only sub-optimal in noisy settings (Theorem 2), but also for noiseless data
(Theorem 1). As discussed in Section 3.1, this is because the classifier overfits on samples close to the decision
boundary. In contrast, ℓ1-norm penalized classifiers which maximize the average margin (Zhang et al., 2014)
achieve much faster rates than ∥w∗∥2/3

1 n−1/3. An interesting question for future work is whether these faster
rates can be obtained for early stopped coordinate descent on exponential losses, where we recall that the
solutions of these algorithms converge (after infinite steps) to the maximum ℓ1-margin classifier (Telgarsky,
2013).

Future work on “better” implicit biases When samples in the training data have a small margin
to the ground truth (see discussion in Section 3.1), our results in this paper suggest that the implicit bias
of boosting methods with exponential loss functions and coordinate descent is suboptimal. Indeed, the
maximum ℓ1-margin classifier which is obtained at convergence (Telgarsky, 2013) only achieves suboptimal
rates even in the noiseless setting (see Theorem 1 and subsequent discussion). An interesting direction for
future work is therefore to investigate whether the implicit bias of the mentioned iterative training algorithms
with other loss functions such as polynomial losses would yield faster rates.

11
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7 Conclusion

In our main results, Theorems 1 and 2, we present tight matching non-asymptotic upper and lower bounds
for the prediction error of the maximum ℓ1-margin classifier, both in noiseless and noisy regimes. We thereby
answer two open problems in the literature: perhaps surprisingly, as a first result (Theorem 1), we show
that the classifier is not adaptive to sparsity in a standard (noiseless) discriminate data model. Furthermore,
as a second result (Theorem 2), we show that the prediction error vanishes at a logarithmic rate despite
interpolating a constant fraction of (randomly) corrupted labels, and thus that the classifier attains benign
overfitting.
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A Preliminary technical tools

The purpose of this section is to cite existing technical tools and simple corollaries of these results. In
subsection A.1 we give some properties of the parametric path γ(α) introduced in Wang et al. (2022), which
we used for reparameterization of optimization problems in preliminary step 2 in Section 4.2. Afterwards,
in subsection A.2 we recall some concentration results, which we make use of when proving the localization
and uniform convergence propositions (see section B and C) of Theorems 1 and 2.
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A.1 A few helpful properties of γ(α)

First, recall from Section 4.1 that h2 ∈ Rd−s contains samples of i.i.d. standard Gaussian random variables,
and for the sake of brevity of notation, we define h := |h2|. Moreover, recall the definition of the function
γ(α) : R → Rd−s from Equation (8):

γ(α) = arg min
w

∥w∥2
2 s.t


⟨w, h⟩ ≥ ∥h∥∞

w ≥ 0
1⊤w = ∥w∥1 = α

for some scalar variables b ≥ 0, α ∈ [1, (d− s) ∥h∥∞
∥h∥1

]. Without loss of generality, we can assume that hi > hj

for all i > j (see also Wang et al. (2022)). Furthermore, the results of the main theorems do not change by
considering γ(α) : R → Rd since by our assumptions on the sparsity s, we have d− s ≈ d. Therefore, in all
discussion that follows, we will assume that γ(α) : R → Rd.

In order to study the optimization problem in Proposition 2, we make use of the following three properties
of the path γ(α):

Concentration of ∥γ(α)∥1 and ∥γ(α)∥2. As proven in Section 3.4 in Wang et al. (2022) the path γ(α) is
a piecewise linear with breakpoints at αm for integers m = 2, . . . , d, with

αm =
(∥∥h[m]

∥∥
1 −mhm

)
∥h∥∞∥∥h[m]

∥∥2
2 −

∥∥h[m]
∥∥

1 hm

where h[m] ∈ Rd denotes vector which is equal to h ∈ Rd on first m components and zero elsewhere.
Furthermore, the following concentration result holds as shown in Proposition 4 in Wang et al. (2022).
Proposition 3. Let tm be given by 2Φ∁(tm) = m/d. There exist universal positive constants c1, c2, c3, c4 > 0
such that for any m, d with m ≥ c1 and c2m ≤ d ≤ exp(c3m

1/5) we have that:∣∣∣∣∥γ(αm)∥1
∥h∥∞

−
(

1
tm

− 2
t3m

)∣∣∣∣ ≤ c4

t5m
and

∣∣∣∣∣∥γ(αm)∥2
2

∥h∥2
∞

− 2
mt2m

∣∣∣∣∣ ≤ c4

mt4m
,

with probability at least 1 − 6 exp
(

− 2m
log5(d/m)

)
over the draws of h.

Convexity and monotonicity of γ(α). According to Lemma 4 in Wang et al. (2022) the mapping
α 7→ ∥γ(α)∥2

2 is convex over [1, αmax], decreasing over [1, αd+1/2] and increasing over [αd+1/2, αmax] where
αd+1/2 := ∥h∥1∥h∥∞

∥h∥2
2

satisfies αd < αd+1/2 < αd+1. Furthermore the map α 7→ ∥γ(α)∥2
2

∥γ(α)∥2
1

= ∥γ(α)∥2
2

α2 is monoton-
ically decreasing.

Inequality constraint at optimal point. According to Claim 3 in Wang et al. (2022) the inequality
constraint in the definition of γ(α) is tight for the optimal solution, i.e., ⟨γ(α), h⟩ = ∥h∥∞.

Furthermore we define tm as solution to equation

2Φ∁(tm) = m/d (13)

for some integer m ∈ [2, d] where Φ∁(.) = P(Z ≥ .) with Z ∼ N (0, 1) is the complementary cumulative
distribution function. We use the following two characterizations of tm:

Approximation of tm. From Remark 2 in Wang et al. (2022) there exists universal constant κ such that,
for all m ≤ d/κ it holds that

t2m = 2 log(d/m) − log log(d/m) − log(π) + log log(d/m)
2 log(d/m) +O

(
1

log(d/m)

)
.
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Upper and lower bounds of tm. Following the same argument as in Claim 7 and Claim 9 in Wang et al.
(2022), we can prove the following lemma:
Lemma 2. Let m∗ be fixed and assume κ3m∗ ≤ d. Let any fixed constant κ > 0 and assume that parameter
λ satisfies 0 < λ ≤ (log(κ3))κ/2, and let m∗ be the largest integer m̂ such that t2

m̂
≥ t2m∗

+ λ
tκm∗

. Then,

m∗ = m∗ exp
(

− λ

2tκm∗

)(
1 +O

(
1
t2m∗

))
and

∣∣∣∣t2m∗ −
(
t2m∗

+ λ

tκm∗

)∣∣∣∣ ≤ O

(
1
m∗

)
.

Moreover, let m∗ be the smallest integer m̂ such that t2
m̂

≤ t2m∗
− λ

tκm∗
. Then,

m∗ = m∗ exp
(

λ

2tκm∗

)(
1 +O

(
1
t2m∗

))
and

∣∣∣∣t2m∗ −
(
t2m∗

− λ

tκm∗

)∣∣∣∣ ≤ O

(
1
m∗

)
.

Furthermore, analogously as in proof of Claim 8 in Wang et al. (2022) we get:

t2m∗

t2m∗
= 1

1 + λ
t2+κ

m∗
+O

(
1

t2m∗m∗

) = 1 − λ

t2+κ
m∗

+O

(
1

t2m∗
m∗

)
+O

(
λ2

t4+2κ
m∗

)
.

A similar result holds for tm.

A.2 Concentration results

Pointwise convergence

Lemmas in this section are used in the proofs of Propositions 4 and 6 (localization step). We recall two
standard lemmas for pointwise convergence of functions of random variables to their expectation:
Lemma 3 (Concentration of Lipschitz functions, Ledoux (1992); Wainwright (2019)). Let X = (X1, . . . , Xn)
be a vector of i.i.d. N (0, 1) random variables and let f : Rn → R be Lipschitz continuous with Lipschitz
constant L. Then

P (|f(X) − Ef(X)| ≥ ϵ) ≤ 2 exp
(

− ϵ2

2L2

)
for any ϵ ≥ 0.
Lemma 4 (Bernstein’s inequality for sub-exponentials, Vershynin (2018)). Let X1, . . . , Xn be mean zero
i.i.d. random variables with sub-exponential norm κ = ∥X∥ψ1

. Then for any ϵ ≥ 0

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−cnmin

{
ϵ

κ
,
ϵ2

κ2

})
for some universal constant c > 0.

Uniform convergence

Results from this section are used in the proofs of Propositions 5 and 7 (uniform convergence), and more
specifically, for proving Propositions 9 and 10.

Let X1, . . . , Xn be real i.i.d. random variables with continuous distribution function F and let Fn be the
empirical distribution function defined by Fn(x) = 1

n

∑n
i=1 1{Xi ≤ x}. Then we have:

Lemma 5 (Dvoretzky-Kiefer-Wolfowitz inequality, Dvoretzky et al. (1956); Massart (1990)). For any ϵ > 0
holds:

P
(

sup
x

|Fn(x) − F (x)| > ϵ√
n

)
≤ 2 exp(−2ϵ2)
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Before we recall a result about uniform convergence of functions from a parametrized set, let us introduce
an additional notation. Let G be a countable class of functions g : R → R. For a function g ∈ G we write
Pg = Eg(X), and Png = 1

n

∑n
i=1 g(xi). Moreover, define ∥Pn − P∥G := supg∈G |(Pn − P )g|.

Let ϵ1, . . . , ϵn be independent Rademacher random variables. Define P ϵng = 1
n

∑n
i=1 ϵig(xi) and ∥P ϵn∥G =

supg∈G |P ϵng|. We also recall the definition of the Orlicz norm ∥·∥Ψα
. Let α > 0 and define the Orlicz function

ψα : R+ → R+ by ψα(x) = exp(xα) − 1. The Orlicz norm of the random variable X is given by:

∥X∥Ψα
:= inf{λ > 0 : Eψα(|X|/λ) ≤ 1}

For the setting defined in this section we have:
Theorem 3 (Corollary of Theorem 4 in Adamczak (2008)). For any 0 < t < 1, δ > 0, α ∈ (0, 1] there exists
a constant C = C(α, t, δ) such that

P
(
∥Pn − P∥G ≥ (1 + t)E ∥Pn − P∥G + ϵ

)
≤ exp

(
− nϵ2

2(1 + δ)σ2
G

)
+ 3 exp

(
−
(

ϵ

CψG

)α)
with

σ2
G = sup

g∈G
Var[g(X)] and ψG =

∥∥∥∥ max
1≤i≤n

sup
g∈G

1
n

∣∣∣g(xi) − EX [g(X)]
∣∣∣∥∥∥∥

Ψα

B Proof of Theorem 1

In this section, we present the proof of Theorem 1. By Proposition 1, in order to give bounds for prediction
error, it suffices to bound ϕN , ϕ+ and ϕ− (defined in Section 4.1). Furthermore, we make use of the simpli-
fications in Proposition 2, which allow us to study low-dimensional stochastic optimization problems. In a
first step (localization), we derive an upper bound for ϕN :
Proposition 4. Let the assumptions of Theorem 1 hold, and let κM = 3(72π)−1/6 and mn be the solution
of equation

mn =
√

2
π

(72π)1/6(ntmn
∥w∗∥1)2/3, (14)

where tmn
is defined as in Equation (13) in Appendix A.1. There exists universal positive constants c1, c2, c3

such that

ϕN ≤ κM

( n

t2mn

∥w∗∥1

)1/3
(

1 − 2
3

1
t2mn

+ c1

t4mn

)
=: M

holds with probability at least 1 − c2 exp
(

−c3
n1/3

log10/3(d/mn)

)
over the draws of h1, h2, z(1), z(2).

The proof of the proposition is deferred to Appendix B.1. The second step (uniform convergence) gives the
following bounds on the elements of the set Γ from Proposition 2:
Proposition 5. Let the assumptions of Theorem 1 hold. Let Γ0 be a set of all (ν, b, α, ηS) that satisfy:∣∣∣∣∣ν2 − (288π)−1/3n2/3

∥w∗∥4/3
1 log2/3(d/mn)

∣∣∣∣∣ ≲ n2/3

∥w∗∥4/3
1 log(d/mn)

and η2
S ≲

1
log7/6(d/mn)

and
∣∣∣∣b2 ∥γ(α)∥2

2 − 1
3

1
log(d/mn)

∣∣∣∣ ≲ 1
log7/6(d/mn)

where mn is the solution of Equation (14). Then there exist positive universal constants c1, c2, c3 such that
Γ ⊂ Γ0 with probability at least 1 − c1d

−1 − c2 exp
(

−c3
n1/3

log4(d/mn)

)
over the draws of h1, h2, z(1), z(2).
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The proof is deferred to Appendix B.2. From the Propositions 2 and 5 and using that η2
S ≥ 0, we get the

following bounds on ϕ+ and ϕ−:

ϕ+ ≤

1 +
min

(b,α)∈Γ0
b2 ∥γ(α)∥2

2 + min
ηS ∈Γ0

η2
S

max
ν∈Γ0

ν2


−1/2

≤ 1 −
4 ∥w∗∥2

1
mn

(
1 − c

log1/6(d/mn)

)

ϕ− ≥

1 +
max

(b,α)∈Γ0
b2 ∥γ(α)∥2

2 + max
ηS ∈Γ0

η2
S

min
ν∈Γ0

ν2


−1/2

≥ 1 −
4 ∥w∗∥2

1
mn

(
1 + c

log1/6(d/mn)

)
,

and the statement of Theorem 1 follows straightforwardly when applying Proposition 1 and using that

R(ŵ) = 1
π

arccos
(〈

ŵ

∥ŵ∥2
, w∗

〉)
= 1
π

√
2
(

1 −
〈

ŵ

∥ŵ∥2
, w∗

〉)
+O

(
1 −

〈
ŵ

∥ŵ∥2
, w∗

〉)3/2
. (15)

B.1 Proof of Localization Proposition 4

Recall the upper bound of ϕN from Proposition 2, and note that to upper bound ϕN it is sufficient to find
a feasible point (ν̃, b̃, α̃) which satisfies the constraint, i.e. we have:

ϕN ≤ ν̃ ∥w∗∥1 + b̃α̃ if 1
n
b̃2 ∥h∥2

∞ ≥ fn(ν̃, b̃∥γ(α̃)∥2) (16)

holds with high probability for some ν̃ > 0. We further recall that in the noiseless setting we have

f(ν, η) = Efn (ν, η) = E
(

1 − ν|Z(1)| − Z(2)η
)2

+
.

with fn from Equation (5). Next, note that the random variable (1 − ν|Z(1)| − ηZ(2))2
+ for fixed (ν, η) is a

sub-exponential random variable. Furthermore, since (1 − ν|Z(1)| − ηZ(2))2
+ ≲ 1 + η2(Z(2))2 we see that the

subexponential norm of this random variable is bounded by a constant for η ≤ c. We can therefore apply
Lemma 4 to show that for fixed ν, η ≤ c and mn given in Equation (14) we have

P
(

|fn(ν, η) − Efn(ν, η)| ≲ 1
νt4mn

)
≥ 1 − 2 exp

(
−c1

n

ν2t8mn

)
.

Since f is an infinitely differentiable function, we can use the Taylor expansion of the function f = Efn
around η = 0 from Equation (56) which holds for ν large. Combining the last two results we obtain that
with probability 1 − 2 exp

(
−c1

n
ν2t8mn

)
holds:

fn(ν, b ∥γ(α)∥2) ≤
√

2
3
√
π

1
ν

+
√

2
π

b2 ∥γ(α)∥2
2

ν
+ Ot + Oc (17)

where Ot := O
(

1
ν3 ,

b4∥γ(α)∥4
2

ν3

)
and Oc := O

(
1

νt4mn

)
.

We claim that for our choice of point (ν̃, b̃, α̃) we get Ot + Oc = 1
ν̃O
(

1
t4mn

)
. Once we have established

inequality (17), the claim that the point (ν̃, b̃, α̃) satisfies constraint from (16) is implied by proving the
following inequality:

1
n
b̃2 ∥h∥2

∞ ≥
√

2
3
√
π

1
ν̃

+
√

2
π

b̃2 ∥γ(α̃)∥2
2

ν̃
+ 1
ν̃
O

(
1
t4mn

)
(18)
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Defining b̃α = b̃α̃ and rearranging the terms in Equation (18) we obtain the following lower bound for b̃α:

b̃α
2

≥ nα̃2

∥h∥2
∞

√
2

3
√
π

1
ν̃

(
1 +O

(
1

t4mn

))
1 −

√
2
π
n
ν̃

∥γ(α̃)∥2
2

∥H∥2
∞

From Section A.1 we have that γ(α) is a piecewise linear function with breakpoints at αm for m = 2, . . . , d,
and thus, we can optimize over integers m instead of α. Using concentration results from Proposition 3 we
get the following result:

b̃α
2

≥ n
1
t2m

(
1 − 4

t2m
+O

(
1
t4m

)) √
2

3
√
π

1
ν̃

(
1 +O

(
1

t4mn

))
1 −

√
2
π
n
ν̃

2
mt2m

(
1 +O

(
1
t2m

)) (19)

with probability at least 1 − 6 exp
(

− 2m
log5(d/m)

)
. Similarly, as in Remark 1 in Wang et al. (2022), we choose

m, which approximately minimizes the expression above, i.e. to maximize:

t2m

(
1 −

√
2
π

n

ν̃

2
mt2m

)
≈ 2 log

(
d

m

)
− 2
√

2
π

n

ν̃m

This gives m = mn(ν̃) :=
√

2
π
n
ν̃ . We claim that for our choice of ν̃ we can set mn as the solution of equation

mn =
√

2
π (72π)1/6(ntmn

∥w∗∥1)2/3 which is exactly mn given in Equation (14). For such m = mn we have
from Equation (19):

b̃α
2

≥
√

2
3
√
π

n

ν̃t2mn

(
1 − 2

t2mn

+O

(
1
t4mn

))
So we let:

b̃α(ν̃) :=

√ √
2

3
√
π

n

ν̃t2mn

(
1 − 2

t2mn

+O

(
1
t4mn

))
Now we choose ν̃ which minimizes the upper bound on ϕN in Equation (16) as follows:

ν̃ := arg min
ν>0

ν ∥w∗∥1 + b̃α(ν) = arg min
ν>0

ν ∥w∗∥1 +

√ √
2

3
√
π

n

νt2mn

(
1 − 2

t2mn

+O

(
1
t4mn

))
After minimization, we get that ν̃ is given by:

ν̃ = (72π)−1/6 ∥w∗∥−2/3
1

(
n

t2mn

)1/3(
1 − 2

t2mn

+O

(
1
t4mn

))
> 0

Note that indeed mn(ν̃) = mn for this choice of ν̃. Returning to b̃α, we obtain the following:

b̃α := b̃α(ν̃) = 2(72π)−1/6 ∥w∗∥1/3
1

(
n

t2mn

)1/3(
1 +O

(
1
t4mn

))
Summing up the two terms, we obtain a bound from the proposition. Also, note that for m = mn we get:

b̃ ∥γ(α̃)∥2 = b̃α
∥γ(α̃)∥2

α̃
=
√

2
3

1
tmn

(
1 +O

(
1
t2mn

))
So, we have Ot = O

(
1
ν3 ,

η4

ν3

)
= o

(
1

νt4mn

)
as we assumed at the beginning of the proof. Thus, the point

(ν̃, b̃, α̃) indeed satisfies the inequality (16) with high probability, and we define the upper bound M :=
ν̃ + b̃α̃ ≥ ϕN .
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B.2 Proof of Uniform Convergence Proposition 5

For the sake of completeness, let us recall the definition of set Γ from Proposition 2:

Γ =
{

(ν, b, α, ηS) s.t ηS ≥ 0, b ≥ 0, α ∈ [1, αmax]

and 1
n

(2√
smaxηS + b∥h∥∞)2 ≥ fn(ν,

√
b2∥γ(α)∥2

2 + η2
S)

and max
{

|ν|∥w∗∥1 −
√
sηS , 0

}
+ b ∥γ(α)∥1 ≤ M

}

with M given in Proposition 4 and smax = Θ(n2/3 log−14/3 d). We further recall the notation ηSc = b ∥γ(α)∥2
and η =

√
η2

Sc + η2
S in Section 4.2.

The proof consists of three steps where we iteratively bound the set Γ: for every step, we use different
approximations of fn, and based on them, we develop tighter bounds for ν, ηSc , ηS . Finally, the statement
of the proposition follows from the last, tightest bound. We start with the following bound:

Bound 1: ν ∥w∗∥1 ≲M,ν ≳ n1/3

s
1/3
max log d

In order to derive the bounds in this section, we first need to simplify the constraints from the definition of
the set Γ. First, note that we can relax the second constraint to the following two constraints: bα ≤ M and
ν ∥w∗∥1 ≤ M +

√
sηS . Then, the first constraint is simplified by deriving an upper bound on the term from

the LHS as follows. By using simple quadratic inequality, we have that for any (ν, b, α, ηS) ∈ Γ it holds that:

1
n

(2√
smaxηS + b∥H∥∞)2 ≤ 2

n
b2 ∥h∥2

∞ + 8
n
smaxη

2
S (20)

Now, recall that t2mn
≳ log(d/mn) ≥ log κ2 and α ≥ 1, both from Section A.1. We can further bound the

first term from Equation (20) with probability ≥ 1 − 1
d as follows:

2
n
b2 ∥h∥2

∞ ≤ max
(ν,b,α,ηS)∈Γ

2
n
b2 ∥h∥2

∞ ≤ max
α∈Γ

2
n

M2

α2 ∥h∥2
∞ = 2

n
M2 ∥h∥2

∞

≲
1
n

(
n

t2mn

∥w∗∥1

)2/3
log d ≲

∥w∗∥2/3
1

n1/3 log d,

where we used the concentration of the maximum of i.i.d. Gaussian random variables in the second line. We
can now define the following (larger) set:

Γ1 =
{

(ν, b, α, ηS) s.t η2
S
smax

n
+ ∥w∗∥2/3

1
n1/3 log d ≳ fn(ν,

√
b2 ∥γ(α)∥2

2 + η2
S)

and bα ≤ M and ν ∥w∗∥1 ≤ M +
√
sηS

}
.

From our discussion above it follows that Γ ⊂ Γ1 with high probability. The goal of this first step is to show
that the bounds ν ∥w∗∥1 ≲M and ν ≳ n1/3

s
1/3
max log d

hold uniformly over all ν ∈ Γ1, implying that they also hold
uniformly for all ν ∈ Γ with high probability.

Step 1.1: Upper bound ν ∥w∗∥1 ≲ M . In all of Step 1.1 we assume that (ν, b, α, ηS) ∈ Γ1 that is, we
bound these variables only if they are contained in Γ1. Since by the last constraint of Γ1 it holds that
ν ∥w∗∥1 ≤ M +

√
sηS , showing that

√
sηS ≤ cM for some universal constant c > 0 is sufficient to deduce

that ν ∥w∗∥1 ≤ (c+ 1)M .
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Assume by contradiction that
√
sηS > cM for any constant c > 0. Then, we can relax the first constraint of

Γ1 as follows:

η2
S
smax

n
+ ∥w∗∥2/3

1
n1/3 log d ≳ fn(ν,

√
b2 ∥γ(α)∥2

2 + η2
S) = 1

n

n∑
i=1

(1 − ν|z(0)
i | − z

(1)
i

√
b2 ∥γ(α)∥2

2 + η2
S)2

+

≥ 1
n

n∑
i=1

(1 − ν|z(0)
i | − z

(1)
i

√
b2 ∥γ(α)∥2

2 + η2
S)2

+1{z(2)
i ≤ −c1}

≥ 1
n

n∑
i=1

(−ν|z(0)
i | + c1ηS)2

+1{z(2)
i ≤ −c1}

≥ 1
n

n∑
i=1

(
−M +

√
sηS

∥w∗∥1
|z(0)
i | + c1ηS

)2

+
1{z(2)

i ≤ −c1}

≥ 1
n

n∑
i=1

(
−(1 + c−1)

√
sηS

∥w∗∥1
|z(0)
i | + c1ηS

)2

+
1
{

|z(1)
i | ≤

c1 ∥w∗∥1
2(1 + c−1)

√
s

}
1{z(2)

i ≤ −c1}

≳ η2
S

1
n

n∑
i=1

1
{

|z(1)
i | ≤

c1 ∥w∗∥1
2(1 + c−1)

√
s

}
1{z(2)

i ≤ −c1}

where in the fourth line we used that ν ≤ M+
√
sηS

∥w∗∥1
, and in fifth that M < c−1√

sηS . Next, we use that

P(|Z(1)| ≤
c1 ∥w∗∥1

2(1 + c−1)
√
s

) ≳ ∥w∗∥1√
s

≳
∥w∗∥1√
smax

and P(Z(2) ≤ −c1) ≥ c2 and thus, from Lemma 5 with ϵ = c
√

n
smax

, we obtain the following inequality holds

with probability ≥ 1 − exp
(

−c3
n

smax

)
:

η2
S
smax

n
+ ∥w∗∥2/3

1
n1/3 log d ≥ c4η

2
S

∥w∗∥1√
smax

(21)

First note that smax = o((n ∥w∗∥1)2/3) and thus η2
S
smax
n < c4

2 η
2
S

∥w∗∥1√
smax

. Thus in order for inequality (21)

to hold, we need that ∥w∗∥2/3
1

n1/3 log d ≥ c4
2 η

2
S

∥w∗∥1√
smax

or equivalently η2
S ≲

√
smax log d

n1/3∥w∗∥1/3
1

≤
√
smax
n1/3 log d. But

then
√
sηS ≲ s

3/4
maxn−1/6√

log d, which is in contradiction with our assumption that
√
sηS > cM , since

s
3/4
maxn−1/6√

log d ≲
(

n
log d

)1/3
≲M for smax = Θ(n2/3 log−14/3 d).

Hence we conclude that
√
sηS ≤ cM , and furthermore ν ∥w∗∥1 ≤ c̃M for some universal constants c, c̃ > 0,

which is exactly what we wanted to show in this step.

Step 1.2: Lower bound ν ≳ n1/3

s
1/3
max log d

.

In order to show this lower bound, we first lower bound the function fn for any ν, η as follows:

fn(ν, η) = 1
n

n∑
i=1

(1 − ν|z(1)
i | − ηz

(2)
i )2

+ ≥ 1
n

n∑
i=1

(1 − ν|z(1)
i | − ηz

(2)
i )2

+1{z(2)
i ≤ 0}

≳
1
n

n∑
i=1

(1 − ν|z(1)
i |)2

+
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with probability ≥ 1 − exp(−c1n) for some positive universal constant c1. Combining this inequality with
the first constraint of Γ1 we have that any (ν, b, α, ηS) ∈ Γ1 must satisfy with high probability that:

1
n

n∑
i=1

(1 − ν|z(1)
i |)2

+ ≲ fn(ν,
√
b2 ∥γ(α)∥2

2 + η2
S) ≲ η2

S
smax

n
+ ∥w∗∥2/3

1
n1/3 log d

≲ max
{
s

1/3
max

n1/3 ,
s

1/3
max

n1/3 log d
}

≲
s

1/3
max

n1/3 log d (22)

where in the second line we used that smaxη
2
S ≤ c2M2 ≲ (n√

smax)2/3 shown in the previous step, and that
∥w∗∥2/3

1 ≤ (smax)1/3.

Now, define Fn( 1
2ν ) := 1

n

∑n
i=1 1{|z(1)

i | ≤ 1
2ν } and F ( 1

2ν ) := P(|Z(1)| ≤ 1
2ν ) = erf( 1

2
√

2ν ) by the definition of
the error function. We can further simplify inequality (22) as follows:

s
1/3
max

n1/3 log d ≳
1
n

n∑
i=1

(1 − ν|z(1)
i |)2

+ ≥ 1
n

n∑
i=1

(1 − ν|z(1)
i |)21{1 − 2ν|z(1)

i |}

≥
nFn( 1

2ν )
n

(
1
2

)2
≳ Fn

(
1
2ν

)
where we used that the number of activated indicators of the set {1{1−2ν|z(1)

i |}}ni=1 is equal to nFn( 1
2ν ) and

that (1 − ν|z(1)
i |)+ ≥ 1

2 when 1 − 2ν|z(1)
i | ≥ 0. Then, according to the Dvoretzky-Kiefer-Wolfowitz inequality

from Lemma 5 we have with probability at least 1 − 2 exp(−cn1/3s
2/3
max log2 d) that

sup
ν

∣∣∣∣Fn( 1
2ν

)
− F

(
1
2ν

)∣∣∣∣ = sup
ν

∣∣∣∣Fn( 1
2ν

)
− erf

(
1

2
√

2ν

)∣∣∣∣ ≲ s
1/3
max

n1/3 log d

Thus we can use the Taylor series approximation of erf(·) around zero to show that ν ≳ n1/3

s
1/3
max log d

, as we
wanted to show.

Bound 2: ηSc , ηS = O(1), ν ∥w∗∥1 ≥ κM

For this bound we use results from the previous steps. Restricting to the set where ν ≳ n1/3

s
1/3
max log d

, and
ν ≲ M

∥w∗∥1
≲ n1/3, we can use the lower bound from Proposition 8:

fn(ν, η) ≥ κ1
1
ν

+ κ2
η2

ν
(23)

which holds with probability ≥ 1 − 2 exp(−c2n
1/3).

Now we further simplify the LHS of the first constraint in the definition of set Γ1. Combining the upper
bound from Equation (20) with the lower bound (23), we have

2
n
b2 ∥h∥2

∞ + 8
n
smaxη

2
S ≥ fn(ν, η) ≥ κ1

1
ν

+ κ2
b2 ∥γ(α)∥2

2 + η2
S

ν
(24)

As before, we have smax
n = Θ( 1

n1/3 log14/3 d
) from the definition of smax, and, as noted above, we have that

1
ν ≳ 1

n1/3 . Thus, for n ≥ c we have that 8smax
n ≤ κ2

2ν , and hence:

2
n
b2 ∥h∥2

∞ ≥ κ1
1
ν

+ κ2
b2 ∥γ(α)∥2

2
ν

+ η2
S

(
κ2

ν
− 8smax

n

)
≥ κ1

1
ν

+ κ2
b2 ∥γ(α)∥2

2
ν

+ κ3
η2

S
ν
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where we set κ3 = κ2
2 . Since the above inequalities hold with high probability, we define a set Γ2 as the set

of all (ν, b, α, ηS) that satisfy:

2
n
b2 ∥h∥2

∞ ≥ κ1
1
ν

+ κ2
b2 ∥γ(α)∥2

2
ν

+ κ3
η2

S
ν

and bα ≤ M and n1/3

s
1/3
max log d

≲ ν ≲
M

∥w∗∥1

and by the above discussion we have that with high probability, Γ ⊂ Γ2. Hence, by bounding the variables
ν, η from Γ2, we will also obtain valid upper bounds in Γ as well.

Step 2.1: Upper bound ηSc = O(1). Recall that we use the parameterization of ηSc such that ηSc =
b ∥γ(α)∥2. Thus, we bound ηSc as follows:

η2
Sc ≤ max

(ν,b,α,ηS)∈Γ2
b2 ∥γ(α)∥2

2

≤ max
ν,b,α

[
b2 ∥γ(α)∥2

2 s.t ∥γ(α)∥2
2 ≤ 2

κ2n
ν ∥h∥2

∞ and bα ≤ M and ν ∥w∗∥1 ≤ cM

]
= max

α

[
M2 ∥γ(α)∥2

2
α2 s.t ∥γ(α)∥2

2 ≤ 2c
κ2n

M

∥w∗∥1
∥h∥2

∞

]
. (25)

As we mentioned in Section A.1, the function ∥γ(α)∥2
2

α2 is a monotonically decreasing function in α, while
∥γ(α)∥2

2 is a convex function. Thus, similarly to the proofs in Wang et al. (2022), it is sufficient to find
αm < αmn

, such that ∥∥γ(αm)
∥∥2

2

∥h∥2
∞

>
2c
κ2n

M

∥w∗∥1

to obtain an upper bound on ∥γ(α)∥2
2

α2 (where we implicitly make use of the fact that the set Γ contains the
point (ν̃, b̃, α̃ = αmn , 0) from Proposition 5). Using the concentration results from Section A.1 we can rewrite
the above inequality as follows:

2
mt2m

(
1 +O

(
1
t2m

))
>

2c
κ2n

κM

∥w∗∥2/3
1

(
n

t2mn

)1/3(
1 +O

(
1
t2mn

))
After recalling that t2m = 2 log(d/m) +O(log log(d/m)) from Section A.1, it is straightforward to show that

we can choose m = λ
(
n∥w∗∥1
t2mn

)2/3
with sufficiently small universal constant λ > 0. We finish this step by

substituting this choice of m into the upper bound from Equation (25) to get:

η2
Sc ≤ M2

∥∥γ(αm)
∥∥2

2
α2
m

= κ2
M

(
n ∥w∗∥1
t2mn

)2/3(
1 +O

(
1
t2mn

))
2
m

(
1 +O

(
1
t2m

))
=: B2

ηSc = O(1)

Step 2.2: Upper bound ηS = O(1). Similarly as in the previous step we use the relaxations of the
constraints from the set Γ2 to bound ηS as follows:

η2
S ≤ max

(ν,b,α,ηS)∈Γ2
η2

S

≤ max
ν,b,α,ηS

[
η2

S s.t η2
S ≤ 2

κ3n
νb2 ∥h∥2

∞ and ∥γ(α)∥2
2 ≤ 2

κ2n
ν ∥h∥2

∞

and bα ≤ M and ν ∥w∗∥1 ≤ cM

]
≤ max

ν,b,α

[
2
κ3n

νb2 ∥h∥2
∞ s.t ∥γ(α)∥2

2 ≤ 2
κ2n

ν ∥h∥2
∞ and b ≤ M

α
and ν ≤ c

M

∥w∗∥1

]
≤ 2
κ3n

cM

∥w∗∥1
M2 ∥h∥2

∞ max
α

[
1
α2 s.t ∥γ(α)∥2

2 ≤ 2c
κ2n

M

∥w∗∥1
∥h∥2

∞

]
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Now note that 1
α2 is monotonically decreasing function, while the last constraint is identical to constraint

from Equation (25). Thus using exactly the same arguments as in the previous step we upper bound η2
S as

follows:

η2
S ≤ 2c

κ3n

M3

∥w∗∥1

∥h∥2
∞

α2
m

= 2c
κ3n

κ3
M

n

t2mn

t2m(1 +O

(
1
t2mn

,
1
t2m

)
) =: B2

ηS
= O(1)

where we again used concentration results from Proposition 3, and approximation t2m = 2 log(d/m) +
O(log log(d/m)) from Section A.1.

Step 2.3: Lower bound ν ∥w∗∥1 ≥ κM . This bound follows the same reasoning as the previous two steps.
Namely, we find a lower bound on ν as follows:

ν ≥ min
(ν,b,α,ηS)∈Γ2

ν

≥ min
ν,b,α

[
ν s.t ν ≥ κ1

2
n

b2 ∥h∥2
∞

and ∥γ(α)∥2
2 ≤ 2

κ2n
ν ∥h∥2

∞ and bα ≤ M and ν ∥w∗∥1 ≤ cM

]

≥ min
ν,b,α

[
κ1

2
n

b2 ∥h∥2
∞

s.t ∥γ(α)∥2
2 ≤ 2

κ2n
ν ∥h∥2

∞ and b ≤ M

α
and ν ∥w∗∥1 ≤ cM

]

= κ1n

2M2 ∥h∥2
∞

min
α

[
α2 s.t ∥γ(α)∥2

2 ≤ 2c
κ2n

M

∥w∗∥1
∥h∥2

∞

]
Similarly as in the previous two steps, since α2 is monotonically increasing function, the minimum is lower
bounded by α2 ≥ α2

m and after substitution of m as defined above, we have:

ν ≥ κ1n

2M2

α2
m

∥h∥2
∞

= κ1

2κ2
M

∥w∗∥−2/3
1

(
n

t2mn

)1/3 t2mn

t2m
(1 +O

(
1
t2mn

)
) =: κ M

∥w∗∥1

where once again we applied Proposition 3, and used that t2m = 2 log(d/m) + O(log log(d/m)) from Sec-
tion A.1. After noting that we have shown ν ∥w∗∥1 ≥ κM with high probability, we conclude this part of
the proof.

Bound 3: Tight bounds

From Step 2.2 in the previous bound we have ηS = O(1) and thus
√
sηS ≤ √

smaxηS = O(n1/3 log−7/3 d).

Combining this bound with the lower bound M ≳
(

n
log d

)1/3
, we obtain that:

ν ∥w∗∥1 ≤ M +
√
sηS ≤ M

(
1 + c1

log2 d

)
≤ κM

( n

t2mn

∥w∗∥1

)1/3
(

1 − 2
3

1
t2mn

+ c2

t4mn

)
=: M̃ (26)

for some fixed universal constant c1, c2 > 0. Moreover, in Step 2.3 of the previous bound we have shown
that ν ∥w∗∥1 ≥ κM , and thus ν ∥w∗∥1 ≥ κ̃M̃ for some 0 < κ̃ ≤ κ. Combining both results, we have
ν ∥w∗∥1 ∈ [κ̃, 1]M̃ .

Now we show how we can relax and simplify the first constraint of the set Γ. Recall Equation (24) and note
that it implies 2

nb
2 ∥h∥2

∞ + 8
nsmaxη

2
S ≥ κ1

1
ν . Moreover, since ν ∥w∗∥1 ≤ M̃ , and ηS ≤ BηS from Step 2.2, we

have:
1
n
b2 ∥h∥2

∞ ≥ κ1

2
1
ν

− 4smax

n
B2
ηS

≥ κ1

2
∥w∗∥1

M̃
− 4B2

ηS

smax

n
≳

1
n1/3 − 1

n1/3 log14/3 d
≳

1
n1/3

for n large enough, since smax = Θ
(
n2/3 log−14/3 d

)
and ∥w∗∥1

M̃
≥ 1

2
∥w∗∥1
M ≳ 1

n1/3 . Thus, using this lower
bound on b ∥h∥∞ and upper bound ηS ≤ BηS we have:

1
n

(2√
smaxηS + b ∥h∥∞)2 = 1

n
b2 ∥h∥2

∞

(
1 + 2√

smaxηS

b ∥h∥∞

)2
≤ 1
n
b2 ∥h∥2

∞ (1 + Ob)2
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where we defined Ob = c log−7/3 d for some universal constant c > 0. This finishes our relaxation of the LHS
of the first constraint from the definition of Γ.

For the RHS of this constraint, we can apply Corollary 1 with ϵ ≍ 1
n1/3t4mn

to obtain that the inequality

fn(ν, η) ≥
√

2
3
√
π

1
ν

+
√

2
π

η2

ν
− ϵ

holds with probability at least 1 − c1 exp
(

−c2
n1/3

t8mn

)
.

Now we use the derived relaxations of the first constraint of Γ to define a new set Γ3:

Γ3 =
{

(ν, b, α, ηS) s.t 1
n
b2 ∥h∥2

∞ (1 + Ob) ≥
√

2
3
√
π

1
ν

+
√

2
π

b2 ∥γ(α)∥2
2 + η2

S
ν

− ϵ

and bα+ ν ∥w∗∥1 ≤ M̃ and ν ∥w∗∥1 ∈ [κ̃, 1]M̃ and b∥γ(α)∥2 + ηS ≲ 1
}
.

Again, we have that with high probability Γ ⊂ Γ3 and in the following four steps we bound variables
α, ν, ηSc , ηS such that (ν, b, α, ηSc) ∈ Γ3. Furthermore, in the following steps we will use multiple times the
fact that:

1
t4mn

≳
1

log2(d/mn)
≳

1
log2 d

which follows from characterization of t2m from Section A.1.

In order to derive tight bounds on ν, ηSc , ηS in Steps 3.3, 3.4. and 3.5, respectively, we first need to show an
upper and lower bound on α in Steps 3.1 and 3.2, respectively.

Step 3.1: Upper bound α ≤ αλmn
(λ > 1).

We upper bound α uniformly over Γ3 as follows:

α2 ≤ max
(ν,b,α,ηS)∈Γ3

α2

≤ max
ν,b,α

[
α2 s.t 1

n
b2 ∥h∥2

∞ (1 + Ob) ≥
√

2
3
√
π

1
ν

− ϵ and bα+ ν ∥w∗∥1 ≤ M̃ and ν ∥w∗∥1 ∈ [κ̃, 1]M̃
]

≤ max
ν,α

α2 s.t 1
n

(
M̃ − ν ∥w∗∥1

α

)2

∥h∥2
∞ (1 + Ob) ≥

√
2

3
√
π

1
ν

− ϵ and ν ∥w∗∥1 ∈ [κ̃, 1]M̃


≤ max

ν,α

[
α2 s.t α2

∥h∥2
∞

(
1 − 3

√
π√
2
ϵν

)
≤ 3

√
π√
2

1
n
ν(M̃ − ν ∥w∗∥1)2(1 + Ob) and ν ∥w∗∥1 ∈ [κ̃, 1]M̃

]

≤ max
α

[
α2 s.t α2

∥h∥2
∞

≤ 12
√
π

27
√

2
1
n

M̃3

∥w∗∥1
(1 +O

(
1
t4mn

)
)
]

(27)

where in the second line we used the second constraint to upper bound b, and in the last line we used
that (1 + Ob)(1 − 3

√
π√
2 ϵν)−1 ≤ 1 + O( 1

t4mn

) and that the function ν(M̃ − ν ∥w∗∥1)2 under the constraint
ν ∥w∗∥1 ∈ [κ̃, 1]M̃ is maximized for ν ∥w∗∥1 = M̃/3. Furthermore, note that 1/3 ∈ [κ̃, 1] since Γ ⊂ Γ3 and
point ν = M

3∥w∗∥1
∈ Γ by arguments from the proof of the localization proposition 4.

Similarly as in the previous bounds, we use that α2 is a monotonically increasing convex function, and thus in
order to lower bound ∥γ(α)∥2

2, it is sufficient to find a point αm such that αm ≥ αm for which the constraint
of Equation (27) does not hold. Now, using concentration result from Proposition 3 and definition of M̃ , we
have that α = αm does not satisfy the constraint if:

1
t2m

(
1 − 4

t2m
+O

(
1
t4m

))
>

1
t2mn

(
1 − 2

t2mn

+O

(
1
t4mn

))
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We can choose m = λmn for some constant λ > 1 since using characterization of tm from Section A.1 we
have:

t2mn

t2m
= 1 + 2 log λ

t2mn

+O

(
1
t4mn

)
Thus we finally obtain that α ≤ αm, as we wanted to show.

Step 3.2: Lower bound α ≥ αλmn
(λ ∈ (0, 1))

The bound in this step is derived similarly to the bound in Step 3.1. However, in this step we cannot neglect
the term

√
2
π

b2∥γ(α)∥2
2

ν from the first constraint of Γ3, as we did in the previous step. For the sake of shorter
equations, we will write only relaxations of constraints that α needs to satisfy and skip writing that we
minimize over α2 like we did previously.

We start by rewriting and relaxing the first constraint from Γ3 as follows:

b2

(
∥h∥2

∞
n

(1 + Ob) −
√

2
π

∥γ(α)∥2
2

ν

)
≥

√
2

3
√
π

1
ν

+
√

2
π

η2
S
ν

− ϵ

≥
√

2
3
√
π

1
ν

− ϵ ≥
√

2
3
√
π

1
ν

(1 − O
(

1
t4mn

)
) (28)

where we used that ϵν = O( 1
t4mn

). Now, using the second constraint of Γ3, we can further relax the LHS of
the previous inequality as follows:

b2

(
∥h∥2

∞
n

(1 + Ob) −
√

2
π

∥γ(α)∥2
2

ν

)
≤

(M̃ − ν ∥w∗∥1)2

α2

(
∥h∥2

∞
n

(1 + Ob) −
√

2
π

∥γ(α)∥2
2

ν

)
(29)

Combining inequalities (28) and (29), and plugging in ν ∥w∗∥1 = κM̃ for κ ∈ [κ̃, 1] yields:
√

2
3
√
π

∥w∗∥1

κM̃
(1 −O

(
1
t4mn

)
) ≤ M̃2(1 − κ)2

α2

(
∥h∥2

∞
n

(1 + Ob) −
√

2
π

∥γ(α)∥2
2 ∥w∗∥1

κM̃

)

After multiplying the previous inequality by κM̃
∥w∗∥1

α2

M̃2(1−κ)2
and rearranging terms, we obtain:√

2
π

∥γ(α)∥2
2 ≤

∥h∥2
∞

n

κM̃

∥w∗∥1
(1 + Ob) −

√
2

3
√
π

α2

M̃2(1 − κ)2
(1 −O

(
1
t4mn

)
) (30)

Note that only the right hand side depends on ν (and thus on κ). Hence maximizing over κ the right hand
side we obtain:

κ = 1 −

(
2
√

2
3
√
π

nα2 ∥w∗∥1

∥h∥2
∞ M̃3

(1 −O

(
1
t4mn

)
)
)1/3

≥ 1 −

(
2
√

2
3
√
π

nαm
2 ∥w∗∥1

∥h∥2
∞ M̃3

(1 −O

(
1
t4mn

)
)
)1/3

>
1
3

where we used that α ≥ αm derived in the previous step. Moreover, note that κ ∈ [κ̃, 1]M̃ , by the proof of
our localization proposition. Substituting this κ into (30) we get the following inequality:

α2/3

∥h∥2/3
∞

(
9
√

2
4
√
π

)1/3

(1 − O
(

1
t4mn

)
) + n2/3

√
2
π

∥γ(α)∥2
2

∥h∥2
∞

∥w∗∥2/3
1 ≤ 1

n1/3
M̃

∥w∗∥1/3
1

(1 + Ob)

Now we further relax the constraint by raising the previous inequality to the third power and keeping only
the first two terms to get:

α2

∥h∥2
∞

9
√

2
4
√
π

+ 3
√

2
π

∥γ(α)∥2
2

∥h∥2
∞

∥w∗∥2/3
1 n2/3 α4/3

∥h∥4/3
∞

(
9
√

2
4
√
π

)2/3

≤ 1
n

M̃3

∥w∗∥1
(1 +O

(
1
t4mn

)
)
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We can further relax this constraint by using the that α ≥ αm with m = λ
(
n∥w∗∥1
t2mn

)2/3
as shown in the

Bound 2. Then, we have substitute this value of α only in the second term as follows:

α2

∥h∥2
∞

9
√

2
4
√
π

+ 3
√

2
π

∥γ(α)∥2
2

∥h∥2
∞

∥w∗∥2/3
1 n2/3 α

4/3
m

∥h∥4/3
∞

(
9
√

2
4
√
π

)2/3

≤ 1
n

M̃3

∥w∗∥1
(1 +O

(
1
t4mn

)
)

Now, note that the term on the left hand side is a sum of two convex functions in α and thus is convex.
Similarly, as before, we look for αm < αm so that the previous inequality is not satisfied. Using concentration
results from Proposition 3, we get:

3
√

2
π

(
9
√

2
4
√
π

)2/3

∥w∗∥2/3
1

2n2/3

mt2m

(
1 +O

(
1
t2m

))
1
t
4/3
m

(
1 − 8

3
1
t2m

+O

(
1
t4m

))

+ 9
√

2
4
√
π

1
t2m

(
1 − 4

t2m
+O

(
1
t4m

))
>

9
√

2
4
√
π

1
t2mn

(
1 − 2

t2mn

+O

(
1
t4mn

))
and we can choose m = λmn with λ ∈ (0, 1). This gives us a lower bound on α which is tight enough to
obtain bounds on ν with a right multiplicative constant.

Step 3.3: Tight bounds in ν

Now consider a set Γν3 := Γ3 ∩ {(ν, b, α, ηS) s.t α ≥ αm} with m given in the previous step. Furthermore,
from the arguments in the previous step it holds that Γ ⊂ Γν3 with high probability.

Now, similarly to Step 3.1 we can relax the first constraint of Γ3 to 1
nb

2 ∥h∥2
∞ ≥

√
2

3
√
π

1
ν (1 − O

(
1

t4mn

)
).

Combining this lower bound on b with the second constraint of Γ3 we have:

M̃ − ν ∥w∗∥1 ≥ bα ≥

√ √
2

3
√
π

√
n

∥h∥∞

α√
ν

(1 −O

(
1
t4mn

)
)

Rearranging the terms we obtain that for any (ν, b, α, ηS) ∈ Γν3 must hold that:

0 ≥ ν3/2 ∥w∗∥1 − M̃ν1/2 +

√ √
2

3
√
π

√
n

α

∥h∥∞
(1 −O

(
1
t4mn

)
)

≥ ν3/2 ∥w∗∥1 − M̃ν1/2 +

√ √
2

3
√
π

√
n
αm

∥h∥∞
(1 −O

(
1
t4mn

)
)

where we used that α ≥ αm Thus, the constraint B.2 must hold uniformly for all ν ∈ Γν3 . Setting ν ∥w∗∥1 =
κ2M̃ with κ2 ∈ [κ̃, 1] we obtain the following constraint on κ:

κ3 − κ+

√ √
2

3
√
π

n ∥w∗∥1

M̃3

αm

∥h∥∞
(1 −O

(
1
t4mn

)
) ≤ 0

Using definition of M̃ from Equation (26) and concentration inequality from Proposition 3 we obtain

κ3 − κ+ 2
3
√

3
tmn

tm

(
1 − 2

t2m
+O

(
1
t4m

))(
1 + 1

t2mn

+O

(
1
t4mn

))
≤ 0

and after substituting m = λmn with λ < 1 we get the following:

κ3 − κ+ 2
3
√

3
+ 2

3
√

3
log λ− 1
t2mn

+O

(
1
t4mn

)
≤ 0

Thus, we obtain κ2 ∈
[

1
3 − λ̃

t
2/3
mn

, 1
3 + λ̃

t
2/3
mn

]
for some positive universal constant λ̃, which we can write as

ν ∥w∗∥1 = M̃
3 (1 +O(t−2/3

mn )).
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Step 3.4: Tight bounds on ηSc

Define ΓηSc

3 := Γ3 ∩
{

(ν, b, α, ηS) s.t
∣∣∣ν ∥w∗∥1 − M̃

3

∣∣∣ ≤ λ̃M̃

t
2/3
mn

}
. Since inequality (30) holds for Γ3, it also

holds for ΓηSc

3 . Multiplying this inequality by n∥w∗∥1

M̃∥h∥2
∞

(1 − κ)2(1 + Ob)−1, we get:√
2
π

∥γ(α)∥2
2

∥h∥2
∞

n ∥w∗∥1

M̃
(1 − κ)2(1 + Ob)−1 +

√
2

3
√
π

α2

∥h∥2
∞

n ∥w∗∥1

M̃3
(1 + Ob)−1(1 −O

(
1
t4mn

)
)

≤ κ(1 − κ)2 ≤ 4
27

and using our established bound on ν ∥w∗∥1 we get (1 − κ)2 ≥ (1 − 1
3 − λ̃

t
2/3
mn

)2 = 4
9 (1 − 3λ̃

t
2/3
mn

+O( 1
t

4/3
mn

)) and
hence we obtain:

3
√

2
π

∥γ(α)∥2
2

∥h∥2
∞

n ∥w∗∥1

M̃

(
1 − 3λ̃

t
2/3
mn

+O

(
1
t
4/3
mn

))
+ 9

√
2

4
√
π

α2

∥h∥2
∞

n ∥w∗∥1

M̃3
(1 −O

(
1
t4mn

)
) ≤ 1

Note that the function is convex in α. Using concentration, we get for α = αm:

2
2
( 3
π

)1/3 (ntmn ∥w∗∥1)2/3

mt2m

(
1 +O

(
1
t2m

))(
1 − 3λ̃

t
2/3
mn

+O

(
1
t
4/3
mn

))

+
t2mn

t2m

(
1 − 4

t2m
+O

(
1
t4m

))(
1 + 2

t2mn

+O

(
1
t4mn

))
≤ 1

Now we claim that the m∗ < mn,m∗ > mn given in Lemma 2, respectively, with κ = 1/3 and parameter µ
do not satisfy this inequality for the well-chosen universal constant µ since

2
2
( 3
π

)1/3 (ntmn
∥w∗∥1)2/3

m∗t
2
m∗

(
1 − 3λ̃

t
2/3
mn

+O

(
1
t
4/3
mn

))
+
t2mn

t2m∗

(
1 − 2

t2mn

+O

(
1
t4mn

))

= 1 − µ

t
7/3
mn

(
1 −

t2mn

t2m∗

)
+ 2µ2 − 6λ̃

t2m∗t
2/3
mn

+O

(
1

t
10/3
mn

)
= 1 + 2µ2 − 6λ̃

t
8/3
mn

+O

(
1

t
10/3
mn

)
> 1

for µ >
√

3λ̃. Similarly, for m∗ we get:

2
2
( 3
π

)1/3 (ntmn ∥w∗∥1)2/3

m∗t2m∗

(
1 − 3λ̃

t
2/3
mn

+O

(
1
t
4/3
mn

))
+
t2mn

t2m∗

(
1 − 2

t2mn

+O

(
1
t4mn

))

= 1 + µ

t
7/3
mn

(
1 −

t2mn

t2m∗

)
+ 2µ2 − 6λ̃

t2m∗t
2/3
mn

+O

(
1

t
10/3
mn

)
= 1 + 2µ2 − 6λ̃

t
8/3
mn

+O

(
1

t
10/3
mn

)
> 1

In order to bound ηSc we use that b ≤ M̃−ν∥w∗∥1
α , α ≥ αm∗

, and ν ≥ M̃( 1
3 − λ̃

t
2/3
mn

), respectively, to obtain:

η2
Sc ≤ max

(ν,b,α,ηS )∈ΓηSc
3

b2 ∥γ(α)∥2
2 ≤ max

ν,α
(M̃ − ν ∥w∗∥1)2 ∥γ(α)∥2

2
α2

≤ M̃2

(
1 − 1

3 + λ̃

t
2/3
mn

)2 ∥∥γ(αm∗
)
∥∥2

2
αm2

∗

and after application of concentration Proposition 3 and definition of M̃ we obtain:

η2
Sc ≤ 2

3
1
t2mn

exp
(

µ

2t1/3
mn

)(
1 +O

(
1
t
2/3
mn

))
= 2

3
1
t2mn

(
1 + µ

2t1/3
mn

+O

(
1
t
2/3
mn

))
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and

η2
Sc ≥ min

(ν,b,α,ηS )∈ΓηSc
3

b2 ∥γ(α)∥2
2 ≥ min

ν,α

√
2

3
√
π

n

ν

∥γ(α)∥2
2

∥h∥2
∞

(1 −O

(
1
t4mn

)
)

≥
√

2
3
√
π

n ∥w∗∥1

M̃

(
1
3 + λ̃

t
2/3
mn

) 2
m∗t2m∗

(
1 +O

(
1
t2m∗

))
≥ 2

3
1
t2mn

exp
(

− µ

2t1/3
mn

)(
1 −O

(
1
t
2/3
mn

))

≥ 2
3

1
t2mn

(
1 − µ

2t1/3
mn

−O

(
1
t
2/3
mn

))
,

which are the upper and lower bound claimed in the Proposition 5.

Step 3.5: Tight upper bound on ηS

Define ΓηS
3 := Γ3 ∩

{
(ν, b, α, ηS) s.t

∣∣∣ν ∥w∗∥1 − M̃
3

∣∣∣ ≤ λ̃M̃

t
2/3
mn

and α ≤ αm∗ and α ≥ αm∗

}
. In this step

we keep the term η2
S
ν from the first constraint of Γ3, and repeat the same steps leading to Equation (30) to

obtain constraint:
√

2
3
√
π

n ∥w∗∥1 α
2

M̃3κ(1 − κ)2 ∥h∥2
∞

(1 −O

(
1
t4mn

)
) +

√
2
π
η2

S
α2n ∥w∗∥1

∥h∥2
∞ M̃3κ(1 − κ)2

(1 + Ob)−1

+
√

2
π

∥γ(α)∥2
2
n ∥w∗∥1

∥h∥2
∞ κM̃

(1 + Ob)−1 ≤ 1

As in the Step 3.3 we have that κ(1 − κ)2 ≤ 4
27 and κ ≤ 1

3 + λ̃

t
2/3
mn

. Plugging these two bounds into the
inequality above, we further relax the constraint to:

η2
S

α2

∥h∥2
∞

n ∥w∗∥1

M̃3
≲ 1−3

√
2
π

∥γ(α)∥2
2

∥h∥2
∞

n ∥w∗∥1

M̃
(1 − 3λ̃

t
2/3
mn

+O

(
1
t
4/3
mn

)
)

− 9
√

2
4
√
π

α2

∥h∥2
∞

n ∥w∗∥1

M̃3
(1 −O

(
1
t4mn

)
)

At the end we use derived bounds on α to upper bound ηS as follows:

η2
S ≲

M̃3 ∥h∥2
∞

α2
m∗
n ∥w∗∥1

[
1−3

√
2
π

∥γ(αm∗)∥2
2

∥h∥2
∞

n ∥w∗∥1

M̃
(1 − 3λ̃

t
2/3
mn

+O

(
1
t
4/3
mn

)
)

− 9
√

2
4
√
π

α2
m∗

∥h∥2
∞

n ∥w∗∥1

M̃3
(1 −O

(
1
t4mn

)
)
]

Finally, after application of concentration Proposition 3 and definitions of αm∗
, αm∗ and M̃ we obtain

η2
S ≲ 1

t
7/3
mn

, which finishes the proof of this proposition.

C Proof of Theorem 2

In this section we present the proof of Theorem 2. We begin by recalling some definitions: fn(ν, η) =
1
n

∑n
i=1(1−ξiν|z(0)

i |−z(1)
i η)2

+ and f(ν, η) = Efn (ν, η) = E
(
1 − ξν|Z(1)| − Z(2)η

)2
+ and νf := arg min f(ν, 0).

Further, define ζf = f(νf , 0), ζηη = d2

d2η |(νf ,0)f(ν, η), ζνν = d2

d2ν |(νf ,0)f(ν, η). which are all non-zero positive
constants. We define the constant κσ in Theorem 2 by:

κσ = 2ζf
ζηην2

fπ
2 . (31)

29



Under review as submission to TMLR

In a first localization step, we bound ΦN . By proposition 1, it suffices to the upper bound ϕN , which by
Proposition 2 can be reduced to a low-dimensional stochastic optimization problem. We show:
Proposition 6. Let the assumptions of Theorem 2 hold. Let tmn

(as in Equation (13) in Appendix A.1) be
such that 2Φ∁(tmn

) = mn/d with mn = nζηη/2. There exist universal positive constants c1, c2, c3 > 0 such
that

(ϕN )2 ≤ nζf
t2mn

(
1 − 2

t2mn

+ c1

t3mn

)
=: M2

with probability at least 1 − c2 exp
(

−c3
n

log5(d/n)

)
over the draws of h1, h2, z(1), z(2) and ξ.

The proof of the proposition is deferred to Appendix C.1. As described in Section 4.3, in a second uniform
convergence step, we bound the constraint set Γ from Equation (9):
Proposition 7. Let the assumptions of Theorem 2 hold and let Γ be as in Equation (9) with M from
Proposition 6. Define a set Γ0 as a set of all (ν, b, α, ηS) that satisfy:

|ν − νf |2 ≲
1

log(d/mn) and η2
S ≲

1
log5/4(d/mn)

and
∣∣∣∣b2 ∥γ(α)∥2

2 − 2ζf
ζηη log(d/mn)

∣∣∣∣ ≲ 1
log5/4(d/mn)

with mn = nζηη/2. There exist universal constants c1, c2, c3, c4 > 0 such that Γ ⊂ Γ0 with probability at least
1 − c1 exp

(
−c2

n
log5(d/n)

)
− c3 exp

(
−c4

n
logn log3/2(d/n)

)
over the draws of h1, h2, z(1), z(2) and ξ.

The proof of the proposition is deferred to Appendix C.2. As a consequence, when applying Proposition 2
we can upper and lower bound ϕ+ and ϕ−:

ϕ+ ≤

1 +
min

(b,α)∈Γ0
b2 ∥γ(α)∥2

2 + min
ηS∈Γ0

η2
S

max
ν∈Γ0

ν2


−1/2

≤ 1 − ζf
ζηην2

f

1
log(d/mn)

(
1 − c

log(d/mn)1/4

)

ϕ− ≥

1 +
max

(b,α)∈Γ0
b2 ∥γ(α)∥2

2 + max
ηS ∈Γ0

η2
S

min
ν∈Γ0

ν2


−1/2

≥ 1 − ζf
ζηην2

f

1
log(d/mn)

(
1 + c

log(d/mn)1/4

)

Where we slightly abuse the notation by writing (b, α) ∈ Γ0 and similar for ν ∈ Γ0 and ηS ∈ Γ0. Finally,
the proof follows when applying Proposition 1 and using the exact same series expansion for risk as in
Equation (15).

C.1 Proof of Localization Proposition 6

Recall the upper bound for ϕN from Proposition 2. Since w∗ is s-sparse vector, we have that ∥w∗∥1 ≤
√
s,

and we can further upper bound ϕN as follows:

ϕN ≤ min
ν,b,α

|ν|
√
s+ b ∥γ (α)∥1 s.t 1

n
b2 ∥h∥2

∞ ≥ fn (ν, b ∥γ(α)∥2) (32)

Given that (ν̃, b̃, α̃) is a feasible point for a given upper bound, we have ϕN ≤ |ν̃|
√
s + b̃ ∥γ(α̃)∥1. Thus, in

the following discussion, our goal is to find a single feasible point of the constraint set from Equation (32).

In order to show that a point satisfies the constraint above, it is necessary to evaluate the function
fn(ν, b ∥γ(α)∥2) at this point. We do this by using the concentration of Lipschitz continuous function from
Lemma 3. Namely, recall that we defined f = E[fn] and thus according to Lemma 3 for any ν, η holds that:

P (|fn (ν, η) − f (ν, η) | ≥ ϵ) ≤ 2 exp
(

−c nϵ2

ν2 + η2

)
(33)
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with some universal constant c > 0. Therefore, with high probability we can approximate the evaluation of
the function fn at a point by the evaluation of the function f at the same point.

From definition of γ(α) we know that ∥γ(α)∥1 = α and hence we can upper bound ϕN by an optimization
problem over ν > 0 and bα := bα as follows:

ϕN ≤ min
ν,bα,α

ν
√
s+ bα s.t 1

n

b2
α

α2 ∥h∥2
∞ ≥ fn

(
ν, bα

∥γ (α)∥2
α

)
(34)

Using Equation (33) with ϵ = ζf t
−3
mn

and for a feasible point (ν, bα ∥γ(α)∥2
α ) we have that:

b2
α ∥h∥2

∞
nα2 ≥ f

(
ν, bα

∥γ (α)∥2
α

)
+ ζf
t3mn

(35)

with probability at least 1 − 2 exp
(

−c n

t6mn(ν2+b2
α∥γ(α)∥2

2/α
2)

)
.

Recall that we defined νf := arg min f(ν, 0). Now, let us choose ν̃ = νf and show that there exists a pair
(b, α) such that (νf , b, α) is feasible for constraint (35). We propose to search for a point with parameter
(b, α) such that b ∥γ(α)∥2 = bα

∥γ(α)∥2
α is close to zero. We show in Lemma 8 that f is infinitely differentiable

function and thus, using Taylor series approximation of the function f(νf , ·) : η 7→ f(νf , η) around the point
(νf , 0) we can rewrite the constraint (35) as:

b2
α ∥h∥2

∞
nα2 ≥ ζf + 1

2ζηηb
2
α

∥γ (α)∥2
2

α2 +O

(
b3
α

∥γ (α)∥3
2

α3

)
+ ζf
t3mn

(36)

with ζη := ∂f(νf ,η)
∂η

∣∣∣
η=0

= 0 and where we recall that by definition ζf = f (νf , 0), ζηη = ∂2f(νf ,η)
∂η2

∣∣∣
η=0

and

mn = 1
2ζηηn.

As we mentioned in Section A.1, γ(α) is a piecewise linear function with break points at αm for m = 2, . . . , d.
Therefore, instead of optimizing over α, we optimize over m. Rearranging the terms from Equation (36) we
get:

b2
α ≥ nα2

m

∥h∥2
∞

ζf

(
1 + 1

t3mn

)
1 − 1

2nζηη
∥γ(αm)∥2

2
∥h∥2

∞
−O

(
bαn

∥γ(αm)∥3
2

αm∥h∥2
∞

) (37)

Note that we have only one constraint but two free variables (b, α) and so we can set α̃ = αmn with
mn = 1

2ζηηn. To gain an intuition for why this choice is approximately optimal, one can follow a similar
argument as in Remark 1 in Wang et al. (2022) and show that mn approximately maximizes expression:

∥h∥2
∞

α2
m

(
1 − 1

2nζηη
∥γ (αm)∥2

2

∥h∥2
∞

−O

(
bαn

∥γ(αm)∥3
2

αm ∥h∥2
∞

))

Thus, mn approximately minimizes expression on the right hand side of Equation (37) and maximally relaxes
this constraint on b2

α. We now claim that

b̃2
α =

nα2
mn

∥h∥2
∞

ζf

(
1 + 1

t3mn

)
1 − 1

2nζηη
∥γ(αmn )∥2

2
∥h∥2

∞
−O

(
1

t3mn

)
satisfies inequality (37) with probability at least 1 − 6 exp

(
− 2mn

log5(d/mn)

)
. Using Proposition 3 we have with

high probability that:

1 − 1
2nζηη

∥γ (αmn
)∥2

2

∥h∥2
∞

−O

(
1
t3mn

)
> 1 − 1

2nζηη
2

mnt2mn

−O

(
1
t3mn

)
= 1 − 2

t2mn

−O

(
1
t3mn

)
> 0
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for d, n sufficiently large. Applying Proposition 3 once again we can upper bound b̃α:

b̃2
α ≤ nζf

t2mn

(
1 + 1

t3mn

)(
1 − 4

t2mn

+ c

t4mn

)
1

1 − 2
t2mn

−O
(

1
t3mn

) ≤ nζf
t2mn

(
1 − 2

t2mn

+ c

t3mn

)

Now applying Proposition 3 we see that O
(
b̃αn

∥γ(αmn )∥3
2

αmn ∥h∥2
∞

)
= O

( √
n

tmn
n 1
mn

√
mnt2mn

)
= O

(
1

t3mn

)
and b̃2

α

indeed satisfy Equation (37). From the upper bound of the sparsity, we have νf
√
s ≲

√
n

t4mn

. Since (ν̃, b̃, α̃) is
a feasible point, from Equation (34) and derived bounds on νf

√
s and b̃α follows that

M :=
√
nζf
t2mn

(
1 − 2

t2mn

+ c̃

t3mn

)

is an upper bound on ϕN with probability at least 1 − 2 exp
(

−c n

log3(d/n)(ν2
f

+b2
α∥γ(αmn )∥2

2/α
2
mn)

)
−

6 exp
(

−c n
log5(d/n)

)
. The proposition is proved after noting that ν2

f + b̃2
α ∥γ (αmn)∥2

2 /α
2
mn

= O(1).

C.2 Proof of Uniform Convergence Proposition 7

The proof of the proposition follows from several steps where in each step we approximate fn using the
bounds on (ν, ηSc , ηS) from the previous steps to obtain a tighter bound on (ν, ηSc , ηS) using the tools
developed in Wang et al. (2022). The probability statement in Proposition 7 follows when taking the union
bound over all equations which we condition on throughout the proof.

Furthermore, we note that the set Γ from Proposition 2 is not empty as clearly the choice (ν̃, b̃, α̃, 0) from
Section C.1 leads with high probability to a feasible point due to the choice of M . Moreover, we can even
relax set Γ from Proposition 2 and bound the variables that are elements of the following set:{

(ν, b, α, ηS) s.t 1
n

(2√
smaxηS + b ∥h∥∞)2 ≥ fn(ν,

√
b2∥γ(α)∥2

2 + η2
S) and bα ≤ M

}
⊃ Γ. (38)

where we implicitly assume bounds ηS ≥ 0, b ≥ 0, α ∈ [1, αmax] in all of the following discussion. The
inclusion of Γ in the above set holds, since any point satisfying max

{
|ν|∥w(S)

∗ ∥1 −
√
sηS , 0

}
+ bα ≤ M

satisfies bα ≤ M as well. In what follows, we bound the variables of interest from Proposition 7 if they are
elements of the above given set, which, by inclusion, implies high probability bounds of the same variables
in the set Γ.

Bound 1: ν2, η2
Sc , η2

S = O(1)

In order to apply Lemma 7 in the next step, which gives tight bounds for fn, we first need to show that,
with high probability, ν2, η2, η2

S = O(1). This is the goal of this first step. More specifically, the goal of this
first step is to show that there exist universal constants Bν,1, BηSc ,1, BηS ,1 > 0 such that for any element
(ν, b, α, ηS) of Γ0 we have ν2 ≤ B2

ν,1, ηSc = b ∥γ(α)∥2 ≤ BηSc ,1 and ηS ≤ BηS ,1 with high probability over
the draws of h1, h2, z(1), z(2) and ξ.

For this first step, we use the fact that in the presence of label noise, fn is lower bounded by a quadratic
function as stated in Lemma 6 i.e. we have that

fn(ν,
√
b2∥γ(α)∥2

2 + η2
S) ≥ cνν

2 + cη(b2 ∥γ(α)∥2
2 + η2

S) ≥ cηη
2
S

holds with probability ≥ 1 − exp(−cn). As a result, we can relax the first constraint in Definition (38) of Γ
to

1
n

(2√
smaxηS + b ∥h∥∞)2 ≥ cνν

2 + cηb
2 ∥γ(α)∥2

2 + cηη
2
S (39)
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This implies that cηη2
S ≤ 1

n (2√
smaxηS +b ∥h∥∞)2 ≤ 8

nsmaxη
2
S + 2

nb
2 ∥h∥2

∞. Thus for some universal constants
c1, c2 > 0 we have

η2
S ≤ 2

cηn
b2 ∥h∥2

∞

(
1 − 8

cηn
smax

)−1
≤ 2
cηn

b2 ∥h∥2
∞

(
1 + c1

t8mn

)
≤ c2

n
b2 ∥h∥2

∞

where we used that smax = Θ
(

n
t8mn

)
. Now define universal constant c > 0 as the smallest constant satisfying

1
n

(2√
smaxηS + b ∥h∥∞)2 ≤ 2

n
b2 ∥h∥2

∞

(
1 + 4c2

n
smax

)
≤ c

n
b2 ∥h∥2

∞ (40)

Combining Equations (39) and (40) we can relax the first constraint of Γ to
c

n
b2 ∥h∥2

∞ ≥ cνν
2 + cηb

2 ∥γ(α)∥2
2 + cηη

2
S .

This approximation leads to an optimization problem similar to the one discussed in Lemma 1 in Wang et al.
(2022). After further relaxations we obtain exactly the same form of the inequality, and hence we can use
the arguments from Wang et al. (2022). Define the following set:

Γ1 =
{

(ν, b, α, ηS) s.t c

n
b2 ∥h∥2

∞ ≥ cνν
2 + cηb

2 ∥γ(α)∥2
2 + cηη

2
S and bα ≤ M

}
It is evident from the previous discussion that Γ ⊂ Γ1 with high probability. Thus, deriving high-probability
bounds on Γ1 gives valid bounds for Γ as well. In the following three steps, we bound variables ηSc , ν, ηS
from the set Γ1, respectively.

Step 1.1: Upper bound on ηSc . In this step, as well as in almost every step that follows, we use the
fact that, by relaxing constraints from the definition of the set Γ1 and bounding the variables on this larger
set, we obtain valid bounds for the variables in Γ1 and, more specifically, in Γ. Moreover, recall that by
our reparametrization from Section 4.2 we have η2

Sc = ∥w(Sc)
⊥ ∥2

2 = b2 ∥γ(α)∥2
2. Hence, we relax the first

constraint in definition of Γ1 to show that:

η2
Sc ≤ max

(ν,b,α,ηS)∈Γ1
b2 ∥γ(α)∥2

2 ≤ max
b,α

[
b2 ∥γ(α)∥2

2 s.t c

n
b2 ∥h∥2

∞ ≥ cηb
2 ∥γ(α)∥2

2 and bα ≤ M
]

= max
1≤α≤αmax

[
M2 ∥γ(α)∥2

2
α2 s.t c

n
∥h∥2

∞ ≥ cη ∥γ(α)∥2
2

]
(41)

Now note that as discussed in Section A.1 ∥γ(α)∥2
2 is convex. Therefore, the set of feasible α that satisfy the

last constraint is a nonempty interval. Indeed, to see that the interval is not empty, recall that we defined
M in such a way that (b, αmn) ∈ Γ with high probability for bαmn ≤ M . As Γ ⊂ Γ1 ⊂ {α s.t c

n ∥h∥2
∞ ≥

cη ∥γ(α)∥2
2}, with high probability αmn satisfies the constraint in Equation (41). Furthermore, since ∥γ(α)∥2

2
α2

is monotonically decreasing, to upper bound Equation (41) it is sufficient to find α < αmn
such that the

constraint from Equation (41) does not hold, i.e. we should have:

∥γ(α)∥2
2

∥h∥2
∞

>
c

cηn
. (42)

It is sufficient to only consider the discretized version of α, i.e., αm, for which we have access to the tight
concentration inequalities from Proposition 3. We now claim that αm with m = λm

n
log(d/n) satisfies the

inequality (42) for some positive universal constant λm > 0. Using the characterization t2m = 2 log(d/m) +
O(log log(d/m)) and concentration inequalities from Section A.1 we show that m satisfies Equation (42)
since

2
mt2m

(
1 −O

(
1
t2m

))
>

1
nλm

(
1 −O

(
log log(d/n)

log(d/n)

))
>

c

cηn
,
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where last inequality holds for d/n sufficiently large and λm small enough.

Therefore, from Equation (41) and the concentration inequality from Proposition 3, we get:

η2
Sc ≤ M2

∥∥γ(αm)
∥∥2

2
α2
m

≤ nζf
t2mn

2
m

(
1 +O

(
1
t2mn

))
=: B2

ηSc ,1,

with BηSc ,1 = Θ(1), as desired.

Step 1.2: Upper bound on ν. Similarly as in the previous step, we first relax the first constraint from
definition of Γ1 and use obtained constraints to upper bound ν2 as follows:

ν2 ≤ max
(ν,b,α,ηS)∈Γ1

ν2

≤ max
ν,b,α,ηS

[
ν2 s.t c

n
b2 ∥h∥2

∞ ≥ cνν
2 and c

n
b2 ∥h∥2

∞ ≥ cηb
2 ∥γ(α)∥2

2 and bα ≤ M
]

= c

ncν
∥h∥2

∞ max
b,α

[
b2 s.t c

n
∥h∥2

∞ ≥ cη ∥γ(α)∥2
2 and bα ≤ M

]
= c

ncν
M2 ∥h∥2

∞ min
1≤α≤αmax

[
1
α2 s.t c

n
∥h∥2

∞ ≥ cη ∥γ(α)∥2
2

]
(43)

Since 1
α2 is a monotonically decreasing function, we can use exactly the same reasoning as in the Step 1.1 to

obtain a high probability upper bound 1
α2 ≤ 1

α2
m

. Hence, using Equation (43) and the concentration results
from Proposition 3 we upper bound ν as follows:

ν2 ≤ c

ncν
M2 ∥h∥2

∞
α2
m

≤ cζf
cν

t2m

t2mn

(
1 +O

(
1
t2mn

))
=: B2

ν,1,

and in particular, after using the characterization t2m = 2 log(d/m) + O(log log(d/m)) from Section A.1, we
have again that Bν,1 = Θ(1).

Step 1.3: Upper bound on ηS . Replacing ν by ηS and applying exactly the same procedure as in the
Step 1.2, we obtain that with high probability:

η2
S ≤ c

ncη
M2 ∥h∥2

∞
α2
m

≤ cζf
cη

t2m

t2mn

(
1 +O

(
1
t2mn

))
=: B2

ηS ,1,

for BηS ,1 = Θ(1), which completes the first part of the proof.

Bound 2: △ν2, η2
Sc , η2

S = O
(

1
log(d/n)

)
Recall that νf := arg min f(ν, 0) and define △ν = ν − νf . Conditioning on the event where the bounds from
the first step hold for ν, ηSc , ηS , the goal of this second step is to show that for any element (ν, b, α, ηS) of Γ
we have △ν2 = O

(
1

log(d/n)

)
, η2

Sc = b2 ∥γ(α)∥2
2 = O

(
1

log(d/n)

)
and η2

S = O
(

1
log(d/n)

)
with high probability

over the draws of h1, h2, z(1), z(2) and ξ.

From the previous step, we know that, with high probability, ν2 ≤ B2
ν , ηSc ≤ BηSc ,1 and ηS ≤ BηS ,1. Hence

we can use Lemma 7 to obtain a tight lower bound for fn, which is based on uniform convergence of fn to
its expectation in Proposition 10, and relax the constraint from definition of the set Γ as follows:

1
n

(2√
smaxηS + b ∥h∥∞)2 ≥ fn(ν,

√
b2∥γ(α)∥2

2 + η2
S) ≥ f(ν,

√
b2 ∥γ(α)∥2

2 + η2
S) − Oc (44)

≥ ζf + c̃ν△ν2 + c̃ηb
2 ∥γ(α)∥2

2 + c̃ηη
2
S − Oc,

where we choose Oc = O
(

1
t3mn

)
and hence the bound holds uniformly with probability at least 1 −

exp
(

−c2
n
t6mn

)
− exp

(
−c3

n
t3mn

logn

)
.
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Now we show how we can relax and simplify the LHS from Equation (44). Since c1mn ≤ d, we have, according
to Equation (44) that 1

n (2√
smaxηS + b ∥h∥∞)2 ≥ 1

2ζf . As before, we also have 1
n (2√

smaxηS + b ∥h∥∞)2 ≤
8smax
n η2

S + 2
nb

2 ∥h∥2
∞. Combining last two expressions with the bound ηS ≤ BηS ,1 from Step 1.3 we have:

1
n
b2 ∥h∥2

∞ ≥ 1
4ζf − 4smax

n
B2
ηS ,1 ≥ 1

8ζf

for n, d large enough since smax = Θ
(

n
t8mn

)
. Thus we have:

1
n

(2√
smaxηS + b ∥h∥∞)2 = 1

n
b2 ∥h∥2

∞

(
1 + 2√

smaxηS

b ∥h∥∞

)2

≤ 1
n
b2 ∥h∥2

∞

(
1 + 2BηS ,1

√
8
ζf

√
smax

n

)2

and 1
n (2√

smaxηS + b ∥h∥∞)2 ≤ 1
nb

2 ∥h∥2
∞
(
1 + c

√
smax
n

)
for a large enough constant c > 0. Furthermore,

define Ob = c
√

smax
n = Θ

(
1

t4mn

)
.

Motivated by Equation (44) and discussion after it, we define the following set:

Γ2 =
{

(ν, b, α, ηS) s.t 1
n
b2 ∥h∥2

∞ (1 + Ob) ≥ ζf + c̃ν△ν2 + c̃ηb
2 ∥γ(α)∥2

2 + c̃ηη
2
S − Oc

and bα ≤ M

}
Again, from the discussion in this section, we have that with high probability Γ ⊂ Γ2. Similarly as in the
previous bound, we will bound variables of interest i.e. ηSc , ν, ηS in the set Γ2 and use the inclusion of the
set Γ in Γ2 to claim that these bounds are valid even in Γ.

Step 2.1: Upper bound on ηSc . Similarly to the Equation (41) in Step 1.1, we relax constraints of Γ2
to obtain:

η2
Sc ≤ max

(ν,b,α,ηS )∈Γ2
b2 ∥γ(α)∥2

2

≤ max
b,α

[
b2 ∥γ(α)∥2

2 s.t 1
n
b2 ∥h∥2

∞ (1 + Ob) ≥ ζf + c̃ηb
2 ∥γ(α)∥2

2 − Oc and bα ≤ M

]
≤ max

b,α

[
b2 ∥γ(α)∥2

2 s.t b2 ≥ (ζf − Oc)
(

1
n

∥h∥2
∞ (1 + Ob) − c̃η ∥γ(α)∥2

2

)−1
and b ≤ M

α

]

= max
α

[
M2

α2 ∥γ(α)∥2
2 s.t 1

n

M2

α2 ∥h∥2
∞ (1 + Ob) ≥ ζf + c̃η

M2

α2 ∥γ(α)∥2
2 − Oc

]
. (45)

Multiplying the constraint on both sides with α2 and using the fact that ∥γ(α)∥2
2 is convex shows that the

set of feasible α is again a (non-empty) interval. Thus, by the monotonicity of ∥γ(α)∥2
2

α2 the problem reduces
again to finding αm < αmn

(where we use again that αmn
satisfies the constraints with high probability)

such that αm violates the constraint in Equation (45), i.e.,

ζf − Oc

1 + Ob

nα2
m

M2 ∥h∥2
∞

+ c̃η
1 + Ob

n

∥∥γ(αm)
∥∥2

2

∥h∥2
∞

> 1 (46)

We now show that we can choose m = λmmn with a universal constant λm ∈ (0, 1). Indeed, applying Propo-
sition 3 and using the characterization t2m = 2 log(d/m) − log log(d/m) − log(π) + log log(d/m)

2 log(d/m) +O
(

1
log(d/m)

)
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from Section A.1 we get:

ζf − Oc

1 + Ob

nα2
m

M2 ∥h∥2
∞

= 1 +
2 log λm − 2

t2mn

+O

(
1
t3mn

)

and c̃η
1 + Ob

n

∥∥γ(αm)
∥∥2

2

∥h∥2
∞

= 1
t2mn

4c̃η
ζηηλm

+O

(
1
t4mn

)
where O(.) has hidden dependencies on λm. Hence, it is straight forward to see that for any d ≥ cn with
universal constant c > 0 (and thus tmn

lower bounded), we can find a universal constant λm such that
Equation (46) holds.

Hence, we can upper bound η2
Sc in Equation (45) as follows:

η2
Sc ≤ M2

∥∥γ(αm)
∥∥2

2
α2
m

≤ nζf
t2mn

2
m

(
1 +O

(
1
t2m

))
≤ 2ζf
ζηηλm log(d/n)

(
1 +O

(
1

log(d/n)

))
=:

B2
ηSc ,2

t2mn

with B2
ηSc ,2 = Θ(1).

Step 2.2: Upper bound on △ν. Instead of directly bounding ν, here we upper bound △ν2 with ν =
νf + △ν and thus obtain both an upper and a lower bound for ν. Similarly as before, we have:

△ν2 ≤ max
(ν,b,α,ηS )∈Γ2

△ν2 ≤ max
ν,b,α

[
△ν2 s.t 1

n
b2 ∥h∥2

∞ (1 + Ob) ≥ ζf + c̃ν△ν2 − Oc

and 1
n
b2 ∥h∥2

∞ (1 + Ob) ≥ ζf + c̃ηb
2 ∥γ(α)∥2

2 − Oc and bα ≤ M

]
= max

b,α

[
1
c̃ν

(
1
n
b2 ∥h∥2

∞ (1 + Ob) − ζf + Oc

)
s.t 1

n
b2 ∥h∥2

∞ (1 + Ob) ≥ ζf + c̃ηb
2 ∥γ(α)∥2

2 − Oc and bα ≤ M

]
= max

α

[
1
c̃ν

(
1
n

M2

α2 ∥h∥2
∞ (1 + Ob) − ζf + Oc

)
s.t 1

n

M2

α2 ∥h∥2
∞ (1 + Ob) ≥ ζf + c̃η

M2

α2 ∥γ(α)∥2
2 − Oc

]
(47)

As in Step 1.2 we use that 1
α2 is a monotonically decreasing function and the fact that αm from the previous

step, with m = λmmn and αm ≤ αmn
, does not satisfy the constraint in Equation (47). Thus we can upper

bound △ν2 as follows:

△ν2 ≤ 1
nc̃ν

M2

α2
m

∥h∥2
∞ (1 + Ob) − ζf

c̃ν
+ Oc

c̃ν
≤

ζf t
2
m

t2mn
c̃ν

(
1 + 2

t2mn

)
− ζf
c̃ν

+O

(
1
t3mn

)
=
ζf (2 − 2 log(λm))
c̃ν2 log(d/n)

(
1 +O

(
1

log(d/n)

))
=:

B2
△ν,2

t2mn

for some B2
△ν,2 = Θ(1).

Step 2.3: Upper bound on ηS . Following the same steps as in Step 2.2 with ν replaced by ηS we can
show that there exists universal constant BηS ,2 = Θ(1) such that:

η2
S ≤ 1

nc̃η

M2

α2
m

∥h∥2
∞ (1 + Ob) − ζf

c̃η
+ Oc

c̃η
≤
ζf (2 − 2 log(λm))
c̃η2 log(d/n)

(
1 +O

(
1

log(d/n)

))
=:

B2
ηS ,2

t2mn
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Bound 3: Proof of the proposition

We already know that ν is concentrated around νf . However, to obtain a tight expression for the risk and
also a valid lower bound, we need to obtain tighter bounds for η2

Sc and η2
S conditioning on the bounds of the

previous step, leading to Proposition 7.

Note that f is an infinitely differentiable function as we prove in Lemma 8. Thus, in this part of the proof
we can use the Taylor series approximation of the function f where we use the result from the last step
to bound the higher-order terms involving △ν, ηSc and ηS . Similarly as in equation (44), we obtain from
Proposition 10 and the second order Taylor series approximation of f around the point (νf , 0) that with
high probability,

1
n
b2 ∥h∥2

∞ (1 + Ob) ≥ ζf + 1
2ζνν△ν2 + 1

2ζηηb
2 ∥γ(α)∥2

2 + 1
2ζηηη

2
S − Oc − Of

with Of = O(△ν3 + η3
Sc + η3

S) = O
(

1
t3mn

)
and Oc,Ob = O

(
1

t3mn

)
.

Step 3.1: Upper and lower bound on ηSc . We proceed in the same manner as in the previous two
steps. We relax the constraint in definition of Γ and define the following set:

ΓηSc

3 =
{

(ν, b, α, ηS) s.t 1
n
b2 ∥h∥2

∞ (1 + Ob) ≥ ζf + 1
2ζηηb

2 ∥γ(α)∥2
2 − Oc − Of and bα ≤ M

}
Clearly, we have again with high probability that Γ ⊂ ΓηSc

3 . The only difference between ΓηSc

3 and Γ2 lies in
the constant c̃η which is replaced by the tighter constant ζηη/2. However, this makes a big difference, as this
allows us to choose m < mn < m much tighter. Similar to Equation (46) we again require that m = m,m
satisfies

ζf − Oc − Of

1 + Ob

α2
m

∥h∥2
∞

n

M2 + ζηη
2(1 + Ob)

n
∥γ(αm)∥2

2

∥h∥2
∞

> 1. (48)

However, this expression allows us to choose m and m as in Lemma 2, with κ := 1/2, m∗ := mn and
parameter λ > 0. We only show it for m as the same argument holds for m. Applying Proposition 3, the
LHS from Equation (48) can be bounded by

ζf − Oc − Of

1 + Ob

α2
m

∥h∥2
∞

n

M2 =
t2mn

t2m

(
1 − 4

t2m
+ 2
t2mn

+O

(
1
t3mn

))

= 1 − λ

t
5/2
mn

− 2
t2mn

+O

(
1
t3mn

)
+O

(
1

t2mn
mn

)

and ζηη
2(1 + Ob)

n

∥∥γ(αm)
∥∥2

2

∥h∥2
∞

= 2
t2mn

+ λ

t
5/2
mn

+ λ2

4t3mn

+O

(
1
t3mn

)
+O

(
1

t2mn
mn

)
with O(.) having hidden dependencies on universal constant λ. In particular, as a result, we see that we can
choose λ such that Equation (48) holds for any d > cn with universal constant c > 0. Hence we can upper
bound η2

Sc as follows:

η2
Sc ≤ M2

∥∥γ(αm)
∥∥2

2
α2
m

≤ nζf
t2mn

2
m

(
1 +O

(
1
t2mn

))
≤ 4ζf
ζηη

1
t2mn

(
1 + λ

2√
tmn

+O

(
1
tmn

))
Furthermore, we also obtain a lower bound for η2

Sc . Similar as in Lemma 5/6 Wang et al. (2022), we can
lower bound (using again the monotonicity of ∥γ(α)∥2

α and the fact that any feasible α ≤ αm)

η2
Sc ≥ min

b

[
b2 ∥γ(αm)∥2

2 s.t b2 ≥ ζf − Oc − Of

∥h∥2
∞
n (1 + Ob) − 1

2ζηη ∥γ(αm)∥2
2

]

= ζf − Oc − Of

∥h∥2
∞
n (1 + Ob) − 1

2ζηη ∥γ(αm)∥2
2

∥γ(αm)∥2
2 ≥ 4ζf

ζηη

1
t2mn

(
1 − λ

2√
tmn

+O

(
1
tmn

))
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Step 3.2: Upper bound on ηS . In order to upper bound ηS we further constrain ΓηSc

3 and define a set:

ΓηS
3 =

{
(ν, b, α, ηS) s.t 1

n
b2 ∥h∥2

∞ (1 + Ob) ≥ ζf + 1
2ζηηb

2 ∥γ(α)∥2
2 +1

2ζςςη
2
S − Oc − Of

and bα ≤ M

}
Note that ΓηS

3 ⊂ ΓηSc

3 and thus we can use bounds m,m from the previous part. Upper bounding ηS by
other variables from the first constraint of ΓηS

3 and using that 1
α2 and − ∥γ(α)∥2

2
α2 are monotonically decreasing

and increasing in α, respectively, we obtain the following high probability bound:

η2
S ≤ 2

ζηη

(
M2

n

(
∥h∥2

∞
α2
m

(1 + Ob) − 1
2ζηηn

∥γ(αm)∥2
2

α2
m

)
− ζf + Oc + Of

)

= 2ζf
ζηη

[
1
t2mn

(
1 − 2

t2mn

+ c̃

t3mn

)(
t2m

(
1 + 4

t2m
+ c2

t3mn

)
− 2mn

m

(
1 + c3

t2m

))
− 1
]

+O

(
1
t3mn

)

where the second line follows again from concentration results from Proposition 3. Multiplying all the terms
gives η2

S ≲ 1
t

5/2
mn

, as we wanted to show.

Note that we could prove in the exact same way that △ν2 = O

(
1

t
5/2
mn

)
, but this does not change tightness

of our result in Theorem 2 and hence we skip this step and conclude the proof of Proposition 7.

D Technical Lemmas

D.1 Application of CGMT: Proof of Proposition 1

The proof essentially follows exactly the same steps as in Koehler et al. (2021) and (Donhauser et al., 2022)
except for a few simple modifications, which we describe next.

In order to apply Lemma 1 we first rewrite ΦN using the Lagrange multipliers v ∈ Rn as follows:

ΦN = min
w

max
v≥0

∥w∥1 + ⟨v, 1 −DyXw⟩

= min
(w∥,w⊥)

max
v≥0

∥w∥ + w⊥∥1 +
〈
v, 1 −DyX∥w∥

〉
− ⟨v,DyX⊥w⊥⟩

where Dy = diag(y1, y2, . . . , yn). Since Dy and X⊥ are independent, we note that DyX⊥ ∈ Rn×d has
i.i.d. entries distributed according to the standard normal distribution, and hence DyX⊥

d= X⊥ with d=
denoting equivalence of random variables in distribution. When comparing the expression obtained with
the definition of Φ from Lemma 1, it is obvious that we should take X1 := X⊥, w1 := w⊥, w2 := w∥ and
the function ψ(w, v) := ∥w∥ + w⊥∥1 +

〈
v, 1 −DyXw∥

〉
, which is a continuous convex-concave function on

the whole domain since every norm is a convex function. Motivated by expression for ϕ from Lemma 1, we
further define

ϕ̃N := min
(w∥,w⊥)

max
v≥0

∥w∥ + w⊥∥1 +
〈
v, 1 −DyX∥w∥

〉
− ∥w⊥∥2 ⟨v, g⟩ − ∥v∥2 ⟨w⊥, h⟩

= min
(w∥,w⊥)

max
λ≥0

∥w∥ + w⊥∥1 − λ
(

⟨w⊥, h⟩ −
∥∥∥(1 −DyX∥w∥ − g∥w⊥∥2

)
+

∥∥∥
2

)
= min

(w∥,w⊥)
∥w∥ + w⊥∥1 s.t ⟨w⊥, h⟩ ≥

∥∥∥(1 −DyX∥w∥ − g ∥w⊥∥2
)

+

∥∥∥
2
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where in the second equality we set λ := ∥v∥2. Define w(S)
⊥ = ΠSw⊥, w

(Sc)
⊥ = ΠScw⊥ where ΠS and ΠSc are

projections on supp(w∗) and the other d− s entries, respectively. So we can rewrite ϕ̃N as:

ϕ̃N = min
(w∥,w

(S)
⊥ ,w

(Sc)
⊥ )

∥w∥ + w
(S)
⊥ ∥1 + ∥w(Sc)

⊥ ∥1

s.t ⟨w(S)
⊥ , h1⟩ + ⟨w(Sc)

⊥ , h2⟩ ≥ ∥(1 −DyX∥w∥ − g

√
∥w(S)

⊥ ∥2
2 + ∥w(Sc)

⊥ ∥2
2))+∥2

with h1 ∼ N (0, Is) and h2 ∼ N (0, Id−s), independent of each other. Under the constraint that ⟨w(S)
⊥ , h1⟩ +

⟨w(Sc)
⊥ , h2⟩ ≥ 0 we can square the last inequality and scale with 1

n to obtain the following RHS:

1
n

∥(1 −DyX∥w∥−g
√

∥w(S)
⊥ ∥2

2 + ∥w(Sc)
⊥ ∥2

2)+∥2
2

= 1
n

n∑
i=1

(1 − ξisgn(⟨(x∥)i, w(S)
∗ ⟩)⟨(x∥)i, w∥⟩ − gi∥w⊥∥2)2

+,

which is exactly the function fn(⟨w∥, w
∗⟩, ∥w⊥∥2), as defined in Equation (5). Therefore, comparing with

the expression for ϕN from Proposition 1 we note that ϕ̃N ≡ ϕN .

In order to complete the proof of the proposition, we need to discuss the compactness of the feasible sets in
the optimization problem so that we can apply Lemma 1 to ΦN and ϕN . For this purpose, we define the
following truncated optimization problems ΦrN (t) and ϕrN (t) for some r, t ≥ 0:

ΦrN (t) := min
∥w∥1≤t

max
∥v∥≤r
v≥0

∥w∥1 + ⟨v, 1 −DyXw⟩

ϕrN (t) := min
∥w∥+w(S)

⊥ ∥1+∥w(Sc)
⊥ ∥1≤t

max
0≤λ≤nr

∥w∥ + w
(S)
⊥ ∥1 + ∥w(Sc)

⊥ ∥1

− λ

(
1
n

(⟨w(S)
⊥ , h1⟩ + ⟨w(Sc)

⊥ , h2⟩) −
√
fn(w)

)
.

By definition it follows that ϕr1
N (t) ≥ ϕr2

N (t) for any r1 ≥ r2, and thus we have that

P(ϕN ≥ t|ξ) ≥ lim
r→∞

P(ϕrN (t) ≥ t|ξ). (49)

Furthermore, by making use of the simple (linear) dependency on λ in the optimization objective in the
definition of ΦN , a standard limit argument as in the proof of Lemma 7 in Koehler et al. (2021) shows that:

lim
r→∞

P(ΦrN (t) > t|ξ) = P(ΦN > t|ξ).

Finally, the proof follows when noting that we can apply Lemma 1 directly to ΦrN (t) and ϕrN (t) for any
r, t ≥ 0, which gives us P(ΦrN > t|ξ) ≤ 2P(ϕrN ≥ t|ξ). Combining the last inequality with Equations (49) and
D.1 completes the proof for ΦN .

The proof for Φ+ and Φ− uses the same steps as discussed above. We only detail the proof for Φ− here, as
the proof for Φ+ follows from the exact same reasoning.

Now, let MB1 = {w ∈ Rd : ∥w∥1 ≤ M} be an ℓ1-ball of radius M and note that we optimize over
(w∥, w

(S)
⊥ , w

(Sc)
⊥ ) ∈ Sw where Sw = {w s.t ∥w∥2 ≥ δ} ∩ MB1 is a compact set. Furthermore, define the

function ψ by ψ(w, v) := ⟨w∥,w
(S)
∗ ⟩

∥w∥2
+
〈
v, 1 −DyX∥w∥

〉
, which is a continuous function on Sw since ∥w∥2 ≥ δ.

Similarly as above, we can overcome the issue of the compactness of the set Sv by using a truncation argument
as proposed in Lemma 4 in Koehler et al. (2021). In particular, we define

Φr− := min
w∈Sw

max
∥v∥≤r
v≥0

⟨w,w∗⟩
∥w∥2

+ ⟨v, 1 −DyXw⟩ ,

ϕr− := min
w∈Sw

max
0≤λ≤nr

⟨w∥, w
∗⟩

∥w∥2
− λ

(
1
n

(⟨w(S)
⊥ , h1⟩ + ⟨w(Sc)

⊥ , h2⟩) −
√
fn(w)

)
.
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for which we have

P(Φ− < t|ξ) ≤ lim
r→∞

P(Φr− < t|ξ) and lim
r→∞

P(ϕr− ≤ t|ξ) = P(ϕ− ≤ t|ξ).

We note that the first statement follows from the definition of Φ− and the monotonicity of Φr− in r, while
the second statement follows from a limit argument as in Lemma 4 in Koehler et al. (2021). Finally, we
conclude the proof by applying the first part of Lemma 1 to Φr− and ϕr− and defining z(1) = ⟨X∥, w

∗⟩ with
X∥ the row-wise projection of X in the subspace spanned by w∗

D.2 Lower bounds for fn in noiseless setting

Recall that ν = ⟨w∥, w
(S)
∗ ⟩, ηS = ∥w(S)

⊥ ∥2, ηSc = ∥w(Sc)
⊥ ∥2 and η = ∥w⊥∥2 =

√
η2

S + η2
Sc . In the noiseless

setting we defined the following two functions:

fn(ν, η) = 1
n

n∑
i=1

(1 − ν|z(1)
i | − z

(2)
i η)2

+

f(ν, η) = Efn (ν, η) = EZ(1),Z(2)∼N (0,1)(1 − ν|Z(1)| − Z(2)η)2
+.

In this section we show multiple lower bounds of fn. First, we show a bound with non-tight constants and
then show a tight result based on uniform convergence of fn to f . At the end we give a corollary of the
uniform convergence proposition which is used in the proof of the Proposition 5.

Lower bounding fn with non-tight constants

We show the following proposition:
Proposition 8. Assume that ν satisfies c1 ≤ ν ≤ νmax for some universal constant c1 > 0. There exist
universal constants κ1, κ2, c2 such that for any ν, η that satisfy the given assumption, the inequality

fn(ν, η) ≥ κ1
1
ν

+ κ2
η2

ν

holds with probability ≥ 1 − 2 exp
(

−c2
n

(νmax)2

)
over the draws of z(1), z(2).

Proof. Similarly to the above, we have the following:

fn(ν, η) = 1
n

n∑
i=1

(1 − ν|z(1)
i | − z

(2)
i η)2

+ ≥ 1
n

n∑
i=1

(1 − ν|z(1)
i | + c1η)2

+1{z(2)
i ≤ −c1}

≳
1
n

n∑
i=1

(1 − ν|z(1)
i | + c1η)21{1 − ν|z(1)

i | ≥ 1
2 , z

(2)
i ≤ −c1}

≳ (1 + η2) 1
n

n∑
i=1

1{1 − ν|z(1)
i | ≥ 1

2 , z
(2)
i ≤ −c1}

Moreover, from independence of Z(1) and Z(2), the fact that P
(
Z(2) ≤ −c1

)
= Φ∁(c1) ≥ c2 and concentration

of Bernoulli random variables we obtain that fn(ν, η) ≳ (1 + η2) 1
n

∑n
i=1 1{1 − ν|z(1)

i | ≥ 1
2 } with probability

≥ 1 − exp(−c3n). Now in order to lower bound the last term we note that:

P
(

|Z(1)| ≤ 1
2ν

)
= erf

(
1

2
√

2ν

)
≳

1
ν

where we used Taylor approximation erf
(

1
2

√
2ν

)
≳ 1

ν for any ν ≥ c1 with c1 > 0 sufficiently large. From

Lemma 5 with ϵ ≍
√
n/νmax we obtain that uniformly over ν, η fn(ν, η) ≳ 1

ν + η2

ν with probability at least
1 − 2 exp(−c2n/(νmax)2).
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Uniform convergence of fn to f

Similarly as in Section D we define a random variable X = (Z(1), Z(2)) and a set of functions G0 :=
{(Z(1), Z(2)) 7→ (1 − ν|Z(1)| − Z(2)η)2

+ |νmax ≥ ν ≥ νmin, η ≤ ηmax} with νmin = Θ(νmax), νmin = Ω(n1/6)
and ηmax ≤ c2 for some universal constant c2 > 0. Using notation of Section A.2 we have that Pgν,η =
Egν,η(Z(1), Z(2)) = f(ν, η) and Pngν,η = fn(ν, η), we show the following result:
Proposition 9. There exist positive universal constants c1, c2, c3 > 0 such that for any ϵ ≳ logn√

n
holds

P
(

∥Pn − P∥G0
≤ c1

logn√
n

+ ϵ

)
≥ 1 − c2 exp

(
−c3nϵ

2) .
Proof. The proof is based on Theorem 3. We choose α = 1 and show that the condition from Theorem 3
requiring finite Orlicz norms is satisfied for this choice of α. We divide the proof into three steps, where in a
first step we bound the variable ψG0 , then we bound Rn(G0), and finally we bound σ2

G0
and apply Theorem 3.

Step 1: Bounding ψG0 By the definition of Orlicz norms, ψG0 is given by:

ψG0 = inf{λ > 0 : E[exp( 1
λ

max
1≤i≤n

sup
gν,η∈G0

1
n

|gν,η(z(1)
i , z

(2)
i ) − E[gν,η]| − 1]) ≤ 1} (50)

Note that (1 − ν|z(1)|)+ ≤ 1 and thus we have gν,η(z(1), z(2)) = (1 − ν|z(1)| − z(2)η)2
+ ≲ 1 + (z(2))2η2 for any

z(1), z(2), η, ν, implying that

max
i

sup
ν,η

|gν,η(z(1)
i , z

(2)
i )| = max

i
sup
ν,η

|(1 − ν|z(1)
i | − z

(2)
i η)2

+| ≤ c1z
(2)
max

with vector z(2)
max = max1≤i≤n |z(2)

i |. Furthermore, it also holds E[gν,η] ≲ 1 + η2E(Z(2))2 ≤ 1 + η2
max ≤ c3 for

some universal constant c3 > 0.

Using these results and applying the triangle inequality, the term inside of expectation in Equation (50) can
be bounded as:

E
[

exp
( 1
λ

max
i

sup
ν,η

1
n

∣∣∣(1 − ν|z(1)
i | − z

(2)
i η)2

+ − E[(1 − ν|Z(1)| − Z(2)η)2
+]
∣∣∣)]

≤ E
[

exp
( 1
nλ

max
i

sup
ν,η

(1 − ν|z(1)
i | − z

(2)
i η)2

+

)]
· exp

( 1
nλ

sup
ν,η

E[(1 − ν|Z(1)| − Z(2)η)2
+]
)

≤ E
[
exp

( c1

nλ
z2

max

)]
exp

( c3

nλ

)
(51)

for some positive universal constants c1, c3. Now we split the expectation from the above inequality into two
terms:

E
[
1
[
zmax <

√
2 log(n)

]
exp

( c1

nλ
z2

max

)]
≤ exp

(
2c1 logn
nλ

)
and

E
[
1
[
zmax ≥

√
2 logn

]
exp

( c1

nλ
z2

max

)]
= 2nE

[
1
[
zmax = |z1|, |z1| ≥

√
2 logn

]
exp

( c1

nλ
z2

1

)]
≲ n

∫ ∞

z1=
√

2 logn

∫ z1

−z1

· · ·
∫ z1

−z1

exp
( c1

nλ
z2

1

)[ 2n∏
i=2

exp(− 1
2z

2
i )

√
2π

dzi

]
dz1

≲ n

∫ ∞

√
2 logn

exp
(

−z2
1

(
1
2 − c1

nλ

))
dz1 ≲

exp
( 2c1n
nλ

)
√

logn(1 − 2c1
nλ )

(52)

where we assumed that λ > 2c1
n . Now choosing λ = cλ

logn
n with a positive constant cλ sufficiently large, we

find that the condition in Equality (50) is satisfied for this λ, which implies that ψG0 ≤ cλ
logn
n .
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Step 2: Bounding Rn(G0) In order to apply Theorem 3 we need to upper bound E ∥Pn − P∥G0
. Since

E ∥Pn − P∥G0
≤ 2Rn(G0), we can instead upper bound the Rademacher complexity Rn(G0), which we do

next. Recall the definition of the Rademacher complexity:

Rn(G0) = E

[
sup

gν,η∈G0

∣∣∣∣∣ 1n
n∑
i=1

ϵigν,η(z(1)
i , z

(2)
i )
∣∣∣∣∣
]

(53)

Define random variable z̃ := |z(1)|1{|z(1)| ≤ 1+ηmax
√

3 logn
νmin

} and note that for all ν, η and 1 ≤ i ≤ n holds

(1 − ν|z(1)
i | − z

(2)
i η)2

+1{z(2)
max ≤

√
3 logn} = (1 − νz̃i − z

(2)
i η)2

+1{z(2)
max ≤

√
3 logn}.

We now apply the triangle inequality to Equation (53) to obtain:

E sup
ν,η

∣∣∣ 1
n

n∑
i=1

ϵi(1 − ν|z(1)
i | − z

(2)
i η)2

+

∣∣∣ ≤ E sup
ν,η

∣∣∣ 1
n

n∑
i=1

ϵi(1 − νz̃i − z
(2)
i η)2

+1{z(2)
max ≤

√
3 logn}

∣∣∣
+ E sup

ν,η

∣∣∣ 1
n

n∑
i=1

ϵi(1 − ν|z(1)
i | − z

(2)
i η)2

+1{z(2)
max >

√
3 logn}

∣∣∣ (54)

Then, using that (·)+ is 1-Lipschitz, we can bound expectation of the first term from Equation (54) as
follows:

E sup
ν,η

∣∣∣∣ 1n
n∑
i=1

ϵi(1 − νz̃i − z
(2)
i η)2

+1{z(2)
max ≤

√
3 logn}

∣∣∣∣
≲ E sup

ν,η

∣∣∣∣∣ 1n
n∑
i=1

ϵi(1 − νz̃i − z
(2)
i η)21{z(2)

max ≤
√

3 logn}

∣∣∣∣∣
= E sup

ν,η

∣∣∣∣∣ 1n
n∑
i=1

ϵi

[
(1 − νz̃i)2 − 2(1 − νz̃i)z(2)

i η + (z(2)
i )2η2

]
1{z(2)

max ≤
√

3 logn}

∣∣∣∣∣
We use again the triangle inequality and consider each of the three terms above:

• Note that |νz̃i| ≤ νmax
νmin

ηmax
√

3 logn ≲
√

logn and using concentration of sub-exponential random
variables from Lemma 4 we obtain:

E sup
ν

∣∣∣∣∣ 1n
n∑
i=1

ϵi(1 − νz̃i)21{z(2)
max ≤

√
3 logn}

∣∣∣∣∣ ≤ E sup
ν

∣∣∣∣∣ 1n
n∑
i=1

ϵiν
2z̃2
i 1{z(2)

max ≤
√

3 logn}

∣∣∣∣∣
+ E sup

ν

∣∣∣∣∣ 1n
n∑
i=1

ϵi(−2νz̃i)1{z(2)
max ≤

√
3 logn}

∣∣∣∣∣+ E

∣∣∣∣∣ 1n
n∑
i=1

ϵi1{z(2)
max ≤

√
3 logn}

∣∣∣∣∣ ≲ logn√
n

• Similarly as in the previous case, we use triangle inequality to split expectation into two terms and
then use that |z(2)

i η| ≤ z
(2)
maxηmax ≲

√
logn and |νz̃iz(2)

i η| ≤ 3νmax
νmin

η2
max logn ≲ logn, and apply

concentration from Lemma 4 to get:

E sup
ν,η

∣∣∣∣∣ 1n
n∑
i=1

2ϵi(1 − νz̃i)z(2)
i η1{z(2)

max ≤
√

3 logn}

∣∣∣∣∣ ≲ logn√
n

• Last, use that η2(z(2)
i )2 ≤ η2

max(z(2)
max)2 ≲ logn, and again concentration of sub-exponential random

variables from Lemma 4 to obtain:

E sup
η

∣∣∣∣∣ 1n
n∑
i=1

ϵi(z(2)
i )2η21{z(2)

max ≤
√

3 logn}

∣∣∣∣∣ ≲ 1√
n
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Thus, we bounded the first term from Equation (54). Now, we bound the second term. Since |ϵi(1−ν|z(1)
i |−

z
(2)
i η)2

+| ≤ (1 + z
(2)
i η)2 we obtain:

E sup
ν,η

∣∣∣∣ 1n
n∑
i=1

ϵi(1 − ν|z(1)
i | − z

(2)
i η)2

+1{z(2)
max >

√
3 logn}

∣∣∣∣
≲ E sup

η

1
n

n∑
i=1

(1 + z
(2)
i η)21{z(2)

max >
√

3 logn}

≲
1
n
E

n∑
i=1

(1 + (z(2)
i )2)1{z(2)

max >
√

3 logn} ≲ E
[
(z(2)

max)21{z(2)
max >

√
3 logn}

]
≲ n

∫ ∞

z1=
√

3 logn
z2

1 exp(−z2
1/2)dz1 ≲

√
logn√
n

where in the last step we used the same approach as for obtaining Equation (52). After adding all terms,
we obtain Rn(G0) ≲ logn√

n
.

Step 3: Proof of the statement To apply Theorem 3, we also need to bound the variance σ2
G0

. But,
it is straightforward that there exists some positive universal constant cσG0

> 0 such that the variance is
bounded as follows:

σ2
G0

≤ sup
gν,η∈G0

E
[
g2
ν,η

]
≤ cσG0

(
1 + η4

max
)

Substituting all derived bounds into the probability statement from Theorem 3 we obtain for ϵ ≳ logn√
n

:

P
(
∥Pn − P∥Gσ

≥ 2(1 + t)RGσ
+ ϵ
)

≤ exp
(
−c2nϵ

2)+ 3 exp
(

−c3
nϵ

logn

)
≤ c4 exp(−c2nϵ

2)

with c−1
2 = 2(1 + δ)cσG0

(
1 + η4

max
)

and c−1
3 = Ccλ, which concludes the proof.

Corollary 1. There exist positive universal constants c1, c2 such that for any ν, η satisfying constraint in
G0 and ϵ ≳ logn√

n
, inequality

fn(ν, η) ≥
√

2
3
√
π

1
ν

+
√

2
π

η2

ν
− ϵ

holds with probability at least 1 − c1 exp(−c2nϵ
2) over the draws of z(1), z(2).

Proof. Recall that f(ν, η) = E[fn(ν, η)]. From Proposition 9 we have fn(ν, η) ≥ f(ν, η) − ϵ uniformly over all
admissible (ν, η) with probability ≥ 1−c1 exp(−c2nϵ

2). According to Lemma 8, f is an infinitely differentiable
function and thus we can express it by Taylor series. First, we determine the coefficients of the series of
f(ν, ·) : η 7→ f(ν, η).

The constant coefficient is given by:

f(ν, 0) = E(1 − ν|Z(1)|)2
+ = 2√

2π

∫ 1/ν

0
(1 − νz)2 exp

(
−z2

2

)
dz

= (ν2 + 1)erf
(

1√
2ν

)
+
√

2
π
ν

(
exp

(
− 1

2ν2

)
− 2
)

=
√

2
3
√
π

1
ν

+O

(
1
ν3

)
where we used the Taylor expansion around 0 for functions erf and exp. The first derivative coefficient is
given by

∂

∂η
f(ν, η)|η=0 = −2E[Z(2)(1 − ν|Z(1)| − ηZ(2))+]|η=0 = 0
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since Z(1) and Z(2) are independent random variables and E[Z(2)] = 0. Now consider the second derivative
coefficient:

∂2

∂η2 f(ν, η)|η=0 = 2E
[
1{1 − ν|Z(1)| − ηZ(2)}(Z(2))2

]
|η=0 = 2P

(
|Z(1)| ≤ 1

ν

)
= 2erfc

(
1√
2ν

)
= 2
√

2
π

1
ν

+O

(
1
ν3

)
where in the last step we used the Taylor series approximation of the error function around zero. Now, in
order to analyze higher order derivatives, we show using Leibniz integral rule that:

∂3

∂η3 f(ν, η) = 2
π

∂

∂η

∫ 1/η

Z(2)=−∞

∫ (1−ηZ(2))/ν

Z(1)=0
(Z(2))2 exp

(
−1

2(Z(2))2
)

exp
(

−1
2(Z(1))2

)
dZ(1)dZ(2)

= − 2
πν

∫ 1/η

Z(2)=−∞
(Z(2))3 exp

(
−1

2(Z(2))2
)

exp
(

−1
2

(
1 − ηZ(2)

ν

)2)
dZ(2) (55)

Now, note that for higher order derivatives, the term that comes from differentiating the upper bound 1/η is
equal 0 for η = 0 since it is of the form poly(1/η) exp(−1/(2η2)) which is zero for any polynomial. Thus, the

main term which we need to consider comes from the term exp
(

− 1
2

(
1−ηZ(2)

ν

)2
)

. Note that after taking

the differential with respect to this term, we obtain an additional multiplicative factor 1/ν2. However, we
also obtain the multiplicative term (1−νZ(2)), which can be further differentiated with respect to η. Taking
all this into account one can show that for k = 2, 3, ...

∂2k

∂η2k f(ν, η)
∣∣∣
η=0

=

O

(
1

ν2k−1

∫ 1/η

Z(2)=−∞
(Z(2))2k(1 − ηZ(2)) exp

(
−1

2(Z(2))2
)

exp
(

−1
2

(
1 − ηZ(2)

ν

)2)
dZ(2)

∣∣∣∣
η=0

)

with all other terms either vanishing at η = 0 or having in front of the integral multiplicative constant 1
νp

with p > 2k−1. Thus, for η = 0, using that the Gaussian moments are bounded, we obtain ∂2k

∂η2k f(ν, η)|η=0 =
O
( 1
ν2k−1

)
. Similarly to Equation (55), one can show that every odd differential at η = 0 is equal to the

scaled odd moments of the standard Gaussian random variable, implying that ∂2k+1

∂η2k+1 f(ν, η)|η=0 = 0.

Taking all derived coefficients into consideration, we can express f using the following Taylor series:

f(ν, η) =
√

2
3
√
π

1
ν

+
√

2
π

η2

ν
+O

(
1
ν3 ,

η4

ν3

)
(56)

At the end, since η = O(1) and ν = Ω(n1/6) we have O
(

1
ν3 ,

η4

ν3

)
= o(ϵ), which finishes the proof.

D.3 Lower bounds for fn in noisy setting

Recall that we have defined ν = ⟨w∥, w
∗⟩, ηS = ∥w(S)

⊥ ∥2, ηSc = ∥w(Sc)
⊥ ∥2 and η = ∥w⊥∥2 =

√
η2

S + η2
Sc , and

also the following two functions:

fn(ν, η) = 1
n

n∑
i=1

(1 − ξiν|z(1)
i | − z

(2)
i η)2

+

f(ν, η) = Efn (ν, η) = EZ(1),Z(2)∼N (0,1)EξRV∼P(·|Z(1))(1 − ξRVν|Z(1)| − Z(2)η)2
+. (57)

In this section we show three lower bounds for fn of increasing tightness. First, we show a lower bound by
a quadratic form in ν and η, after that we bound fn by a sum of a quadratic form and a constant, and the
last bound is based on the uniform convergence of fn to f which we prove at the end of this subsection.
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Lower bounding fn by a quadratic form

We show the following lemma.
Lemma 6. There exist universal positive constants cν , cη only depending on Pσ and c such that for any ν, η
we have that:

fn(ν, η) ≥ cνν
2 + cηη

2

with probability at least 1 − exp (−cn) over the draws of z(1), z(2), ξ.

Proof. We can assume that ν ≥ 0 since the other cases follow exactly from the same argument. First,
we show an auxiliary statement which we use later in the proof. Namely, we claim that there exists some
positive constant c1 such that for all z ∈ [z1, z2], Pσ (ξ = −1; z) > c1 for some z1, z2 ∈ R and z1 ̸= z2. Let us
prove this statement by contradiction and assume that there exists no z ∈ [z1, z2] that satisfies the previous
equation. Then, for almost any z ∼ N (0, 1), we have Pσ(ξ; z) = +1 and hence the minimum of the function
f(ν, η) = Efn(ν, η) is obtained for ν = ∞. However, this is in contradiction with Assumption 1 in Section
3.2. Hence there exists some z for which P (ξ = −1; z) > c1. By the assumption on Pσ in Section 3.2 we
assume piecewise continuity of z → Pσ(ξ = −1; z) and hence there exists some interval [z−δ, z+δ] =: [z1, z2]
in which the given probability is bounded away from zero.

We can assume without loss of generality that this interval does not contain zero, since in that case we can
always define a new interval of the form [ϵ, z2] or [z1,−ϵ] for ϵ > 0 small enough, which does not contain
zero. Let us define z̃ = min{|z1|, |z2|}.

We can now bound fn(ν, η) as follows:

fn(ν, η) = 1
n

n∑
i=1

(1 − ξiν|z(1)
i | − z

(2)
i η)2

+

≥ 1
n

n∑
i=1

1{ξi = −1, z(1)
i ∈ [z1, z2], z(2)

i < −c2}(1 − ξiν|z(1)
i | − z

(2)
i η)2

+

≥ (1 + z̃ν + c2η)2 1
n

n∑
i=1

1[ξi = −1, zi(0) ∈ [z1, z2], zi(1) < −c2]

From Section 4.2 we have that Z(2) is independent of ξRV and Z(1). Hence:

P(ξRV = −1, Z(1) ∈ [z1, z2], Z(2) < −c2)

= P(ξRV = −1|Z(1) ∈ [z1, z2])P(Z(1) ∈ [z1, z2])P(Z(2) < −c2) ≥ c1

(
Φ∁(z1) − Φ∁(z2)

)
Φ∁(c2) ≥ c

for some positive universal constant c. Now using concentration of i.i.d. Bernoulli random variables we
obtain:

fn(ν, η) ≥ (1 + z̃ν + c2η)2 c

2 ≳ ν2 + η2

with probability at least 1 − exp (−cn).

Lower bounding fn by a quadratic form with constant

Recall that △ν = ν − νf . We show the following lemma.
Lemma 7. Let Bν , Bη > 0 be universal positive constants. Then, there exist positive constants c̃ν , c̃η > 0
and c1, c2, c3 > 0 only depending on Pσ, such that for any ϵ ≥ c1√

n
and any ν2 ≤ B2

ν , η ≤ Bη we have that:

fn(ν, η) ≥ ζf + c̃ν (△ν)2 + c̃ηη
2 − ϵ

with probability at least 1 − exp
(
−c2nϵ

2)− exp
(

−c3
nϵ

logn

)
over the draws of z(1), z(2), ξ.
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Proof. First note that from the uniform convergence result in Proposition 10 we have that f(ν, η) ≥ fn(ν, η)−
ϵ, with f from Equation (57), with high probability. Thus, it is sufficient to study f . Clearly, by the convexity
of f we have that f ≥ ζf with ζf = f(νf , 0) where we use the simple fact that (νf , 0) is the global minimizer
of f , which follows from the assumption on Pσ in Section 3.2. Furthermore, it is not difficult to check that
for for any ν, η, ∇2f(ν, η) ≻ 0 and therefore, f is strictly convex on every compact set. Hence, the proof
follows.

Uniform convergence of fn to f

Recall that Z(1), Z(2) ∼ N (0, 1) are independent Gaussian random variables and ξRV a random variable with
ξRV|Z(1) ∼ Pσ(.;Z(1)). Using notation introduced in Section A.2 with random variable X = (Z(1), Z(2), ξRV),
and Gσ = {gν,η | |ν| ≤ Bν , η ≤ Bη}, we note that

Pgν,η = Egν,η(Z(1), Z(2), ξRV) = f(ν, η) and Pngν,η = fn(ν, η).

We show the following result:
Proposition 10. There exist positive universal constants c1, c2, c3 > 0 such that

P
(

∥Pn − P∥Gσ
≤ c1√

n
+ ϵ

)
≥ 1 − exp

(
−c2nϵ

2)− exp
(

−c3
nϵ

logn

)
Proof. The proof of the proposition is based on the application of Theorem 3 and follows exactly the same
steps as proof of Proposition 9. In order to apply Theorem 3 we need to upper bound three terms - ψGσ

, σ2
Gσ

and Rn(Gσ). Similarly as in proof of Proposition 9 we split proof into three steps:

Step 1: Bounding ψGσ Recall the definition of ψGσ from Theorem 3:

ψGσ
= inf{λ > 0 : E[exp( 1

λ
max
i

sup
ν,η

1
n

|gν,η(z(1)
i , z

(2)
i , ξi) − E[gν,η]| − 1]) ≤ 1}

Since |ν|, η are bounded by constants, we have that

E[gν,η] = E[(1 − ξRVν|Z(1)| − Z(2)η)2
+] ≤ c(1 +B2

ν +B2
η) ≤ c2 (58)

for some positive universal constants c2 that may depend on Bν , Bη. Furthermore, we have:

(1 − ξiν|z(1)
i | − z

(2)
i η)2

+ ≤ c(1 + (B2
ν +B2

η)z2
max) ≤ c1z

2
max (59)

where zmax = max1≤i≤2n{|z(1)
i |, |z(2)

i |}. Similarly to inequality (51), we apply the triangle inequality and
bound the two terms using Equations (58) and (59) to obtain:

E
[

exp
( 1
λ

max
i

sup
ν,η

1
n

∣∣∣(1 − ξiν|z(1)
i | − z

(2)
i η)2

+−E[(1 − ξRVν|Z(1)| − Z(2)η)2
+]
∣∣∣)]

≤ E
[
exp

( c1

nλ
z2

max

)]
exp

( c2

nλ

)
Thus we obtain that ψGσ

≤ inf{λ > 0 : E[exp( c1
nλz

2
max) exp( c2

nλ )−1] ≤ 1}, which is similar to expression (51)
in the proof of Proposition 9. Hence following the same argument we conclude that ψGσ ≤ cλ

logn
n for some

universal constant cλ > 0.

Step 2: Bounding Rn(Gσ) The upper bound on the Rademacher complexity is derived as follows. First
use the fact that (·)+ is 1-Lipschitz to obtain:

Rn(Gσ) = E

[
sup

gν,η∈Gσ

∣∣∣∣∣ 1n
n∑
i=1

ϵigν,η(z(1)
i , z

(2)
i , ξi)

∣∣∣∣∣
]

≤ 2E
[

sup
|ν|≤Bν ,η≤Bη

∣∣∣∣∣ 1n
n∑
i=1

ϵi(1 − ξiν|z(1)
i | − z

(2)
i η)2

∣∣∣∣∣
]
, (60)
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then expand quadratic form and apply triangle inequality for every term to obtain that (60) is upper bounded
by:

2E
[∣∣∣∣∣ 1n

n∑
i=1

ϵi

∣∣∣∣∣
]

+ 2E
[

sup
|ν|≤Bν ,η≤Bη

∣∣∣∣∣ 1n
n∑
i=1

ϵi2ξiν|z(1)
i |z(2)

i η)
∣∣∣∣∣
]

+2E
[

sup
η≤Bη

∣∣∣∣∣ 1n
n∑
i=1

ϵi(−2z(2)
i η)

∣∣∣∣∣
]

+ 2E
[

sup
η≤Bη

∣∣∣∣∣ 1n
n∑
i=1

ϵi(z(2)
i )2η2

∣∣∣∣∣
]

+2E
[

sup
|ν|≤Bν

∣∣∣∣∣ 1n
n∑
i=1

ϵi(−2ξiν|z(1)
i |)

∣∣∣∣∣
]

+ 2E
[

sup
|ν|≤Bν

∣∣∣∣∣ 1n
n∑
i=1

ϵiν
2(z(1)

i )2

∣∣∣∣∣
]

Finally, since sums above do not depend on ν and η any more, we can use standard concentration results
for sub-exponential random variables to obtain that Rn(Gσ) ≲ 1√

n
.

Step 3: Proof of the statement Similarly to Equation (58), we can bound the variance straightforwardly
as follows:

σ2
Gσ

≤ sup
gν,η∈Gσ

E
[
g2
ν,η

]
≤ cσGσ

(
1 +B4

ν +B4
η

)
for some positive universal constant cσGσ

> 0.

Combining all derived bounds and using that E ∥Pn − P∥Gσ
≤ 2Rn(Gσ) we obtain from Theorem 3:

P
(
∥Pn − P∥Gσ

≥ 2(1 + t)RGσ
+ ϵ
)

≤ exp
(
−c2nϵ

2)+ 3 exp
(

−c3
nϵ

logn

)
with c−1

2 = 2(1 + δ)cσGσ

(
1 +B4

ν +B4
η

)
and c−1

3 = Ccλ, which concludes the proof.

D.4 Additional lemmas

Lemma 8. The function (ν, η) 7→ EZ(1),Z(2)∼N (0,1)(1 − ν|Z(1)| − Z(2)η)2
+ is an infinitely differentiable

function. Furthermore, under Assumption 1 from Section 2, the function (ν, η) 7→ EZ(1),Z(2)∼N (0,1)
EξRV∼P(·|Z(1))(1 − ξRVν|Z(1)| − Z(2)η)2

+ is also an infinitely differentiable function.

Proof. Note that the conditional expectation of the first function is given by:
EZ(2)|Z(1)=z(1) [(1 − ν|z(1)| − ηZ(2))2

+]

=
∫ 1

η (1−ν|z(1)|)

−∞

1√
2π

exp
(

−1
2(z(2))2

)
(1 − ν|z(1)| − ηz(2))2dz(2)

= η(1 − ν|z(1)|) exp
(

− 1
2η2 (1 − ν|z(1)|)2

)
+ ((1 − ν|z(1)|)2 + η2)Φ

(
1
η

(1 − ν|z(1)|)
)
,

which is an infinitely differentiable function in ν and η. Since the function given in the lemma is an
expectation of an infinitely differentiable function, it is also infinitely differentiable, which finishes the first
part of the proof.

Now, note that using Assumption 1 we can rewrite the second function as:

EZ(1)

[
P(ξRV = 1|Z(1))EZ(2)|Z(1) [(1 − ν|Z(1)| − ηZ(2))2

+]

+ P(ξRV = −1|Z(1))EZ(2)|Z(1) [(1 + ν|Z(1)| − ηZ(2))2
+]
]
.

But, similarly to above, we can show that EZ(2)|Z(1) [(1+ν|Z(1)|−ηZ(2))2
+] is infinitely differentiable, implying

that the whole function is also infinitely differentiable.
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