UI-S1: ADVANCING GUI AUTOMATION VIA SEMI-ONLINE REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Graphical User Interface (GUI) agents have demonstrated remarkable progress in automating complex user interface interactions through reinforcement learning (RL). However, current approaches face a fundamental dilemma: offline RL enables stable training on pre-collected trajectories, but struggles with multi-step task execution for lack of trajectory-level reward signals; online RL captures these signals through environment interaction, but suffers from sparse rewards and prohibitive deployment costs. To address it, we present **Semi-online Reinforcement Learning**, a novel paradigm that simulates online RL on offline trajectories. During each rollout process, we preserve the original model output within the multiturn dialogue, where a Patch Module adaptively recovers the divergence between rollout and expert trajectories. To capture long-term training signals, Semi-online RL introduces discounted future returns into the reward computation and optimizes the policy with weighted step-level and episode-level advantages. We further introduce Semi-Online Performance (SOP), a metric that aligns better with true online performance, serving as a practical and effective proxy for real-world evaluation. Experiments show that ours **UI-S1-7B** achieves SOTA performance among 7B open-source models across four dynamic benchmarks, with significant gains over the base model (e.g., +12.0% on AndroidWorld, +23.8% on AITW), demonstrating significant progress in bridging the gap between offline training efficiency and online multi-turn reasoning.

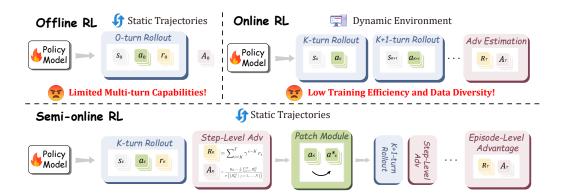


Figure 1: Illustrations of three RL approaches. Our proposed Semi-online RL simulates online RL on offline static trajectories, which enhances multi-turn agent capabilities more efficiently.

1 Introduction

Graphical User Interface (GUI) automation represents a critical frontier in developing AI agents that can interact with digital environments as humans do, driven by advances in multimodal large language models that enable complex reasoning and multi-step task execution (Shen et al., 2023; Hu et al., 2025; Zhang et al., 2025a; Wang et al., 2025a; Tang et al., 2025b; Liu et al., 2025a). This evolution has been accelerated by reinforcement learning (RL) techniques that allow agents to

improve through trial-and-error learning, guided by task completion signals (Bai et al., 2024; Lu et al., 2025b; Tang et al., 2025a; Ye et al., 2025; Du et al., 2025; Zheng et al., 2025).

Despite these advances, current reinforcement learning approaches fall into two distinct paradigms (Figure 1), each with critical limitations. Offline RL methods train on pre-collected trajectories with step-wise supervision (Lu et al., 2025b; Luo et al., 2025; Liu et al., 2025b). These approaches leverage large-scale datasets annotated by humans or language models (Li et al., 2024; Lu et al., 2024; Chai et al., 2024), achieving stable training and high single-step accuracy. However, agents trained with offline RL often fail catastrophically when deployed on real-world tasks that require multi-step reasoning and planning. This performance gap arises from two key issues: (1) a mismatch between the offline training and the online evaluation dynamics, particularly regarding whether the original model outputs are consistently recorded into the historical context; and (2) overfitting to local reward signals, leading to ignorance of future or global training objectives.

Online RL methods address this limitation by training agents through direct environment interaction (Lu et al., 2025a; Shi et al., 2025; Ye et al., 2025), learning to handle stochastic transitions with historical context across multiple steps. However, deploying online RL for GUI automation faces prohibitive practical barriers. First, rewards in real-world GUI tasks are typically sparse and delayed, which are often received only at task completion, resulting in inefficient training for complex tasks. Second, enhancing data diversity is inherently difficult: scaling to new environments or tasks requires extensive engineering effort to implement custom verification logic or simulation modules, which can be more labor-intensive than manually curating diverse, high-quality trajectories.

To simultaneously exploit the training efficiency of offline RL, and the long-term optimization target of online RL, we introduce Semi-online RL, a novel training paradigm designed for multi-turn interaction learning from pre-collected trajectories. In detail, Semi-online RL preserves original model output including reasoning contexts and historical action within the dialogue state, and then computes step-wise rewards from offline trajectories. Moreover, to improve the comprehensive utilization of trajectory data, a novel Patch Module adaptively recovers the by injecting expert action and synthetic reasoning content. To better capture the current influence on future execution, we further incorporate discounted future reward into step-level advantages and optimize the policy with weighted step-level and episode-level advantages. For efficient multi-turn evaluation, we propose semi-online metric SOP, which demonstrates a stronger correlation with online metrics AndroidWorld (R^2 =0.934) than traditional offline metrics like AndroidControl-High (R^2 =0.470) and GUI Odyssey (R²=0.398), as shown in Figure 2 and Figure 9. Experiments demonstrate that ours UI-S1-7B achieves state-of-the-art performance among all open-source 7B models on multi-turn benchmarks, in both dynamic setting (AndroidWorld, AITW, MiniWob++) and static setting (SOP). Notably, UI-S1-7B improves success rates by +12.0 on AndroidWorld and +23.8 on AITW-Gen compared to its base model (i.e., Qwen2.5VL-7B). In addition, it achieves slight gains on out-ofdomain single-turn benchmarks (e.g., +1.9 on SS-Pro and +7.1 on GUI Odyssey), validating that Semi-online RL doesn't sacrifice single-turn capabilities.

In summary, our contributions are as follows.

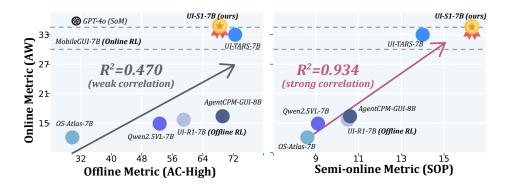


Figure 2: **Left**: Offline metric AC-High demonstrates weak correlation (R^2 =0.470) with online metric AndroidWorld (AW). **Right**: Our proposed semi-online metric SOP shows stronger correlation (R^2 =0.934), while ours UI-S1-7B achieves superior performance on both metrics.

- We introduce a training paradigm **Semi-online RL** that simulates online rollout dynamics using static trajectories. A Patch Module is designed to recover from action mismatches by injecting expert actions to maximize trajectory utilization.
- We incorporate discounted future returns and dual-level advantages into policy optimization, which balances step-level accuracy with trajectory-level task completion.
- We propose Semi-Online Performance (SOP), a metric that demonstrates strong correlation with real-world performance. Our model UI-S1-7B achieves state-of-the-art results among 7B models, with +12.0% on AndroidWorld and +23.8% on AITW.

2 RELATED WORK

GUI Agents with Reinforcement Learning Recent advances in multimodal models have catalyzed significant progress in GUI automation (Hu et al., 2025; Zhang et al., 2025a; Wang et al., 2025b; Liu et al., 2025a; Ye et al., 2025). Early approaches rely on supervised fine-tuning with large-scale annotated datasets. AGUVIS (Xu et al., 2024), OS-Atlas (Wu et al., 2024), UGround (Gou et al., 2025), SeeClick (Cheng et al., 2024), and UI-TARS (Qin et al., 2025) leverage millions of annotated GUI elements to achieve impressive single-step accuracy. While these methods demonstrate strong performance on static benchmarks, they suffer from limited generalization to out-of-distribution scenarios and lack the ability to adapt through interaction. Inspired by the success of DeepSeek-R1 (Guo et al., 2025), recent work has begun applying reinforcement learning to GUI automation. UI-R1 (Lu et al., 2025b), GUI-R1 (Luo et al., 2025), and InfiGUI-R1 (Liu et al., 2025b) adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) for training, demonstrating improved task completion rates. However, these offline RL methods optimize individual actions independently without maintaining sequential context, leading to poor multi-turn performance in real deployment.

Multi-Turn Reinforcement Learning Recognizing the limitations of single-step optimization, recent work has explored multi-turn reinforcement learning through online environment interaction (Feng et al., 2025; Wang et al., 2025b; Dong et al., 2025; Zhang et al., 2025b). ARPO (Lu et al., 2025a) proposes multi-turn policy optimization using GRPO with distributed rollouts and experience replay to handle sparse rewards. The method requires extensive parallel infrastructure and struggles with limited exploration diversity. MobileGUI-RL (Shi et al., 2025) extends GRPO to mobile environments with trajectory-aware advantages and curriculum learning through self-exploration, but faces similar challenges with reward sparsity and deployment costs. Our Semi-online RL addresses these limitations by simulating online dynamics using static trajectories, achieving context continuity without environment access while maintaining training efficiency.

3 Method

We propose Semi-online RL, a semi-online reinforcement learning framework for training GUI agents that bridges the gap between the stability of offline training and the challenge of online execution. Our approach consists of three key parts. (1) Semi-online rollout (Section 3.2) simulates online interaction dynamics using only offline trajectories; (2) Patch Module (Section 3.3) adaptively recovers the divergence between rollout and expert trajectories; (3) Semi-online Policy Optimization (Section 3.4) optimizes agents through a hierarchical reward structure and dual-level advantages.

3.1 PROBLEM FORMULATION

We formulate GUI automation as a multi-turn sequential decision-making problem. Given a high-level instruction I describing the task objective, the agent must interact with the graphical interface to complete the specified goal through a sequence of actions.

At each time step t, the agent observes the current state $S_t \in \mathcal{S}$ (typically a screenshot of the interface) and maintains a history of past interactions:

$$H_t = \{ (S_1, a_1, \mathcal{T}_1), (S_2, a_2, \mathcal{T}_2), \dots, (S_{t-1}, a_{t-1}, \mathcal{T}_{t-1}) \}$$
 (1)

163

164

165

166

167

168 169

170

171 172 173

174175176

177178179

181

182 183

185

187

188

189 190

191 192

193

194

195

196

197

199 200

201202

203

204

205206

207208

209210

211

212213

214

215

Figure 3: Illustrations of our proposed Semi-online RL, which consist of semi-online rollout (blue arrows) and dual-level advantage estimation (red arrows).

where a_i represents the executed action and \mathcal{T}_i captures the agent's reasoning process at step i. The agent then generates the next action and associated reasoning:

$$a_t, \mathcal{T}_t \sim \pi(\cdot \mid I, S_t, H_t)$$
 (2)

where π denotes the policy model. The environment transitions to the next state according to $S_{t+1} = \mathcal{E}(S_t, a_t)$, and the process continues until task completion or failure.

The fundamental challenge in training GUI agents lies in the mismatch between training and deployment conditions. Traditional offline RL trains on static trajectories where each step conditions on expert demonstrations:

$$H_t^{\text{static}} = \{ (S_1^*, a_1^*), \dots, (S_{t-1}^*, a_{t-1}^*) \}$$
(3)

In contrast, real-world execution requires the agent to condition on its own generated outputs:

$$H_t^{\text{online}} = \{ (S_1, a_1^{\pi}, \mathcal{T}_1^{\pi}), \dots, (S_{t-1}, a_{t-1}^{\pi}, \mathcal{T}_{t-1}^{\pi}) \}$$
 (4)

This mismatch causes statically-trained agents to fail catastrophically in multi-turn scenarios, as they never learn to process their own outputs or recover from errors. Online RL addresses this by training with actual environment interaction, but at prohibitive cost. Our Semi-online RL reconciles these approaches by simulating online dynamics using static data.

3.2 Semi-Online Rollout

Given an expert trajectory $\tau^* = \{(S_1^*, a_1^*), \dots, (S_T^*, a_T^*)\}$, we generate training rollouts that maintain policy-generated context while using expert demonstrations for guidance.

During training, we sample N rollouts from the policy model. The i-th candidate trajectory is

$$\tau^{i} = \{ (S_{1}^{i}, a_{1}^{i}), (S_{2}^{i}, a_{2}^{i}), \dots, (S_{T}^{i}, a_{T}^{i}) \}, \quad i = 1, \dots, N,$$

$$(5)$$

The agent maintains its own generated history, serving as subsequent step's condition:

$$H_t^i = \{ (S_1^i, a_1^i, \mathcal{T}_1^i), \dots, (S_{t-1}^i, a_{t-1}^i, \mathcal{T}_{t-1}^i) \}$$

$$(6)$$

At each step, the policy generates action a_t^i based on this self-generated history (from Equation 2). We then use the expert trajectory to approximate environment dynamics:

$$S_{t+1}^{i} = \begin{cases} S_{t+1}^{*} & \text{if Matches}(a_t^{i}, a_t^{*}) \\ \text{None} & \text{otherwise} \end{cases}$$
 (7)

When actions match expert demonstrations, we obtain the next state from the expert trajectory and continue with the model's generated history. However, when actions diverge, simple termination would prevent learning from the remaining trajectory steps, particularly resulting in inaccessible later steps which may contain valuable learning signals.

3.3 PATCH MODULE FOR TRAJECTORY RECOVERY

To improve the data utilization against early termination, we introduce a Patch Module \mathcal{P} to recover from action mismatches and continue learning from trajectory remainders. When a mismatch occurs at step t, the module replaces the incorrect action with the expert action a_t^* and generates synthetic reasoning $\mathcal{T}_t^{\text{patch}}$. The patched components are then integrated into the history, allowing the rollout to continue with $H_{t+1} = H_t \cup \{(S_t, a_t^*, \mathcal{T}_t^{\text{patch}})\}$ (as detailed in Algorithm B). We explore three patching strategies that vary in how synthetic reasoning is generated:

Thought-Free Patch simply injects the expert action without reasoning. This minimal intervention maintains trajectory continuity with an efficient and direct method.

Off-Policy Thought Patch uses an auxiliary model \mathcal{M}_0 (e.g., DeepSeek-R1 (Guo et al., 2025)) to generate high-quality reasoning. This ensures coherent thought processes but may introduce distribution shift between the auxiliary and policy models.

On-Policy Thought Patch uses the current policy model \mathcal{M} with expert action hints to generate reasoning. This maintains consistency with the policy's reasoning style while providing correction signals. The prompting strategy for synthetic thought generation is detailed in Appendix I.

3.4 SEMI-ONLINE POLICY OPTIMIZATION

Traditional offline RL optimizes only for immediate step-wise accuracy, resulting in multi-turn planning failure. We address this through a hierarchical reward structure and dual-level advantages that capture both immediate and future impacts, inspired by GiGPO (Feng et al., 2025).

For each step in the rollout, we compute a composite reward:

$$r_t = 0.1 \cdot r_{\text{format}} + 0.4 \cdot \mathbb{I}_{[r_{\text{format}}=1]} \cdot r_{\text{type}} + 0.5 \cdot \mathbb{I}_{[r_{\text{format}} \cdot r_{\text{type}}=1]} \cdot r_{\text{acc}}$$
(8)

where r_{format} , r_{type} , and r_{acc} evaluate response formatting, action type correctness, and exact match accuracy respectively.

To capture long-horizon dependencies for multi-turn tasks, we compute discounted future returns:

$$R_t^i = \sum_{k=t}^{t_{\text{end}}} \gamma^{k-t} r_k^i, \quad t_{\text{end}} := \min\left(\max\left\{k \ge t \mid \forall j \in [t, k], \, \operatorname{Matches}(a_j^i, a_j^*)\right\} + 1, \, T\right) \tag{9}$$

where $\gamma \in (0,1)$ weights the influence of future consequences on current decisions, $t_{\rm end}$ denotes the final step of the natural (w/o patch) trajectory segment where the predicted actions still match the expert, and T is the index of the last step in the full (w/ patch) trajectory.

Step-Level Advantage $A^S(a_t^i)$ captures local optimization signals by comparing returns across trajectories at the same timestep:

$$A^S(a_t^i) = \frac{R_t^i - \mu_t}{\sigma_t} \tag{10}$$

where μ_t and σ_t are computed across all rollouts at step t.

Episode-Level Advantage $A^E(\tau^i)$ captures global task completion signals:

$$A^{E}(\tau^{i}) = \frac{R(\tau^{i}) - \mu_{\tau}}{\sigma_{\tau}} \tag{11}$$

where $R(\tau^i)$ represents the total trajectory return and is computed as R_T^i .

We combine these into a unified advantage that assigns credit at both global and local scales:

$$A(a_t^i) = A^E(\tau^i) + \omega \cdot A^S(a_t^i) \tag{12}$$

Then our Semi-online RL optimizes the policy through the following objective:

$$\mathcal{J}(\theta) = \mathbb{E}_{\substack{\{\tau^i\}_{i=1}^N \mathcal{Z}_{\pi_{\theta_{\text{old}}}(\cdot|I)} \frac{1}{K} \sum_{i=1}^N \sum_{t=1}^N \sum_{k=1}^{|o_{i,t}|} \min\left(\rho(\theta)A(a_t^i), \text{clip}(\rho(\theta), 1 \pm \epsilon)A(a_t^i)\right) - \beta D_{KL}(\pi_{\theta}||\pi_{\text{ref}})} \quad (13)$$

$$\substack{\{o_{i,t}\}_{t=1}^T \sim \tau^i}$$

where the notation $\stackrel{\mathcal{P}}{\sim}$ indicates trajectories are generated through our Patch Module-enhanced rollout, K is the total number of tokens, $\rho(\theta) = \frac{\pi_{\theta}(o_{i,t,k}|I,o_{i,t,< k})}{\pi_{\theta_{\text{old}}}(o_{i,t,k}|I,o_{i,t,< k})}$ is the importance sampling ratio, and β controls the KL penalty strength.

To ensure effective learning with sufficient exploration, we enforce minimum advantage variance: $\sigma(\{A(a_t^i)\}) > \eta$, performing dynamic sampling until this diversity threshold is met. In our experiments, we set $\eta = 0.3$.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Baselines. We compare against three training paradigms using the same dataset: (1) SFT only: supervised fine-tuning on expert demonstrations, (2) Offline RL: traditional offline reinforcement learning with GRPO, conditioning on ground-truth history, and (3) Semi-Online RL only. Our final model combines SFT with Semi-Online RL in a two-stage training pipeline.

Multi-turn Benchmarks. To evaluate end-to-end task completion requiring sequential reasoning, we introduce **Semi-Online Performance** (**SOP**), an efficient proxy for online evaluation built on AndroidControl-Test (Li et al., 2024). SOP evaluates multi-turn execution by maintaining model-generated history throughout the task. Unlike AndroidControl-High which conditions on ground truth at each step, SOP continues with the model's own outputs, terminating only upon action mismatch. We report Progress (PG) as the average task completion ratio and Task Success Rate (TSR) as the proportion of fully completed tasks (as detailed in Appendix C). To demonstrate GUI agents' real-world performance, we also evaluate on dynamic environments including AndroidWorld (116 tasks) (Rawles et al., 2024), AITW-Gen (300 filtered tasks), AITW-Web (150 filtered tasks) (Bai et al., 2024; Shi et al., 2025), and MiniWob++ (92 tasks) (Liu et al., 2018).

Single-turn benchmarks Single-turn evaluates the grounding capability and GUI Understanding capability of the end-to-end GUI model in a single-turn conversation without historical context. We use ScreenSpot-V2 (Cheng et al., 2024) and ScreenSpot-Pro (Li et al., 2025) to evaluate the grounding ability. We also adopt AndroidControl-High (Li et al., 2024) and GUI Odyssey (Lu et al., 2024), for comprehensive GUI understanding evaluation under a high-level instruction. The action type match accuracy (TM), grounding accuracy rate (GR) and step success rate (SR) are reported.

Table 1: Results on Multi-turn Benchmarks. * denotes the result using prompt in Appendix H.

	SC	P	AITW-Gen	AITW-Web	MiniWob++	AW	
	PG	TSR	mi v den	1111111110	111111111111111111111111111111111111111		
Closed-source Models							
Gemini-Pro-1.5 (SoM) (Team et al., 2024)	-	_	_	_	_	22.8	
Claude Computer Use (Anthropic, 2024)	_	_	_	_	_	27.9	
GPT-40 (SoM) (Hurst et al., 2024)	-	-	-	-	-	34.5	
Open-source 7B/8B Models							
OS-Genesis-7B (Sun et al., 2024)	7.6	3.0	14.5	7.8	19.8	17.4	
OS-Atlas-7B (Wu et al., 2024)	14.3	8.6	45.6	17.9	35.2	12.1	
Qwen2.5VL-7B (Bai et al., 2025)	17.4	9.8	49.0	20.0	54.0	22.0	
AgentCPM-GUI-8B (Zhang et al., 2025c)	17.1	10.6	58.6	15.2	37.8	16.4	
MobileGUI-7B (Shi et al., 2025)	-	-	65.3	22.7	_	30.0	
UI-TARS-7B (Qin et al., 2025)	28.1	14.0	64.9	28.1	58.7	33.0	
Open-source 32B/72B Models							
Qwen2.5VL-32B (Bai et al., 2025)	17.8	10.2	42.7	24.7	70.1	31.5	
Aguvis-72B Xu et al. (2024)	-	-	-	-	<u>66.0</u>	26.1	
Ours 7B Models							
Qwen2.5VL-7B (Base)*	16.8	9.1	50.5	28.8	54.0	14.9	
w/ SFT	17.0	9.3	58.9	28.5	46.7	21.7	
w/ Offline RL	18.3	10.5	54.6	19.8	53.3	15.7	
w/ Semi-online RL only	<u>30.6</u>	<u>16.0</u>	<u>70.2</u>	<u>36.3</u>	57.6	30.4	
UI-S1-7B	32.4	16.3	74.3	40.2	60.9	<u>34.0</u>	
Δ (vs Base)	+15.6	+7.2	+23.8	+11.4	+6.9	+19.1	

324 325 326

328

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347 348 349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364 365

366

367

368

369

370371372

373

374 375

376

377

Table 2: Results on single-turn benchmarks.

AC-High **GUI Odyssey** SS-V2 SS-Pro TMGRTMSR GR SR Closed-source Models GPT-40 (Hurst et al., 2024) 18.3 0.8 66.3 0.0 20.8 34.3 0.0 3.3 Claude-computer-use (Anthropic, 2024) 83.0 17.1 63.7 0.0 12.5 60.9 0.0 3.1 55.1 82.9 62.9 59.1 71.0 53.9 SeeClick (Cheng et al., 2024) 52.4 1.1 Open-source Models OS-Atlas-4B (Wu et al., 2024) 71.9 3.7 49.0 49.5 22.8 49.6 34.6 20.3 Qwen2.5VL-3B (Bai et al., 2025) 80.9 28.7 47.8 46.5 38.9 37.4 26.5 26.7 UI-R1-3B (Lu et al., 2025b) 85.4 17.8 57.9 55.7 45.4 52.2 34.5 32.5 GUI-R1-3B (Luo et al., 2025) 85.0 28.6 58.0 56.2 46.6 54.8 41.5 41.3 OS-Genesis-7B (Sun et al., 2024) 65.9 44.4 11.7 3.6 OS-Atlas-7B (Wu et al., 2024) 84.1 18.9 57.4 54.9 29.8 60.4 39.7 27.0 54.2 22.9 Aguvis-7B (Xu et al., 2024) 81.8 65.6 26.7 13.5 65.6 43.6 GUI-R1-7B (Luo et al., 2025) 88.2 31.3 71.6 51.7 65.5 38.8 AgentCPM-GUI-8B (Zhang et al., 2025c) 77.7 90.8 75.0 69.2 35.7 80.5 90.1 UI-TARS-7B (Oin et al., 2025) 91.6 83.7 72.5 94.6 87.0 Ours 7B Models Qwen2.5VL-7B (Base) 89.0 28.7 62.2 72.5 52.7 67.4 56.3 52.4 74.3 56.1 w/ SFT 90.1 29.6 66.8 56.9 61.5 43.2 29.2 w/ Offline RL 48.7 88.4 69.7 68.2 59.0 62.5 50.2 w/ Semi-online RL only 89.7 30.2 77.6 71.3 66.8 74.5 58.9 56.3 UI-S1-7B 90.1 30.6 79.9 68.2 76.3 59.5 73.4 61.7 Δ (vs Base) +1.1+1.9+17.7+0.9+15.5+8.9+5.4 +7.1

4.2 Main Results

Multi-turn Performance. As shown in Table 1, UI-S1-7B establishes a new state-of-the-art among 7B/8B open-source models across all evaluated multi-turn benchmarks. Compared to Qwen2.5VL-7B, UI-S1-7B achieved substantial improvements: +19.1% on AndroidWorld and +23.8% on AITW-Gen. Remarkably, our UI-S1-7B outperforms strong baselines such as MobileGUI-7B and also delivers competitive results on AndroidWorld (34.0%) compared with significantly larger open-source models like Qwen2.5VL-32B (31.5%) and Aguvis-72B (26.1%), as well as closed-source models such as GPT-40 (34.5%). Despite its enhanced planning and reasoning for UI navigation, UI-S1-7B exhibits limitations in tasks requiring precise numerical computation and abstract logical reasoning, as detailed in Table 10.

The comparison between training paradigms reveals critical insights. While SFT improves over the base model, it shows slight gains on dynamic benchmarks (21.7% on AW). Traditional Offline RL actually degrades model performance (53.3% on MiniWob++) compared to the base model, demonstrating its limited capabilities on real-world generalization. Our approach (Semi-Online RL only) achieves 30.4% on AW, and Semi-Online RL (w/ SFT) reaches 34.0%, validating its generalization.

Single-turn Performance. Table 2 shows that Semi-Online RL maintains competitive single-turn performance while excelling at multi-turn tasks. Our model achieves consistent improvements over the base: +15.5% on AndroidControl-High SR and +7.1% on GUI Odyssey SR. However, offline RL models like AgentCPM-GUI-8B excel at single-turn tasks but struggle with multi-turn execution (16.4 on AW). This demonstrates that Semi-Online RL successfully bridges both capabilities rather than trading one for the other.

4.3 Analysis of Patch Module Strategies

We present the results of patch strategies across different data scales and thresholds in Table 3.

Impact of Patch Threshold. The patch threshold ϵ controls how many mismatches are recovered before termination. Results demonstrate that increasing ϵ consistently improves both SOP and AndroidWorld metrics. With 1000 training samples, SOP-Score increases from 22.3 (ϵ =0) to 25.7

Table 3: Performance comparison for different ϵ values with varying data sizes (200, 500, 1000 from left to right). Each table shows results for SOP and AW under three patching strategies.

ϵ		SOP		AW	ϵ		SOP		AW	ϵ		SOP		AW
	PG	TSR	Score			PG	TSR	Score			PG	TSR	Score	
Tho	ught-Fi	ree Patci	h		The	ought-Fi	ree			Thought-Free Patch				
0	26.3	14.3	20.3	21.0	0	28.0	14.8	21.4	27.2	0	29.6	15.0	22.3	30.0
1	27.9	15.1	21.5	24.0	1	28.5	15.7	22.1	29.1	1	32.4	16.3	24.4	34.0
2	29.1	16.5	22.8	25.4	2	31.6	16.5	24.1	31.5	2	32.6	16.8	24.7	33.9
∞	30.4	16.7	23.6	25.6	∞	33.8	17.0	25.4	30.8	∞	34.4	17.0	25.7	34.5
Off-	Policy '	Thought	Patch		Off	-Policy	Thought	Patch		Off-Policy Thought Patch				
0	26.3	14.3	20.3	21.0	0	28.0	14.8	21.4	27.2	0	29.6	15.0	22.3	30.0
1	24.0	12.9	18.5	19.7	1	28.5	12.5	20.5	25.0	1	29.5	12.0	20.8	24.6
2	28.1	14.9	21.5	25.0	2	30.0	13.5	21.8	26.0	2	31.6	12.6	22.1	25.3
∞	30.2	13.3	21.8	24.0	∞	30.5	14.0	22.3	24.0	∞	31.8	13.3	22.6	24.0
On-	Policy '	Thought	Patch		On-	On-Policy Thought Patch				On-Policy Thought Patch				
0	26.3	14.3	20.3	21.0	0	28.0	14.8	21.4	27.2	0	29.6	15.0	22.3	30.0
1	28.7	15.3	22.0	25.0	1	31.0	15.2	23.1	28.2	1	32.9	16.7	24.8	31.4
2	29.4	16.0	22.7	24.9	2	32.0	16.7	24.4	29.8	2	33.1	17.4	25.3	31.9
∞	30.3	17.1	23.7	26.9	∞	33.2	17.2	25.2	31.5	∞	34.4	17.8	26.1	32.8
27 25 27 27 28 29 29 20 20 21 20 21 20 21 20 21 21 22 22 23 24 25 26 27 27 28 29 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20					9.0 0.7 0.0 Actor Entropy 0.4 0.3	Though Though Though On-pol	th-Free $(\varepsilon=0)$ th-Free $(\varepsilon=1)$ th-Free $(\varepsilon=2)$ icy $(\varepsilon=1)$ icy $(\varepsilon=2)$	A Second		14 25,40 10 12 12	Ours (v	(= 0.5) (= 0.9)		0 0

ferent ϵ for Thought-free patch, with SOP-score reported.

Data Size

Figure 4: Data scaling for dif- Figure 5: Actor entropy during Figure 6: Comparison of Semipatch method and threshold.

training process with different online RL (with different γ) and Offline RL during training.

10 15 20 Step

 $(\epsilon = \infty)$ for Thought-Free Patch, representing a 15% relative improvement. This gain stems from increased exposure to later trajectory steps, as higher ϵ values enable learning from previously inaccessible trajectory segments. Figure 5 reveals that larger ϵ values maintain greater policy entropy during training, indicating more diverse exploration and preventing premature convergence. We select ϵ =1 as optimal, achieving 34.0% on AndroidWorld while minimizing computational overhead.

Comparison of Patch Methods. Three patching strategies exhibit distinct trade-offs between performance and efficiency (from Figure 10). On-Policy Thought Patch achieves the highest SOP scores (26.1 at $\epsilon = \infty$) by maintaining reasoning consistency with the policy model. Thought-Free Patch delivers competitive performance (25.7) with significantly lower computational cost, requiring no additional inference for synthetic reasoning generation. Off-Policy Thought Patch underperforms (22.6) due to distribution mismatch between the auxiliary model's reasoning style and the policy model's expectations. Based on these results and efficiency considerations, we adopt Thought-Free Patch with ϵ =1 for our final configuration.

4.4 Analysis of Training Dynamics

Scaling Law Performance. Figure 4 reveals the data scaling performance of Semi-Online RL across different patch configurations. The performance follows an exponential scaling law y= $A + B \cdot e^{C + kx}$, where the scaling coefficient k increases with ϵ from -1.13 to -0.73. This indicates that larger ϵ values not only improve absolute performance but also enhance data efficiency, enabling more effective learning from each training sample. The improved scaling stems from better utilization of trajectory data, as the Patch Module enables learning from steps that would otherwise be terminated after action mismatches.

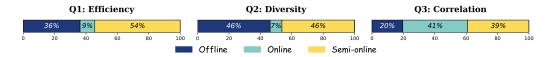


Figure 7: Comparison of offline (AC-High), online (AndroidWorld), and semi-online (SOP) methods across three dimensions: efficiency (inverse rollout time cost), diversity (number of tasks), and correlation (vs online performance).

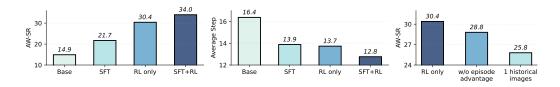


Figure 8: **Left**: Performance of different training paradigm combinations. **Middle**: Average steps to complete AndroidWorld tasks. **Right**: Ablations on episode advantages and historical images.

Semi-Online Performance Metric. Figure 7 validates SOP as an effective proxy for real-world evaluation. We compare three evaluation paradigms across efficiency (inverse time cost), diversity (number of tasks), and correlation with online performance. SOP achieves the highest correlation with AndroidWorld (R²=0.934), substantially outperforming AndroidControl-High (R²=0.470) while requiring minimal evaluation time. This strong correlation confirms that maintaining model-generated history during evaluation accurately captures the multi-turn dynamics. The metric fills a critical gap between fast but unrealistic offline evaluation and accurate but expensive online testing.

4.5 ABLATION STUDIES

Discount Factor Analysis. The results in Figure 6 demonstrate the importance of future reward discounting in Semi-Online RL. Our approach increases the task success rate during training steps while traditional Offline RL exhibits opposite behavior. This divergence highlights a fundamental difference: Semi-Online RL's historical context continuity enables effective multi-turn paradigms learning, while Offline RL ignores long-horizon training signals. Among different γ in our setting, performance peaks at γ =0.5. Setting γ =0 (no future rewards) yields the worst results, confirming that long-horizon optimization is essential for multi-turn tasks.

Training Paradigm. We also conduct ablation studies on training paradigms in Figure 8. Combining SFT with Semi-Online RL outperforms either method alone, achieving 34.0% on AndroidWorld compared to 30.4% for Semi-Online RL only and 21.7% for SFT only. The combined approach also reduces average task completion steps (middle panel), eliminating redundant actions with better planning. Additional ablations (right panel) confirm that both episode-level advantages and maintaining multiple historical images contribute to performance, validating our training setup. More ablations about the hyper-parameter and the reward design are shown in Appendix E. We also conduct experiments on 3B and 32B models to investigate the effect of model scale and demonstrate the generalization capability of our method (as shown in Table 6). Detailed task analysis and case study are shown in Appendix G.

5 CONCLUSION

In this work, we present Semi-online Reinforcement Learning (Semi-online RL), a novel training paradigm that bridges the advantages of offline and online reinforcement learning for GUI automation agents, enabling stable yet long-horizon-capable policy optimization. Experimental evaluation shows that our UI-S1-7B achieves state-of-the-art results among open-source 7B-scale models, with substantial improvements across both dynamic and static multi-turn benchmarks, without compromising single-turn performance. Our findings highlight the promise of Semi-online RL as an effective and scalable training framework for real-world GUI agents.

ETHICS STATEMENT

We have conducted our research in full accordance with the ICLR Code of Ethics. Our primary ethical focus was ensuring the privacy and integrity of the data used. All GUI datasets employed in our SFT and RL training stages are sourced exclusively from public, open-source benchmarks. These datasets are human-collected and specifically designed for research, and we have verified that they are free from any user privacy, personally identifiable information (PII), or confidential commercial data. While our work aims to advance positive applications like GUI automation, we acknowledge the potential for dual-use of this technology and encourage the community to use our open-source contributions responsibly. We are committed to transparency and the ethical development of AI.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our work, we provide comprehensive details on our models, data, and experimental setup. Our method is built upon the open-source Qwen2.5-VL model family, and we validate its effectiveness by fine-tuning models of 3B, 7B, and 32B parameters. The training process, including the SFT and RL stages, utilizes approximately 2,000 samples sourced from public, unmodified, open-source benchmarks. All experiments were conducted on a cluster of 32 A100 GPUs. The complete source code, including detailed setup instructions, training scripts, and documentation, is available in the supplementary materials to facilitate replication.

REFERENCES

- Anthropic. Developing a computer use model. https://www.anthropic.com/news/developing-computer-use, 2024.
- Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl: Training in-the-wild device-control agents with autonomous reinforcement learning. *Advances in Neural Information Processing Systems*, 37:12461–12495, 2024.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Shuai Ren, and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents. *arXiv* preprint arXiv:2407.17490, 2024.
- Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. *arXiv preprint arXiv:2401.10935*, 2024.
- Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization. *arXiv preprint arXiv:2507.19849*, 2025.
- Yong Du, Yuchen Yan, Fei Tang, Zhengxi Lu, Chang Zong, Weiming Lu, Shengpei Jiang, and Yongliang Shen. Test-time reinforcement learning for gui grounding via region consistency. *arXiv* preprint arXiv:2508.05615, 2025.
- Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm agent training. *arXiv preprint arXiv:2505.10978*, 2025.
- Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents. 2025. URL https://arxiv.org/abs/2410.05243.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

- Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao,
 Xiangxin Zhou, Ziyu Zhao, et al. Os agents: A survey on mllm-based agents for general computing devices use. arXiv preprint arXiv:2508.04482, 2025.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.
 - Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use. *arXiv* preprint arXiv:2504.07981, 2025.
 - Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu, and Oriana Riva. On the effects of data scale on computer control agents. *arXiv e-prints*, pp. arXiv-2406, 2024.
 - Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement learning on web interfaces using workflow-guided exploration. *arXiv preprint arXiv:1802.08802*, 2018.
 - Guangyi Liu, Pengxiang Zhao, Liang Liu, Yaxuan Guo, Han Xiao, Weifeng Lin, Yuxiang Chai, Yue Han, Shuai Ren, Hao Wang, et al. Llm-powered gui agents in phone automation: Surveying progress and prospects. *arXiv preprint arXiv:2504.19838*, 2025a.
 - Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang, and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative reasoners. *arXiv preprint arXiv:2504.14239*, 2025b.
 - Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo: End-to-end policy optimization for gui agents with experience replay. *arXiv preprint arXiv:2505.16282*, 2025a.
 - Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang, Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui navigation on mobile devices. *arXiv preprint arXiv:2406.08451*, 2024.
 - Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren, Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents by reinforcement learning. *arXiv preprint arXiv:2503.21620*, 2025b.
 - Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language action model for gui agents. *arXiv preprint arXiv:2504.10458*, 2025.
 - Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native agents. *arXiv preprint arXiv:2501.12326*, 2025.
 - Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic benchmarking environment for autonomous agents. *arXiv preprint arXiv:2405.14573*, 2024.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
 - Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt: Solving ai tasks with chatgpt and its friends in hugging face. *Advances in Neural Information Processing Systems*, 36:38154–38180, 2023.
 - Yucheng Shi, Wenhao Yu, Zaitang Li, Yonglin Wang, Hongming Zhang, Ninghao Liu, Haitao Mi, and Dong Yu. Mobilegui-rl: Advancing mobile gui agent through reinforcement learning in online environment. *arXiv preprint arXiv:2507.05720*, 2025.

- Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory construction via reverse task synthesis. *arXiv preprint arXiv:2412.19723*, 2024.
- Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang, Wenqi Zhang, Yongliang Shen, Weiming Lu, et al. Gui-g²: Gaussian reward modeling for gui grounding. *arXiv preprint arXiv:2507.15846*, 2025a.
- Fei Tang, Haolei Xu, Hang Zhang, Siqi Chen, Xingyu Wu, Yongliang Shen, Wenqi Zhang, Guiyang Hou, Zeqi Tan, Yuchen Yan, et al. A survey on (m) llm-based gui agents. *arXiv preprint arXiv:2504.13865*, 2025b.
- Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
- Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole Guo, Yiheng Xu, Chen Henry Wu, et al. Opencua: Open foundations for computer-use agents. *arXiv* preprint arXiv:2508.09123, 2025a.
- Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin, Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm agents via multi-turn reinforcement learning. *arXiv preprint arXiv:2504.20073*, 2025b.
- Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui agents. *arXiv* preprint arXiv:2410.23218, 2024.
- Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu, and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. *arXiv* preprint arXiv:2412.04454, 2024.
- Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Foundamental agents for gui automation. *arXiv preprint arXiv:2508.15144*, 2025.
- Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent: Multimodal agents as smartphone users. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems*, pp. 1–20, 2025a.
- Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou, Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning for llms: A survey. *arXiv preprint arXiv:2509.02547*, 2025b.
- Zhong Zhang, Yaxi Lu, Yikun Fu, Yupeng Huo, Shenzhi Yang, Yesai Wu, Han Si, Xin Cong, Haotian Chen, Yankai Lin, et al. Agentcpm-gui: Building mobile-use agents with reinforcement fine-tuning. *arXiv preprint arXiv:2506.01391*, 2025c.
- Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and Xing Yu. Deepeyes: Incentivizing" thinking with images" via reinforcement learning. *arXiv* preprint arXiv:2505.14362, 2025.

A NOTATION DEFINITION

Table 4: Notation Definition in Section 3.

Symbol	Description
$\overline{\mathcal{M}_0}$	Assist model used for thought patching
\mathcal{M}	Policy model
prompt	Prompt template for thought generation (as shown in Appendix I
a_t	Predicted action at step t
$a_t \\ a_t^*$	Expert action at step t
$\mathcal{T}_t \ \mathcal{F}$	Thought representation at step t
${\mathcal F}$	Patch function that outputs a (possibly corrected) action and though
I	High-level GUI instruction
S_t	Current observation (e.g., screenshot) at step t
H_t	Full history up to step t including (S, a, \mathcal{T}) tuples
$r_{ m format}$	Binary score (0 or 1) for correct output format
r_{type}	Binary score (0 or 1) for correct predicted action type
$r_{ m acc}$	Binary score (0 or 1) for exact action match with ground truth
r_t	Step-wise reward at time t
$\mathbb{I}_{[\cdot]}$	Indicator function that equals 1 only if condition is true
γ .	Discount factor for return computation $(0 < \gamma < 1)$
$egin{array}{c} \gamma \ R_t^i \ N \end{array}$	Discounted return of i -th trajectory starting from step t
N	Number of trajectories sampled in a batch
$A_{r}^{S}(\boldsymbol{a}_{t}^{i})$	Step-level advantage for action $oldsymbol{a}_t^i$
$A^E(oldsymbol{ au}^i)$	Episode-level advantage for trajectory τ^i
$R(\tau^{(j)})$	Episode return of trajectory j
t_{end}	Last step of a natural trajectory segment
T	Last step index of a trajectory
$\sigma(\cdot)$	Standard deviation function
ω	Weight balancing episode- and step-level advantages
$A(\boldsymbol{a}_t^i)$	Combined group-in-group advantage
K	Total number of tokens in the current batch
$o_{i,t}$	Model output sequence (tokens) at step t of trajectory i
$o_{i,t,k}$	k -th token of $o_{i,t}$
q	Conditioning input (e.g., prompt including state/action history)
$\rho(\theta)$	Importance sampling ratio between new and old policies
θ	Current policy parameters
$\theta_{ m old}$	Policy parameters before update (rollout policy)
π_{ref}	Reference policy for KL regularization
β	Coefficient for KL divergence penalty
η	Minimum standard deviation threshold for advantage diversity

B PATCH MODULE

702

703 704

705

706

707

708

709

710

711

712

713

714 715

716

717

718

719

720

721

722

723

724

725 726 727

728

729

730

731

732

733

734

739

```
Algorithm 1 Semi-Online Rollout with Patch Module
    Input:
        \pi_{\theta_{\mathrm{old}}} : initial policy model
        \tau^* = \{(S_1^*, a_1^*), \dots, (S_T^*, a_T^*)\}: offline trajectory
    Output: \tau = \{(\hat{S}_1, a_1), (\hat{S}_2, a_2), \dots\}: trajectory rollout
    Initialize H_1 \leftarrow \emptyset, \tau \leftarrow \emptyset, c \leftarrow 0
    S_1 \leftarrow S_1^*
    \mathbf{for}\ t=1\ \mathbf{to}\ T\ \mathbf{do}
         a_t, \mathcal{T}_t \sim \pi_{\theta_{\text{old}}}(\cdot \mid S_t, H_t)
                                                                                                            Sample output from Equation 2
          a_t^*, S_{t+1}^* \sim \tau^*
                                                                                                                                  ▶ Fetch ground truth
                 Patch Module:
                 if a_t = a_t^* then
                       (a_t^{\text{patch}}, \mathcal{T}_t^{\text{patch}}) \leftarrow a_t, \mathcal{T}_t
                                                                                          > Continue rollout (no patching needed)
                 else if c < \epsilon then a_t^{\text{patch}}, \mathcal{T}_t^{\text{patch}} \leftarrow \mathcal{F}(a_t, \mathcal{T}_t)
                                                                                         ▶ Apply patch function defind in Table 5
                       c \leftarrow c + 1
                 else
                       \tau \leftarrow \tau \cup (S_t, a_t)
                       a_t^{\text{patch}}, \mathcal{T}_t^{\text{patch}}, S_{t+1} \leftarrow \text{None}
                                                                              ▶ Terminate rollout due to max patches reached
                       break
                 end if
                if S_{t+1} = \text{None then}
                      break
                end if
                S_{t+1} \leftarrow S_{t+1}^*
                H_{t+1} \leftarrow H_t \cup \{(S_t, a_t^{\text{patch}}, \mathcal{T}_t^{\text{patch}})\}
                \tau \leftarrow \tau \cup (S_t, a_t^{\text{patch}})
                H_t \leftarrow H_{t+1}, S_t \leftarrow S_{t+1}
                                                                                                                              ▶ Prepare for next step
          end for
          Output: \tau
```

Table 5: Different thought patch methods. \mathcal{M}_0 denotes the auxiliary model and \mathcal{M} denotes the policy model.

Patch Method	Function Definition
Thought-Free Patch	$\mathcal{F}(a_t, \mathcal{T}_t) = (a_t^*, \emptyset)$
Off-Policy Thought Patch	$\mathcal{F}(a_t, \mathcal{T}_t) = (a_t^*, \mathcal{M}_0(I, a_t^*, S_t))$
On-Policy Thought Patch	$\mathcal{F}(a_t, \mathcal{T}_t) = (a_t^*, \mathcal{M}(I, a_t^*, H_t, S_t))$

C SOP

Definition Let N be the total number of tasks. For the i-th task, let s_i denote the number of successful steps, and t_i denote the total number of steps in its expert trajectory. We define the following metrics: $PG = \frac{1}{N} \sum_{i=1}^{N} \frac{s_i}{t_i}$, $TSR = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[s_i = t_i]$, and $Score = \frac{PG + TSR}{2}$. Here, $\mathbb{I}[\cdot]$ is the indicator function, which equals 1 if the condition inside the brackets is true and 0 otherwise.

SOP's alignment with online metrics We also compare other online metrics and offline metrics GUI Odyssey with SOP in Figure 9, which demonstrates SOP's strong correlation with online metrics.

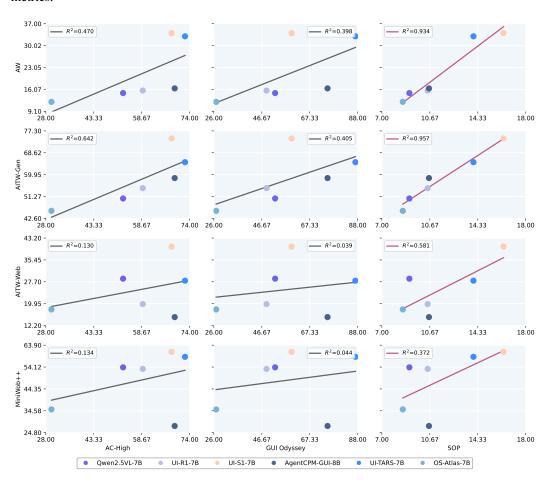


Figure 9: Overall comparisons of online metrics (AW, AITW-Gen, AITW-Web, MiniWob++) with offline metrics (AC-High, GUI Odyssey) and semi-online metric (SOP). **Left**: AC-High demonstrates weak correlation with online metrics. **Middle**: GUI Odyssey demonstrates weak correlation with online metrics. **Right**: Ours SOP demonstrates stronger correlation with online metrics. proposed SOP shows stronger correlation (R²=0.934).

For the linear regression analyses in Figure 2 and Figure 9, the coefficient of determination, denoted as R^2 , is defined as $R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$, where SS_{res} (Residual Sum of Squares) is $SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$, and SS_{tot} (Total Sum of Squares) is $SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2$. Here, n is the number of observations; y_i is the observed value of the dependent variable for the i-th data point; \hat{y}_i is the corresponding predicted value from the regression model; and \bar{y} is the mean of all observed values. The R^2 metric ranges from 0 to 1 and represents the proportion of variance in the dependent variable explained by the independent variable(s)—higher values indicate a better fit.

D MODEL SIZE SCALING

 To assess the impact of model scale, we evaluate our method on Qwen2.5-VL-3B and Qwen2.5-VL-32B. As shown in Table 6, Semi-online RL yields consistent performance gains across both model sizes, demonstrating its strong generalizability. Notably, the margin of improvement diminishes as the model scale increases.

Table 6: Performance comparison on different model sizes (3B, 7B, 32B) w/o SFT cold start.

Model	SOP_{PG}	SOP_{TSR}	$SOP_{\texttt{Score}}$	$AW_{\mathtt{SR}}$	AVG
QwenVL-2.5-3B	3.4	1.4	2.4	5.0	3.7
UI-S1-3B	14.7 _{332%↑}	6.5 _{364%↑}	10.6 _{342%↑}	13.1 _{162%↑}	11.9 _{222%↑}
QwenVL-2.5-7B	16.8	9.1	13.0	14.9	14.0
UI-S1-7B	30.6 _{82%↑}	16.0 _{76%↑}	23.3 _{79%↑}	30.4 _{104%↑}	26.9 _{92%↑}
QwenVL-2.5-32B	17.8	10.2	14.0	28.3	21.2
UI-S1-32B	35.9 _{102%↑}	18.9 _{85%↑}	27.4 _{96%↑}	38.9 _{37%↑}	33.2 _{57%↑}

E OTHER ABLATIONS

Hyper-parameter We conduct an ablation study to determine the optimal values for key hyper-parameters. As detailed in Table 7, we explore different settings for $\gamma \in \{0, 0.5\}$, $\omega \in \{0, 0.5, 1\}$, and $\eta \in \{0.1, 0.3, 0.5\}$. Based on the empirical results, we adopt $\gamma = 0.5$, $\omega = 1$, and $\eta = 0.3$ for the final training configuration.

Table 7: Ablation on γ (future reward discount), ω (advantage weight), η (DAPO threshold) with ϵ (patch threshold) fixed at 0, data size as 1000 and training epoch as 1. SOP is reported.

$\overline{\gamma}$	ω	η	SOP_{PG}	SOP_{TSR}	γ	ω	η	SOPPG	SOP_{TSR}
0.0	0.0	0.1	22.2	11.0	0.5	0.0	0.1	26.8	13.8
0.0	0.0	0.3	22.3	10.8	0.5	0.0	0.3	26.1	14.6
0.0	0.0	0.5	21.7	11.4	0.5	0.0	0.5	27.0	13.9
0.0	0.5	0.1	22.7	12.2	0.5	0.5	0.1	26.9	14.2
0.0	0.5	0.3	23.3	12.5	0.5	0.5	0.3	27.3	14.0
0.0	0.5	0.5	22.5	10.2	0.5	0.5	0.5	27.5	14.5
0.0	1.0	0.1	20.6	11.8	0.5	1.0	0.1	26.5	14.8
0.0	1.0	0.3	22.2	11.2	0.5	1.0	0.3	27.9	15.4
0.0	1.0	0.5	22.8	12.1	0.5	1.0	0.5	28.4	14.5

Future reward We conduct an ablation study to investigate the optimal choice for $t_{\rm end}$, as defined in Equation 9. As presented in Table 8, the results demonstrate that setting $t_{\rm end}$ to the final step of a natural trajectory segment yields superior performance compared to using the end of the entire trajectory.

Table 8: Ablation on $t_{\rm end}$ with AndroidWorld success rate reported.

$t_{ m end}$	$\epsilon = 0$	$\epsilon = 1$	$\epsilon = 2$	$\epsilon = \infty$
T	25.6	27.9	27.7	27.4
$\min(\max\{k \geq t \mid \forall j \in [t,k], \operatorname{Matches}(a_j^i,a_j^*)\} + 1, T)$	25.6	28.0	28.9	28.4

F TRAINING DETAILS

Training parameters Our UI-S1-7B is first Supervised Fine-Tuned (SFT) on Qwen2.5VL-7B, trained on data from AndroidControl-Train (Li et al., 2024) and Amex (Chai et al., 2024), then optimized using Semi-online RL with the thought-free patch mechanism. The training parameters are listed in Table 9.

Table 9: Key Training Hyper-parameters

Parameter	Value
train_batch_size	32
max_prompt_length	12288
γ (future reward discount)	0.5
ω (advantage weight)	1.0
ϵ (patch threshold)	1
η (DAPO threshold)	0.3
historical images	2
learning rate	1×10^{-6}
ppo_mini_batch_size	32
fixed_num_mini_batches	4
ppo_micro_batch_size_per_gpu	1
kl_loss_coef	1×10^{-4}
n_gpus_per_node	8
nnodes	4
total_epochs	5

Training hours We analyze the training overhead of different patch methods, measured in GPU hours, as depicted in Figure 10. Although the on-policy method yields a slight improvement in SOP performance, it incurs a significant 2.3-fold increase in training time compared to other approaches. To strike a balance between effectiveness and efficiency, we therefore select the thought-free patch method for our final model.

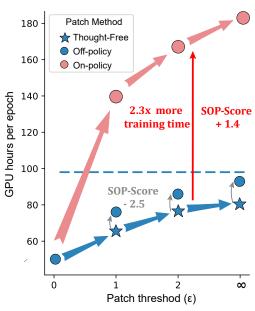


Figure 10: Training GPU hours of different patch methods and patch threshold.

G CASE STUDY

G.1 TASK ANALYSIS

As detailed in Table 10, our UI-S1-7B model demonstrates substantial performance gains over the Qwen2.5VL-7B baseline across a majority of task categories. The improvements are particularly pronounced in tasks requiring multi-step interactions and complex comprehension, such as multi-app (+1.00), search (+0.73 on Easy), requires_setup (+0.67 on Easy), and complex_ui_understanding. These results strongly suggest its enhanced planning and reasoning capabilities for navigating complex user interfaces. Nevertheless, challenges persist in domains that demand specialized skills. For instance, both models struggle with game_playing and math_counting tasks. We attribute this to the inherent limitations of small-scale vision-language models in handling precise numerical computation and abstract logical reasoning. We also showcase a failure case of math_counting in Section G.4. In this case, while UI-S1-7B was able to remember the numbers it encountered, it made an error at step 11, calculating 9*10*9*5*5 as 2250.

Tags	Q	wen2.5VL-	7B	UI-S1-7B			
1460	Easy	Medium	Hard	Easy	Medium	Hard	
complex_ui_understanding	0.00	0.00	0.00	0.17 _{+0.17}	$0.20_{+0.20}$	0.14+0.14	
data_edit	0.09	0.00	0.00	$0.64_{\pm 0.55}$	$0.14_{\pm 0.14}$	$0.00_{\pm0.00}$	
data_entry	0.00	0.11	0.00	$0.07_{\pm 0.07}$	$0.10_{-0.01}$	$0.00_{\pm 0.00}$	
game_playing	0.00	_	_	$0.00_{\pm 0.00}$	_	_	
information_retrieval	0.14	0.00	0.00	$0.43_{\pm 0.29}$	$0.11_{\pm 0.11}$	$0.00_{\pm 0.00}$	
math_counting	0.00	0.00	0.00	$0.00_{\pm0.00}$	$0.33_{\pm 0.33}$	$0.00_{\pm 0.00}$	
memorization	0.00	0.00	0.00	$0.00_{\pm 0.00}$	$1.00_{+1.00}$	$0.00_{\pm 0.00}$	
multi_app	0.00	0.00	0.00	$0.00_{\pm 0.00}$	$1.00_{+1.00}$	$0.00_{\pm 0.00}$	
parameterized	0.09	0.09	0.06	$0.41_{\pm 0.32}$	$0.18_{\pm 0.09}$	$0.11_{\pm 0.05}$	
repetition	0.00	0.00	0.20	$0.50_{\pm 0.50}$	$0.00_{\pm 0.00}$	$0.20_{\pm 0.00}$	
requires_setup	0.00	0.00	0.00	$0.67_{\pm 0.67}$	$0.00_{\pm 0.00}$	$0.00_{\pm 0.00}$	
screen_reading	0.08	0.00	0.11	$0.50_{\pm 0.42}$	$0.33_{\pm 0.33}$	$0.11_{\pm 0.00}$	
search	0.00	0.00	0.00	$0.73_{\pm 0.73}$	$0.20_{\pm 0.20}$	$0.00_{\pm 0.00}$	
transcription	0.00	0.00	0.00	$0.00_{\pm 0.00}$	$0.50_{\pm 0.50}$	$0.00_{\pm 0.00}$	
untagged	0.40	0.00	_	$0.80_{\pm 0.40}$	$0.00_{\pm 0.00}$	_	
verification	0.86	_	_	$1.00_{\pm 0.14}$	_	_	

Table 10: Mean AndroidWorld success rate comparison between Qwen2.5VL-7B and UI-S1-7B across tags and difficulty levels, with improvement indicated (positive, negative, no change).

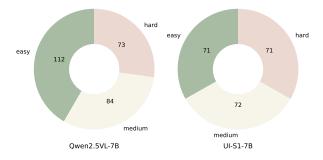


Figure 11: AndroidWorld task error count distribution grouped by difficulty.

We also display the error distribution. From the **difficulty** perspective (Figure 11), the most substantial improvement was observed in 'easy' tasks, where UI-S1-7B achieved a remarkable reduction of 41 errors compared to the base model. Following this, a moderate but significant performance gain was noted for 'medium' difficulty tasks. In stark contrast, the model's advantage diminished considerably for 'hard' tasks, showing only a marginal improvement with a reduction of two errors.

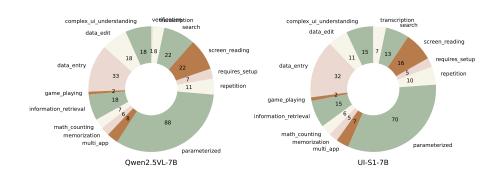


Figure 12: AndroidWorld task error count distribution grouped by task tag.

From a task classification perspective (Figure 12), while the proportional distribution of errors across different task categories remained largely consistent between the two models, UI-S1-7B demonstrated marked advancements in several key functional areas, such as scree_reading, search, transcription, data_edit, and parameterized.

G.2 CASE COMPARISON

We showcase a complex cross-application task requiring information retention across multiple steps: creating a file in Markor with transaction details from an image viewed in Simple Gallery (as illustrated in Figure 13). The base model and Offline RL model exhibit action-thought inconsistency. For example, offline RL terminate prematurely after planning to navigate to the next app, likely due to overfitting to local rewards without considering future objectives. The SFT model loses critical information and executes redundant actions like attempting to create a file that already exists. In contrast, our model successfully records the critical information throughout the 12-step sequence, correctly recording "2023-03-23, Monitor Stand, \$33.22" in CSV format. This demonstrates its effectiveness in learning robust multi-turn behaviors with consistent reasoning-action alignment. Additional case studies are provided in Appendix G.3 and failure analysis in Appendix G.4.



Figure 13: A cross-app and memorable task case in AndroidWorld. The instruction is "Create a file in Markor, called receipt.md with the transactions from the receipt.png. Use Simple Gallery to view the receipt. Please enter transactions in csv format including the header 'Date, Item, Amount'."

G.3 MORE CASES

Figure 14: A successful task case encountering sign in notes in AITW-Gen. The instruction is "How do I get to the nearest Lowe's?".

Figure 15: A successful task case in AITW-Gen. The instruction is "Set an alarm for 6pm".

Figure 16: A successful task case in AndroidWorld. The instruction is "Delete the following recipes from Broccoli app: Zucchini Noodles with Pesto, Garlic Butter Shrimp, Lentil Soup."

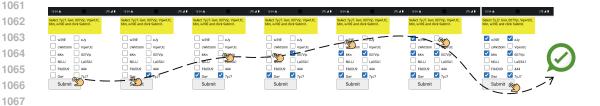


Figure 17: A successful task case in MiniWob++. The instruction is "Follow the instructions shown on the top of the screen: Select 7yJ7, Gwr, 007Vjc, VqwrUC, bKn, w39E and click Submit."

Figure 18: A successful task case in **MiniWob++**: "Follow the instructions shown on the top of the screen: Enter the username dolores and the password dOBe into the text fields and press login.".

G.4 BAD CASE

Figure 19: A failed task case in **AndroidWorld**. The instruction is "Open the file task.html in Downloads in the file manager; when prompted open it with Chrome. Then click the button 5 times, remember the numbers displayed, and enter their product in the form.".

H PROMPT FOR TRAINING AND INFERENCE

1136 1137 System prompt:

1134

1135

1138

1139

1140

1141

11421143

1144

1145

1146

1147

1148

1149

1150

1152

1153

1154

1155

1160

1161

1162

1163

1164

1165 1166

1167

1168 1169

1170

1171

1172

1173

1174

1175

1176

1177

117811791180

You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task.

Output Format

```
<think> ... </think> <action> ... </action>
```

Action Space

You can perform the following actions:

- key: Perform a key event on the mobile device using adb's 'keyevent' syntax.
- click: Click the point on the screen with specified (x, y) coordinates.
- long_press: Press the point on the screen with specified (x, y) coordinates for a specified number of seconds.
- swipe: Swipe from starting point with specified (x, y) coordinates to endpoint with specified (x2, y2) coordinates.
- type: Input the specified text into the activated input box.
- answer: Output the specified answer.
 - system_button: Press the specified system button: Back, Home, Menu, or Enter.
 - open: Open an application on the device specified by text.
 - wait: Wait for a specified number of seconds for changes to occur.
 - terminate: Terminate the current task and report its completion status: success or failure.

The arguments you can use are:

- coordinate: (x, y): The x and y pixels coordinates from the left and top edges.
- coordinate2: (x, y): The x and y pixels coordinates from the left and top edges for the endpoint of a swipe.
 - text: Text input required by actions like 'key', 'type', 'answer', and 'open'.
 - time: The time in seconds required by actions like 'long_press' and 'wait'.
 - button: System buttons available for pressing: Back, Home, or Enter. Possible values: Back, Home, Menu, Enter.
 - status: The completion status of a terminated task. Possible values: success, failure.
 - Format your output as a JSON object with the selected action and its arguments at the same level.

Example Output

```
<think>...</think>
<action>{"action": "key", "text": "<value>"}
```

Note

- Planing the task and explain your reasoning step-by-step in 'think' part.
- Write your action in the 'action' part according to the action space.
- If the query asks a question, please answer the question through the answer action before terminating the process.
 - Swipe the screen to find the File Manager app if needed.

User prompt:

User Instruction: USER INSTRUCTION

Assistant prompt:

HISTORY RESPONSES
HISTORY IMAGES

1188 I PROMPT FOR THOUGHT GENERATION 1189 1190 **System prompt:** 1191 End-to-End Model Thought Integration 1192 **Integration Requirements** 1193 · Write the thought process from a global goal, the action history, thought history and 1194 screenshot history. 1195 1196 • The reasoning logic must satisfy: 1197 - Begin by reviewing the global task objective. 1198 - Inherit the context and decisions from historical steps. 1199 - Incorporate the manager's planning logic. - Derive actions that fully align with the operator's output. 1201 **Output Format** 1202 1203 <think> 1204 [A coherent reasoning process, reflecting task decomposition, environmental observation, and iterative decision-making] </think> 1206 1207 **Output Example** 1208 <think> 1209 The current task requires checking the order status of 1210 DeepSeek. Access to the official website and locating the login 1211 entry have been completed. Based on the page loading result, 1212 the login form is ready. Authentication information needs 1213 to be filled: the username has already been entered as "DeepSeek," and now the password must be entered. 1214 </think> 1215 1216 **Kev Design Notes** 1217 · Explicitly require the global task objective to ensure the end-to-end model always an-1218 chors to the core goal. 1219 • Enforce structured historical records to prevent information loss. Logic consistency mechanism. 1221 The thought process should naturally connect historical conclusions with the current manager's planning. 1223 1224 Transform the manager's planning into autonomous decisions phrased as "According to 1225 the requirements, determine..." 1226 Translate operator actions into imperative statements phrased as "Execute..." 1227 • Do not mention any coordinates in <think> ... </think>... 1228 Global Task Objective 1229 **USER INSTRUCTION** 1230 - If this isn't the target app for your operation, you can use open operation to navigate to the 1231 correct application. 1232 - You can use Next Action Hint to guide the think process, but within the think section, you must 1233 conceal the fact that hints were received. 1234 - Please integration the thought of current manager and operation into <think> ... </think> in 1235 English. 1236 **Assistant prompt:** 1237 **HISTORY RESPONSES HISTORY IMAGES** 1238 1239

J PROMPT FOR GPT-40 TO EVALUATE MINIWOB++ TASK

System prompt:

 You're an expert in evaluating whether the Screenshot successfully completes the Task.

Task: Open the settings. Q: What should I expect to see on the screenshot if I've opened the settings? A: I should expect to see I'm in the settings app. The screenshot shows the home screen of a mobile device, with various app icons displayed, including the settings app icon, but the settings app is not opened.

Status: failure Screenshot: SCREENSHOT

Task: Find hotels in Washington DC Q: What should I expect to see on the screenshot if I've searched for hotels in Washington, DC? A: I should expect to see I'm in a search results page for hotels in Washington, DC. The screenshot shows a Google search page with the search field populated with the query "hotels in washington dc" and a list of suggested searches related to hotels in Washington, DC, but it does not show any search results for hotels in Washington, DC. Status: failure Screenshot: Screenshot

Task: What's a good restaurant in Portland? Q: What should I expect to see on the screenshot if I've searched for a good restaurant in Portland? A: I should expect to see I'm in a search results page for a good restaurant in Portland. The screenshot shows a Google search page with a search input field for "good restaurant in portland" and a map results preview showing business locations near Portland, like "Li Pigeon", "Portland City Grill", and "Higgins".

Status: success Screenshot: SCREENSHOT

Task: What's on the menu at In-N-Out? Q: What should I expect to see on the screenshot if I've searched for the menu at In-N-Out? A: I should expect to see a menu page for In-N-Out, including product names, thumbnails and prices. The screenshot shows a Google search page with a search input field for "In-N-Out menu" and some page snippets of In-N-Out indicating potential menu items, but does not actually show the actual menu.

Status: failure Screenshot: SCREENSHOT

Task: What's the news in Suriname? Q: What should I expect to see on the screenshot if I've searched for the news in Suriname? A: I should expect to see some news in Suriname, such as someone did something or some accident happens in Suriname. The screenshot shows a Google search page with a search input field for "Suriname news today" and some page snippets indicating potential news items, but does not actually show the news.

Status: failure Screenshot: SCREENSHOT

Task: What's the weather like in Chicago? Q: What should I expect to see on the screenshot if I've searched for the weather in Chicago? A: I should expect to see some exact values like temperature, humidity, wind speed, and weather condition in Chicago. The screenshot shows a Google search page with a search input field for "weather in Chicago" and some page snippets indicating potential weather information. Although one page snippet contains some weather information, the information is not comprehensive enough to determine the weather in Chicago. Status: failure Screenshot: Screenshot

Task: Set an alarm for 6pm. Q: What should I expect to see on the screenshot if I've set an alarm for 6pm? A: I should expect to see some alarms including a 6pm alarm activated in the clock app. The screenshot shows an attempt to set an alarm for 6pm in the clock app, but the alarm is not set yet.

Status: failure Screenshot: SCREENSHOT

K THE USE OF LLM

In the preparation of this manuscript, we utilized large language models (LLMs) as a writing aid. Their use was strictly limited to grammar checking, syntax refinement, and language polishing to improve the clarity and readability of the text. We affirm that all intellectual contributions, including the core ideas, methodology, data analysis, and the substantive writing, are the original work of the authors. The authors retain full responsibility for the content and conclusions of this paper.