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ABSTRACT

Graphical User Interface (GUI) agents have demonstrated remarkable progress
in automating complex user interface interactions through reinforcement learn-
ing (RL). However, current approaches face a fundamental dilemma: offline RL
enables stable training on pre-collected trajectories, but struggles with multi-step
task execution for lack of trajectory-level reward signals; online RL captures these
signals through environment interaction, but suffers from sparse rewards and pro-
hibitive deployment costs. To address it, we present Semi-online Reinforcement
Learning, a novel paradigm that simulates online RL on offline trajectories. Dur-
ing each rollout process, we preserve the original model output within the multi-
turn dialogue, where a Patch Module adaptively recovers the divergence between
rollout and expert trajectories. To capture long-term training signals, Semi-online
RL introduces discounted future returns into the reward computation and opti-
mizes the policy with weighted step-level and episode-level advantages. We fur-
ther introduce Semi-Online Performance (SOP), a metric that aligns better with
true online performance, serving as a practical and effective proxy for real-world
evaluation. Experiments show that ours UI-S1-7B achieves SOTA performance
among 7B open-source models across four dynamic benchmarks, with significant
gains over the base model (e.g., +12.0% on AndroidWorld, +23.8% on AITW),
demonstrating significant progress in bridging the gap between offline training
efficiency and online multi-turn reasoning.
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Figure 1: Illustrations of three RL approaches. Our proposed Semi-online RL simulates online RL
on offline static trajectories, which enhances multi-turn agent capabilities more efficiently.

1 INTRODUCTION

Graphical User Interface (GUI) automation represents a critical frontier in developing AI agents
that can interact with digital environments as humans do, driven by advances in multimodal large
language models that enable complex reasoning and multi-step task execution (Shen et al., 2023;
Hu et al., 2025; Zhang et al., 2025a; Wang et al., 2025a; Tang et al., 2025b; Liu et al., 2025a).
This evolution has been accelerated by reinforcement learning (RL) techniques that allow agents to
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improve through trial-and-error learning, guided by task completion signals (Bai et al., 2024; Lu
et al., 2025b; Tang et al., 2025a; Ye et al., 2025; Du et al., 2025; Zheng et al., 2025).

Despite these advances, current reinforcement learning approaches fall into two distinct paradigms
(Figure 1), each with critical limitations. Offline RL methods train on pre-collected trajectories
with step-wise supervision (Lu et al., 2025b; Luo et al., 2025; Liu et al., 2025b). These approaches
leverage large-scale datasets annotated by humans or language models (Li et al., 2024; Lu et al.,
2024; Chai et al., 2024), achieving stable training and high single-step accuracy. However, agents
trained with offline RL often fail catastrophically when deployed on real-world tasks that require
multi-step reasoning and planning. This performance gap arises from two key issues: (1) a mismatch
between the offline training and the online evaluation dynamics, particularly regarding whether the
original model outputs are consistently recorded into the historical context; and (2) overfitting to
local reward signals, leading to ignorance of future or global training objectives.

Online RL methods address this limitation by training agents through direct environment interac-
tion (Lu et al., 2025a; Shi et al., 2025; Ye et al., 2025), learning to handle stochastic transitions with
historical context across multiple steps. However, deploying online RL for GUI automation faces
prohibitive practical barriers. First, rewards in real-world GUI tasks are typically sparse and de-
layed, which are often received only at task completion, resulting in inefficient training for complex
tasks. Second, enhancing data diversity is inherently difficult: scaling to new environments or tasks
requires extensive engineering effort to implement custom verification logic or simulation modules,
which can be more labor-intensive than manually curating diverse, high-quality trajectories.

To simultaneously exploit the training efficiency of offline RL, and the long-term optimization tar-
get of online RL, we introduce Semi-online RL, a novel training paradigm designed for multi-turn
interaction learning from pre-collected trajectories. In detail, Semi-online RL preserves original
model output including reasoning contexts and historical action within the dialogue state, and then
computes step-wise rewards from offline trajectories. Moreover, to improve the comprehensive
utilization of trajectory data, a novel Patch Module adaptively recovers the by injecting expert ac-
tion and synthetic reasoning content. To better capture the current influence on future execution,
we further incorporate discounted future reward into step-level advantages and optimize the pol-
icy with weighted step-level and episode-level advantages. For efficient multi-turn evaluation, we
propose semi-online metric SOP, which demonstrates a stronger correlation with online metrics An-
droidWorld (R2=0.934) than traditional offline metrics like AndroidControl-High (R2=0.470) and
GUI Odyssey (R2=0.398), as shown in Figure 2 and Figure 9. Experiments demonstrate that ours
UI-S1-7B achieves state-of-the-art performance among all open-source 7B models on multi-turn
benchmarks, in both dynamic setting (AndroidWorld, AITW, MiniWob++) and static setting (SOP).
Notably, UI-S1-7B improves success rates by +12.0 on AndroidWorld and +23.8 on AITW-Gen
compared to its base model (i.e., Qwen2.5VL-7B). In addition, it achieves slight gains on out-of-
domain single-turn benchmarks (e.g., +1.9 on SS-Pro and +7.1 on GUI Odyssey), validating that
Semi-online RL doesn’t sacrifice single-turn capabilities.

In summary, our contributions are as follows.
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(1) llustration of three RL Approaches
Figure 2: Left: Offline metric AC-High demonstrates weak correlation (R2=0.470) with online met-
ric AndroidWorld (AW). Right: Our proposed semi-online metric SOP shows stronger correlation
(R2=0.934), while ours UI-S1-7B achieves superior performance on both metrics.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We introduce a training paradigm Semi-online RL that simulates online rollout dynamics
using static trajectories. A Patch Module is designed to recover from action mismatches by
injecting expert actions to maximize trajectory utilization.

• We incorporate discounted future returns and dual-level advantages into policy optimiza-
tion, which balances step-level accuracy with trajectory-level task completion.

• We propose Semi-Online Performance (SOP), a metric that demonstrates strong correlation
with real-world performance. Our model UI-S1-7B achieves state-of-the-art results among
7B models, with +12.0% on AndroidWorld and +23.8% on AITW.

2 RELATED WORK

GUI Agents with Reinforcement Learning Recent advances in multimodal models have cat-
alyzed significant progress in GUI automation (Hu et al., 2025; Zhang et al., 2025a; Wang et al.,
2025a; Tang et al., 2025b; Liu et al., 2025a; Ye et al., 2025). Early approaches rely on supervised
fine-tuning with large-scale annotated datasets. AGUVIS (Xu et al., 2024), OS-Atlas (Wu et al.,
2024), UGround (Gou et al., 2025), SeeClick (Cheng et al., 2024), and UI-TARS (Qin et al., 2025)
leverage millions of annotated GUI elements to achieve impressive single-step accuracy. While these
methods demonstrate strong performance on static benchmarks, they suffer from limited generaliza-
tion to out-of-distribution scenarios and lack the ability to adapt through interaction. Inspired by the
success of DeepSeek-R1 (Guo et al., 2025), recent work has begun applying reinforcement learn-
ing to GUI automation. UI-R1 (Lu et al., 2025b), GUI-R1 (Luo et al., 2025), and InfiGUI-R1 (Liu
et al., 2025b) adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) for training,
demonstrating improved task completion rates. However, these offline RL methods optimize in-
dividual actions independently without maintaining sequential context, leading to poor multi-turn
performance in real deployment.

Multi-Turn Reinforcement Learning Recognizing the limitations of single-step optimization,
recent work has explored multi-turn reinforcement learning through online environment interac-
tion (Feng et al., 2025; Wang et al., 2025b; Dong et al., 2025; Zhang et al., 2025b). ARPO (Lu et al.,
2025a) proposes multi-turn policy optimization using GRPO with distributed rollouts and experience
replay to handle sparse rewards. The method requires extensive parallel infrastructure and struggles
with limited exploration diversity. MobileGUI-RL (Shi et al., 2025) extends GRPO to mobile en-
vironments with trajectory-aware advantages and curriculum learning through self-exploration, but
faces similar challenges with reward sparsity and deployment costs. Our Semi-online RL addresses
these limitations by simulating online dynamics using static trajectories, achieving context continu-
ity without environment access while maintaining training efficiency.

3 METHOD

We propose Semi-online RL, a semi-online reinforcement learning framework for training GUI
agents that bridges the gap between the stability of offline training and the challenge of online
execution. Our approach consists of three key parts. (1) Semi-online rollout (Section 3.2) simulates
online interaction dynamics using only offline trajectories; (2) Patch Module (Section 3.3) adaptively
recovers the divergence between rollout and expert trajectories; (3) Semi-online Policy Optimization
(Section 3.4) optimizes agents through a hierarchical reward structure and dual-level advantages.

3.1 PROBLEM FORMULATION

We formulate GUI automation as a multi-turn sequential decision-making problem. Given a high-
level instruction I describing the task objective, the agent must interact with the graphical interface
to complete the specified goal through a sequence of actions.

At each time step t, the agent observes the current state St ∈ S (typically a screenshot of the
interface) and maintains a history of past interactions:

Ht = {(S1, a1, T1), (S2, a2, T2), . . . , (St−1, at−1, Tt−1)} (1)

3
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Figure 3: Illustrations of our proposed Semi-online RL, which consist of semi-online rollout (blue
arrows) and dual-level advantage estimation (red arrows).

where ai represents the executed action and Ti captures the agent’s reasoning process at step i. The
agent then generates the next action and associated reasoning:

at, Tt ∼ π(· | I, St, Ht) (2)

where π denotes the policy model. The environment transitions to the next state according to St+1 =
E(St, at), and the process continues until task completion or failure.

The fundamental challenge in training GUI agents lies in the mismatch between training and de-
ployment conditions. Traditional offline RL trains on static trajectories where each step conditions
on expert demonstrations:

Hstatic
t = {(S∗

1 , a
∗
1), . . . , (S

∗
t−1, a

∗
t−1)} (3)

In contrast, real-world execution requires the agent to condition on its own generated outputs:

Honline
t = {(S1, a

π
1 , T π

1 ), . . . , (St−1, a
π
t−1, T π

t−1)} (4)

This mismatch causes statically-trained agents to fail catastrophically in multi-turn scenarios, as
they never learn to process their own outputs or recover from errors. Online RL addresses this by
training with actual environment interaction, but at prohibitive cost. Our Semi-online RL reconciles
these approaches by simulating online dynamics using static data.

3.2 SEMI-ONLINE ROLLOUT

Given an expert trajectory τ∗ = {(S∗
1 , a

∗
1), . . . , (S

∗
T , a

∗
T )}, we generate training rollouts that main-

tain policy-generated context while using expert demonstrations for guidance.

During training, we sample N rollouts from the policy model. The i-th candidate trajectory is

τ i = {(Si
1, a

i
1), (S

i
2, a

i
2), . . . , (S

i
T , a

i
T )}, i = 1, . . . , N, (5)

The agent maintains its own generated history, serving as subsequent step’s condition:

Hi
t = {(Si

1, a
i
1, T i

1 ), . . . , (S
i
t−1, a

i
t−1, T i

t−1)} (6)

At each step, the policy generates action ait based on this self-generated history (from Equation 2).
We then use the expert trajectory to approximate environment dynamics:

Si
t+1 =

{
S∗
t+1 if Matches(ait, a

∗
t )

None otherwise
(7)

When actions match expert demonstrations, we obtain the next state from the expert trajectory and
continue with the model’s generated history. However, when actions diverge, simple termination
would prevent learning from the remaining trajectory steps, particularly resulting in inaccessible
later steps which may contain valuable learning signals.

4
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3.3 PATCH MODULE FOR TRAJECTORY RECOVERY

To improve the data utilization against early termination, we introduce a Patch Module P to recover
from action mismatches and continue learning from trajectory remainders. When a mismatch occurs
at step t, the module replaces the incorrect action with the expert action a∗t and generates synthetic
reasoning T patch

t . The patched components are then integrated into the history, allowing the rollout
to continue with Ht+1 = Ht ∪ {(St, a

∗
t , T

patch
t )} (as detailed in Algorithm B). We explore three

patching strategies that vary in how synthetic reasoning is generated:

Thought-Free Patch simply injects the expert action without reasoning. This minimal interven-
tion maintains trajectory continuity with an efficient and direct method.

Off-Policy Thought Patch uses an auxiliary modelM0 (e.g., DeepSeek-R1 (Guo et al., 2025))
to generate high-quality reasoning. This ensures coherent thought processes but may introduce
distribution shift between the auxiliary and policy models.

On-Policy Thought Patch uses the current policy modelM with expert action hints to generate
reasoning. This maintains consistency with the policy’s reasoning style while providing correction
signals. The prompting strategy for synthetic thought generation is detailed in Appendix I.

3.4 SEMI-ONLINE POLICY OPTIMIZATION

Traditional offline RL optimizes only for immediate step-wise accuracy, resulting in multi-turn plan-
ning failure. We address this through a hierarchical reward structure and dual-level advantages that
capture both immediate and future impacts, inspired by GiGPO (Feng et al., 2025).

For each step in the rollout, we compute a composite reward:

rt = 0.1 · rformat + 0.4 · I[rformat=1] · rtype + 0.5 · I[rformat·rtype=1] · racc (8)

where rformat, rtype, and racc evaluate response formatting, action type correctness, and exact match
accuracy respectively.

To capture long-horizon dependencies for multi-turn tasks, we compute discounted future returns:

Ri
t =

tend∑
k=t

γk−trik, tend := min
(
max

{
k ≥ t

∣∣ ∀j ∈ [t, k], Matches(aij , a
∗
j )
}
+ 1, T

)
(9)

where γ ∈ (0, 1) weights the influence of future consequences on current decisions, tend denotes
the final step of the natural (w/o patch) trajectory segment where the predicted actions still match
the expert, and T is the index of the last step in the full (w/ patch) trajectory.

Step-Level Advantage AS(ait) captures local optimization signals by comparing returns across
trajectories at the same timestep:

AS(ait) =
Ri

t − µt

σt
(10)

where µt and σt are computed across all rollouts at step t.

Episode-Level Advantage AE(τ i) captures global task completion signals:

AE(τ i) =
R(τ i)− µτ

στ
(11)

where R(τ i) represents the total trajectory return and is computed as Ri
T .

We combine these into a unified advantage that assigns credit at both global and local scales:

A(ait) = AE(τ i) + ω ·AS(ait) (12)

Then our Semi-online RL optimizes the policy through the following objective:

J (θ) = E
{τ i}N

i=1
P∼πθold (·|I)

{oi,t}T
t=1∼τ i

1
K

∑N
i=1

∑T
t=1

∑|oi,t|
k=1 min

(
ρ(θ)A(ait), clip(ρ(θ), 1± ϵ)A(ait)

)
− βDKL(πθ||πref) (13)
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where the notation P∼ indicates trajectories are generated through our Patch Module-enhanced roll-
out, K is the total number of tokens, ρ(θ) =

πθ(oi,t,k|I,oi,t,<k)
πθold (oi,t,k|I,oi,t,<k)

is the importance sampling ratio,
and β controls the KL penalty strength.

To ensure effective learning with sufficient exploration, we enforce minimum advantage variance:
σ({A(ait)}) > η, performing dynamic sampling until this diversity threshold is met. In our experi-
ments, we set η = 0.3.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Baselines. We compare against three training paradigms using the same dataset: (1) SFT only:
supervised fine-tuning on expert demonstrations, (2) Offline RL: traditional offline reinforcement
learning with GRPO, conditioning on ground-truth history, and (3) Semi-Online RL only. Our final
model combines SFT with Semi-Online RL in a two-stage training pipeline.

Multi-turn Benchmarks. To evaluate end-to-end task completion requiring sequential reasoning,
we introduce Semi-Online Performance (SOP), an efficient proxy for online evaluation built on
AndroidControl-Test (Li et al., 2024). SOP evaluates multi-turn execution by maintaining model-
generated history throughout the task. Unlike AndroidControl-High which conditions on ground
truth at each step, SOP continues with the model’s own outputs, terminating only upon action mis-
match. We report Progress (PG) as the average task completion ratio and Task Success Rate (TSR)
as the proportion of fully completed tasks (as detailed in Appendix C). To demonstrate GUI agents’
real-world performance, we also evaluate on dynamic environments including AndroidWorld (116
tasks) (Rawles et al., 2024), AITW-Gen (300 filtered tasks), AITW-Web (150 filtered tasks) (Bai
et al., 2024; Shi et al., 2025), and MiniWob++ (92 tasks) (Liu et al., 2018).

Single-turn benchmarks Single-turn evaluates the grounding capability and GUI Understanding
capability of the end-to-end GUI model in a single-turn conversation without historical context.
We use ScreenSpot-V2 (Cheng et al., 2024) and ScreenSpot-Pro (Li et al., 2025) to evaluate the
grounding ability. We also adopt AndroidControl-High (Li et al., 2024) and GUI Odyssey (Lu et al.,
2024), for comprehensive GUI understanding evaluation under a high-level instruction. The action
type match accuracy (TM), grounding accuracy rate (GR) and step success rate (SR) are reported.

Table 1: Results on Multi-turn Benchmarks. * denotes the result using prompt in Appendix H.

SOP AITW-Gen AITW-Web MiniWob++ AW
PG TSR

Closed-source Models
Gemini-Pro-1.5 (SoM) (Team et al., 2024) – – – – – 22.8
Claude Computer Use (Anthropic, 2024) – – – – – 27.9
GPT-4o (SoM) (Hurst et al., 2024) – – – – – 34.5
Open-source 7B/8B Models
OS-Genesis-7B (Sun et al., 2024) 7.6 3.0 14.5 7.8 19.8 17.4
OS-Atlas-7B (Wu et al., 2024) 14.3 8.6 45.6 17.9 35.2 12.1
Qwen2.5VL-7B (Bai et al., 2025) 17.4 9.8 49.0 20.0 54.0 22.0
AgentCPM-GUI-8B (Zhang et al., 2025c) 17.1 10.6 58.6 15.2 37.8 16.4
MobileGUI-7B (Shi et al., 2025) – – 65.3 22.7 – 30.0
UI-TARS-7B (Qin et al., 2025) 28.1 14.0 64.9 28.1 58.7 33.0

Open-source 32B/72B Models
Qwen2.5VL-32B (Bai et al., 2025) 17.8 10.2 42.7 24.7 70.1 31.5
Aguvis-72B Xu et al. (2024) – – – – 66.0 26.1

Ours 7B Models
Qwen2.5VL-7B (Base)* 16.8 9.1 50.5 28.8 54.0 14.9

w/ SFT 17.0 9.3 58.9 28.5 46.7 21.7
w/ Offline RL 18.3 10.5 54.6 19.8 53.3 15.7
w/ Semi-online RL only 30.6 16.0 70.2 36.3 57.6 30.4

UI-S1-7B 32.4 16.3 74.3 40.2 60.9 34.0
∆ (vs Base) +15.6 +7.2 +23.8 +11.4 +6.9 +19.1
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Table 2: Results on single-turn benchmarks.

SS-V2 SS-Pro AC-High GUI Odyssey
TM GR SR TM GR SR

Closed-source Models
GPT-4o (Hurst et al., 2024) 18.3 0.8 66.3 0.0 20.8 34.3 0.0 3.3
Claude-computer-use (Anthropic, 2024) 83.0 17.1 63.7 0.0 12.5 60.9 0.0 3.1
SeeClick (Cheng et al., 2024) 55.1 1.1 82.9 62.9 59.1 71.0 52.4 53.9

Open-source Models
OS-Atlas-4B (Wu et al., 2024) 71.9 3.7 49.0 49.5 22.8 49.6 34.6 20.3
Qwen2.5VL-3B (Bai et al., 2025) 80.9 28.7 47.8 46.5 38.9 37.4 26.5 26.7
UI-R1-3B (Lu et al., 2025b) 85.4 17.8 57.9 55.7 45.4 52.2 34.5 32.5
GUI-R1-3B (Luo et al., 2025) 85.0 28.6 58.0 56.2 46.6 54.8 41.5 41.3
OS-Genesis-7B (Sun et al., 2024) – – 65.9 – 44.4 11.7 – 3.6
OS-Atlas-7B (Wu et al., 2024) 84.1 18.9 57.4 54.9 29.8 60.4 39.7 27.0
Aguvis-7B (Xu et al., 2024) 81.8 22.9 65.6 – 54.2 26.7 – 13.5
GUI-R1-7B (Luo et al., 2025) 88.2 31.3 71.6 65.6 51.7 65.5 43.6 38.8
AgentCPM-GUI-8B (Zhang et al., 2025c) – – 77.7 – 69.2 90.8 – 75.0
UI-TARS-7B (Qin et al., 2025) 91.6 35.7 83.7 80.5 72.5 94.6 90.1 87.0

Ours 7B Models
Qwen2.5VL-7B (Base) 89.0 28.7 62.2 72.5 52.7 67.4 56.3 52.4

w/ SFT 90.1 29.6 66.8 74.3 56.1 56.9 61.5 43.2
w/ Offline RL 88.4 29.2 69.7 68.2 59.0 62.5 50.2 48.7
w/ Semi-online RL only 89.7 30.2 77.6 71.3 66.8 74.5 58.9 56.3

UI-S1-7B 90.1 30.6 79.9 73.4 68.2 76.3 61.7 59.5
∆ (vs Base) +1.1 +1.9 +17.7 +0.9 +15.5 +8.9 +5.4 +7.1

4.2 MAIN RESULTS

Multi-turn Performance. As shown in Table 1, UI-S1-7B establishes a new state-of-the-
art among 7B/8B open-source models across all evaluated multi-turn benchmarks. Compared
to Qwen2.5VL-7B, UI-S1-7B achieved substantial improvements: +19.1% on AndroidWorld
and +23.8% on AITW-Gen. Remarkably, our UI-S1-7B outperforms strong baselines such as
MobileGUI-7B and also delivers competitive results on AndroidWorld (34.0%) compared with sig-
nificantly larger open-source models like Qwen2.5VL-32B (31.5%) and Aguvis-72B (26.1%), as
well as closed-source models such as GPT-4o (34.5%). Despite its enhanced planning and reasoning
for UI navigation, UI-S1-7B exhibits limitations in tasks requiring precise numerical computation
and abstract logical reasoning, as detailed in Table 10.

The comparison between training paradigms reveals critical insights. While SFT improves over the
base model, it shows slight gains on dynamic benchmarks (21.7% on AW). Traditional Offline RL
actually degrades model performance (53.3% on MiniWob++) compared to the base model, demon-
strating its limited capabilities on real-world generalization. Our approach (Semi-Online RL only)
achieves 30.4% on AW, and Semi-Online RL (w/ SFT) reaches 34.0%, validating its generalization.

Single-turn Performance. Table 2 shows that Semi-Online RL maintains competitive single-turn
performance while excelling at multi-turn tasks. Our model achieves consistent improvements over
the base: +15.5% on AndroidControl-High SR and +7.1% on GUI Odyssey SR. However, offline
RL models like AgentCPM-GUI-8B excel at single-turn tasks but struggle with multi-turn execution
(16.4 on AW). This demonstrates that Semi-Online RL successfully bridges both capabilities rather
than trading one for the other.

4.3 ANALYSIS OF PATCH MODULE STRATEGIES

We present the results of patch strategies across different data scales and thresholds in Table 3.

Impact of Patch Threshold. The patch threshold ϵ controls how many mismatches are recov-
ered before termination. Results demonstrate that increasing ϵ consistently improves both SOP and
AndroidWorld metrics. With 1000 training samples, SOP-Score increases from 22.3 (ϵ=0) to 25.7
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Table 3: Performance comparison for different ϵ values with varying data sizes (200, 500, 1000 from
left to right). Each table shows results for SOP and AW under three patching strategies.

ϵ
SOP AW

PG TSR Score
Thought-Free Patch
0 26.3 14.3 20.3 21.0
1 27.9 15.1 21.5 24.0
2 29.1 16.5 22.8 25.4
∞ 30.4 16.7 23.6 25.6
Off-Policy Thought Patch
0 26.3 14.3 20.3 21.0
1 24.0 12.9 18.5 19.7
2 28.1 14.9 21.5 25.0
∞ 30.2 13.3 21.8 24.0
On-Policy Thought Patch
0 26.3 14.3 20.3 21.0
1 28.7 15.3 22.0 25.0
2 29.4 16.0 22.7 24.9
∞ 30.3 17.1 23.7 26.9

ϵ
SOP AW

PG TSR Score
Thought-Free
0 28.0 14.8 21.4 27.2
1 28.5 15.7 22.1 29.1
2 31.6 16.5 24.1 31.5
∞ 33.8 17.0 25.4 30.8
Off-Policy Thought Patch
0 28.0 14.8 21.4 27.2
1 28.5 12.5 20.5 25.0
2 30.0 13.5 21.8 26.0
∞ 30.5 14.0 22.3 24.0
On-Policy Thought Patch
0 28.0 14.8 21.4 27.2
1 31.0 15.2 23.1 28.2
2 32.0 16.7 24.4 29.8
∞ 33.2 17.2 25.2 31.5

ϵ
SOP AW

PG TSR Score
Thought-Free Patch
0 29.6 15.0 22.3 30.0
1 32.4 16.3 24.4 34.0
2 32.6 16.8 24.7 33.9
∞ 34.4 17.0 25.7 34.5
Off-Policy Thought Patch
0 29.6 15.0 22.3 30.0
1 29.5 12.0 20.8 24.6
2 31.6 12.6 22.1 25.3
∞ 31.8 13.3 22.6 24.0
On-Policy Thought Patch
0 29.6 15.0 22.3 30.0
1 32.9 16.7 24.8 31.4
2 33.1 17.4 25.3 31.9
∞ 34.4 17.8 26.1 32.8
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(ϵ=∞) for Thought-Free Patch, representing a 15% relative improvement. This gain stems from
increased exposure to later trajectory steps, as higher ϵ values enable learning from previously in-
accessible trajectory segments. Figure 5 reveals that larger ϵ values maintain greater policy entropy
during training, indicating more diverse exploration and preventing premature convergence. We se-
lect ϵ=1 as optimal, achieving 34.0% on AndroidWorld while minimizing computational overhead.

Comparison of Patch Methods. Three patching strategies exhibit distinct trade-offs between per-
formance and efficiency (from Figure 10). On-Policy Thought Patch achieves the highest SOP scores
(26.1 at ϵ=∞) by maintaining reasoning consistency with the policy model. Thought-Free Patch
delivers competitive performance (25.7) with significantly lower computational cost, requiring no
additional inference for synthetic reasoning generation. Off-Policy Thought Patch underperforms
(22.6) due to distribution mismatch between the auxiliary model’s reasoning style and the policy
model’s expectations. Based on these results and efficiency considerations, we adopt Thought-Free
Patch with ϵ=1 for our final configuration.

4.4 ANALYSIS OF TRAINING DYNAMICS

Scaling Law Performance. Figure 4 reveals the data scaling performance of Semi-Online RL
across different patch configurations. The performance follows an exponential scaling law y =
A + B · eC+kx, where the scaling coefficient k increases with ϵ from −1.13 to −0.73. This indi-
cates that larger ϵ values not only improve absolute performance but also enhance data efficiency,
enabling more effective learning from each training sample. The improved scaling stems from better
utilization of trajectory data, as the Patch Module enables learning from steps that would otherwise
be terminated after action mismatches.
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Figure 7: Comparison of offline (AC-High), online (AndroidWorld), and semi-online (SOP) meth-
ods across three dimensions: efficiency (inverse rollout time cost), diversity (number of tasks), and
correlation (vs online performance).
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Figure 8: Left: Performance of different training paradigm combinations. Middle: Average steps
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Semi-Online Performance Metric. Figure 7 validates SOP as an effective proxy for real-world
evaluation. We compare three evaluation paradigms across efficiency (inverse time cost), diversity
(number of tasks), and correlation with online performance. SOP achieves the highest correla-
tion with AndroidWorld (R2=0.934), substantially outperforming AndroidControl-High (R2=0.470)
while requiring minimal evaluation time. This strong correlation confirms that maintaining model-
generated history during evaluation accurately captures the multi-turn dynamics. The metric fills a
critical gap between fast but unrealistic offline evaluation and accurate but expensive online testing.

4.5 ABLATION STUDIES

Discount Factor Analysis. The results in Figure 6 demonstrate the importance of future reward
discounting in Semi-Online RL. Our approach increases the task success rate during training steps
while traditional Offline RL exhibits opposite behavior. This divergence highlights a fundamental
difference: Semi-Online RL’s historical context continuity enables effective multi-turn paradigms
learning, while Offline RL ignores long-horizon training signals. Among different γ in our setting,
performance peaks at γ=0.5. Setting γ=0 (no future rewards) yields the worst results, confirming
that long-horizon optimization is essential for multi-turn tasks.

Training Paradigm. We also conduct ablation studies on training paradigms in Figure 8. Combin-
ing SFT with Semi-Online RL outperforms either method alone, achieving 34.0% on AndroidWorld
compared to 30.4% for Semi-Online RL only and 21.7% for SFT only. The combined approach also
reduces average task completion steps (middle panel), eliminating redundant actions with better
planning. Additional ablations (right panel) confirm that both episode-level advantages and main-
taining multiple historical images contribute to performance, validating our training setup. More
ablations about the hyper-parameter and the reward design are shown in Appendix E. We also con-
duct experiments on 3B and 32B models to investigate the effect of model scale and demonstrate the
generalization capability of our method (as shown in Table 6). Detailed task analysis and case study
are shown in Appendix G.

5 CONCLUSION

In this work, we present Semi-online Reinforcement Learning (Semi-online RL), a novel training
paradigm that bridges the advantages of offline and online reinforcement learning for GUI automa-
tion agents, enabling stable yet long-horizon-capable policy optimization. Experimental evaluation
shows that our UI-S1-7B achieves state-of-the-art results among open-source 7B-scale models, with
substantial improvements across both dynamic and static multi-turn benchmarks, without compro-
mising single-turn performance. Our findings highlight the promise of Semi-online RL as an effec-
tive and scalable training framework for real-world GUI agents.
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ETHICS STATEMENT

We have conducted our research in full accordance with the ICLR Code of Ethics. Our primary eth-
ical focus was ensuring the privacy and integrity of the data used. All GUI datasets employed in our
SFT and RL training stages are sourced exclusively from public, open-source benchmarks. These
datasets are human-collected and specifically designed for research, and we have verified that they
are free from any user privacy, personally identifiable information (PII), or confidential commercial
data. While our work aims to advance positive applications like GUI automation, we acknowledge
the potential for dual-use of this technology and encourage the community to use our open-source
contributions responsibly. We are committed to transparency and the ethical development of AI.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our work, we provide comprehensive details on our models, data,
and experimental setup. Our method is built upon the open-source Qwen2.5-VL model family,
and we validate its effectiveness by fine-tuning models of 3B, 7B, and 32B parameters. The train-
ing process, including the SFT and RL stages, utilizes approximately 2,000 samples sourced from
public, unmodified, open-source benchmarks. All experiments were conducted on a cluster of 32
A100 GPUs. The complete source code, including detailed setup instructions, training scripts, and
documentation, is available in the supplementary materials to facilitate replication.
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A NOTATION DEFINITION

Table 4: Notation Definition in Section 3.

Symbol Description
M0 Assist model used for thought patching
M Policy model
prompt Prompt template for thought generation (as shown in Appendix I
at Predicted action at step t
a∗t Expert action at step t
Tt Thought representation at step t
F Patch function that outputs a (possibly corrected) action and thought
I High-level GUI instruction
St Current observation (e.g., screenshot) at step t
Ht Full history up to step t including (S, a, T ) tuples
rformat Binary score (0 or 1) for correct output format
rtype Binary score (0 or 1) for correct predicted action type
racc Binary score (0 or 1) for exact action match with ground truth
rt Step-wise reward at time t
I[ · ] Indicator function that equals 1 only if condition is true
γ Discount factor for return computation (0 < γ < 1)
Ri

t Discounted return of i-th trajectory starting from step t
N Number of trajectories sampled in a batch
AS(ai

t) Step-level advantage for action ai
t

AE(τ i) Episode-level advantage for trajectory τ i

R(τ (j)) Episode return of trajectory j
tend Last step of a natural trajectory segment
T Last step index of a trajectory
σ(·) Standard deviation function
ω Weight balancing episode- and step-level advantages
A(ai

t) Combined group-in-group advantage
K Total number of tokens in the current batch
oi,t Model output sequence (tokens) at step t of trajectory i
oi,t,k k-th token of oi,t
q Conditioning input (e.g., prompt including state/action history)
ρ(θ) Importance sampling ratio between new and old policies
θ Current policy parameters
θold Policy parameters before update (rollout policy)
πref Reference policy for KL regularization
β Coefficient for KL divergence penalty
η Minimum standard deviation threshold for advantage diversity

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B PATCH MODULE

Algorithm 1 Semi-Online Rollout with Patch Module
Input:
πθold : initial policy model
τ∗ = {(S∗

1 , a
∗
1), . . . , (S

∗
T , a

∗
T )} : offline trajectory

Output: τ = {(S1, a1), (S2, a2), . . . } : trajectory rollout
Initialize H1 ← ∅, τ ← ∅, c← 0
S1 ← S∗

1
for t = 1 to T do

at, Tt ∼ πθold(· | St, Ht) ▷ Sample output from Equation 2
a∗t , S

∗
t+1 ∼ τ∗ ▷ Fetch ground truth

Patch Module:
if at = a∗t then

(apatch
t , T patch

t )← at, Tt ▷ Continue rollout (no patching needed)
else if c < ϵ then

apatch
t , T patch

t ← F(at, Tt) ▷ Apply patch function defind in Table 5
c← c+ 1

else
τ ← τ ∪ (St, at)

apatch
t , T patch

t , St+1 ← NONE ▷ Terminate rollout due to max patches reached
break

end if

if St+1 = NONE then
break

end if
St+1 ← S∗

t+1

Ht+1 ← Ht ∪ {(St, a
patch
t , T patch

t )}
τ ← τ ∪ (St, a

patch
t )

Ht ← Ht+1, St ← St+1 ▷ Prepare for next step
end for
Output: τ

Table 5: Different thought patch methods. M0 denotes the auxiliary model and M denotes the
policy model.

Patch Method Function Definition
Thought-Free Patch F(at, Tt) = (a∗t , ∅)
Off-Policy Thought Patch F(at, Tt) = (a∗t ,M0(I, a

∗
t , St))

On-Policy Thought Patch F(at, Tt) = (a∗t ,M(I, a∗t , Ht, St))
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C SOP

Definition Let N be the total number of tasks. For the i-th task, let si denote the number of
successful steps, and ti denote the total number of steps in its expert trajectory. We define the
following metrics: PG = 1

N

∑N
i=1

si
ti

, TSR = 1
N

∑N
i=1 I[si = ti], and Score = PG+TSR

2 . Here, I[·]
is the indicator function, which equals 1 if the condition inside the brackets is true and 0 otherwise.

SOP’s alignment with online metrics We also compare other online metrics and offline met-
rics GUI Odyssey with SOP in Figure 9, which demonstrates SOP’s strong correlation with online
metrics.
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Figure 9: Overall comparisons of online metrics (AW, AITW-Gen, AITW-Web, MiniWob++) with
offline metrics (AC-High, GUI Odyssey) and semi-online metric (SOP). Left: AC-High demon-
strates weak correlation with online metrics. Middle: GUI Odyssey demonstrates weak correlation
with online metrics. Right: Ours SOP demonstrates stronger correlation with online metrics. pro-
posed SOP shows stronger correlation (R2=0.934).

For the linear regression analyses in Figure 2 and Figure 9, the coefficient of determination, denoted
as R2, is defined as R2 = 1−SSres

SStot
, where SSres (Residual Sum of Squares) is SSres =

∑n
i=1(yi−ŷi)2,

and SStot (Total Sum of Squares) is SStot =
∑n

i=1(yi − ȳ)2. Here, n is the number of observations;
yi is the observed value of the dependent variable for the i-th data point; ŷi is the corresponding
predicted value from the regression model; and ȳ is the mean of all observed values. The R2 metric
ranges from 0 to 1 and represents the proportion of variance in the dependent variable explained by
the independent variable(s)—higher values indicate a better fit.
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D MODEL SIZE SCALING

To assess the impact of model scale, we evaluate our method on Qwen2.5-VL-3B and Qwen2.5-VL-
32B. As shown in Table 6, Semi-online RL yields consistent performance gains across both model
sizes, demonstrating its strong generalizability. Notably, the margin of improvement diminishes as
the model scale increases.

Table 6: Performance comparison on different model sizes (3B, 7B, 32B) w/o SFT cold start.

Model SOPPG SOPTSR SOPScore AWSR AVG

QwenVL-2.5-3B 3.4 1.4 2.4 5.0 3.7
UI-S1-3B 14.7332%↑ 6.5364%↑ 10.6342%↑ 13.1162%↑ 11.9222%↑

QwenVL-2.5-7B 16.8 9.1 13.0 14.9 14.0
UI-S1-7B 30.682%↑ 16.076%↑ 23.379%↑ 30.4104%↑ 26.992%↑

QwenVL-2.5-32B 17.8 10.2 14.0 28.3 21.2
UI-S1-32B 35.9102%↑ 18.985%↑ 27.496%↑ 38.937%↑ 33.257%↑

E OTHER ABLATIONS

Hyper-parameter We conduct an ablation study to determine the optimal values for key hyper-
parameters. As detailed in Table 7, we explore different settings for γ ∈ {0, 0.5}, ω ∈ {0, 0.5, 1},
and η ∈ {0.1, 0.3, 0.5}. Based on the empirical results, we adopt γ = 0.5, ω = 1, and η = 0.3 for
the final training configuration.

Table 7: Ablation on γ (future reward discount), ω (advantage weight), η (DAPO threshold) with ϵ
(patch threshold) fixed at 0, data size as 1000 and training epoch as 1. SOP is reported.

γ ω η SOPPG SOPTSR
0.0 0.0 0.1 22.2 11.0
0.0 0.0 0.3 22.3 10.8
0.0 0.0 0.5 21.7 11.4
0.0 0.5 0.1 22.7 12.2
0.0 0.5 0.3 23.3 12.5
0.0 0.5 0.5 22.5 10.2
0.0 1.0 0.1 20.6 11.8
0.0 1.0 0.3 22.2 11.2
0.0 1.0 0.5 22.8 12.1

γ ω η SOPPG SOPTSR
0.5 0.0 0.1 26.8 13.8
0.5 0.0 0.3 26.1 14.6
0.5 0.0 0.5 27.0 13.9
0.5 0.5 0.1 26.9 14.2
0.5 0.5 0.3 27.3 14.0
0.5 0.5 0.5 27.5 14.5
0.5 1.0 0.1 26.5 14.8
0.5 1.0 0.3 27.9 15.4
0.5 1.0 0.5 28.4 14.5

Future reward We conduct an ablation study to investigate the optimal choice for tend, as defined
in Equation 9. As presented in Table 8, the results demonstrate that setting tend to the final step
of a natural trajectory segment yields superior performance compared to using the end of the entire
trajectory.

Table 8: Ablation on tend with AndroidWorld success rate reported.

tend ϵ = 0 ϵ = 1 ϵ = 2 ϵ =∞

T 25.6 27.9 27.7 27.4
min(max{k ≥ t | ∀j ∈ [t, k], Matches(ai

j , a
∗
j )} + 1, T ) 25.6 28.0 28.9 28.4
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F TRAINING DETAILS

Training parameters Our UI-S1-7B is first Supervised Fine-Tuned (SFT) on Qwen2.5VL-7B,
trained on data from AndroidControl-Train (Li et al., 2024) and Amex (Chai et al., 2024), then
optimized using Semi-online RL with the thought-free patch mechanism. The training parameters
are listed in Table 9.

Table 9: Key Training Hyper-parameters

Parameter Value
train batch size 32
max prompt length 12288
γ (future reward discount) 0.5
ω (advantage weight) 1.0
ϵ (patch threshold) 1
η (DAPO threshold) 0.3
historical images 2
learning rate 1× 10−6

ppo mini batch size 32
fixed num mini batches 4
ppo micro batch size per gpu 1
kl loss coef 1× 10−4

n gpus per node 8
nnodes 4
total epochs 5

Training hours We analyze the training overhead of different patch methods, measured in GPU
hours, as depicted in Figure 10. Although the on-policy method yields a slight improvement in SOP
performance, it incurs a significant 2.3-fold increase in training time compared to other approaches.
To strike a balance between effectiveness and efficiency, we therefore select the thought-free patch
method for our final model.

2.3x  more 
training time

SOP-Score
 + 1.4

SOP-Score
 - 2.5

Patch Method
Thought-Free

On-policy
Off-policy

Patch threshod (ε)

G
PU

 h
ou

rs
 p

er
 e
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∞

Figure 10: Training GPU hours of different patch methods and patch threshold.
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G CASE STUDY

G.1 TASK ANALYSIS

As detailed in Table 10, our UI-S1-7B model demonstrates substantial performance gains over
the Qwen2.5VL-7B baseline across a majority of task categories. The improvements are par-
ticularly pronounced in tasks requiring multi-step interactions and complex comprehension, such
as multi app (+1.00), search (+0.73 on Easy), requires setup (+0.67 on Easy), and
complex ui understanding. These results strongly suggest its enhanced planning and rea-
soning capabilities for navigating complex user interfaces. Nevertheless, challenges persist in do-
mains that demand specialized skills. For instance, both models struggle with game playing and
math counting tasks. We attribute this to the inherent limitations of small-scale vision-language
models in handling precise numerical computation and abstract logical reasoning. We also show-
case a failure case of math counting in Section G.4. In this case, while UI-S1-7B was able to
remember the numbers it encountered, it made an error at step 11, calculating 9*10*9*5*5 as 2250.

Tags Qwen2.5VL-7B UI-S1-7B
Easy Medium Hard Easy Medium Hard

complex ui understanding 0.00 0.00 0.00 0.17+0.17 0.20+0.20 0.14+0.14
data edit 0.09 0.00 0.00 0.64+0.55 0.14+0.14 0.00+0.00
data entry 0.00 0.11 0.00 0.07+0.07 0.10-0.01 0.00+0.00
game playing 0.00 – – 0.00+0.00 – –
information retrieval 0.14 0.00 0.00 0.43+0.29 0.11+0.11 0.00+0.00
math counting 0.00 0.00 0.00 0.00+0.00 0.33+0.33 0.00+0.00
memorization 0.00 0.00 0.00 0.00+0.00 1.00+1.00 0.00+0.00
multi app 0.00 0.00 0.00 0.00+0.00 1.00+1.00 0.00+0.00
parameterized 0.09 0.09 0.06 0.41+0.32 0.18+0.09 0.11+0.05
repetition 0.00 0.00 0.20 0.50+0.50 0.00+0.00 0.20+0.00
requires setup 0.00 0.00 0.00 0.67+0.67 0.00+0.00 0.00+0.00
screen reading 0.08 0.00 0.11 0.50+0.42 0.33+0.33 0.11+0.00
search 0.00 0.00 0.00 0.73+0.73 0.20+0.20 0.00+0.00
transcription 0.00 0.00 0.00 0.00+0.00 0.50+0.50 0.00+0.00
untagged 0.40 0.00 – 0.80+0.40 0.00+0.00 –
verification 0.86 – – 1.00+0.14 – –

Table 10: Mean AndroidWorld success rate comparison between Qwen2.5VL-7B and UI-S1-7B
across tags and difficulty levels, with improvement indicated (positive, negative, no change).

easy
112

medium

84

hard

73

Qwen2.5VL-7B

easy

71

medium

72

hard

71

UI-S1-7B

Figure 11: AndroidWorld task error count distribution grouped by difficulty.

We also display the error distribution. From the difficulty perspective (Figure 11), the most substan-
tial improvement was observed in ’easy’ tasks, where UI-S1-7B achieved a remarkable reduction
of 41 errors compared to the base model. Following this, a moderate but significant performance
gain was noted for ’medium’ difficulty tasks. In stark contrast, the model’s advantage diminished
considerably for ’hard’ tasks, showing only a marginal improvement with a reduction of two errors.
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Figure 12: AndroidWorld task error count distribution grouped by task tag.

From a task classification perspective (Figure 12), while the proportional distribution of errors
across different task categories remained largely consistent between the two models, UI-S1-7B
demonstrated marked advancements in several key functional areas, such as scree reading,
search, transcription, data edit, and parameterized.

G.2 CASE COMPARISON

We showcase a complex cross-application task requiring information retention across multiple steps:
creating a file in Markor with transaction details from an image viewed in Simple Gallery (as illus-
trated in Figure 13). The base model and Offline RL model exhibit action-thought inconsistency.
For example, offline RL terminate prematurely after planning to navigate to the next app, likely due
to overfitting to local rewards without considering future objectives. The SFT model loses critical
information and executes redundant actions like attempting to create a file that already exists. In
contrast, our model successfully records the critical information throughout the 12-step sequence,
correctly recording “2023-03-23, Monitor Stand, $33.22” in CSV format. This demonstrates its
effectiveness in learning robust multi-turn behaviors with consistent reasoning-action alignment.
Additional case studies are provided in Appendix G.3 and failure analysis in Appendix G.4.

Figure 13: A cross-app and memorable task case in AndroidWorld. The instruction is ”Create a file
in Markor, called receipt.md with the transactions from the receipt.png. Use Simple Gallery to view
the receipt. Please enter transactions in csv format including the header ’Date, Item, Amount’.”

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G.3 MORE CASES

Figure 14: A successful task case encountering sign in notes in AITW-Gen. The instruction is
“How do I get to the nearest Lowe’s?”.

Figure 15: A successful task case in AITW-Gen. The instruction is “Set an alarm for 6pm”.

Figure 16: A successful task case in AndroidWorld. The instruction is “Delete the following
recipes from Broccoli app: Zucchini Noodles with Pesto, Garlic Butter Shrimp, Lentil Soup.”

Figure 17: A successful task case in MiniWob++. The instruction is “Follow the instructions shown
on the top of the screen: Select 7yJ7, Gwr, 007Vjc, VqwrUC, bKn, w39E and click Submit.”
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Figure 18: A successful task case in MiniWob++: “Follow the instructions shown on the top of the
screen: Enter the username dolores and the password dOBe into the text fields and press login.”.

G.4 BAD CASE

Figure 19: A failed task case in AndroidWorld. The instruction is “Open the file task.html in
Downloads in the file manager; when prompted open it with Chrome. Then click the button 5 times,
remember the numbers displayed, and enter their product in the form.”.
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H PROMPT FOR TRAINING AND INFERENCE

System prompt:
You are a GUI agent. You are given a task and your action history, with screenshots. You need
to perform the next action to complete the task.
Output Format
<think> ... </think>
<action> ... </action>

Action Space
You can perform the following actions:
- key: Perform a key event on the mobile device using adb’s ‘keyevent‘ syntax.
- click: Click the point on the screen with specified (x, y) coordinates.
- long press: Press the point on the screen with specified (x, y) coordinates for a specified number
of seconds.
- swipe: Swipe from starting point with specified (x, y) coordinates to endpoint with specified
(x2, y2) coordinates.
- type: Input the specified text into the activated input box.
- answer: Output the specified answer.
- system button: Press the specified system button: Back, Home, Menu, or Enter.
- open: Open an application on the device specified by text.
- wait: Wait for a specified number of seconds for changes to occur.
- terminate: Terminate the current task and report its completion status: success or failure.
The arguments you can use are:
- coordinate: (x, y): The x and y pixels coordinates from the left and top edges.
- coordinate2: (x, y): The x and y pixels coordinates from the left and top edges for the endpoint
of a swipe.
- text: Text input required by actions like ‘key‘, ‘type‘, ‘answer‘, and ‘open‘.
- time: The time in seconds required by actions like ‘long press‘ and ‘wait‘.
- button: System buttons available for pressing: Back, Home, or Enter. Possible values: Back,
Home, Menu, Enter.
- status: The completion status of a terminated task. Possible values: success, failure.
Format your output as a JSON object with the selected action and its arguments at the same level.
Example Output
<think>...</think>
<action>{"action": "key", "text": "<value>"}

Note
- Planing the task and explain your reasoning step-by-step in ‘think‘ part.
- Write your action in the ‘action‘ part according to the action space.
- If the query asks a question, please answer the question through the answer action before
terminating the process.
- Swipe the screen to find the File Manager app if needed.
User prompt:
User Instruction: USER INSTRUCTION
Assistant prompt:
HISTORY RESPONSES
HISTORY IMAGES
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I PROMPT FOR THOUGHT GENERATION

System prompt:
End-to-End Model Thought Integration
Integration Requirements

• Write the thought process from a global goal, the action history, thought history and
screenshot history.

• The reasoning logic must satisfy:
– Begin by reviewing the global task objective.
– Inherit the context and decisions from historical steps.
– Incorporate the manager’s planning logic.
– Derive actions that fully align with the operator’s output.

Output Format
<think>
[A coherent reasoning process, reflecting task decomposition,
environmental observation, and iterative decision-making]
</think>

Output Example
<think>
The current task requires checking the order status of
DeepSeek. Access to the official website and locating the login
entry have been completed. Based on the page loading result,
the login form is ready. Authentication information needs
to be filled: the username has already been entered as
"DeepSeek," and now the password must be entered.
</think>

Key Design Notes
• Explicitly require the global task objective to ensure the end-to-end model always an-

chors to the core goal.
• Enforce structured historical records to prevent information loss.
• Logic consistency mechanism.
• The thought process should naturally connect historical conclusions with the current

manager’s planning.
• Transform the manager’s planning into autonomous decisions phrased as “According to

the requirements, determine...”
• Translate operator actions into imperative statements phrased as “Execute...”
• Do not mention any coordinates in <think> ... </think>.

Global Task Objective
USER INSTRUCTION
- If this isn’t the target app for your operation, you can use open operation to navigate to the
correct application.
- You can use Next Action Hint to guide the think process, but within the think section, you must
conceal the fact that hints were received.
- Please integration the thought of current manager and operation into <think> ... </think> in
English.
Assistant prompt:
HISTORY RESPONSES
HISTORY IMAGES
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J PROMPT FOR GPT-4O TO EVALUATE MINIWOB++ TASK

System prompt:
You’re an expert in evaluating whether the Screenshot successfully completes the Task.
=============================Examples=============================
Task: Open the settings. Q: What should I expect to see on the screenshot if I’ve opened the
settings? A: I should expect to see I’m in the settings app. The screenshot shows the home
screen of a mobile device, with various app icons displayed, including the settings app icon, but
the settings app is not opened.
Status: failure Screenshot: SCREENSHOT
Task: Find hotels in Washington DC Q: What should I expect to see on the screenshot if I’ve
searched for hotels in Washington, DC? A: I should expect to see I’m in a search results page
for hotels in Washington, DC. The screenshot shows a Google search page with the search field
populated with the query ”hotels in washington dc” and a list of suggested searches related to
hotels in Washington, DC, but it does not show any search results for hotels in Washington, DC.
Status: failure Screenshot: SCREENSHOT
Task: What’s a good restaurant in Portland? Q: What should I expect to see on the screenshot
if I’ve searched for a good restaurant in Portland? A: I should expect to see I’m in a search
results page for a good restaurant in Portland. The screenshot shows a Google search page with
a search input field for ”good restaurant in portland” and a map results preview showing business
locations near Portland, like ”Li Pigeon”, ”Portland City Grill”, and ”Higgins”.
Status: success Screenshot: SCREENSHOT
Task: What’s on the menu at In-N-Out? Q: What should I expect to see on the screenshot if
I’ve searched for the menu at In-N-Out? A: I should expect to see a menu page for In-N-Out,
including product names, thumbnails and prices. The screenshot shows a Google search page
with a search input field for ”In-N-Out menu” and some page snippets of In-N-Out indicating
potential menu items, but does not actually show the actual menu.
Status: failure Screenshot: SCREENSHOT
Task: What’s the news in Suriname? Q: What should I expect to see on the screenshot if I’ve
searched for the news in Suriname? A: I should expect to see some news in Suriname, such
as someone did something or some accident happens in Suriname. The screenshot shows a
Google search page with a search input field for ”Suriname news today” and some page snippets
indicating potential news items, but does not actually show the news.
Status: failure Screenshot: SCREENSHOT
Task: What’s the weather like in Chicago? Q: What should I expect to see on the screenshot
if I’ve searched for the weather in Chicago? A: I should expect to see some exact values like
temperature, humidity, wind speed, and weather condition in Chicago. The screenshot shows a
Google search page with a search input field for ”weather in Chicago” and some page snippets
indicating potential weather information. Although one page snippet contains some weather
information, the information is not comprehensive enough to determine the weather in Chicago.
Status: failure Screenshot: SCREENSHOT
Task: Set an alarm for 6pm. Q: What should I expect to see on the screenshot if I’ve set an alarm
for 6pm? A: I should expect to see some alarms including a 6pm alarm activated in the clock
app. The screenshot shows an attempt to set an alarm for 6pm in the clock app, but the alarm is
not set yet.
Status: failure Screenshot: SCREENSHOT

K THE USE OF LLM

In the preparation of this manuscript, we utilized large language models (LLMs) as a writing aid.
Their use was strictly limited to grammar checking, syntax refinement, and language polishing to
improve the clarity and readability of the text. We affirm that all intellectual contributions, including
the core ideas, methodology, data analysis, and the substantive writing, are the original work of the
authors. The authors retain full responsibility for the content and conclusions of this paper.
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