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Abstract

Theoretical progress has recently been made in understanding how machine learning models de-
velop reliance on spurious correlations. While empirical findings highlight the influence of stochas-
tic gradient descent (SGD) and its optimization hyperparameters on this behavior, a grounded the-
oretical explanation remains lacking. Existing theories provide limited justification and fail to
account for these phenomena. In this work, we revisit the four-points framework, a widely used
theoretical tool for analyzing spurious correlations, to investigate how batch size affects the learn-
ing speeds of invariant features in the presence of spurious correlations. Our results show that the
framework can account for the faster acquisition of invariant features under small-batch regimes,
offering a principled perspective on the role of SGD and its hyperparameters in shaping reliance
on spurious correlations. This analysis contributes to a deeper theoretical understanding of the
mechanisms underlying robustness and generalization in machine learning.
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1. Introduction

Modern machine learning models, particularly deep neural networks, have achieved remarkable
success across diverse tasks. Yet, this success often masks a critical vulnerability: a tendency to rely
on spurious correlations. A spurious correlation arises when a feature appears highly predictive
of the target in training data but lacks any causal connection. Since such features often provide
shortcut decision rules, models are prone to exploiting them rather than relying on the more complex
invariant features that ensure robust generalization [6].

A well-known example is an image classifier trained to distinguish cows from camels [2]. If
cows in the training set typically appear in grassy fields and camels in sandy deserts, the model may
learn to associate “grass” with “cow” and “desert” with “camel”. While effective on the training
distribution, this strategy fails when presented with a cow in the desert: the classifier has learned to
rely on background texture (spurious feature) rather than the animal’s shape (invariant feature). Such
failures to generalize out of distribution (OOD) present a major challenge for deploying machine
learning systems in safety-critical applications [15, 16].

To better understand this phenomenon, prior works have introduced theoretical models that dis-
till the learning problem into its essential structure. A popular abstraction is the four-points data
model [9], where data lie in a two-dimensional space: one axis corresponds to the invariant fea-
ture (e.g., animal type) and the other to the spurious feature (e.g., background). Ideally, a classifier
would recover the invariant axis as the decision boundary. However, theoretical analyses show that
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even in this simplified setting, models systematically exploit spurious correlations. In particular,
Nagarajan et al. [9] identify two main failure modes: (i) geometric skew, where max-margin solu-
tions themselves are biased toward spurious features, and (ii) statistical skew, where gradient-based
optimization amplifies reliance on spurious features even in the absence of geometric bias. Puli et al.
[10] further study the role of max-margin classifiers in this behavior and also employ the four-point
abstraction to model invariant versus spurious dimensions.

Recent research has shifted attention toward the role of stochastic gradient descent (SGD) and
its hyperparameters in shaping reliance on spurious features. Gulrajani and Lopez-Paz [3] show
that with appropriate hyperparameter choices, ERM can even surpass more sophisticated domain
generalization methods. In particular, training hyperparameters such as learning rate and batch size
play a decisive role, as demonstrated by Idrissi et al. [4], who find that careful tuning can lead
to substantial gains in worst-group performance. Barsbey et al. [1] show that large learning rates
can improve robustness to spurious correlations and enhance compressibility of deep models. They
attribute this effect to norm growth [7], which amplifies updates on minority samples once spurious
features are learned [11, 13]. Similarly, Mirzaie et al. [8] argue that implicit regularization induced
by SGD [12] makes small batch sizes and large learning rates more robust to spurious correlations.
Together, these studies suggest that optimization hyperparameters strongly influence the balance
between invariant and spurious feature learning.

Nevertheless, theoretical understanding of this link remains limited. Existing explanations either
assume infinitesimal learning rates, as in Nagarajan et al. [9], Ye et al. [14], or rely on norm growth
arguments without providing a principled connection between SGD hyperparameters and reliance
on spurious correlations, as in Barsbey et al. [1]. This gap motivates the search for frameworks that
can capture the concrete effects of learning rate and batch size in practice.

Our contribution. In this work, we aim to bridge this gap by revisiting the four-points data
model, a minimal setting for studying spurious correlations. We use this framework to conduct a
fine-grained analysis of SGD dynamics. Specifically, we investigate how the choice of batch size
influences the learning speeds of invariant features. Our main finding is that smaller batch sizes can,
under certain conditions, promote faster learning of the invariant feature, providing a theoretical
justification for this phenomena. This contributes to a more principled understanding of how opti-
mization choices shape model generalization and robustness. Our results highlight the potential of
the four-points framework as a foundation for deeper theoretical analysis of SGD hyperparameters,
and its extension to richer models with additional dimensions for memorization [10, 11].

2. Four-Points Data Model
We study the standard four-points model used to analyze spurious correlations [9]. Each data point
lies in R? and is written as (z;, ), where

x; € {—1,+1}, zs € {—B,+B}, B> 1.

The label is defined by y = x;, so the first coordinate is the invariant feature and the second
coordinate is the spurious feature. The data-generating process is

x; ~ Rad, (D)

+Bz; with probability p,
—Bx; with probability 1 — p,
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Figure 1: Conceptual illustration of spurious correlation. An ideal classifier (e.g., max-margin)
should separate data based on the invariant feature (a vertical line separating Cows vs.
Camels). However, models trained with standard methods often learn a decision boundary
that relies on the spurious feature (e.g., a diagonal line separating Grass vs. Desert),
leading to failures on out-of-distribution examples (a cow in the desert or a camel on
grass).

where Rad denotes a Rademacher random variable (i.e. Pr(z; = +1) = Pr(x; = —1) = 1/2), and
p € [1/2,1] measures the strength of the spurious correlation. Thus the support of the distribution
is the four points {—1,+1} x {—B,+B} and, for each class z;, a proportion p of class samples
have the spurious feature aligned with the invariant feature while proportion 1 — p are anti-aligned.
The four-points model is minimal yet expressive enough to capture the qualitative mechanisms by
which models can rely on spurious features.

3. Setup
We consider a linear classifier parameterized by weights (w;, ws) € R?:
fuw(@i, 5) = wiz; + wews. 3)

We use the hinge loss
f(fw(l‘), y) = maX{O, 1- yfw(x)} 4)

Because the hinge loss is piecewise linear, the gradient (subgradient) with respect to the weight
vector is simple. For a single example (x;, 25, y) define the margin

m =y fu(z) = y(wiz; + wszs).
If m < 1 (the example is active), the (sub)gradient is

V’wig = —Yyxi, szﬁ = —YZIs, (5)
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and if m > 1 then the gradients are zero. Consequently, a single-example (batch size 1) SGD update
with learning rate n > 0 is

(6)

W= w — NVl =

T :
w+ny<l>, if y fu () <1,
Ts
w, if y fuw(z) 2 1.
For a full-batch gradient step we instead average the contributions of all active points.

Definition 1 (Regular SGD run) We call a single-example SGD run regular if minority examples
do not appear consecutively more than once — i.e. every minority example is followed by at least
one majority example before the next minority appears.

Regular SGD run has high probability when p is close to 1, and the phrase is only used to
simplify discussion of typical sample-ordering effects under SGD.

4. Role of Batch Size in the Speed of Learning the Invariant Feature

Intuitively, batch size affects the ordering and averaging of gradient contributions from aligned
(majority) and anti-aligned (minority) points; because the hinge loss is thresholded at margin 1, this
ordering can change which points remain active and thus the subsequent updates. We formalize this
observation for the early phase of training.

Proposition 2 Let (w;, ws) be initialized at (0,0). Suppose the learning rate 1) satisfies

1

T I (2B

Then, until minority points become inactive, the growth rate of the invariant weight w; is larger
under single-sample SGD with regular optimization than under full-batch gradient descent.

Proof The update applied to the invariant feature at step ¢ depends on whether the majority and
minority samples incur positive loss. We compute the updates for each setting.

Full-batch. At initialization, when neither minority nor majority samples have zero loss, the up-

dates on w; and w, are
witt = wf + nyz; = wf +1, (7
wi™ = w} +n(pB — (1 -p)B) = w! +n(2p — 1)B. (8)

In this case, for majority and minority samples we have

Y(frr+1 (Tmaj) = fut (Tmai)) = n(1+ (2p — 1)B%) > 1. )

By initializing at 0, the loss for majority samples becomes zero after the first iteration.
Now let us analyze the case where the loss of majority samples is zero, but the minority loss is
not. The updates are
wit =wl+n1-p), W =wl-—nl-p)B. (10)

s
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In this case, the change in margins is
Y(furst (Tmag) = fur (@mg)) = —n(1 = p)(B* —1) <0, (11)
y(fwt+1 (xmin) - fwt (xmin)) = 77(1 - p)(32 + 1) > 0. (12)
If the loss value for minority samples does not vanish, this case continues for

[n(l +(2p—1)B?) — 1}
n(1—p)(B?—1)

steps. At each step, w; increases by (1 — p)n. Once f(2mj) falls below 1, the update rule from
Equation 7 applies again.

To summarize, until the loss of minority samples becomes zero, the effective update rate of w;
lies in the range

_ B2 _ _ 32
e P = :
H@p-DB2 = 0= p+@p-0BY-1 | (13)
T-p(B-1) T T
Therefore, we have the approximation
w" P~ (1 —p)n. (14)

Minibatch of size 1. We now analyze the other extreme case. When the batch size equals 1, with
probability 1 — p the sample is a minority point, yielding the updates

witt = wl 41, witt = w! —nB. (15)

The same update for w; also holds when a majority sample with positive loss is drawn. Starting from
zero initialization, we obtain w; = nn for some n € IN=0, Similarly, in the regular optimization
setting, we can write w, = Bmn with m € INZ71,

. 1 t=0 _ , t=
Since 1 > > 1rpz and w; = = wg

1 0 __ . .
T (2p-1)B? = 0, if at some point m > 1, then

y(f(@maj)) = n(n + B*m) > 1, (16)

which implies that m remains confined to {—1,0, 1}.

During training, after each update on a minority sample, the next step is a majority sample
(by regular optimization). In both updates, w; increases by 7. Since minority samples occur with
frequency (1 — p), the effective update rate of wj is at least

wMB = 2(1 — p)n. a7
Comparison. Comparing the two cases, we conclude that
wMP >21—py > (1—-pn=~uw’P. (18)

Hence, the invariant feature is learned faster with minibatch size 1 (under regular optimization) than
with full-batch training. |
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5. Discussion

Proposition 2 shows that when the learning rate is sufficiently large, the invariant feature is learned
at a faster rate. This insight helps explain why smaller batch sizes often lead to greater robustness
against spurious correlations. Prior work has established a close connection between reliance on
spurious features and the relative speed of learning the invariant feature [5, 11, 13].

The lower-bound condition on the learning rate is also consistent with earlier findings that larger
learning rates improve robustness to spurious correlations. It is worth noting that the implicit regu-
larization properties of SGD depend not only on the learning rate but also on its ratio to batch size.
Moreover, when the learning rate approaches zero, the difference between full-batch and minibatch
gradient descent effectively disappears, since all updates converge to the same trajectory. This lim-
itation underlies the framework of Nagarajan et al. [9], Ye et al. [14], which assumes infinitesimal
step sizes.

The choice of loss function also plays an important role. In our analysis, hinge loss was par-
ticularly useful because of its bounded derivative, which made it possible to precisely track up-
dates. Other loss functions, such as cross-entropy with sigmoid activation, also share this bounded-
derivative property, suggesting that similar results should extend beyond hinge loss. While a full
proof is left to future work, we conjecture that under certain conditions the single-sample batch
setting converges to w, = 0, whereas this need not hold in the full-batch setting.

Finally, to more closely reflect real-world scenarios and complex models such as deep neural
networks—which have the capacity to memorize individual samples without learning the underlying
structure—future extensions of our framework should incorporate additional noise dimensions [10,
11]. This would allow a more complete characterization of how SGD hyperparameters and model
complexity interact in shaping reliance on spurious correlations.
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