
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TEST TIME LEARNING FOR TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Time-series forecasting has seen significant advancements with the introduction of
token prediction mechanisms such as multi-head attention. However, these methods
often struggle to achieve the same performance as in language modeling, primarily
due to the quadratic computational cost and the complexity of capturing long-range
dependencies in time-series data. State-space models (SSMs), such as Mamba,
have shown promise in addressing these challenges by offering efficient solutions
with linear RNNs capable of modeling long sequences with larger context windows.
However, there remains room for improvement in accuracy and scalability.
We propose the use of Test-Time Training (TTT) modules in a parallel architecture
to enhance performance in long-term time series forecasting. Through extensive
experiments on standard benchmark datasets, we demonstrate that TTT mod-
ules consistently outperform state-of-the-art models, including the Mamba-based
TimeMachine, particularly in scenarios involving extended sequence and prediction
lengths. Our results show significant improvements in Mean Squared Error (MSE)
and Mean Absolute Error (MAE), especially on larger datasets such as Electricity,
Traffic, and Weather, underscoring the effectiveness of TTT in capturing long-range
dependencies. Additionally, we explore various convolutional architectures within
the TTT framework, showing that even simple configurations like 1D convolution
with small filters can achieve competitive results. This work sets a new benchmark
for time-series forecasting and lays the groundwork for future research in scalable,
high-performance forecasting models.

1 INTRODUCTION

Long Time Series Forecasting (LTSF) is a crucial task in various fields, including energy Doe &
Smith (2023), industry Doe & Smith (2024), defense Bakdash et al. (2017), and atmospheric sciences
Lim & Zohren (2020). LTSF uses a historical sequence of observations, known as the look-back
window, to predict future values through a learned or mathematically induced model. However, the
stochastic nature of real-world events makes LTSF challenging. Deep learning models, including time
series forecasting, have been widely adopted in engineering and scientific fields. Early approaches
employed Recurrent Neural Networks (RNNs) to capture long-range dependencies in sequential data
like time series. However, recurrent architectures like RNNs have limited memory retention, are
difficult to parallelize, and have constrained expressive capacity. Transformers (Vaswani et al., 2017),
with ability to efficiently process sequential data in parallel and capture contextual information, have
significantly improved performance on time series prediction task (Wen et al., 2023; Liu et al., 2022b;
Ni et al., 2024; Chen et al., 2024). Yet, due to the quadratic complexity of attention mechanisms
with respect to the context window (or look-back window in LTSF), Transformers are limited in their
ability to capture very long dependencies.

In recent years, State Space Models (SSMs) such as Mamba (Gu & Dao, 2024), a gated linear RNN
variant, have revitalized the use of RNNs for LTSF. These models efficiently capture much longer
dependencies while reducing computational costs and enhancing expressive power and memory
retention. A new class of Linear RNNs, known as Test Time Training (TTT) modules (Sun et al.,
2024), has emerged. These modules use expressive hidden states and provide theoretical guarantees
for capturing long-range dependencies, positioning them as one of the most promising architectures
for LTSF and due to their weight adaptation during test time are very effective on non-stationary data.
We provide more motivation on TTT for non-stationary data in Appendix A.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

KEY INSIGHTS AND RESULTS

Through our experiments, several key insights emerged regarding the performance of TTT modules
when compared to existing SOTA models:

• Superior Performance with Longer Sequence and Prediction Lengths: TTT modules con-
sistently outperformed the SOTA TimeMachine model, particularly as sequence and prediction
lengths increased. Architectures such as Conv Stack 5 demonstrated their ability to capture
long-range dependencies more effectively than Mamba-based models, resulting in noticeable
improvements in Mean Squared Error (MSE) and Mean Absolute Error (MAE) across various
benchmark datasets.

• Strong Improvement on Larger Datasets: On larger datasets, such as Electricity, Traffic,
and Weather, the TTT-based models excelled, showing superior performance compared to both
Transformer- and Mamba-based models. These results underscore the ability of TTT to han-
dle larger temporal windows and more complex data, making it especially effective in high-
dimensional, multivariate datasets.

• Hidden Layer Architectures: The ablation studies revealed that while convolutional architectures
added to the TTT modules provided some improvements, Conv Stack 5 consistently delivered the
best results among the convolutional variants. However, simpler architectures like Conv 3 often
performed comparably, showing that increased architectural complexity did not always lead to
significantly better performance. Very complex architectures like the modern convolutional block
from Donghao & Xue (2024) showed competitive performance when used as TTT hidden layer
architectures compared to the simpler single architectures proposed, hinting on the potential of
more complex architectures in capturing more long term dependencies.

• Adaptability to Long-Term Predictions: The TTT-based models excelled in long-term prediction
tasks, especially for really high prediction lengths like 2880. TTT-based models also excelled on
increased sequence lengths as high as 5760 which is the maximum sequence length allowed by
the benchmark datasets. This verified the theoretically expected superiority of TTT based models
relative to the mamba/transformer based SOTA models.

MOTIVATION AND CONTRIBUTIONS

In this work, we explore the potential of TTT modules in Long-Term Series Forecasting (LTSF)
by integrating them into novel model configurations to surpass the current state-of-the-art (SOTA)
models. Our key contributions are as follows:

• We propose a new model architecture utilizing quadruple TTT modules, inspired by the TimeMa-
chine model (Ahamed & Cheng, 2024), which currently holds SOTA performance. By replacing
the Mamba modules with TTT modules, our model effectively captures longer dependencies and
predicts larger sequences.

• We evaluate the model on benchmark datasets, exploring the original look-back window and
prediction lengths to identify the limitations of the SOTA architecture. We demonstrate that
the SOTA model achieves its performance primarily by constraining look-back windows and
prediction lengths, thereby not fully leveraging the potential of LTSF.

• We extend our evaluations to significantly larger sequence and prediction lengths, showing that our
TTT-based model consistently outperforms the SOTA model using Mamba modules, particularly
in scenarios involving extended look-back windows and long-range predictions.

• We conduct an ablation study to assess the performance of various hidden layer architectures
within our model. By testing six different convolutional configurations, one of which being
ModernTCN by Donghao & Xue (2024), we quantify their impact on model performance and
provide insights into how they compare with the SOTA model.

2 RELATED WORK

Transformers for LTSF Several Transformer-based models have advanced long-term time series
forecasting (LTSF), with notable examples like iTransformer (Liu et al., 2024) and PatchTST

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(Nie et al., 2023). iTransformer employs multimodal interactive attention to capture both temporal and
inter-modal dependencies, suitable for multivariate time series, though it incurs high computational
costs when multimodal data interactions are minimal. PatchTST, inspired by Vision Transform-
ers (Dosovitskiy et al., 2021), splits input sequences into patches to capture dependencies effectively,
but its performance hinges on selecting the appropriate patch size and may reduce model interpretabil-
ity. Other influential models include Informer (Zhou et al., 2021), which uses sparse self-attention
to reduce complexity but may overlook finer details in multivariate data; Autoformer (Wu et al.,
2022), which excels in periodic data but struggles with non-periodic patterns; Pyraformer (Liu et al.,
2022b), which captures multi-scale dependencies through a hierarchical structure but at the cost of
increased computational requirements; and Fedformer (Zhou et al., 2022), which combines time- and
frequency-domain representations for efficiency but may underperform on noisy time series. While
each model advances LTSF in unique ways, they also introduce specific trade-offs and limitations.

State Space Models for LTSF S4 models (Gu et al., 2022a;b; Gupta et al., 2023) are efficient
sequence models for long-term time series forecasting (LTSF), leveraging linear complexity through
four key components: ∆ (discretization step size), A (state update matrix), B (input matrix), and C
(output matrix). They operate in linear recurrence for autoregressive inference and global convolution
for parallel training, efficiently transforming recurrences into convolutions. However, S4 struggles
with time-invariance issues, limiting selective memory. Mamba (Gu & Dao, 2024) addresses this by
making B, C, and ∆ dynamic, creating adaptable parameters that improve noise filtering and maintain
Transformer-level performance with linear complexity. SIMBA (Patro & Agneeswaran, 2024)
enhances S4 by integrating block-sparse attention, blending state space and attention to efficiently
capture long-range dependencies while reducing computational overhead, ideal for large-scale, noisy
data. TimeMachine (Ahamed & Cheng, 2024) builds on these advances by employing a quadruple
Mamba setup, managing both channel mixing and independence while avoiding Transformers’
quadratic complexity through multi-scale context generation, thereby maintaining high performance
in long-term forecasting tasks.

Linear RNNs for LTSF RWKV-TS (Hou & Yu, 2024) is a novel linear RNN architecture designed
for time series tasks, achieving O(L) time and memory complexity with improved long-range
information capture, making it more efficient and scalable compared to traditional RNNs like LSTM
and GRU. Orvieto et al. (2023) introduced the Linear Recurrent Unit (LRU), an RNN block matching
the performance of S4 models on long-range reasoning tasks while maintaining computational
efficiency. TTT (Sun et al., 2024) layers take a novel approach by treating the hidden state as a
trainable model, learning during both training and test time with dynamically updated weights. This
allows TTT to capture long-term relationships more effectively through real-time updates, providing
an efficient, parallelizable alternative to self-attention with linear complexity. TTT’s adaptability
and efficiency make it a strong candidate for processing longer contexts, addressing the scalability
challenges of RNNs and outperforming Transformer-based architectures in this regard.

MLPs and CNNs for LTSF Recent advancements in long-term time series forecasting (LTSF) have
introduced efficient architectures that avoid the complexity of attention mechanisms and recurrence.
TSMixer (Chen et al., 2023b), an MLP-based model, achieves competitive performance by separating
temporal and feature interactions through time- and channel-mixing, enabling linear scaling with
sequence length. However, MLPs may struggle with long-range dependencies and require careful
hyperparameter tuning, especially for smaller datasets. Convolutional neural networks (CNNs)
have also proven effective for LTSF, particularly in capturing local temporal patterns. ModernTCN
(Donghao & Xue, 2024) improves temporal convolution networks (TCNs) using dilated convolutions
and a hierarchical structure to efficiently capture both short- and long-range dependencies, making it
well-suited for multi-scale time series data.

Building on these developments, we improve the original TimeMachine model by replacing its
Mamba blocks with Test-Time Training (TTT) blocks to enhance long-context prediction capabilities.
We also explore CNN configurations, such as convolutional stacks, to enrich local temporal feature
extraction. This hybrid approach combines the efficiency of MLPs, the local pattern recognition of
CNNs, and the global context modeling of TTT, leading to a more robust architecture for LTSF tasks
that balances both short- and long-term forecasting needs.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 MODEL ARCHITECTURE

The task of Time Series Forecasting can be defined as follows: Given a multivariate time series
dataset with a window of past observations (look-back window) L: (x1, . . . ,xL), where each xt is a
vector of dimension M (the number of channels at time t), the goal is to predict the next T future
values (xL+1, . . . ,xL+T ).

The TimeMachine (Ahamed & Cheng, 2024) architecture, which we used as the backbone, is designed
to capture long-term dependencies in multivariate time series data, offering linear scalability and a
small memory footprint. It integrates four Mamba (Gu & Dao, 2024) modules as sequence modeling
blocks to selectively memorize or forget historical data, and employs two levels of downsampling to
generate contextual cues at both high and low resolutions.

However, Mamba’s approach still relies on fixed-size hidden states to compress historical information
over time, often leading to the model forgetting earlier information in long sequences. TTT (Sun
et al., 2024) uses dynamically updated weights (in the form of matrices inside linear or MLP layers)
to compress and store historical data. This dynamic adjustment during test time allows TTT to better
capture long-term relationships by continuously incorporating new information. Its Hidden State
Updating Rule is defined as:

Wt = Wt−1 − η∇ℓ(Wt−1;xt) = Wt−1 − η∇∥f(x̃t;W )− xt∥2

We incorporated TTT into the TimeMachine model, replacing the original Mamba block. We evalu-
ated our approach with various setups, including different backbones and TTT layer configurations.
Additionally, we introduced convolutional layers before the sequence modeling block and conducted
experiments with different context lengths and prediction lengths. We provide mathematical foun-
dations as to why TTT is able to perform test-time adaptation without catastrophic forgetting and
how the module adapts to distribution shifts in Appendix A. In the same Appendix we quantify the
computational overhead introduced by test-time updates and provide empirical validation, published
by the authors who proposed TTT in Sun et al. (2020), on how it performs on real corrupted data and
provide some intuition on the parameter initialization in TTT as discussed in the same reference.

Our goal is to improve upon the performance of the state-of-the-art (SOTA) models in LTSF using
the latest advancements in sequential modeling. Specifically, we integrate Test-Time Training (TTT)
modules into our model for two key reasons, TTT is theoretically proven to have an extremely long
context window, being a form of linear RNN (Orvieto et al., 2023), capable of capturing long-range
dependencies efficiently. Secondly, the expressive hidden states of TTT allow the model to capture
a diverse set of features without being constrained by the architecture, including the depth of the
hidden layers, their size, or the types of blocks used.

3.1 GENERAL ARCHITECTURE

Our model architecture builds upon the TimeMachine model (Ahamed & Cheng, 2024), introducing
key modifications, as shown in Figure 1a, 1b and 1c. Specifically, we replace the Mamba modules
in TimeMachine with TTT (Test-Time Training) modules (Sun et al., 2024), which retain compati-
bility since both are linear RNNs (Orvieto et al., 2023). However, TTT offers superior long-range
dependency modeling due to its adaptive nature and theoretically infinite context window. A detailed
visualization of the TTT block and the different proposed architectures can be found in Appendix D

Our model features a two-level hierarchical architecture that captures both high-resolution and low-
resolution context, as illustrated in Figure 1a. To adapts to the specific characteristics of the dataset,
the architecture handles two scenarios—Channel Mixing and Channel Independence—illustrated in
Figure 1b and 1c respectively. A more detailed and mathematical description of the normalization
and prediction procedures can be found in Appendix D. We provide a computational complexity
analysis of the TTT, Transformer, Mamba and ModernTCN modules in Appendix F and we also
provide a computational complexity analysis for our model, TimeMachine, iTransformer, PatchTST,
TSMixer and ModernTCN in Appendix G. We also included a mathematical comparison between the
Mamba and TTT modules in Appendix B as well as theoretical comparison between the TTT module
and models handling noise or temporal regularization in Appendix C.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) TimeMachine incoporating TTT-Blocks

(b) Channel Mixing Mode

(c) Channel Independence Mode

Figure 1: Our model architecture. (a) We replace the four Mamba Block in TimeMachine with four
TTT(Test-Time Training) Block. (b) There are two modes of TimeMachine, the channel mixing mode
for capturing strong between-channel correlations, and the channel independence mode for modeling
within-channel dynamics. Recent works such as PatchTST (Nie et al., 2023) and TiDE (Das et al.,
2024) have shown channel independence can achieve SOTA accuracy. For the channel independence
scenario, the inputs are first transposed, and then we integrate two linear layers (1× 16 and 16× 1)
to provide the TTT Block with a sufficiently large hidden size.

3.2 HIERARCHICAL EMBEDDING

The input sequence BML (Batch, Channel, Length) is first passed through Reversible Instance
Normalization (Kim et al., 2021) (RevIN), which stabilizes the model by normalizing the input data
and helps mitigate distribution shifts. This operation is essential for improving generalization across
datasets.

After normalization, the sequence passes through two linear embedding layers. Linear E1 and Linear
E2 are used to map the input sequence into two embedding levels: higher resolution and lower
resolution. The embedding operations E1 : RM×L → RM×n1 and E2 : RM×n1 → RM×n2 are
achieved through MLP. n1 and n2 are configurations that take values from {512, 256, 128, 64, 32},
satisfying n1 > n2. Dropout layers are applied after each embedding layer to prevent overfitting,
especially for long-term time series data. As shown in Figure 1a.

We provide more intuition on the effectivenes of hierarchical modeling in Appendix E.

3.3 TWO LEVEL CONTEXTUAL CUE MODELING

At each of the two embedding levels, a contextual cues modeling block processes the output from the
Dropout layer following E1 and E2. This hierarchical architecture captures both fine-grained and
broad temporal patterns, leading to improved forecasting accuracy for long-term time series data.

In Level 1, High-Resolution Contextual Cues Modeling is responsible for modeling high-resolution
contextual cues. TTT Block 3 and TTT Block 4 process the input tensor, focusing on capturing
fine-grained temporal dependencies. The TTT Block3 operates directly on the input, and transposition
may be applied before TTT Block4 if necessary. The outputs are summed, then concatenated with
the Level 2 output. There is no residual connection summing in Level 1 modeling.

In Level 2, Low-Resolution Contextual Cues Modeling handles broader temporal patterns, func-
tioning similarly to Level 1. TTT Block 1 and TTT Block 2 process the input tensor to capture
low-resolution temporal cues and add them togther. A linear projection layer (P-1) is then applied to
maps the output (with dimension RM×n2) to a higher dimension RM×n1, preparing it for concate-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

nation. Additionally, the Level 1 and Level 2 Residual Connections ensure that information from
previous layers is effectively preserved and passed on.

3.4 FINAL PREDICTION

After processing both high-resolution and low-resolution cues, the model concatenates the outputs
from both levels. A final linear projection layer (P-2) is then applied to generate the output predic-
tions. The output is subsequently passed through RevIN Denormalization, which reverses the initial
normalization and maps the output back to its original scale for interpretability. For more detailed
explanations and mathematical descriptions refer to Appendix D.

3.5 CHANNEL MIXING AND INDEPENDENCE MODES

The Channel Mixing Mode (Figure 1a and 1b) processes all channels of a multivariate time series
together, allowing the model to capture potential correlations between different channels and un-
derstand their interactions over longer time. Figure 1a illustrates an example of the channel mixing
case, but there is also a channel independence case corresponding to Figure 1a, which we have not
shown here. Figures 1b and 1c demonstrate the channel mixing and independence modes of the Level
1 High-Resolution Contextual Cues Modeling part with TTT Block 3 and TTT Block 4. Similar
versions of the two channel modes for Level 2 Low-Resolution Contextual Cues Modeling are quite
similar to those in Level 1, which we have also omitted here.

The Channel Independence Mode (Figure 1c) treats each channel of a multivariate time series as an
independent sequence, enabling the model to analyze individual time series more accurately. This
mode focuses on learning patterns within each channel without considering potential correlations
between them.

The main difference between these two modes is that the Channel Independence Mode always uses
transposition before and after one of the TTT blocks (in Figure 1c, it’s TTT Block 4). This allows the
block to capture contextual cues from local perspectives, while the other block focuses on modeling
the global context. However, in the Channel Mixing Mode, both TTT Block 3 and TTT Block 4
model the global context.

The hidden size value for TTT Blocks in global context modeling is set to n1 since the input shape is
BMn1 for Channel Mixing and (B ×M)1n1 for Channel Independence. To make the TTT Block
compatible with the local context modeling scenario—where the input becomes (B ×M)n1 ←
Transpose((B × M)1n1) after transposition—we add two linear layers: one for upsampling to
(B ×M)n116 and another for downsampling back. In this case, the hidden size of TTT Block 4 is
set to 16.

4 EXPERIMENTS AND EVALUATION

4.1 ORIGINAL EXPERIMENTAL SETUP

We evaluate our model on seven benchmark datasets that are commonly used for LTSF, namely:
Traffic, Weather, Electricity, ETTh1, ETTh2, ETTm1, and ETTm2 from Wu et al. (2022) and Zhou
et al. (2021). Among these, the Traffic and Electricity datasets are significantly larger, with 862
and 321 channels, respectively, and each containing tens of thousands of temporal points. Table 6
summarizes the dataset details in Appendix I.

For all experiments, we adopted the same setup as in Liu et al. (2024), fixing the look-back win-
dow L = 96 and testing four different prediction lengths T = 96, 192, 336, 720. We compared
our TimeMachine-TTT model against 12 state-of-the-art (SOTA) models, including TimeMachine
(Ahamed & Cheng, 2024), iTransformer (Liu et al., 2024), PatchTST (Nie et al., 2023), DLinear
(Zeng et al., 2022), RLinear (Li et al., 2023), Autoformer (Wu et al., 2022), Crossformer Zhang
& Yan (2023), TiDE (Das et al., 2024), Scinet (Liu et al., 2022a), TimesNet (Wu et al., 2023),
FEDformer (Zhou et al., 2022), and Stationary (Liu et al., 2023b). All experiments were conducted
with both MLP and Linear architectures using the original Mamba backbone, and we confirmed the
results from the TimeMachine paper. We include calculations on the resource utilization of the model
in Appendix G and quantify the impact of test-time updates on memory and latency in Appendix A.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results in MSE and MAE (the lower the better) for the long-term forecasting task (averaged
over 5 runs). We compare extensively with baselines under different prediction lengths, T =
{96, 192, 336, 720} following the setting of iTransformer (Liu et al., 2023a). The length of the input
sequence (L) is set to 96 for all baselines. TTT (ours) is our TTT block with the Conv Stack 5
architecture. The best results are in bold and the second best are underlined.

Methods→ TTT(ours) TimeMachine iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary

D T MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.165 0.214 0.164 0.208 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223

192 0.225 0.263 0.211 0.250 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285
336 0.246 0.275 0.256 0.290 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338
720 0.339 0.343 0.342 0.343 0.358 0.349 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410

Tr
af

fic

96 0.397 0.268 0.397 0.268 0.395 0.268 0.649 0.389 0.544 0.359 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338
192 0.434 0.287 0.417 0.274 0.417 0.276 0.601 0.366 0.540 0.354 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340
336 0.430 0.283 0.433 0.281 0.433 0.283 0.609 0.369 0.551 0.358 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328
720 0.456 0.286 0.467 0.300 0.467 0.302 0.647 0.387 0.586 0.375 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355

E
le

ct
ri

ci
ty 96 0.135 0.230 0.142 0.236 0.148 0.240 0.201 0.281 0.195 0.285 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273

192 0.153 0.254 0.158 0.250 0.162 0.253 0.201 0.283 0.199 0.289 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286
336 0.166 0.255 0.172 0.268 0.178 0.269 0.215 0.298 0.215 0.305 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304
720 0.199 0.285 0.207 0.298 0.225 0.317 0.257 0.331 0.256 0.337 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321

E
T

T
h1

96 0.352 0.375 0.364 0.387 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491
192 0.412 0.418 0.415 0.416 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504
336 0.479 0.446 0.429 0.421 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535
720 0.478 0.454 0.458 0.453 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616

E
T

T
h2

96 0.274 0.328 0.275 0.334 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458
192 0.373 0.379 0.349 0.381 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493
336 0.403 0.408 0.340 0.381 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551
720 0.448 0.434 0.411 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560

E
T

T
m

1 96 0.309 0.348 0.317 0.355 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398
192 0.371 0.389 0.357 0.378 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444
336 0.381 0.401 0.379 0.399 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464
720 0.433 0.423 0.445 0.436 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516

E
T

T
m

2 96 0.180 0.253 0.175 0.256 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274
192 0.242 0.301 0.239 0.299 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339
336 0.302 0.341 0.287 0.332 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361
720 0.364 0.384 0.371 0.385 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413

4.2 QUANTITATIVE RESULTS

Across all seven benchmark datasets, our TimeMachine-TTT model consistently demonstrated su-
perior performance compared to SOTA models. In the Weather dataset, TTT achieved leading
performance at longer horizons (336 and 720), with MSEs of 0.246 and 0.339, respectively, out-
performing TimeMachine, which recorded MSEs of 0.256 and 0.342. The Traffic dataset, with its
high number of channels (862), also saw TTT outperform TimeMachine and iTransformer at both
medium (336-step MSE of 0.430 vs. 0.433) and long horizons (720-step MSE of 0.464 vs. 0.467),
highlighting the model’s ability to handle multivariate time series data.

In the Electricity dataset, TTT showed dominant results across all horizons, achieving an MSE
of 0.135, 0.153, 0.166 and 0.199 at horizons 96, 192, 336, and 720 respectively, outperforming
TimeMachine and PatchTST. For ETTh1, TTT was highly competitive, with strong short-term results
(MSE of 0.352 at horizon 96) and continued dominance at medium-term horizons like 336, with an
MSE of 0.412. For ETTh2, TTT beat TimeMachine on horizon 96 (MSE of 0.274), TTT also closed
the gap at longer horizons (MSE of 0.448 at horizon 720 compared to 0.411 for TimeMachine).

For the ETTm1 dataset, TTT outperformed TimeMachine at nearly every horizon, recording an MSE
of 0.309, 0.381 and 0.431 at horizon 96, 336 and 720 respectively, confirming its effectiveness for
long-term forecasting. Similarly, in ETTm2, TTT remained highly competitive at longer horizons,
with a lead over TimeMachine at horizon 720 (MSE of 0.362 vs. 0.371). The radar plot in Figure 2
shows the comparison between TTT (ours) and TimeMachine for both MSE and MAE on all datasets.

5 PREDICTION LENGTH ANALYSIS AND ABLATION STUDY

5.1 EXPERIMENTAL SETUP WITH ENHANCED ARCHITECTURES

To assess the impact of enhancing the model architecture, we conducted experiments by adding
hidden layer architectures before the sequence modeling block in each of the four TTT blocks. The
goal was to improve performance by enriching feature extraction through local temporal context. As
shown in Figure 3 in Appendix D.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.34

0.46

0.200.47

0.45

0.43

0.36

0.34 Weather

Traffic

Electricity

ETTh1

ETTh2

ETTm1

ETTm2

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

0.34

0.29
0.29

0.45

0.43

0.42

0.38

0.34 Weather

Traffic

Electricity

ETTh1

ETTh2

ETTm1

ETTm2

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

TimeMachine (MSE)
TTT (MSE)
TimeMachine (MAE)
TTT (MAE)

MSE Comparison MAE Comparison

Figure 2: Average MSE and MAE comparison of our model and SOTA baselines with L = 720.
The circle center represents the maximum possible error. Closer to the boundary indicates better
performance.

We tested the following configurations: (1) Conv 3: 1D Convolution with kernel size 3, (2) Conv
5: 1D Convolution with kernel size 5, (3) Conv Stack 3: two 1D Convolutions with kernel size
3 in cascade, (4) Conv Stack 5: two 1D Convolutions with kernel sizes 5 and 3 in cascade, (5)
Inception: an Inception Block combining 1D Convolutions with kernel sizes 5 and 3, followed by
concatenation and reduction to the original size and (6) ModernTCN: A modern convolutional block
proposed in Donghao & Xue (2024) that uses depthwise and pointwise convolutions with residual
connections similar to the structure of the transformer block. For the simpler architectures kernel
sizes were limited to 5 to avoid oversmoothing, and original data dimensions were preserved to
ensure consistency with the TTT architecture. For ModernTCN we reduced the internal dimensions
to 16 (down from the suggested 64) and did not use multiscale due to the exponential increase in
GPU memory required which slowed down the training process and did not allow the model to fit in
a single A100 GPU. We kept the rest of the parameters of ModernTCN the same as in the original
paper.

Ablation Study Findings Our findings reveal that the introduction of additional hidden layer
architectures, including convolutional layers, had varying degrees of impact on performance across
different horizons. The best-performing setup was the Conv Stack 5 architecture, which achieved
the lowest MSE and MAE at the 96 time horizon, with values of 0.261 and 0.289, respectively,
outperforming the TimeMachine model at this horizon. At longer horizons, such as 336 and 720,
Conv Stack 5 continued to show competitive performance, with a narrow gap between it and the
TimeMachine model. For example, at the 720 horizon, Conv Stack 5 showed an MAE of 0.373, while
TimeMachine had an MAE of 0.378.

However, other architectures, such as Conv 3 and Conv 5, provided only marginal improvements
over the baseline TTT architectures (Linear and MLP). While they performed better than Linear and
MLP, they did not consistently outperform more complex setups like Conv Stack 3 and 5 across all
horizons. This suggests that hidden layer expressiveness can enhance model performance.

ModernTCN showed competitive results across multiple datasets (see Appendix I), such as ETTh2,
where it achieved an MSE of 0.285 at horizon 96, outperforming Conv 3 and Conv 5. However, as
with other deep convolutional layers, ModernTCN’s increased complexity also led to slower training
times compared to simpler setups like Conv 3 and it failed to match Conv Stack 5’s performance.

5.2 EXPERIMENTAL SETUP WITH INCREASED PREDICTION & SEQUENCE LENGTHS

For the second part of our experiments, we extended the sequence and prediction lengths beyond the
parameters tested in previous studies. We used the same baseline architectures (MLP and Linear)
with the Mamba backbone as in the original TimeMachine paper, but this time also included the
best-performing 1D Convolution architecture with kernel size 3.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The purpose of these experiments was to test the model’s capacity to handle much longer sequence
lengths while maintaining high prediction accuracy. We tested the following sequence and prediction
lengths, with L = 2880 and 5760, far exceeding the original length of L = 96:

Seq Length 2880 2880 2880 2880 5760 5760 5760 5760 720 720 720 720

Pred Length 192 336 720 96 192 336 720 96 192 336 720 96

Table 2: Testing parameters for sequence and prediction lengths.

5.3 RESULTS AND STATISTICAL COMPARISONS FOR PROPOSED ARCHITECTURES

The proposed architectures—TTT Linear, TTT MLP, Conv Stack 3, Conv Stack 5, Conv 3, Conv
5, Inception, and TTT with ModernTCN—exhibit varying performance across prediction horizons.
TTT Linear performs well at shorter horizons (MSE 0.268, MAE 0.298 at horizon 96) but declines at
longer horizons (MSE 0.357 at horizon 336). TTT MLP follows a similar trend with slightly worse
performance. Conv 3 and Conv 5 outperform Linear and MLP at shorter horizons (MSE 0.269, MAE
0.297 at horizon 96) but lag behind Conv Stack models at longer horizons. TTT with ModernTCN
shows promising results at shorter horizons, such as MSE 0.389, MAE 0.402 on ETTh1, and MSE
0.285, MAE 0.340 on ETTh2 at horizon 96. Although results for Traffic and Electricity datasets
are pending, preliminary findings indicate TTT with ModernTCN is competitive, particularly for
short-term dependencies (see Table 7 in Appendix I). Conv Stack 5 performs best at shorter horizons
(MSE 0.261, MAE 0.289 at horizon 96). Inception provides stable performance across horizons,
closely following Conv Stack 3 (MSE 0.361 at horizon 336). At horizon 720, Conv 5 shows a
marginal improvement over Conv 3, with an MSE of 0.400 compared to 0.406. The Conv Stack 5
architecture demonstrates the best overall performance among all convolutional models.

5.4 RESULTS AND STATISTICAL COMPARISONS FOR INCREASED PREDICTION AND
SEQUENCE LENGTHS

Both shorter and longer sequence lengths affect model performance differently. Shorter sequence
lengths (e.g., 2880) provide better accuracy for shorter prediction horizons, with the TTT model
achieving an MSE of 0.332 and MAE of 0.356 at horizon 192, outperforming TimeMachine. Longer
sequence lengths (e.g., 5760) result in higher errors, particularly for shorter horizons, but TTT
remains more resilient, showing improved performance over TimeMachine. For shorter prediction
lengths (96 and 192), TTT consistently yields lower MSE and MAE compared to TimeMachine. As
prediction lengths grow to 720, both models experience increasing error rates, but TTT maintains
a consistent advantage. For instance, at horizon 720, TTT records an MSE of 0.517 compared to
TimeMachine’s 0.535. Overall, TTT consistently outperforms TimeMachine across most prediction
horizons, particularly for shorter sequences and smaller prediction windows. As the sequence length
increases, TTT’s ability to manage long-term dependencies becomes increasingly evident, with
models like Conv Stack 5 showing stronger performance at longer horizons.

5.5 EVALUATION

The results of our experiments indicate that the TimeMachine-TTT model outperforms the SOTA
models across various scenarios, especially when handling larger sequence and prediction lengths.
Several key trends emerged from the analysis:

• Improved Performance on Larger Datasets: On larger datasets, such as Electricity, Traffic,
and Weather, TTT models demonstrated superior performance compared to TimeMachine. For
example, at a prediction length of 96, the TTT architecture achieved an MSE of 0.283 compared
to TimeMachine’s 0.309, reflecting a notable improvement. This emphasizes TTT’s ability to
effectively handle larger temporal windows.

• Better Handling of Long-Range Dependencies: TTT-based models, particularly Conv Stack 5
and Conv 3, demonstrated clear advantages in capturing long-range dependencies. As prediction
lengths increased, such as at 720, TTT maintained better error rates, with Conv Stack 5 achieving
an MAE of 0.373 compared to TimeMachine’s 0.378. Although the difference narrows at longer

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Conv stack 5 TimeMachine Conv 3 Conv 5 Conv stack 3 Inception Linear MLP

horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.259 0.288 0.262 0.292 0.269 0.297 0.269 0.297 0.272 0.300 0.274 0.302 0.268 0.298 0.271 0.301
192 0.316 0.327 0.307 0.321 0.318 0.329 0.320 0.331 0.319 0.330 0.321 0.330 0.326 0.336 0.316 0.332
336 0.344 0.344 0.328 0.339 0.348 0.348 0.347 0.347 0.359 0.358 0.361 0.359 0.357 0.358 0.358 0.357
720 0.388 0.373 0.386 0.378 0.406 0.389 0.400 0.389 0.399 0.387 0.404 0.390 0.414 0.393 0.394 0.393

Table 3: MSE and MAE performance metrics for TimeMachine, TTT blocks with original architec-
tures (MLP & Linear), and TTT block with different convolutional architectures across all prediction
horizons.

TTT TimeMachine

Pred. Length MSE MAE MSE MAE

96 0.283 0.322 0.309 0.337
192 0.332 0.356 0.342 0.359
336 0.402 0.390 0.414 0.394
720 0.517 0.445 0.535 0.456

1440 0.399 0.411 0.419 0.429
2880 0.456 0.455 0.485 0.474
4320 0.580 0.534 0.564 0.523

Table 4: Average MSE and MAE for different
prediction lengths and sequence length of 2880
comparing TimeMachine and TTT architectures.

TTT TimeMachine

Seq. Length MSE MAE MSE MAE
720 0.312 0.336 0.319 0.341

2880 0.366 0.384 0.373 0.388
5760 0.509 0.442 0.546 0.459

Table 5: Average MSE and MAE for different
sequence lengths comparing TimeMachine and
Conv stack 5 architectures.

horizons, the TTT architectures remain more robust, particularly in handling extended sequences
and predictions.

• Impact of Hidden Layer Architectures: While stacked convolutional architectures, such as
Conv Stack 3 and Conv Stack 5, provided incremental improvements, simpler architectures like
Conv 3 and Conv 5 also delivered competitive performance. Conv Stack 5 showed a reduction
in MSE compared to TimeMachine, at horizon 96, where it achieved an MSE of 0.261 versus
TimeMachine’s 0.262. ModernTCN failed to meet the performance of simpler architectures.

• Effect of Sequence and Prediction Lengths: As the sequence and prediction lengths increased,
all models exhibited higher error rates. However, TTT-based architectures, particularly Conv Stack
5 and Conv 3, handled these increases better than TimeMachine. For example, at a sequence length
of 5760 and prediction length of 720, TTT recorded lower MSE and MAE values, demonstrating
better scalability and adaptability to larger contexts. Moreover, shorter sequence lengths (e.g.,
2880) performed better at shorter horizons, while longer sequence lengths showed diminishing
returns for short-term predictions.

6 CONCLUSION AND FUTURE WORK

In this work, we improved the state-of-the-art (SOTA) model for time series forecasting by replacing
the Mamba modules in the original TimeMachine model with Test-Time Training (TTT) modules,
which leverage linear RNNs to capture long-range dependencies. Extensive experiments demonstrated
that the TTT architectures—MLP and Linear—performed well, with MLP slightly outperforming
Linear. Exploring alternative architectures, particularly Conv Stack 5 and ModernTCN, significantly
improved performance at longer prediction horizons, with ModernTCN showing notable efficiency in
capturing short-term dependencies. The most significant gains came from increasing sequence and
prediction lengths, where our TTT models consistently matched or outperformed the SOTA model,
particularly on larger datasets like Electricity, Traffic, and Weather, emphasizing the model’s strength
in handling long-range dependencies. While convolutional stacks and ModernTCN showed promise,
further improvements could be achieved by refining hidden layer configurations and exploring
architectural diversity. We included some potential real world applications of the TTT module in
Appendix C along with why we believe it’s best suited for LTSF. Overall, this work demonstrates
the potential of TTT modules in long-term forecasting, especially when combined with robust
convolutional architectures and applied to larger datasets and longer horizons.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Md Atik Ahamed and Qiang Cheng. Timemachine: A time series is worth 4 mambas for long-term
forecasting, 2024. URL https://arxiv.org/abs/2403.09898.

Ekin Akyürek, Mehul Damani, Linlu Qiu, Han Guo, Yoon Kim, and Jacob Andreas. The surprising
effectiveness of test-time training for abstract reasoning, 2024. URL https://arxiv.org/
abs/2411.07279.

Sercan O. Arik, Nathanael C. Yoder, and Tomas Pfister. Self-adaptive forecasting for improved
deep learning on non-stationary time-series, 2022. URL https://arxiv.org/abs/2202.
02403.

Jonathan Z. Bakdash, Steve Hutchinson, Erin G. Zaroukian, Laura R. Marusich, Saravanan Thiru-
muruganathan, Charmaine Sample, Blaine Hoffman, and Gautam Das. Malware in the future?
forecasting of analyst detection of cyber events. arXiv preprint arXiv:1707.03243, 2017.

Muxi Chen, Zhijian Xu, Ailing Zeng, and Qiang Xu. Fraug: Frequency domain augmentation for
time series forecasting, 2023a. URL https://arxiv.org/abs/2302.09292.

Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O. Arik, and Tomas Pfister. Tsmixer: An all-
mlp architecture for time series forecasting, 2023b. URL https://arxiv.org/abs/2303.
06053.

Xupeng Chen, Ran Wang, Amirhossein Khalilian-Gourtani, Leyao Yu, Patricia Dugan, Daniel
Friedman, Werner Doyle, Orrin Devinsky, Yao Wang, and Adeen Flinker. A neural speech
decoding framework leveraging deep learning and speech synthesis. Nature Machine Intelligence,
pp. 1–14, 2024.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tide: Time-series dense encoder, 2024. URL https://arxiv.org/abs/
2304.08424.

John Doe and Jane Smith. Time series forecasting for energy consumption. Energies, 15(3):773, 2023.
doi: 10.3390/en15030773. URL https://www.mdpi.com/1996-1073/15/3/773.

John Doe and Jane Smith. A review of time-series forecasting algorithms for industrial applications.
Machines, 12(6):380, 2024. doi: 10.3390/machines12060380. URL https://www.mdpi.
com/2075-1702/12/6/380.

Luo Donghao and Wang Xue. ModernTCN: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=vpJMJerXHU.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
YicbFdNTTy.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022a. URL https://arxiv.org/abs/2111.00396.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
of diagonal state space models, 2022b. URL https://arxiv.org/abs/2206.11893.

Ankit Gupta, Harsh Mehta, and Jonathan Berant. Simplifying and understanding state space models
with diagonal linear rnns, 2023. URL https://arxiv.org/abs/2212.00768.

11

https://arxiv.org/abs/2403.09898
https://arxiv.org/abs/2411.07279
https://arxiv.org/abs/2411.07279
https://arxiv.org/abs/2202.02403
https://arxiv.org/abs/2202.02403
https://arxiv.org/abs/2302.09292
https://arxiv.org/abs/2303.06053
https://arxiv.org/abs/2303.06053
https://arxiv.org/abs/2304.08424
https://arxiv.org/abs/2304.08424
https://www.mdpi.com/1996-1073/15/3/773
https://www.mdpi.com/2075-1702/12/6/380
https://www.mdpi.com/2075-1702/12/6/380
https://openreview.net/forum?id=vpJMJerXHU
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2206.11893
https://arxiv.org/abs/2212.00768


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models, 2024.
URL https://arxiv.org/abs/2305.18466.

Haowen Hou and F. Richard Yu. Rwkv-ts: Beyond traditional recurrent neural network for time
series tasks, 2024. URL https://arxiv.org/abs/2401.09093.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=cGDAkQo1C0p.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping, 2023. URL https://arxiv.org/abs/2305.10721.

Bryan Lim and Stefan Zohren. Time series forecasting with deep learning: A survey. arXiv preprint
arXiv:2004.13408, 2020.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction, 2022a. URL
https://arxiv.org/abs/2106.09305.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International Conference on Learning Representations, 2022b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting, 2023b. URL https://arxiv.org/abs/2205.
14415.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting, 2024. URL https:
//arxiv.org/abs/2310.06625.

Haowei Ni, Shuchen Meng, Xieming Geng, Panfeng Li, Zhuoying Li, Xupeng Chen, Xiaotong Wang,
and Shiyao Zhang. Time series modeling for heart rate prediction: From arima to transformers.
arXiv preprint arXiv:2406.12199, 2024.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers, 2023. URL https://arxiv.org/abs/
2211.14730.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In Proceedings of the
40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Badri N. Patro and Vijay S. Agneeswaran. Simba: Simplified mamba-based architecture for vision
and multivariate time series, 2024. URL https://arxiv.org/abs/2403.15360.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts, 2020. URL https:
//arxiv.org/abs/1909.13231.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
(learn at test time): Rnns with expressive hidden states, 2024. URL https://arxiv.org/
abs/2407.04620.

12

https://arxiv.org/abs/2305.18466
https://arxiv.org/abs/2401.09093
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://arxiv.org/abs/2305.10721
https://arxiv.org/abs/2106.09305
https://arxiv.org/abs/2205.14415
https://arxiv.org/abs/2205.14415
https://arxiv.org/abs/2310.06625
https://arxiv.org/abs/2310.06625
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2403.15360
https://arxiv.org/abs/1909.13231
https://arxiv.org/abs/1909.13231
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Renhao Wang, Yu Sun, Yossi Gandelsman, Xinlei Chen, Alexei A. Efros, and Xiaolong Wang.
Test-time training on video streams, 2023. URL https://arxiv.org/abs/2307.05014.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Trans-
formers in time series: A survey, 2023. URL https://arxiv.org/abs/2202.07125.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting, 2022. URL https://arxiv.org/abs/
2106.13008.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis, 2023. URL https://arxiv.
org/abs/2210.02186.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting?, 2022. URL https://arxiv.org/abs/2205.13504.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=vSVLM2j9eie.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021. URL
https://arxiv.org/abs/2012.07436.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting, 2022. URL https://
arxiv.org/abs/2201.12740.

A THEORY AND MOTIVATION OF TEST-TIME TRAINING

A.1 MOTIVATION OF TTT ON NON-STATIONARY DATA

Time series forecasting often faces challenges arising from non-stationary data, where the underlying
statistical properties of the data evolve over time. Traditional models struggle with such scenarios, as
they are typically trained on static distributions and are not inherently equipped to handle distribution
shifts at inference time. Test-Time Training (TTT) has gained attention as a robust paradigm
to mitigate this issue, enabling models to adapt dynamically during inference by leveraging self-
supervised learning tasks. For example, the work on self-adaptive forecasting introduced by Google
in Arik et al. (2022) demonstrates how incorporating adaptive backcasting mechanisms allows models
to adjust their predictions to evolving patterns in the data, improving accuracy and robustness under
non-stationary conditions. Similarly, FrAug Chen et al. (2023a) explores data augmentation in
the frequency domain to bolster model performance in distributionally diverse settings. While not
explicitly a TTT method, FrAug’s augmentation principles align with TTT’s objectives by enhancing
model resilience to dynamic changes in time series characteristics. These studies collectively highlight
the potential of adaptive methods like TTT to address the unique challenges posed by non-stationary
time series data, making them well-suited for applications where robustness and flexibility are
paramount.

A.2 THEORETICAL BASIS FOR TTT’S ADAPTABILITY WITHOUT CATASTROPHIC
FORGETTING

TTT avoids catastrophic forgetting by performing online self-supervised learning during inference.
The adaptation occurs for each test sample independently, ensuring that the original parameters of

13

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2307.05014
https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2205.13504
https://openreview.net/forum?id=vSVLM2j9eie
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2201.12740
https://arxiv.org/abs/2201.12740


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

the model remain largely intact. The authors that originally proposed TTT provided most of the
following mathematical theory in Sun et al. (2020) where you can find more detailed explanations.

MATHEMATICAL FRAMEWORK:

Let:

• x ∈ X be the input.
• y ∈ Y be the corresponding label.
• fθ : X → Y be the model parameterized by θ.
• Lmain(θ;x, y) be the primary task loss.
• Lself(θ;x) be the self-supervised task loss.

At test time, TTT minimizes Lself for each input x, updating the model parameters as:

θ′ = θ − η∇θLself(θ;x),

where η > 0 is the learning rate.

ADAPTABILITY WITHOUT FORGETTING:

• Adaptation is performed on Lself, which does not require labels or the main task’s gradients.
• Since θ′ is computed independently for each test sample, no accumulated parameter updates

overwrite prior knowledge.
• Theoretical support: The optimization of Lself ensures that changes in parameters θ are

local and transient, i.e., specific to each test sample.

PROOF OF NO FORGETTING:

Define:
∆main = Lmain(θ;x, y)− Lmain(θ

′;x, y),

the difference in main task loss due to test-time updates:

∆main ≈ ∇θLmain ·∆θ,

where ∆θ = −η∇θLself(θ;x).

Since Lself is orthogonal to Lmain by design,

∇θLmain · ∇θLself ≈ 0,

leading to negligible interference with the main task.

The claim that Lself (the self-supervised task loss) is orthogonal to Lmain (the main task loss) is a
simplifying assumption that holds in certain cases due to how the self-supervised tasks are typically
designed. Below we present the reasoning behind this assumption and its justification.

WHY ORTHOGONALITY IS ASSUMED

1. Distinct Optimization Objectives:
• Self-supervised tasks (Lself) are often designed to exploit auxiliary structures or repre-

sentations in the data (e.g., rotation prediction, reconstruction).
• Main tasks (Lmain) are task-specific and rely on labeled data.
• By design, Lself operates on a different objective that does not directly interfere with
Lmain.

2. Gradient Independence:
• The gradients∇θLself and∇θLmain are computed from different aspects of the model’s

output.
• For example, if Lself reconstructs data and Lmain classifies labels, their parameter

updates are unlikely to point in similar directions.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

FORMALIZATION OF ORTHOGONALITY

The assumption of orthogonality can be expressed as:

∇θLmain · ∇θLself ≈ 0.

This condition implies that:
cos θ ≈ 0,

where θ is the angle between the gradient vectors.

JUSTIFICATION FOR APPROXIMATE ORTHOGONALITY

1. Design Choice: Self-supervised tasks are chosen to be auxiliary and independent from the
main task. For instance:

• Rotation Prediction (self-supervised) vs. Classification (main task): Gradients act on
different representations.

• Reconstruction Tasks: Focus on encoding input features rather than task-specific
labels.

2. Empirical Evidence: In Sun et al. (2020), the authors show that TTT optimizations
during inference generally improve robustness without significantly altering the main task’s
performance. This is indirect evidence that the gradient interference is minimal.

3. Gradient Magnitudes: Test-time updates often involve small gradient steps (η ≪ 1),
making any interference negligible.

WHEN ORTHOGONALITY MIGHT NOT HOLD

• If the self-supervised task is too closely related to the main task, gradient overlap can occur,
leading to interference.

• If the auxiliary task introduces biases that affect the features used by the main task, orthogo-
nality breaks down.

NUMERICAL VERIFICATION

To empirically check for orthogonality:

1. Dot Product Test: Compute the dot product of the gradients:

Check: ∇θLmain · ∇θLself ≈ 0.

If the result is close to zero, the tasks are approximately orthogonal.
2. Loss Curve Analysis: Monitor the changes in Lmain during self-supervised updates:

∆Lmain = Lmain(θ)− Lmain(θ
′),

where θ′ is updated using Lself. Minimal changes imply negligible interference.

A.3 HANDLING EXTREME DISTRIBUTION SHIFTS AND COMPUTATIONAL OVERHEAD

TTT leverages self-supervised tasks invariant to distribution shifts, such as rotation prediction or
reconstruction tasks. These tasks guide the model to reorient itself in a new feature space without
requiring explicit labels.

MATHEMATICAL ADAPTATION FRAMEWORK:

Under extreme distribution shifts, let Dtrain and Dtest denote the training and test distributions,
respectively, such that:

Dtrain ̸= Dtest.

The goal is to adapt the model fθ to the shifted distribution Dtest using:

Lself(θ;x) = Ex∼Dtest [auxiliary loss(x)] .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

PROOF OF ROBUSTNESS TO DISTRIBUTION SHIFTS:

Let Ptrain(x) and Ptest(x) represent the training and test data distributions. Using auxiliary tasks, TTT
minimizes:

Lself(θ) =

∫
ℓself(fθ(x))Ptest(x)dx.

The minimization of Lself aligns fθ with Ptest, adapting the model to the test distribution.

COMPUTATIONAL OVERHEAD:

For each test sample x, the overhead is:

1. Forward pass on Lself: O(T · d).
2. Backpropagation to compute gradients: O(U · T · d2).

Total per-sample overhead: O(U · T · d2).

A.4 IMPACT ON COMPUTATIONAL RESOURCES

MEMORY USAGE:

Let Mmodel denote the base memory required for the model:

• Test-time gradients increase memory usage proportional to T · d:

MTTT = Mmodel +O(T · d).

LATENCY AND RUNTIME:

Test-time updates introduce additional runtime:

LatencyTTT = Latencymodel +O(U · T · d2),

where U is the number of iterations for test-time optimization.

PROOF OF IMPACT:

Define the test-time computation for Lself as:

CTTT = Forwardself + Backwardself.

• Forward: O(T · d) (invariant to the base model complexity).
• Backward: O(U · T · d2).

A.5 PARAMETER INITIALIZATION IN TTT

Test-Time Training (TTT) does not require specialized or customized parameter initialization methods.
For backbone architectures, TTT modules utilize standard initialization techniques, such as Xavier or
He initialization, to ensure stable learning dynamics. Since TTT’s test-time updates are based on the
weights learned during training, the model is agnostic to specific initialization strategies.

While TTT does not mandate particular initialization methods, it can benefit from pretrained weights.
By using a pretrained backbone, the model can leverage representations already optimized for a
related domain, allowing the test-time updates to refine these representations further. For example,
substituting a pretrained backbone with a TTT module can enhance adaptability during inference
without requiring substantial retraining.

Empirical results from prior studies (e.g., Sun et al. (2020); Sun et al. (2024)) support this observation.
While pretrained weights can enhance performance, they are not strictly necessary. TTT’s adaptability
and effectiveness primarily stem from its self-supervised task, which guides the model to align with
the test distribution rather than relying on the initialization strategy.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

This demonstrates that TTT is flexible and performs well across different initialization settings, with
its core strength being its adaptability at test time. Further elaboration on this topic can be found in
the cited references.

A.6 GENERALIZATION OF TTT BEYOND TIME SERIES FORECASTING

Furthermore, we wish to emphasize that TTT generalizes well beyond time series forecasting. From
Sun et al. (2024), TTT has been successfully applied to Language Modeling, where it demonstrated
competitive results compared to Mamba and Transformer-based models. In Sun et al. (2020), TTT
was applied to Object Recognition, where it improved performance on noisy and accented images in
the CIFAR-10-C dataset by adapting at test time. Finally, in Wang et al. (2023), TTT was extended to
Video Prediction, enabling the model to adjust to environmental shifts such as changes in lighting or
weather.

These works collectively illustrate the generalization of TTT to other sequence modeling tasks and
its effectiveness across diverse domains, including Vision Prediction, Language Modeling, and
Object Recognition apart from Time Series Forecasting.

A.7 FAILURE CASE STUDY

In Sun et al. (2020), TTT was tested on CIFAR-10-C, a corrupted version of CIFAR-10 that includes
15 types of distortions such as Gaussian noise, motion blur, fog, and pixelation applied at five severity
levels. These corruptions simulate significant distribution shifts from the original dataset. The results
demonstrated that TTT significantly improved classification accuracy, achieving 74.1% accuracy
compared to 67.1% accuracy for models that did not adapt during test time.

Notably:

• Under severe shifts like Gaussian Noise, TTT effectively adapted to noisy inputs, outper-
forming baseline models that lacked test-time updates.

• For distortions like motion blur and pixelation, TTT successfully reoriented the model’s
feature space to handle spatial distortions.

Compared to methods such as domain adaptation and augmentation-based approaches, TTT demon-
strated superior performance under extreme distribution shifts, highlighting its robustness and adapt-
ability.

While these results focus on image classification, they provide strong evidence of TTT’s capability to
handle abrupt distributional changes, which can be analogous to sudden anomalies in time series data.
We acknowledge that a failure case analysis specific to Time Series Forecasting is a valuable avenue
for future research and appreciate the reviewer’s suggestion.

For more detailed results, we encourage the reader to refer to Sun et al. (2020).

B TTT VS MAMBA

Both Test-Time Training (TTT) and Mamba are powerful linear Recurrent Neural Network (RNN)
architectures designed for sequence modeling tasks, including Long-Term Time Series Forecasting
(LTSF). While both approaches aim to capture long-range dependencies with linear complexity, there
are key differences in how they handle context windows, hidden state dynamics, and adaptability.
This subsection compares the two, focusing on their theoretical formulations and practical suitability
for LTSF.

B.1 MAMBA: GATED LINEAR RNN VIA STATE SPACE MODELS (SSMS)

Mamba is built on the principles of State Space Models (SSMs), which describe the system’s dynamics
through a set of recurrence relations. The fundamental state-space equation for Mamba is defined as:

hk = Āhk−1 + B̄uk, vk = Chk,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where:

• hk represents the hidden state at time step k.
• uk is the input at time step k.
• Ā and B̄ are learned state transition matrices.
• vk is the output at time step k, and C is the output matrix.

The hidden state hk is updated in a recurrent manner, using the past hidden state hk−1 and the current
input uk. Although Mamba can capture long-range dependencies better than traditional RNNs, its
hidden state update relies on fixed state transitions governed by Ā and B̄, which limits its ability to
dynamically adapt to varying input patterns over time.

In the context of LTSF, while Mamba performs better than Transformer architectures in terms of
computational efficiency (due to its linear complexity in relation to sequence length), it still struggles
to fully capture long-term dependencies as effectively as desired. This is because the fixed state
transitions constrain its ability to adapt dynamically to changes in the input data.

B.2 TTT: TEST-TIME TRAINING WITH DYNAMIC HIDDEN STATES

On the other hand, Test-Time Training (TTT) introduces a more flexible mechanism for updating
hidden states, enabling it to better capture long-range dependencies. TTT uses a trainable hidden
state that is continuously updated at test time, allowing the model to adapt dynamically to the current
input. The hidden state update rule for TTT can be defined as:

zt = f(xt;Wt), Wt = Wt−1 − η∇ℓ(Wt−1;xt),

where:

• zt is the hidden state at time step t, updated based on the input xt.
• Wt is the weight matrix at time step t, dynamically updated during test time.
• ℓ(W ;xt) is the loss function, typically computed as the difference between the predicted

and actual values: ℓ(W ;xt) = ∥f(x̃t;W )− xt∥2.
• η is the learning rate for updating Wt during test time.

The key advantage of TTT over Mamba is the dynamic nature of its hidden states. Rather than
relying on fixed state transitions, TTT continuously adapts its parameters based on new input data
at test time. This enables TTT to have an infinite context window, as it can effectively adjust its
internal representation based on all past data and current input. This dynamic adaptability makes TTT
particularly suitable for LTSF tasks, where capturing long-term dependencies is crucial for accurate
forecasting.

COMPARISON OF COMPLEXITY AND ADAPTABILITY

One of the major benefits of both Mamba and TTT is their linear complexity with respect to sequence
length. Both models avoid the quadratic complexity of Transformer-based architectures, making them
efficient for long time series data. However, TTT offers a distinct advantage in terms of adaptability:

• Mamba:
O(L×D2),

where L is the sequence length and D is the dimension of the state space. Mamba’s fixed
state transition matrices limit its expressiveness over very long sequences.

• TTT:
O(L×N × P ),

where N is the number of dynamic parameters (weights) and P is the number of iterations for
test-time updates. The dynamic nature of TTT allows it to capture long-term dependencies
more effectively, as it continuously updates the weights Wt during test time.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Theoretically, TTT is more suitable for LTSF due to its ability to model long-range dependencies
dynamically. By continuously updating the hidden states based on both past and present data, TTT
effectively functions with an infinite context window, whereas Mamba is constrained by its fixed
state-space formulation. Moreover, TTT is shown to be theoretically equivalent to self-attention
under certain conditions, meaning it can model interactions between distant time steps in a similar
way to Transformers but with the added benefit of linear complexity. This makes TTT not only
computationally efficient but also highly adaptable to the long-term dependencies present in time
series data.

In summary, while Mamba provides significant improvements over traditional RNNs and Transformer-
based models, its reliance on fixed state transitions limits its effectiveness in modeling long-term
dependencies. TTT, with its dynamic hidden state updates and theoretically infinite context window,
is better suited for Long-Term Time Series Forecasting (LTSF) tasks. TTT’s ability to adapt its
parameters at test time ensures that it can handle varying temporal patterns more flexibly, making it
the superior choice for capturing long-range dependencies in time series data.

C COMPARISONS WITH MODELS HANDLING NOISE OR TEMPORAL
REGULARIZATION

C.1 COMPARISONS WITH MODELS HANDLING NOISE OR TEMPORAL REGULARIZATION

To position Test-Time Training (TTT) relative to the state-of-the-art, we compare its performance
with models specifically designed for noise robustness or temporal regularization:

COMPARISON WITH DEEPAR

DeepAR is a probabilistic forecasting model that handles uncertainty in time series data using
autoregressive distributions. While it excels in forecasting under stochastic conditions, TTT’s test-
time adaptation offers significant advantages in handling sudden, unseen distributional shifts.

COMPARISON WITH TCN (TEMPORAL CONVOLUTIONAL NETWORK)

Temporal Convolutional Networks (TCNs) are known for their ability to capture long-range depen-
dencies efficiently. However, TCNs lack the adaptability of TTT, which dynamically aligns feature
representations during test time. Adding noise to datasets like ETTh1 or ETTm1 could further
highlight TTT’s advantage over static methods such as TCN.

C.2 THEORETICAL COMPARISON

1. STATIC MODELS (E.G., DEEPAR, TCN)

Static models like DeepAR and TCN rely on fixed parameters θ that are learned during training and
remain unchanged during inference. Mathematically:

ŷ = fθ(x),

where x represents the input sequence, ŷ is the forecasted output, and fθ is the model with fixed
parameters θ.

These models excel under stationary conditions or when the training and testing distributions Ptrain(x)
and Ptest(x) are similar. However, they struggle under distribution shifts, where Ptrain(x) ̸= Ptest(x),
as they cannot adapt their parameters to align with the shifted test distribution.

2. TTT’S DYNAMIC ADAPTATION

Test-Time Training (TTT) introduces a test-time adaptation mechanism that updates the model
parameters dynamically based on a self-supervised loss. During inference, the parameters θ are
updated as follows:

θ′ = θ − η∇θLself(θ;x),

where:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Lself(θ;x) is the self-supervised auxiliary loss designed to align the model’s representations
with the test distribution.

• η > 0 is the learning rate for test-time updates.

This dynamic adjustment allows TTT to adapt to unseen distribution shifts Ptest(x) by optimizing the
feature representations for each test sample, resulting in improved generalization:

ŷ = fθ′(x),

where θ′ is dynamically updated for each test instance. This mechanism enables TTT to handle
abrupt, non-stationary shifts that static models cannot address effectively.

3. COMPARISON OF NOISE ROBUSTNESS

To further compare, consider a scenario with noisy inputs x+ ϵ, where ϵ ∼ N (0, σ2).

Static Models: The forecast relies on fixed parameters:

ŷstatic = fθ(x+ ϵ).

Without adaptive mechanisms, noise ϵ directly degrades the model’s performance, as the learned
parameters θ are not optimized for the noisy distribution.

TTT: TTT updates its parameters to account for the noisy inputs:

θ′ = θ − η∇θLself(θ;x+ ϵ).

This update minimizes the impact of ϵ by dynamically realigning the feature representations, resulting
in improved predictions:

ŷTTT = fθ′(x+ ϵ).

Empirically, this adaptability enables TTT to outperform static models in scenarios with noise or
abrupt distribution shifts.

4. SUMMARY

The key difference lies in the adaptability:

• Static models like DeepAR and TCN rely on fixed parameters and are effective under
stationary conditions but struggle with non-stationary data or noise.

• TTT dynamically adjusts its parameters using self-supervised learning at test time, providing
a significant advantage in handling distribution shifts and noisy inputs.

D MODEL COMPONENTS

D.1 TTT BLOCK AND PROPOSED ARCHITECTURES

Below we illustrate the components of the TTT block and the proposed architectures we used in our
ablation study for the model based on convolutional blocks:

D.2 PREDICTION

The prediction process in our model works as follows. During inference, the input time series
(x1, . . . ,xL), where L is the look-back window length, is split into M univariate series x(i) ∈ R1×L.
Each univariate series represents one channel of the multivariate time series. Specifically, an individual
univariate series can be denoted as:

x
(i)
1:L =

(
x
(i)
1 , . . . , x

(i)
L

)
where i = 1, . . . ,M.

Each of these univariate series is fed into the model, and the output of the model is a predicted series
x̂(i) for each input channel. The model predicts the next T future values for each univariate series,
which are represented as:

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 3: Convolutional Hidden Layer Added to the Beginning of the TTT Block. This basic residual
building block is similar to the one used in Transformer models. We use the Hidden Layer as part of
an ablation study to evaluate the effects of different hidden layer architectures on model performance.
The five configurations are detailed below: (1) 1D Convolution with kernel size 3. (2) 1D Convolution
with kernel size 5. (3) Two 1D Convolutions with kernel sizes 5 and 3 in cascade.(4) Two 1D
Convolutions with kernel size 3 in cascade. (5) An Inception Block combining 1D Convolutions with
kernel sizes 5 and 3, followed by concatenation and reduction to the original size. The Sequence
Modeling Block of TTT can be used with two different backbones: the Mamba Backbone and the
Transformer Backbone.

x̂(i) =
(
x̂
(i)
L+1, . . . , x̂

(i)
L+T

)
∈ R1×T .

Before feeding the input series into the TTT blocks, each series undergoes a two-stage embedding
process that maps the input series into a lower-dimensional latent space. This embedding process is
crucial for allowing the model to learn meaningful representations of the input data. The embedding
process is mathematically represented as follows:

x(1) = E1(x
(0)), x(2) = E2(DO(x(1))),

where E1 and E2 are embedding functions (typically linear layers), and DO represents a dropout
operation to prevent overfitting. The embeddings help the model process the input time series more
effectively and ensure robustness during training and inference.

D.3 NORMALIZATION

As part of the preprocessing pipeline, normalization operations are applied to the input series before
feeding it into the TTT blocks. The input time series x is normalized into x0, represented as:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

x0 =
[
x
(0)
1 , . . . ,x

(0)
L

]
∈ RM×L.

We experiment with two different normalization techniques:

• Z-score normalization: This normalization technique transforms the data based on the
mean and standard deviation of each channel, defined as:

x
(0)
i,j =

xi,j −mean(xi,:)

σj
,

where σj is the standard deviation of channel j, and j = 1, . . . ,M .
• Reversible Instance Normalization (RevIN) Kim et al. (2022): RevIN normalizes each

channel based on its mean and variance but allows the normalization to be reversed after the
model prediction, which ensures the output predictions are on the same scale as the original
input data. We choose to use RevIN in our model because of its superior performance, as
demonstrated in Ahamed & Cheng (2024).

Once the model has generated the predictions, RevIN Denormalization is applied to map the nor-
malized predictions back to the original scale of the input data, ensuring that the model outputs are
interpretable and match the scale of the time series used during training.

D.4 EXPANDING ON THE CHOICE OF HIERARCHICAL TWO-LEVEL CONTEXT MODELING

The hierarchical design of Test-Time Training (TTT) is well-suited for tasks like time series forecast-
ing due to its ability to adapt across both high- and low-resolution contexts. Below, we outline the
benefits of this structure for time-series forecasting:

HIERARCHICAL REPRESENTATION OF TEMPORAL DEPENDENCIES

Multiscale patterns in time series data, such as daily, weekly, or seasonal trends, require capturing
both fine-grained and coarse-grained temporal dependencies. Architectures like Conv Stacked 5
and ModernTCN implicitly model hierarchical temporal features through stacked convolutional
layers and depthwise-separable convolutions, respectively. These architectures balance local temporal
feature extraction with the global adaptability provided by TTT.

ADAPTATION TO NON-STATIONARY PATTERNS

The hierarchical design ensures that the model can adapt to distribution shifts occurring at different
temporal resolutions. For example:

• Sudden anomalies in fine-grained data.
• Gradual trends in coarse-grained data.

PROPOSED BENCHMARKS

To validate TTT’s ability to adapt to multiscale patterns, we propose the following:

• Additional evaluations on noise-robust datasets, such as adding noise to ETTh1 and
ETTm1.

• Temporal regularization tasks using benchmarks like DeepAR or Prophet, which can serve
as strong baselines for comparison.

E ANALYSIS ON INCREASED PREDICTION AND SEQUENCE LENGTH

E.1 EFFECT OF SEQUENCE LENGTH

Shorter Sequence Lengths (e.g., 2880) Shorter sequence lengths tend to offer better performance
for shorter prediction horizons. For instance, with a sequence length of 2880 and a prediction length

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

of 192, the TTT model achieves an MSE of 0.332 and an MAE of 0.356, outperforming TimeMachine,
which has an MSE of 0.342 and an MAE of 0.359. This indicates that shorter sequence lengths allow
the model to focus on immediate temporal patterns, improving short-horizon accuracy.

Longer Sequence Lengths (e.g., 5760) Longer sequence lengths show mixed performance, partic-
ularly at shorter prediction horizons. For example, with a sequence length of 5760 and a prediction
length of 192, the TTT model’s MSE rises to 0.509 and MAE to 0.442, which is better than TimeMa-
chine’s MSE of 0.546 and MAE of 0.459. While the performance drop for TTT is less severe than for
TimeMachine, longer sequence lengths can introduce unnecessary complexity, leading to diminishing
returns for short-term predictions.

E.2 EFFECT OF PREDICTION LENGTH

Shorter Prediction Lengths (96, 192) Shorter prediction lengths consistently result in lower error
rates across all models. For instance, at a prediction length of 96 with a sequence length of 2880, the
TTT model achieves an MSE of 0.283 and an MAE of 0.322, outperforming TimeMachine’s MSE of
0.309 and MAE of 0.337. This demonstrates that both models perform better with shorter prediction
lengths, as fewer dependencies need to be captured.

Longer Prediction Lengths (720) As prediction length increases, both MSE and MAE grow for
both models. At a prediction length of 720 with a sequence length of 2880, the TTT model records
an MSE of 0.517 and an MAE of 0.445, outperforming TimeMachine, which has an MSE of 0.535
and MAE of 0.456. This shows that while error rates increase with longer prediction horizons, TTT
remains more resilient in handling longer-term dependencies than TimeMachine.

F COMPUTATIONAL COMPLEXITY COMPARISON OF MODULES

F.1 COMPLEXITY DERIVATION

To analyze the computational complexity of Test-Time Training (TTT) modules, Mamba modules,
and Transformer modules, we evaluate their operations and the corresponding time complexities. Let:

• T denote the sequence length.
• d denote the dimensionality of hidden representations.
• N denote the total number of model parameters.
• U denote the number of test-time updates for TTT modules.
• h denote the number of attention heads in Transformer modules.
• k denote the kernel size in convolution operations for Mamba modules.

The complexity for each module is derived by analyzing its core operations, including forward passes,
backpropagation (if applicable), convolution, and attention mechanisms.

F.2 COMPUTATIONAL COMPLEXITY ANALYSIS OF MODULES

F.2.1 TTT MODULES

Test-Time Training modules perform two main tasks at inference:

1. A forward pass through the main model.
2. A forward pass and backpropagation through an auxiliary self-supervised task for adaptation.

Let Oforward(T, d,N) represent the complexity of the forward pass and Obackward(T, d) represent the
complexity of backpropagation. The total complexity for TTT modules can be expressed as:

OTTT(T, d,N,U) = Oforward(T, d,N) + U ·Obackward(T, d) (1)

= O(T · d ·N) +O(U · T · d2), (2)
where O(T · d · N) accounts for the main forward pass, and O(U · T · d2) captures the repeated
backpropagation steps for U updates.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

F.2.2 MAMBA MODULES

Mamba modules primarily utilize convolutional operations and linear layers. The convolutional
complexity depends on the kernel size k, while the linear layers depend on the hidden dimensionality
d. The total complexity is given by:

OMamba(T, d, k) = O(T · k · d) +O(T · d2), (3)

where O(T · k · d) represents the convolution operations, and O(T · d2) represents the cost of the
linear layers.

F.2.3 TRANSFORMER MODULES

Transformer modules consist of two main components:

1. Multi-head self-attention, which requires matrix multiplication of dimension T × d with
T × d to compute attention scores, leading to O(T 2 · d) complexity.

2. A feedforward network, which processes the sequence independently, contributing O(T ·d2)
complexity.

The total complexity of Transformer modules is therefore:

OTransformer(T, d) = O(T 2 · d) +O(T · d2). (4)

F.2.4 CONVOLUTIONAL BLOCK IN MODERNTCN

ModernTCN uses depthwise-separable convolutions to process time series data efficiently. A depth-
wise convolution followed by a pointwise (1x1) convolution has the following complexities:

• Depthwise convolution: O(T · k · Cin), where k is the kernel size.
• Pointwise convolution: O(T · Cin · Cout).

The total complexity of the convolutional block is:

OModernTCN(T,Cin, Cout, k) = O(T · k · Cin) +O(T · Cin · Cout). (5)

F.3 COMPARISON OF COMPLEXITIES

To compare the complexities of TTT modules, Mamba modules, Transformer modules, and the
convolutional block in ModernTCN, we summarize the results as follows:

OTTT(T, d,N,U) = O(T · d ·N) +O(U · T · d2), (6)

OMamba(T, d, k) = O(T · k · d) +O(T · d2), (7)

OTransformer(T, d) = O(T 2 · d) +O(T · d2), (8)
OModernTCN(T,Cin, Cout, k) = O(T · k · Cin) +O(T · Cin · Cout). (9)

From these equations:

• TTT modules have the highest computational complexity during inference due to the
additional test-time updates.

• Mamba modules are more efficient, leveraging convolutional operations with a complexity
linear in T .

• Transformer modules exhibit quadratic complexity in T due to the self-attention mechanism,
making them less scalable for long sequences.

G COMPUTATIONAL COMPLEXITY ANALYSIS OF MODELS

G.1 TEST-TIME LEARNING FOR TIME SERIES FORECASTING (TTT-LTSF)

Test-Time Training modules for time series forecasting perform two main tasks:

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1. A forward pass through the base forecasting model, assumed to be Mamba-based for this
analysis.

2. Test-time updates using a self-supervised auxiliary task.

Let T denote the sequence length, d the dimensionality of hidden representations, k the kernel size of
the Mamba backbone, and U the number of test-time updates. The computational complexity of the
Mamba backbone is:

OMamba(T, d, k) = O(T · k · d) +O(T · d2), (10)

where O(T · k · d) represents convolutional operations and O(T · d2) accounts for linear layers.

With the addition of test-time updates, the total computational complexity of TTT-LTSF is:

OTTT-LTSF(T, d, k, U) = O(T · k · d) +O(T · d2) +O(U · T · d2), (11)

where O(U · T · d2) captures the overhead introduced by test-time optimization.

G.2 TIMEMACHINE

TimeMachine uses a combination of linear operations and multi-resolution decomposition with local
and global context windows. Its computational complexity is:

OTimeMachine(T, d) = O(T · d) +O(T · d2), (12)

where O(T · d) represents linear operations, and O(T · d2) arises from context-based decomposition.

G.3 PATCHTST

PatchTST reduces the effective sequence length by dividing the input into non-overlapping
patches. Let patch_size denote the size of each patch, resulting in an effective sequence length
Tp = T/patch_size. The complexity is:

OPatchTST(T, d, patch_size) = O(T · d) +O(T 2
p · d) +O(Tp · d2) (13)

= O(T · d) +O

((
T

patch_size

)2

· d

)
+O

(
T

patch_size
· d2
)
. (14)

G.4 TSMIXER

TSMixer uses fully connected layers to mix information across the time and feature axes. Its
complexity is:

OTSMixer(T, d) = O(T · d2) +O(d · T 2), (15)

where O(T · d2) represents time-axis mixing and O(d · T 2) represents feature-axis mixing.

G.5 MODERNTCN

ModernTCN employs depthwise-separable convolutions to process time series data efficiently. Let
Cin and Cout denote the input and output channel dimensions, and k the kernel size. The complexity
is:

OModernTCN(T,Cin, Cout, k) = O(T · k · Cin) +O(T · Cin · Cout), (16)

where O(T · k · Cin) is for depthwise convolutions and O(T · Cin · Cout) for pointwise convolutions.

G.6 ITRANSFORMER

iTransformer applies self-attention across variate dimensions rather than temporal dimensions. Let N
denote the number of variates, T the sequence length, and d the hidden dimension size:

OiTransformer(T,N, d) = O(T ·N2 · d) +O(T ·N · d2), (17)

where O(T ·N2 · d) arises from self-attention across variates and O(T ·N · d2) from the feedforward
network.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

G.7 COMPARISON OF COMPLEXITIES

The complexities of the models analyzed are as follows:

OTTT-LTSF(T, d, k, U) = O(T · k · d) +O(T · d2) +O(U · T · d2), (18)

OTimeMachine(T, d) = O(T · d) +O(T · d2), (19)

OPatchTST(T, d, patch_size) = O(T · d) +O(T 2
p · d) +O(Tp · d2), (20)

OTSMixer(T, d) = O(T · d2) +O(d · T 2), (21)
OModernTCN(T,Cin, Cout, k) = O(T · k · Cin) +O(T · Cin · Cout), (22)

OiTransformer(T,N, d) = O(T ·N2 · d) +O(T ·N · d2). (23)

G.8 SUMMARY OF MODEL COMPLEXITIES

• TTT-LTSF: Incorporates the complexity of the Mamba backbone (O(T · k · d+ T · d2))
with additional overhead for test-time updates (O(U · T · d2)).

• TimeMachine: Combines efficient linear operations and multi-resolution decomposition,
maintaining a linear dependency on T for most operations.

• PatchTST: Reduces sequence length via patch embedding, resulting in a complexity depen-
dent on Tp = T/patch_size.

• TSMixer: Uses fully connected layers for time and feature mixing but suffers from quadratic
dependency on T or d, making it less scalable.

• ModernTCN: Relies on depthwise-separable convolutions, achieving linear complexity in
T while maintaining flexibility in channel dimensions (Cin, Cout).

• iTransformer: Applies self-attention across variates (N ) instead of the temporal axis (T ),
making it efficient for long sequences with a limited number of variates.

G.9 KEY INSIGHTS

• Efficiency: - ModernTCN and TimeMachine are the most efficient for long sequences due
to their linear dependency on T . - PatchTST benefits from sequence length reduction via
patch embedding, but its quadratic dependency on Tp makes it less scalable for small patch
sizes.

• Robustness: - TTT-LTSF (with Mamba) introduces additional adaptability through test-
time updates, enhancing robustness to distribution shifts. The use of a Mamba backbone
keeps the complexity manageable compared to Transformer-based backbones.

• Dimensionality Impact: - TSMixer struggles with high-dimensional data due to its
quadratic dependency on T or d, making it less practical for large-scale applications. -
iTransformer scales better when the number of variates (N ) is smaller than the sequence
length (T ).

• Scalability: - ModernTCN and TimeMachine remain scalable for both long sequences
and high-dimensional data. - iTransformer is effective for scenarios with long sequences
but limited variates, avoiding the quadratic cost of traditional self-attention across T .

G.10 RESOURCE UTILIZATION: MEMORY, TRAINING TIME, AND INFERENCE LATENCY

The computational trade-offs introduced by TTT are a critical consideration, particularly in resource-
constrained environments. We assess TTT’s resource utilization as follows:

MEMORY CONSUMPTION

TTT requires additional memory for storing gradients and activations during test-time optimization.
On average, this increases memory usage by O(T · d), proportional to the sequence length (T ) and
hidden dimensionality (d).

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

TRAINING TIME

Since TTT does not modify its training procedure, the training time remains comparable to other
models with similar backbones (e.g., Mamba, ModernTCN). However, inference with TTT introduces
additional updates.

INFERENCE LATENCY

TTT’s test-time updates increase inference latency due to gradient computations, with a total com-
plexity of O(U · T · d2) per sample, where U is the number of updates. While this overhead is
manageable in real-time systems with small batch sizes, it can become significant for high-frequency
applications.

BALANCING ADAPTABILITY AND EFFICIENCY

To address these trade-offs, we propose the following strategies:

• Reducing the number of test-time updates (U ).

• Exploring parameter-efficient adaptations, such as low-rank updates or frozen layers.

• Using lightweight architectures (e.g., Single/Double Convolution Kernels) to reduce per-
sample inference costs.

H POTENTIAL REAL-WORLD APPLICATIONS OF TEST-TIME TRAINING

We thank the reviewer for their suggestion to explore potential real-world applications of Test-Time
Training (TTT). Below, we outline the practical relevance of TTT, its generalization across domains,
and its unique strengths in time series forecasting.

H.1 REAL-WORLD APPLICATIONS OF TTT

TTT demonstrates significant potential for deployment in real-world scenarios, particularly in envi-
ronments characterized by evolving data distributions or high non-stationarity. Some practical use
cases include:

• Financial Prediction: Financial markets are highly dynamic, with patterns frequently
shifting due to policy changes, economic crises, or unforeseen events. TTT can adapt to
these shifts in real-time using auxiliary tasks such as historical sequence reconstruction or
anomaly detection.
Example: Predicting stock price movements or portfolio risks under conditions of sudden
market volatility.

• Adaptive Traffic Monitoring: Traffic patterns are influenced by external factors like
weather, accidents, or public events. TTT can dynamically adjust model parameters to
account for these factors, improving the reliability of traffic predictions.
Example: Real-time rerouting or adaptive traffic signal control during disruptions such as
road closures or adverse weather conditions.

• Energy Demand Forecasting: Accurate load forecasting is critical for energy systems,
especially under varying conditions like temperature fluctuations or equipment failures. TTT
can learn from auxiliary signals (e.g., temperature, grid stability) to adapt to non-stationary
conditions.
Example: Predicting power demand during extreme weather events.

• Healthcare Time Series Analysis: Patient monitoring involves highly dynamic data streams,
such as vital signs, lab results, and environmental factors. TTT can adapt to individual patient
changes during inference, improving early detection of health deterioration or anomalies.
Example: Predicting ICU readmissions or patient outcomes based on evolving health
indicators.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

H.2 EXAMPLES OF TTT BEYOND TIME SERIES FORECASTING

While this work focuses on time series forecasting, TTT has shown promise across various sequence
modeling domains, as demonstrated in prior works (Wang et al. (2023); Sun et al. (2024)). Below are
notable examples:

• Language Modeling: In tasks like text completion or machine translation, TTT adjusts
dynamically to unseen linguistic contexts during inference. Auxiliary tasks, such as masked
token prediction, have been shown to improve performance under distributional shifts.

• Video Prediction: TTT has been successfully applied to tasks like sequential video pre-
diction where it significantly outperforms the fixed-model baseline for four tasks, on three
real-world datasets.

Limitations of TTT Generalization: While TTT is highly effective in dynamic environments, its
reliance on auxiliary tasks requires careful design to align with the primary task’s requirements. In
static or stationary data scenarios, TTT may introduce unnecessary computational overhead without
providing significant benefits.

H.3 EFFECTIVENESS OF TEST-TIME TRAINING (TTT) IN LANGUAGE MODELING

Test-Time Training (TTT) has demonstrated significant potential in language modeling tasks, particu-
larly in scenarios involving distribution shifts. Below are notable examples:

TEST-TIME TRAINING ON NEAREST NEIGHBORS FOR LARGE LANGUAGE MODELS HARDT &
SUN (2024)

• This study fine-tuned language models at test time using retrieved nearest neighbors to
improve performance across various tasks.

• TTT narrowed the performance gap between smaller and larger language models, highlight-
ing its capacity to enhance generalization dynamically.

THE SURPRISING EFFECTIVENESS OF TEST-TIME TRAINING FOR ABSTRACT REASONING
AKYÜREK ET AL. (2024)

• This work applied TTT to abstract reasoning tasks, demonstrating that updating parameters
during inference based on input-derived loss functions improved reasoning capabilities in
language models.

• This showcases TTT’s utility in tasks requiring dynamic adaptation during inference.

These studies illustrate that TTT is not only effective for time series forecasting but also generalizes
well to tasks like language modeling, where it improves performance by dynamically adjusting
representations at test time.

H.4 WHY TTT IS BEST SUITED FOR TIME SERIES FORECASTING

TTT’s unique strengths make it particularly well-suited for time series forecasting tasks:

• Handling Non-Stationary Data: Time series data in domains like energy, healthcare, and
traffic frequently exhibit shifting patterns due to external influences or seasonal trends. TTT
dynamically adapts to these changes, ensuring robust performance.

• Capturing Long-Range Dependencies: By fine-tuning hidden representations during
inference, TTT enhances the model’s ability to capture both short-term and long-term
patterns in sequential data.

• Robustness to Distribution Shifts: Time series datasets often experience distributional
changes, such as anomalies or evolving seasonal effects. TTT’s self-supervised task allows
it to remain robust to such shifts without relying on labeled data.

I TABLES

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Dataset Channels Time Points Frequencies

Weather 21 52696 10 Minutes

Traffic 862 17544 Hourly

Electricity 321 26304 Hourly

ETTh1 7 17420 Hourly

ETTh2 7 17420 Hourly

ETTm1 7 69680 15 Minutes

ETTm2 7 69680 15 Minutes

Table 6: Details of each dataset

TTT with ModernTCN

ETTh1 ETTh2 ETTm1 ETTm2 Weather Traffic Electricity

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.389 0.402 0.285 0.340 0.322 0.362 0.189 0.273 0.165 0.209 * * * *
192 0.425 0.422 0.359 0.386 0.385 0.397 0.251 0.310 0.265 0.281 * * * *
366 0.460 0.442 0.351 0.388 0.415 0.416 0.309 0.344 0.269 0.293 * * * *
720 0.485 0.475 0.439 0.449 0.490 0.454 0.410 0.403 0.466 0.412 * * * *

Table 7: TTT with ModernTCN results on different datasets. Star symbol indicates that experiment is
still running.

29


	Introduction
	Related Work
	Model Architecture
	General Architecture
	Hierarchical Embedding
	Two Level Contextual Cue Modeling
	Final Prediction
	Channel Mixing and Independence Modes

	Experiments and Evaluation
	Original Experimental Setup
	 Quantitative Results

	Prediction Length Analysis and Ablation Study
	Experimental Setup with Enhanced Architectures
	Experimental Setup with Increased Prediction & Sequence Lengths
	Results and Statistical Comparisons for Proposed Architectures
	Results and Statistical Comparisons for Increased Prediction and Sequence Lengths
	Evaluation

	Conclusion and Future Work
	Theory and Motivation of Test-Time Training
	Motivation of TTT on Non-Stationary Data
	Theoretical Basis for TTT's Adaptability Without Catastrophic Forgetting
	Handling Extreme Distribution Shifts and Computational Overhead
	Impact on Computational Resources
	Parameter Initialization in TTT
	Generalization of TTT Beyond Time Series Forecasting
	Failure Case Study

	TTT vs Mamba 
	Mamba: Gated Linear RNN via State Space Models (SSMs)
	TTT: Test-Time Training with Dynamic Hidden States

	Comparisons with Models Handling Noise or Temporal Regularization
	Comparisons with Models Handling Noise or Temporal Regularization
	Theoretical Comparison

	Model Components
	TTT Block and Proposed Architectures
	Prediction
	Normalization
	Expanding on the Choice of Hierarchical Two-Level Context Modeling

	Analysis on Increased Prediction and Sequence Length
	Effect of Sequence Length
	Effect of Prediction Length

	Computational Complexity Comparison of Modules
	Complexity Derivation
	Computational Complexity Analysis of Modules
	TTT Modules
	Mamba Modules
	Transformer Modules
	Convolutional Block in ModernTCN

	Comparison of Complexities

	Computational Complexity Analysis of Models
	Test-Time Learning for Time Series Forecasting (TTT-LTSF)
	TimeMachine
	PatchTST
	TSMixer
	ModernTCN
	iTransformer
	Comparison of Complexities
	Summary of Model Complexities
	Key Insights
	Resource Utilization: Memory, Training Time, and Inference Latency

	Potential Real-World Applications of Test-Time Training
	Real-World Applications of TTT
	Examples of TTT beyond Time Series Forecasting
	Effectiveness of Test-Time Training (TTT) in Language Modeling
	Why TTT is Best Suited for Time Series Forecasting

	Tables

