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Abstract

We study intrinsically motivated exploration by artificially intelligent (AI) agents
in animal-inspired settings. We construct virtual environments that are 3D, vision-
based, physics-simulated, and based on two established animal assays: labyrinth
exploration, and novel object interaction. We assess Plan2Explore (P2E), a leading
model-based, intrinsically motivated deep reinforcement learning agent, in these
environments. We characterize and compare the behavior of the AI agents to
animal behavior, using measures devised for animal neuroethology. P2E exhibits
some similarities to animal behavior, but is dramatically less efficient than mice at
labyrinth exploration. We further characterize the neural dynamics associated with
world modeling in the novel-object assay. We identify latent neural population
activity axes linearly associated with representing object proximity. These results
identify areas of improvement for existing AI agents, and make strides toward
understanding the learned neural dynamics that guide their behavior.

1 Introduction

To survive, animals have evolved effective strategies for exploration. Animals are intrinsically
motivated and guided by curiosity to investigate novel stimuli [Glickman and Sroges, 1966, Ahmadlou
et al., 2021, Ogasawara et al., 2022], seek information [Lydon-Staley et al., 2021, Bromberg-Martin
and Hikosaka, 2009, Gottlieb and Oudeyer, 2018], and efficiently explore complex mazes [Rosenberg
et al., 2021]. Exploration is also a key challenge for artificially intelligent (AI) systems. Inspiration
from animal curiosity has led to many recently developed methods that promote exploration through
intrinsic reward signals. How effective has this translation from animals to AI been and how much
room for improvement remains? One way to investigate these questions is to assess curious AI agents
in scenarios that are informed by ethologically-relevant animal assays [Zador et al., 2023].

In this work, we bridge AI and animal exploration by developing virtual assays for AI agents that
are inspired by existing, well-characterized assays of animal exploration. In turn, we can directly
compare AI agent exploration with animal behavior, to identify gaps in AI performance and potential
routes towards improvement. Moreover, by situating AI agents in ethologically relevant scenarios, we
also better position ourselves to apply neuroscientific approaches towards understanding the neural
computations that drive AI agent behavior [Merel et al., 2019].

Building on two detailed animal studies, we investigate novel object investigation [Ahmadlou et al.,
2021], and spatial exploration in a labyrinth [Rosenberg et al., 2021]. As a starting point, we assess
Plan2Explore [Sekar et al., 2020], a leading model-based, intrinsically-motivated, deep reinforcement
learning (RL) agent that is compatible with visual input and performs well on exploration benchmarks.

Contributions (1) We construct two virtual environments for studying exploration by deep RL
agents, based on animal exploration assays. (2) We characterize the exploratory behavior of
Plan2Explore, compare it directly with mouse behavior, and identify gaps in its performance. (3) We
investigate neural dynamics learned by Plan2Explore during object investigation.
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Figure 1: Virtual environments to study AI exploration, based on mouse labyrinth exploration
[Rosenberg et al., 2021] and object interaction assay [Ahmadlou et al., 2021].

2 Related work

Intrinsic motivation We build on a large body of work related to using intrinsic reward to guide
exploration [Schmidhuber, 2010], which has included notions of prediction loss [Pathak et al., 2017,
Haber et al., 2018, Guo et al., 2022], novelty [Bellemare et al., 2016, Burda et al., 2018], learning
progress [Kim et al., 2020, Lopes et al., 2012], and uncertainty [Sekar et al., 2020, Pathak et al., 2019].
Here we focus on Plan2Explore [Sekar et al., 2020], which uses latent disagreement to effectively
promote exploration. We also build on neuroscientific investigations of exploration, including [Kidd
and Hayden, 2015, Gottlieb and Oudeyer, 2018, White et al., 2019, Ogasawara et al., 2022].

Neurobehavioral investigation of AI systems We are inspired by work that bridges animals and
AI, including use of neural analysis methods to understand computational systems [Zeiler and Fergus,
2014, Jonas and Kording, 2017, Olah et al., 2017, Merel et al., 2019], and use of deep neural networks
to model animal behavior and neural activity [Yamins and DiCarlo, 2016, Richards et al., 2019, Cross
et al., 2021, Doyle et al., 2023, Nayebi et al., 2023, Bonnen et al., 2023, Martinez et al., 2023].

3 Environments

We build 3D physics-simulated environments that provide egocentric, image-based input, using
dm_control [Tunyasuvunakool et al., 2020] and its extensions [Kauvar et al., 2023]. See the Appendix
for detailed description of the environments1 and Plan2Explore agent2.

Labyrinth Closely following the labyrinth design of Rosenberg et al. [2021], we constructed a
symmetric maze with 64 end nodes, connected to a ‘home’ room. Many interesting features of
mouse behavior were identified by Rosenberg et al. [2021] that provide opportunities for precisely
comparing animal and AI behavior. First, mice spend a large amount of time in the maze and actively
explore over 80% of that time. Second, mice efficiently explore the maze, as measured by the rate of
visiting new nodes versus familiar nodes. Third, mouse behavior is strongly influenced by its current
and very recent locations, and is well described by simple biases that guide decision making.

Novel object investigation Closely following the free-access double-choice design of Ahmadlou
et al. [2021], we constructed a two-phase assay in which an agent has an initial opportunity to freely
investigate one object, and then a second novel object is added into the environment. Investigation of
each object is then compared. A number of interesting features of mouse behavior were identified
by Ahmadlou et al. [2021] . First, mice are motivated to investigate the objects. Second, mice
spend much more time investigating the novel object. Third, mice also spend more time ‘deeply’
investigating the novel object, as measured by behaviors such as biting, grabbing, and carrying.

4 Experiments

Labyrinth exploration We recorded exploration trajectories of 8 randomly initialized P2E agents.
All agents successfully entered the labyrinth from the home room, and many explored a substantial
fraction of the labyrinth (Figure 2a). Agents spent a similar fraction of time in the maze as mice, with
a similar initial sharp increase followed by a slow decay (compare with Figure S2 of [Rosenberg

1Available as part of the adaptgym suite: pip install adaptgym
2Available at: https://github.com/AutonomousAgentsLab/imol-explore-suite
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Figure 2: Comparison of labyrinth exploration by mice and Plan2Explore. a) P2E trajectories, across
15M timesteps (125 simulated hours). b) P2E spends a similar fraction of time in the maze as mice.
c) Efficiency of exploration (all data except P2E is from [Rosenberg et al., 2021]). P2E is worse than
mice, and random choice agent. d) Decision biases in exploration strategy. Mice bias toward proceed
forward through intersections and alternating which direction they turn, but P2E does not.

et al., 2021]). Agents that randomly sampled the continuous action space failed to even enter the
labyrinth. Surprisingly, though Plan2Explore explored, it does so very inefficiently, performing worse
even than a ‘random choice’ agent that navigates between nodes by choosing a random direction
at each intersection. In contrast, mice are much more efficient than the ‘random choice’ agent, but
not quite optimal [Rosenberg et al., 2021]. Additionally, while mice exhibit a strong bias to move
forward, turn if possible, and alternate turning directions, Plan2Explore agents exhibit less forward
bias than even the ‘random choice’ agent and do not bias toward alternating turns.

Novel object investigation We recorded the trajectories of four P2E agents on the novel object
assay, for 500K steps with a magenta ball, then 500K steps with both magenta and yellow balls. P2E
agents interacted with the magenta ball during the first phase, and preferred the new ball during the
second phase - similar to mice (Figures 3a, b). In contrast to mice, P2E’s preference for the new ball
was delayed. Similarly, the agent initially attends to the old ball before eventually prioritizing the
new ball. Similar to mice, we found a bias towards deep exploration with the new ball, and shallow

Figure 3: Comparison of novel object investigation by mice and Plan2Explore. a) Mouse and b) P2E
agent interactions with the new and old objects. c) P2E agent attention over time. d) Bias towards
deep vs. shallow investigation. e) P2E approach events to new and old ball.
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exploration with the old ball, although the bias was less extreme than with mice. In contrast to mice,
we did not find a preference for approach events towards the new ball.

Figure 4: Neural analysis of object representations. a) Raster of clustered neural traces from visual
and recurrent layers, comparing activations by magenta and yellow objects. b) Linear decoding of
object proximity. c) Action-conditioned imagination, projected onto proximity dimension.

5 Neural analysis

Next, we sought to understand the neural computations underlying P2E’s object investigation by
probing the learned object representations. Inspired by object-vector coding in the medial entorhinal
cortex [Høydal et al., 2019], one hypothesis is that the agent learns linearly decodable representations
of key object features such as proximity. To study this, and to assess if these representations are
present across various ‘brain regions’ (e.g. layers of the visual encoder and recurrent latent state), we
generated a set of probe scenarios, ran agents on these scenarios using checkpoints from throughout
training, and saved neural activation timeseries from the visual layers and world model latent state.
In Figure 4a, we compare the neural activity corresponding to test sessions that are identical except
for the object color (magenta vs. yellow), showing clear separation in population neural activity.

We used linear ridge regression to identify directions of neural population activity encoding the agent’s
proximity to each object. As evaluated with 7-fold cross-validation on 14K timesteps, proximity
prediction is eventually very good at all layers, is better in the visual layers than in the recurrent
latent state, and improves across checkpoints - particularly for the yellow (novel) object (Figures 4b,
5). These results provide insight into the process by which the world model learns to represent the
environment. First, even though the visual layers contain clear information about the object, even
at initialization, the world model needs experience and training to incorporate this information into
its state representation. Second, the latent state learns a representation of the familiar object with
information that is more specific to that object than to the novel object. As the novel object becomes
more familiar, the representations of the novel and familiar objects converge toward having a similar
degree of informativeness. The growth of encoded information about the novel object as a function
of increased exposure to that object is particularly apparent in the jump in predictivity between steps
502K and 702K (the novel object was introduced at step 500K).

In addition, we assess the role of this ‘proximity’ neural direction in the world model’s action-
conditioned imagination. We find that rolling forward and backward (the first action space dimension)
projects strongly onto this direction, but swiveling (the second dimension) does not (Figure 4c). This
suggests the existence of a learned circuit that converts the first action dimension into shifts of neural
activity along a specific direction and that could subserve the agent’s ability to predict the outcome
of imagined actions. By tracing the first action dimension’s flow into the latent state, future work
may be able to mechanistically identify a circuit in the network weights that converts action into
imagined state prediction. Identification of such a circuit would provide insight into how P2E learns
to link actions with changes in abstract state. It would also model how animal brains might learn to
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mental time travel [Suddendorf and Corballis, 2007] and leverage corollary discharges to predict the
consequences of executed actions [Guthrie et al., 1983, Crapse and Sommer, 2008].

6 Conclusion

In this work, we set out to directly compare intrinsically-motivated AI exploration with animal
behavior. Plan2Explore agents exhibited some similarities to animal behavior, including a degree of
novel object preference. However, there remain gaps in performance, including markedly reduced
efficiency in labyrinth exploration, and slow initiation of novel object investigation. These may point
to potential algorithmic improvements. For example, initial investigations suggest that P2E lacks
allocentric localization in the labyrinth, and that exploration may be aided by adding in some capacity
for allocentric spatial mapping, through architectural or training adjustments. Additionally, we take
initial steps toward understanding the computations learned by Plan2Explore’s neural circuits. We
think this is an interesting direction for assessing neuroscience analysis methods (in settings more
reminiscent of their original biological application than e.g. [Jonas and Kording, 2017]) and for
gaining insight into how AI systems work and how they falter. In sum, we present tools and a strategy
for directly using animal-inspiration to identify avenues for understanding and improving AI systems.
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Appendix

A Environments (detailed description)

Our environments build on the MuJoCo-based Todorov et al. [2012] dm_control simulation framework
Tunyasuvunakool et al. [2020] and its adaptgym extension Kauvar et al. [2023], which allows for
easy construction of bespoke arenas populated with controllable objects. This framework supports
3D physics-simulated virtual environments that provide egocentric, image-based input to an agent.
We run our environments with a physics simulation timestep of 0.5 ms and an action timestep of 30
ms. We developed two environments.

Labyrinth Closely following the labyrinth design of Rosenberg et al. [2021], we constructed a
symmetric binary maze with 64 end nodes and a single entrance connected to a ‘home’ room. One
advantageous feature of this design is that it provides many decision points that can be used for
detailed behavior characterization. Navigating from the home room to any end node requires a
sequence of six binary decisions. Moreover, with this design, mice can be left unattended for long
stretches of time (e.g. overnight), allowing assessment of long-term exploratory behavior. A number
of interesting features of mouse behavior were identified by Rosenberg et al. [2021]. First, mice
spend a large amount of time exploring the maze: around half of a seven-hour period is spent inside
the maze, and over 80% of that time is spent exploring the maze, even if there is an extrinsic reward
located at one end node. Second, mice efficiently explore the maze, reaching all end nodes far more
quickly than an agent that chooses a random direction at each intersection. Third, mouse behavior is
strongly influenced by its current location and the 3 or so locations preceding it, and can be fairly
well described by turning biases that guide local decision making. Overall, this environment provides
an opportunity for precisely comparing animal and AI behavior along a number of detailed axes.

As in the mouse assay, the walls are black in our virtual labyrinth and offer no distinguishing features.
Experiments with the mice demonstrated that they do not rely on odor to navigate the maze, and thus
depend primarily on visual and tactile input. Our agents are only provided visual input.

We assessed exploration efficiency by plotting the number of new end nodes found as a function
of total number of end nodes visited, and compared this to animal data from [Rosenberg et al.,
2021]. Mouse behavior can also be fairly well characterized by a set of biases in the choices
made at intersections, including a bias to move forward through each intersection (quantified by
[Rosenberg et al., 2021] as PBF and PSF , the probabilities of moving forward out of a branch or
stem, respectively), and a bias to turn when possible (PBS), and to alternate turning directions (PSA).
We measured these biases in the virtual environment as well.

Novel object investigation Closely following the free-access double-choice design of Ahmadlou
et al. [2021], we constructed an assay in which an agent is first provided an extended opportunity
to freely investigate one object, and then a second, novel object is added into the environment and
investigation of each object is compared. An advantageous feature of this design is that it probes the
intrinsic motivation of the animal to investigate the different objects, as opposed to merely preference
in a forced choice. A number of interesting features of mouse behavior were identified by Ahmadlou
et al. [2021] . First, mice are motivated to investigate the objects. Second, spend much more time
investigating the novel object. Third, mice spend much more time ‘deeply’ investigating the novel
object, as measured by behaviors such as biting, grabbing, and carrying the object. Moreover, a
neural substrate that modulates this motivated novel-object investigation was identified: inhibitory
neurons in the medial zona incerta brain region.

In the virtual assay, the agent is placed in a square arena with black walls that is roughly 100 times
bigger than the agent. The objects are spheres and are slightly larger than the agent. The familiar and
novel objects differ only by color. In the experiments we present here, the familiar object is two-toned
magenta and the novel object is two-toned yellow. Future experiments could counterbalance the
colors and investigate the impact of altering the colors and properties of the object. Importantly, the
agent can interact with the objects by colliding with them, allowing the agent to curiously investigate
the physical dynamics associated with the object as it learns to model the world.

We quantify agent-object interactions as collisions between the agent and object, which are recorded
by the environment. We measure attention of the agent towards an object by saying it is attending to
the object if the center of mass of the object is within a 60 degree field of view cone from the agent.

8



We define a measure of ‘deep’ exploration as time periods in which the agent collides with the ball
at least 50 % of the time, and compared this with shallow exploration, when the agent is near the
ball and attending to it but not colliding with it. We also quantified approach events, defined as times
when the agent turned toward the ball and began moving towards it.

In both environments, there are a number of notable differences from the animal experiments. First,
our agent has a very simple embodiment: the agent is a sphere with a two dimensional continuous
action space consisting of rolling forward (and backward) and turning. Second, the agent receives
monocular visual input, and no other sensory input. Third, agents are initialized with random network
weights when they are spawned. The first two simplifications minimize the necessity of pretraining–in
contrast to the scenario, for example, where the agent had a complex embodiment that required
substantial learning before locomotion was even possible. One strategy we use to address this lack of
a pretraining phase, is to provide the agent longer sessions of exploration, giving it the opportunity to
warm up its models. Notably, many of the key metrics for characterizing exploratory behavior do not
depend on the absolute time of exploration. For example, in the labyrinth, the efficiency of visiting
different end nodes depends only on the sequence in which nodes are visited, and in the novel object
assay, the object preference depends only on the relative interaction time. In practice, we find that
the agent does explore the maze and investigate the objects, and it does so on absolute simulated
timescales within approximately an order of magnitude of the animals. Nevertheless, it is important
to consider the essential influence of a mouse’s life experience and ancestral evolution that shape its
behavior, and how that differs from this setting.

B Agent (detailed description)

We used Plan2Explore [Sekar et al., 2020], as applied to DreamerV2 [Hafner et al., 2020]. While
there are a multitude of exploration strategies for deep reinforcement learning [Hao et al., 2023],
we selected Plan2Explore to study because it is one of the leading model-based agents guided by
intrinsic motivation. Model-based agents have begun to exhibit impressive performance, surpassing
model-free agents in many realms [Hafner et al., 2020, 2022, 2023] with improved sample efficiency
and planning ability. Improving the exploration of model-based systems thus presents a pressing
challenge.

Our Plan2Explore agent had a discrete latent space with a 200 dimension hidden state, 200 dimension
deterministic state, and 32 x 32 discrete latent state. Additional hyperparameter settings were as
follows: action repeat=2, prefill=1000, pretrain=100, grad heads=[decoder, reward], model lr=3e-4,
actor lr=8e-5, critic lr=8e-5, actor ent=1e-4. For Plan2Explore disagreement, the number of ensemble
models=10. The other hyperparameters were the default, including dataset batch=16 and length=50,
image render size=[64, 64], actor and critic each 4 layer MLPs with 400 units and elu activation,
imagination horizon=15, discount=0.99, discount lambda=0.95, slow target update=100, slow target
fraction=1, slow baseline=True.

C Additional neural analysis

We note that while object features such as color and proximity must at some level be nonlinearly
decodable (e.g. through the image decoder that is used to train the world model), the agent does not
necessarily learn parsimonious linear dimensions representing these intuitively important features of
the environment.

Here we present additional results, including the linear decoding performance of the first three visual
layers. Additionally we show linear decoding from imagination of a test episode where the agent
swivels back and forth (while maintaining the object in view), without rolling forward.
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Figure 5: Effective linear decoding of object proximity from earliest visual layers is possible even
with random initialization.
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