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ABSTRACT

Large Language Models (LLMs) based on Mixture-of-Experts (MoE) architecture
are showing promising performance on various tasks. However, running them on
resource-constrained settings, where GPU memory resources are not abundant, is
challenging due to huge model sizes. Existing systems that offload model weights
to CPU memory suffer from the significant overhead of frequently moving data
between CPU and GPU. In this paper, we propose Fiddler, a resource-efficient
inference engine with CPU-GPU orchestration for MoE models. The key idea of
Fiddler is to use the computation ability of the CPU to minimize the data move-
ment between the CPU and GPU. Our evaluation shows that Fiddler can run the
uncompressed Mixtral-8x7B model, which exceeds 90GB in parameters, to gen-
erate over 3 tokens per second on a single GPU with 24GB memory, showing an
order of magnitude improvement over existing methods. We are going to release
the code of Fiddler as open-source software.

1 INTRODUCTION

Large Language Models (LLMs) based on Mixture-of-Experts (MoE) architectures are showing
remarkable performance on various tasks (Du et al. (2022); Fedus et al. (2022); Jiang et al. (2024)).
By activating a subset of experts inside feed-forward layers with a gating mechanism, such models
scale up model size and improve model performance with a small computation overhead.

There has been growing interest in self-hosting these LLMs in local settings (Giacinto (2023); Anand
et al. (2023); Song et al. (2023)) for enhanced privacy (Martı́nez Toro et al. (2023)) and customiza-
tion of LLMs on proprietary or personal data (Lyu et al. (2023)). The ability to run these models in
resource-constrained settings democratizes state-of-the-art LLM technologies, especially for those
with difficulty accessing high-end GPU computation resources.

Despite MoE models’ superior performance, running them in low-resource settings with limited
GPU memory resources is challenging. On the one hand, the huge parameter size of MoE models
makes it difficult to store all the weights on GPU memory. On the other hand, model compression
techniques like quantization and sparsification come with degradation of model quality (Frantar &
Alistarh (2023); Eliseev & Mazur (2023)). For example, the Mixtral-8x7B (Jiang et al. (2024))
model takes more than 90GB of memory for model weights in 16-bit precision, which is beyond
the reach of most consumer GPUs. To fit this model into a single GPU with 24GB memory, one
would need to compress it to 4-bit per parameter or smaller, which comes with significant accuracy
degradation (Eliseev & Mazur (2023)).

In this paper, we tackle the challenge of efficiently deploying uncompressed MoE models in a local
setting (i.e., latency-oriented and single-batch) with a single GPU. It is particularly interesting to
consider MoE models for this setting because of their sparsity; i.e., the amount of computation
in relation to the parameter size is smaller than the dense counterparts. In this setting, investing
in additional GPUs is not cost-effective since GPUs have limited memory capacity despite their
high compute throughput. This situation is exacerbated by the fact that the scalability of expert
components within MoE models is virtually unbounded; for instance, Switch Transformers have
been demonstrated to effectively incorporate thousands of experts (Fedus et al. (2022)). As a result,
provisioning of sufficient GPU resources becomes a significant challenge.
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Previous works proposed to offload expert weights to CPU memory (Eliseev & Mazur (2023); Xue
et al. (2024b)), which is usually more abundant than GPU memory. In those methods, GPU memory
holds only a subset of expert weights, and the expert weights will be brought from CPU memory to
GPU memory when they are required for computation. While these works overcome the limitation
of memory capacity, there is a significant runtime overhead due to the frequent copying of expert
weights between CPU and GPU over the low bandwidth PCIe connection.

In this work, we instead propose to utilize the CPU computation resources in addition to the CPU
memory resources for MoE model inference. We design Fiddler, a resource-efficient inference
system with CPU-GPU orchestration for MoE models. The key insight is that, in terms of latency,
it is better to execute expert layers on the CPUs than to load the expert weights from CPU memory
to GPU memory, especially when the batch size is small. This is particularly suitable for local
deployment of MoE models, where latency is critical, and the model needs to process a single
request at a time. Fiddler is able to take advantage of CPU computational resources to minimize the
data movement between the CPU and GPU. Fiddler can run the uncompressed Mixtral-8x7B model,
which has more than 90GB of parameters, to generate over 3 tokens per second on a single GPU
with 24GB memory. Compared to existing offloading methods, Fiddler improves the single-batch
inference latency by 8.2 times on Quadro RTX 6000 and 10.1 times on L4 GPU on average across
different input/output lengths.

2 RELATED WORK

2.1 MIXTURE-OF-EXPERTS

MoE models have been demonstrating promising performance in the era of LLMs (Rajbhandari
et al. (2022); Du et al. (2022); Fedus et al. (2022); Jiang et al. (2024); Xue et al. (2024a); Dai
et al. (2024)). Different from the original dense language model, MoE models introduce sparsity
to the feed-forward layer with experts and employ a gating mechanism. Each MoE layer consists
of a number of expert layers that have the same dimensions as the feed-forward layer, and a gating
network decides which expert layers will be activated for each input. Although the number of experts
in an MoE layer could be up to thousands, only a few experts will be activated by the gating network
during training or inference (Fedus et al. (2022)).

2.2 EFFICIENT DEPLOYMENT OF MOE MODELS

Efficiently serving MoE models is challenging due to the large model size, especially in resource-
constrained settings. One approach to running large models in such an environment is offloading,
where the subset of parameters are stored in CPU memory instead of GPU memory (Sheng et al.
(2023)). For MoE models, previous works attempted to offload expert weights with caching or
prefetching mechanisms (Eliseev & Mazur (2023); Xue et al. (2024b)). However, these approaches
cause significant latency overhead due to the frequent copying of expert weights between CPU and
GPU over the low bandwidth PCIe connection, making them suboptimal for local settings where
latency is critical for user experience. Fiddler overcomes this challenge by utilizing the computation
resource of CPUs.

Another direction is model compression, such as quantization (Frantar & Alistarh (2023); Zhao et al.
(2023)) or sparsification (Alizadeh et al. (2023)). While those techniques reduce the model size and
improve inference efficiency, they come with degraded output quality of models, especially when
trying to fit large models like Mixtral-8x7B to a GPU with small memory capacity (Eliseev & Mazur
(2023)). Recently, Song et al. (2023) attempted to exploit the sparsity of LLMs for faster model in-
ference with CPU offloading. However, this approach requires the model to use the Rectified Linear
Units (ReLU) function for the nonlinear activation. Converting non-ReLU models, which is com-
mon in state-of-the-art LLMs, to ReLU models requires additional training and causes performance
degradation (Mirzadeh et al. (2023); SparseLLM). Mixtral-8x7B uses Sigmoid Linear Units (SiLU)
function (Elfwing et al. (2018)), and only a small portion of values are close to zero, making it
difficult to exploit the sparsity (we discuss more detail in Appendix A). Fiddler can achieve better
performance without modifying the model structure or accuracy. Also, Fiddler is orthogonal to the
compression techniques and these optimizations could be applied on top of Fiddler.
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3 DESIGN

Figure 1: Main idea of Fiddler. a) In existing offloading systems, expert weights are copied from the
CPU to the GPU, and the computation happens on the GPU. b) In Fiddler, only the activations are
copied between the CPU and GPU, and the computation happens on the CPU, drastically reducing
the latency for CPU-GPU communication.

3.1 OVERVIEW

Figure 1 illustrates the key idea of Fiddler, comparing the two different approaches for CPU offload-
ing in the case of single-batch inference of MoE models. Existing offloading systems (Figure 1 a))
only use the memory resources in the CPU. The computation mainly happens on the GPU. When
some expert weights are missing on the GPU memory ( 1 ), they are copied from the CPU memory
to the GPU memory ( 2 ), and then the GPU executes the expert layer ( 3 ). Although the execution
on the GPU is faster than the CPU, the data movement causes significant overhead. For instance,
each expert of the Mixtral-8x7B model has more than 300MB of parameters in 16-bit precision.
We observe a latency of around 50ms to copy data from the CPU memory to the GPU memory for
Quadro RTX 6000 or L4 GPUs (more microbenchmark results are discussed in Appendix B).

On the other hand, our proposed method (Figure 1 b)) uses CPU computation resources in addition
to memory resources. In Fiddler, when some expert weights are missing on the GPU memory
( 1 ), we copy the activation values from the GPU memory to the CPU memory ( 2 ) instead of
copying the weights. Then, the computation of the expert layer happens on the CPU ( 3 ), and the
output activation is copied back to the GPU after the computation finishes ( 4 ). The benefit of this
approach is that we can drastically reduce the latency of CPU-GPU communication because the
size of activations (batch size × 4096 for the Mixtral-8x7B) is significantly smaller than the weight
size (3 matrices with size 4096 × 14336 per expert for the Mixtral-8x7B) for a small batch size.
Despite the slower computation at the CPU compared to the GPU, the weight copying process is
even more time-consuming, making the approach outlined in Figure 1 b) superior to a). Detailed
data is available in Appendix B.

3.2 ALGORITHM

Based on the idea described in the previous section, Fiddler serves MoE models in the following
way.

Initialization. Before starting the inference process, Fiddler distributes the model weights between
the CPU and GPU memory. First, the weights of non-expert layers are placed on GPU memory
because they are used for every token, irrespective of expert choice. The size of non-expert layers
is usually not big (less than 2 billion parameters for the Mixtral-8x7B model), and we assume they
fit in the GPU memory in this paper. Next, we put a subset of expert layers into the GPU memory.

3



Published as a conference paper at ICLR 2024

For this, we select as many experts as the memory capacity permits in order of popularity so that we
can maximize the hit rate, i.e., the likelihood an expert’s weight is in GPU memory. We determine
the popular experts based on the profile of expert selection using calibration data. We assume this
method is enough as the expert selection is known to be based on token characteristics, and the
popularity of experts is universal across different input domains (Jiang et al. (2024); Xue et al.
(2024a)). Appendix C discusses expert selection in more detail.

Decode Stage. In the decode stage, only one token is processed, so each expert gets at most one
token at a time for the single batch inference. In this case, offloading computation to the CPU is
always faster than bringing the weight to the GPU as discussed in the previous section. Therefore,
if the expert weight to be used is missing on the GPU memory, we take the approach as shown in
Figure 1 b) to minimize the latency.

Prefill Stage. In the prefill stage, multiple tokens are processed simultaneously even for a single
batch inference, so some experts can get multiple tokens as inputs. For this case, we need to consider
the different batching effects of GPU and CPU. When executing an expert on a GPU, the latency
is dominated by the time required to transfer the expert’s weight from the CPU to GPU memory.
Hence, this latency remains largely unchanged regardless of the input size. In contrast, executing
an expert layer on the CPU exhibits different behavior. As the number of input tokens increases, so
does the latency, while the time to copy activation from the GPU is negligible (less than 1% of the
total latency; see Appendix B for more details). To find the optimal way to process the prefill stage,
we adopt a model where the GPU execution time is considered constant, while the CPU execution
time is assumed to increase linearly with the number of input tokens. We then find the best expert
execution configuration by solving the following problem

argmin
cpu expert,gpu expert

max

 ∑
i∈cpu expert

(n inputi × latencycpu),
∑

i∈gpu expert

((1− is on gpui)× latencygpu)


where latencycpu and latencygpu denotes the latency of processing one input at CPU/GPU, n inputi
denotes the number of inputs that i-th expert gets, and is on gpui is a variable indicating whether the
i-th expert is on GPU memory (1 if yes and 0 otherwise). The cpu expert and gpu expert denote the
(mutually exclusive) sets of experts to be processed at CPU and GPU, respectively, and their union
is the set of all experts. We take the maximum of two values because the CPU and GPU can run in
parallel, and the latency is dominated by whichever part is longer.

4 EVALUATION

4.1 SETUP

Model and Data. We use the Mixtral-8x7B model with 16-bit precision for the evaluation. For the
evaluation and calibration data, we use the ShareGPT (ShareGPT) dataset, a dataset of conversations
between humans and chatbots, to model the realistic behavior of expert selection. We pick the subset
of conversations randomly. We implement Fiddler on top of PyTorch (Paszke et al. (2019)).

Environments. We evaluate Fiddler on two environments as shown in Table 1. Each environment
lacks enough GPU memory to store all the model weights. The “Number of Experts on GPU” row
shows the maximum number of experts that could fit on the GPU memory (out of 32 layers × 8
experts/layer = 256 total experts).

Table 1: Evaluation setups
Environment 1 Environment 2

GPU Quadro RTX 6000 (NVIDIA (b)) L4 (NVIDIA (a))
GPU Memory 24576MiB 23034MiB
PCIe Gen3 x16 (32GB/s) Gen4 x16 (64GB/s)

CPU Intel Skylake
(48 core, 2.60GHz)

Intel Cascade Lake
(32 core, 2.20GHz)

Number of Experts on GPU 56/256 52/256
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Baselines. For baselines, we evaluate DeepSpeed-MII (Microsoft) and Mixtral-Offloading (Eliseev
& Mazur (2023)). For DeepSpeed-MII, we enable ZeRO-Infinity optimization (Rajbhandari et al.
(2021)) to offload model weights to CPU memory. We choose to evaluate performance in non-
persistent pipeline mode as we target local settings instead of client-server applications. We enable
pin memory in the configuration to use paged-locked CPU memory, which could boost the perfor-
mance of the prefill stage. Mixtral-Offloading only supports a quantized version of the Mixtral-8x7B
model by default. For a fair comparison, we extend Mixtral-Offloading to support running the orig-
inal version of the model with 16-bit precision. We set offload per layer parameter to 7 as
this is the only configuration available to fit the unquantized model weights in 24GB GPU memory.

Metrics. We evaluate the performance of Fiddler in a local deployment scenario, i.e., the latency
for single batch inference, with different lengths of input and output tokens. For the evaluation with
N input tokens, we randomly select samples from ShareGPT that have N tokens or more of prompt
and use the initial N tokens. We measure the average number of tokens generated per second as
calculated by the ratio of the number of output tokens to the end-to-end latency (including both
prefill and decode stages). We choose the input length from [16, 32, 64, 128] and the output length
from [16, 32, 64, 128, 256, 512]. For Fiddler, we show the average of 10 runs, and for the baseline
methods, we show the average of 3 runs due to longer execution time.

Figure 2: The performance of Fiddler and baseline methods measured by the number of tokens
generated per second, with 24 different configurations of input/output length. The rightmost set of
bars shows the average of 24 configurations.

4.2 RESULTS

Figure 2 shows the end-to-end performance of three methods in two environments. Overall, Fiddler
outperforms DeepSpeed-MII and Eliseev & Mazur (2023) for all the input and output lengths. The
performance measured by tokens per second improves with longer output lengths for the same input
length because the latency of the prefill stage is amortized for longer output. On average, Fiddler is
faster than Eliseev & Mazur (2023) by 8.2 times for Environment 1 and by 10.1 times for Environ-
ment 2. Compared with DeepSpeed-MII, Fiddler is faster by 19.4 times at Environment 1 and by
22.5 times at Environment 2.

5 CONCLUSION

This paper proposes Fiddler, a resource-efficient inference engine with CPU-GPU orchestration for
MoE model deployment in local settings. In addition to CPU memory, Fiddler is able to utilize
CPU computation resources during inference. The performance benefits of Fiddler come from the
observation that copying expert weights from CPU to GPU leads to larger overhead than executing
experts on CPU when the batch size is sufficiently small. Fiddler is evaluated on Quadro RTX
6000 and L4 GPU and achieves 8.2 times and 10.1 times speedup on single-batch inference latency
compared to baselines, respectively. Fiddler is an important step towards fast inference of large
MoE models on resource-constrained settings by fully utilizing heterogeneous hardware resources.
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A SPARSITY ANALYSIS

This section analyzes sparsity within Mixtral-8x7B models, illustrating the challenges of applying
conventional sparsity-based optimization techniques from prior works (Song et al. (2023); Alizadeh
et al. (2023)). These methods primarily target LLMs that incorporate the ReLU activation function,
leveraging its characteristic of nullifying negative inputs to prune channels with consistently zero
outputs. This approach benefits from the binary nature of ReLU’s output—either zero or positive—–
allowing for straightforward identification and elimination of inactive channels, thereby optimizing
computational efficiency without losing crucial information.

On the other hand, state-of-the-art MoE models often employ alternative activation functions, which
makes it challenging to directly apply these sparsity-exploiting strategies. For example, both
Mixtral-8x7B and DeepSeekMoE (Dai et al. (2024)) use SiLU as the activation function. Unlike
ReLU, SiLU does not produce a straightforward threshold of zero for pruning, so there is a need for
a more sophisticated approach to leverage sparsity. Pruning channels that are not close enough to
zero could detrimentally impact the model’s performance.

Table 2 presents an analysis of the absolute values after the SiLU function across the layers of the
Mixtral-8x7B model. This analysis is based on data derived from 100 samples within the ShareGPT
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dataset (ShareGPT), without making distinctions between different experts in identical layers. The
data shows a generally low occurrence of values close to zero. Specifically, for all layers, the pro-
portion of channels with absolute values below 0.001 is smaller than 2%, and for 30 out of the 32
layers, this number even falls below 1%. Furthermore, in 28 out of 32 layers, fewer than 5% of the
values are smaller than 0.01, and in 24 layers, fewer than 30% of the values are under 0.1. Despite
variations across layers, these results collectively suggest a substantial challenge in harnessing spar-
sity within this model with approaches of previous works. In contrast, Liu et al. (2023) reported that
over 90% of values after the ReLU function is zero for the MLP layers of OPT models (Zhang et al.
(2022)). Utilizing sparsity within models like Mixtral-8x7B to speed up inference with tolerable
quality loss would be an interesting direction for future research.

Table 2: Distribution of absolute values after SiLU function of Mixtral-8x7B model across all layers.
Each cell displays the percentage of values whose absolute value is below a specified threshold.

Layer < 0.001 < 0.01 < 0.1 < 1.0

1 1.75 17.17 93.89 100.00
2 1.21 11.95 85.08 100.00
3 0.92 9.10 74.80 99.99
4 0.71 7.06 63.69 99.99
5 0.50 5.00 49.67 99.95
6 0.41 4.08 41.60 99.93
7 0.36 3.56 36.66 99.91
8 0.30 2.97 31.04 99.88
9 0.29 2.90 29.96 99.86

10 0.27 2.73 28.25 99.80
11 0.24 2.37 24.65 99.74
12 0.24 2.43 25.15 99.69
13 0.24 2.36 24.55 99.65
14 0.22 2.22 23.05 99.53
15 0.20 2.02 21.03 99.32
16 0.18 1.78 18.61 99.14
17 0.15 1.53 16.14 98.91
18 0.15 1.50 15.86 98.58
19 0.13 1.33 14.24 98.15
20 0.12 1.19 12.94 97.95
21 0.11 1.09 12.04 97.86
22 0.10 0.97 11.09 97.96
23 0.10 1.02 11.58 97.61
24 0.10 1.02 11.72 97.36
25 0.09 0.95 11.55 97.34
26 0.10 0.95 11.91 97.05
27 0.09 0.95 12.19 96.72
28 0.09 0.89 12.28 96.76
29 0.08 0.86 13.89 95.86
30 0.09 1.03 15.16 94.02
31 0.12 1.37 16.65 92.12
32 0.36 2.73 20.27 89.64
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B MICROBENCHMARKS

In this section, we show the results of microbenchmarks. Figure 3 shows the latency of following
workloads:

• W copy: Copying weight of one expert from CPU to GPU
• A copy: Copying one activation from GPU to CPU
• GPU N: Executing one expert at GPU with batch size N (excluding the time to copy weight

from CPU)
• CPU N: Executing one expert at CPU with batch size N

For each value, we execute the workload 32 times (one per layer of Mixtral-8x7B) and show the
average and standard deviation.

When executing tasks on a GPU, the latency of transferring weights from the CPU memory to
GPU memory is approximately 10 times longer than the time spent on actual computation. The
computation latency at the GPU is mostly independent of batch size. There is an exception when
the batch size is 1 at Environment 1 because PyTorch employs a different implementation for single-
batch and multi-batch scenarios, but the difference is insignificant (approximately 10%) compared
to the overall latency which includes weight transfer. Hence, we model the GPU latency as constant
in Section 3.2.

On the CPU, the execution latency tends to increase linearly with the size of the input batch. How-
ever, the time required to transfer activations is negligible (less than 1% of single batch latency).
Given this minimal impact, our model in Section 3.2 assumes that CPU latency exhibits a linear
relationship with the number of inputs.

Figure 3: The results of microbenchmarks, measuring the latency to copy weight or activation be-
tween the CPU and GPU, and executing an expert layer at CPU or GPU with different batch sizes.
We use a log scale for the y-axis.

C EXPERT POPULARITY

Figure 4 shows the heat map about the popularity of expert selection within the Mixtral-8x7B model.
Similar to Appendix A, we collect the profile by running inference on random samples from the
ShareGPT dataset and counting the number of tokens routed to each expert. The color intensity of
each cell indicates the frequency of expert selection (which is equivalent to the number of tokens
that activated the expert). The value of the most popular expert has been normalized to 1, with the
popularity of other experts expressed as a ratio relative to that.

Across 256 experts, the average value is 0.71, with a standard deviation of 0.08, a 25th percentile of
0.67, and a 75th percentile of 0.76. Despite a minimum value of 0.22, only 15 experts have values
below 0.6, and 27 experts exceed 0.8, indicating a relatively balanced distribution.

In Environment 1, selecting the 56 most popular experts out of 256 yields a maximum expected
hit rate (the likelihood with which an expert’s weight is available in the GPU memory) of 25.2%,
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compared to a minimum of 18.7%. Random selection results in an average hit rate of 56/256 =
21.9%. In Environment 2, with GPU memory capacity for 52 experts, the expected hit rates for
the best, worst, and random selections are 23.5%, 17.2%, and 20.3%, respectively. Therefore,
we can conclude that placing popular experts on the GPU could have approximately 3 points of
improvement in hit rate compared to random placement.

Figure 4: A heat map visualizing expert selection frequency in the Mixtral-8x7B model, using color
intensity to reflect the frequency, with the most popular expert normalized to 1.
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