

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONFLICTING BIASES AT THE EDGE OF STABILITY: NORM VERSUS SHARPNESS REGULARIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

A widely believed explanation for the remarkable generalization capacities of overparameterized neural networks is that the optimization algorithms used for training induce an implicit bias towards benign solutions. To grasp this theoretically, recent works examine gradient descent and its variants in simplified training settings, often assuming vanishing learning rates. These studies reveal various forms of implicit regularization, such as norm minimizing parameters in regression and max-margin solutions in classification. Concurrent findings show that moderate to large learning rates exceeding standard stability thresholds lead to faster, albeit oscillatory, convergence in the so-called Edge-of-Stability regime, and induce an implicit bias towards minima of low sharpness (norm of training loss Hessian).

In this work, we argue that a comprehensive understanding of the generalization performance of gradient descent requires analyzing the interaction between these various forms of implicit regularization. We empirically demonstrate that the learning rate balances between low parameter norm and low sharpness of the trained model. We furthermore prove for diagonal linear networks trained on a simple regression task that neither implicit bias alone minimizes the generalization error. These findings demonstrate that focusing on a single implicit bias is insufficient to explain good generalization, and they motivate a broader view of implicit regularization that captures the dynamic trade-off between norm and sharpness induced by non-negligible learning rates.

1 INTRODUCTION

First-order methods such as *gradient descent* (GD) are at the core of optimization in deep learning, used to train models which generalize remarkably well to unseen data while being able to interpolate random noise (Zhang et al., 2021). A widely believed explanation for this impressive generalization ability on meaningful data is that GD and its variants exhibit an implicit bias — a tendency of the optimization algorithm to favor well-structured solutions.

When rigorously characterizing this implicit bias for full-batch GD, recent works often consider small learning rates or even the corresponding *gradient flow* (GF), which is GD’s continuous time limit under infinitely small learning rates. For classification tasks, GF has been shown to favor max-margin solutions (Soudry et al., 2018). In regression tasks using diagonal linear networks initialized near the origin, GF induces an implicit bias toward parameters of minimal norm (Woodworth et al., 2020). In practice, however, optimization relies on finite learning rates that are bounded away from zero, raising the question of whether these explanations remain valid also in such scenarios.

At the same time, it was observed for standard architectures that full-batch GD can minimize the training loss even with learning rates that are larger than what classical optimization theory would require (Jastrz̄bski et al., 2019; Cohen et al., 2021). To be more precise, when

054 optimizing a (locally) L -smooth¹ loss function $\mathcal{L}: \mathbb{R}^p \rightarrow \mathbb{R}$ via full-batch GD, i.e.,
 055

$$\theta_{k+1} = \theta_k - \eta \nabla \mathcal{L}(\theta_k) \quad (1)$$

057 with fixed learning rate $\eta > 0$, it is well-known (Bubeck et al., 2015) that
 058

$$\mathcal{L}(\theta_{k+1}) \leq \mathcal{L}(\theta_k) - \eta \left(1 - \frac{L\eta}{2}\right) \|\nabla \mathcal{L}(\theta_k)\|_2^2, \quad (2)$$

061 which means that monotonic decrease of GD is only ensured for $\eta < 2/L$. This suggests for general twice differentiable \mathcal{L} that GD with learning rate η becomes unstable if $\|\nabla^2 \mathcal{L}(\theta_k)\| > 2/\eta$. As a result, the training loss \mathcal{L} is not to be expected to decrease in these sharp regions of the loss landscape.
 062

063 When training neural networks via GD with fixed $\eta > 0$, it was however confirmed in ex-
 064 tensive simulations (Cohen et al., 2021) that the *sharpness* $S_{\mathcal{L}}(\theta_k) = \|\nabla^2 \mathcal{L}(\theta_k)\|$ of the
 065 training loss \mathcal{L} at iterate θ_k increases along the GD trajectory until it exceeds the critical
 066 value $2/\eta$ at some θ_{k_0} . For $k > k_0$, the sharpness of the iterates starts hovering around and
 067 slightly above this value (see Figure 13 for illustration). In this phase, the loss decreases
 068 non-monotonically and faster than when using adaptive learning rates that stay in the stable
 069 regime $\eta_k < 2/S_{\mathcal{L}}(\theta_k)$. Accordingly, the authors dubbed the phases $k < k_0$ “*Progressive*
 070 *Sharpening*” and the phase $k > k_0$ “*Edge of Stability (EoS)*”. In practice, convergence in
 071 the EoS regime is attractive due to the fast average loss decay. It was even suggested that
 072 large learning rates and thus EoS might be necessary to learn certain functions (Ahn et al.,
 073 2023). More importantly, recent works on EoS showed that large learning rates induce an
 074 implicit bias of GD towards minimizers with low sharpness (Ahn et al., 2022). Indeed, for
 075 fixed $\eta > 0$ and twice differentiable \mathcal{L} , GD can only converge towards stationary points θ_*
 076 with $S_{\mathcal{L}}(\theta_*) < 2/\eta$.
 077

078 In summary, these different lines of works suggest that GD in (1) exhibits at least two distinct
 079 but entangled forms of implicit bias; one stemming from the underlying GF $\theta' = -\nabla \mathcal{L}(\theta)$
 080 and one induced by its learning rate η . To fully understand the success of GD-based training
 081 via implicit bias, it is therefore insufficient to analyze each bias in isolation. Instead, it is
 082 essential to understand the trade-off between various biases and answer the central question:
 083 How do different implicit biases interact when GD is used for training neural networks? A
 084 better understanding of this interaction may ultimately lead to more principled choices in
 085 the design of training algorithms and hyperparameters.
 086

087 1.1 CONTRIBUTION

088 Our work focuses on the two previously mentioned biases: the sharpness regularization
 089 induced by large learning rates (Ahn et al., 2022) and the norm-regularization induced by
 090 vanishing learning rates due to the compositional structure of *feedforward networks (FFNs)*
 091 (Woodworth et al., 2020; Chou et al., 2023). Our contribution consists of three major points:
 092

093 (i) **Implicit bias trade-off in training:** Across a wide range of settings, we empirically
 094 demonstrate that at the end of training there is a trade-off between small norm of the parameters and small sharpness of the training loss. This trade-off is
 095 controlled by the learning rate. When comparing the final solutions across a range
 096 of learning rates (see Section 2), we observe a sharp phase transition at a data- and
 097 model-dependent critical learning rate η_c . Below η_c , both the norm and sharpness
 098 remain nearly constant. Above η_c , increasing the learning rate leads to an overall
 099 trend of increasing norm and decreasing sharpness. *We emphasize that this phase*
 100 *transition occurs when comparing final GD iterates over the choice of learning rate,*
 101 *and does not correspond to the transition from Progressive Sharpening to EoS ob-*
 102 *served for fixed learning rate η over the iterates θ_k of GD (Cohen et al., 2021).*
 103 *To highlight that our observations do not depend on the specific choice of norm, we*
 104 *present different norms in Figures 1 – 3, and compare different norm choices in*
 105 *Appendix H.9.*

106
 107 ¹A differentiable function $\mathcal{L}: \mathbb{R}^p \rightarrow \mathbb{R}$ is called L -smooth if $\nabla \mathcal{L}: \mathbb{R}^p \rightarrow \mathbb{R}^p$ is L -Lipschitz. If \mathcal{L} is
 twice differentiable, this is equivalent to the Hessian having operator norm $\|\nabla^2 \mathcal{L}\|$ bounded by L .

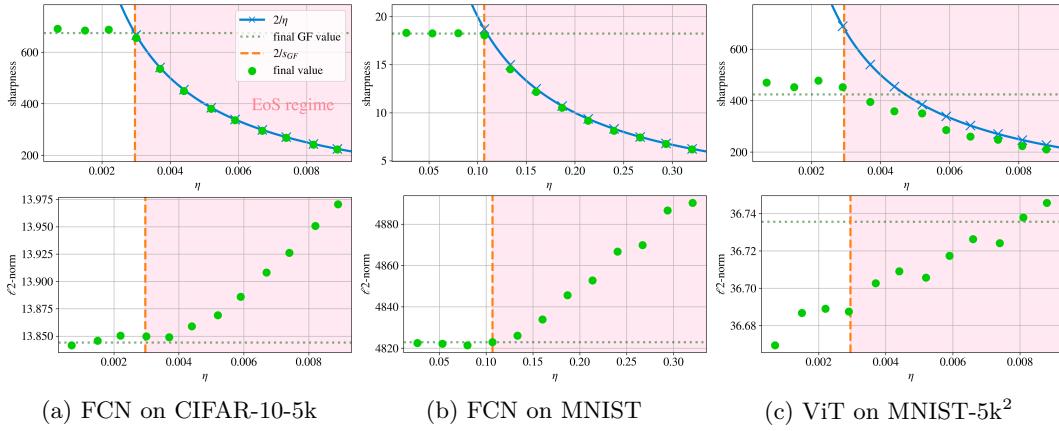


Figure 1: A critical learning rate $\eta_c = 2/s_{GF}$ marks a sharp phase transition between two regimes, a flow-aligned regime, where solutions match gradient flow in sharpness and norm, and an Edge-of-Stability (EoS) regime, where sharpness decreases while the ℓ_2 -norm increases, indicating a trade-off between low sharpness and small norm. Here, three models are trained with full-batch gradient descent with varying learning rates. This behavior is observed consistently across a wide range of experiments, see Section 2.1.

- (ii) **Impact on generalization:** Remarkably, low generalization error often does not align with either extreme of the learning rate spectrum and never aligns with minimal norm. In some settings, the test error follows a U-shaped curve, with the best generalization occurring at intermediate learning rates where norm and sharpness biases are balanced, see Section 2.2. The learning rate can be interpreted as a regularization hyperparameter that controls generalization capacity of the resulting model, cf. Andriushchenko et al. (2023a).
- (iii) **Theoretical analysis of a simple model:** Restricting ourselves to the strongly simplified setting of training a shallow diagonal linear network with shared weights for regression on a single data point with square loss, in Section 3 we analyze how the norm- and sharpness minimizers on the solution manifold $\mathcal{L} = 0$ are related and how they compare in terms of generalization. In fact, we provide scenarios where the lowest expected generalization error is attained by neither of them and the learning rate controls the generalization performance of the GD solution. Serving as a basic counterexample in which single biases do not generalize optimally, this supports our conjecture that the generalization behavior of neural networks can not be explained by a single implicit bias of GD. We analyze a comparably simple classification setting in Appendix F.

To illustrate the effect of bias entanglement and the influence of the learning rate on the resulting trade-off right away, we present a prototypical experiment in Figure 1.

1.2 NOTATION AND OUTLINE

In the remainder of the paper, we denote vectors $\mathbf{x} \in \mathbb{R}^d$ and matrices $\mathbf{X} \in \mathbb{R}^{n \times d}$ by bold lower and upper case letters, and abbreviate $[n] := \{1, \dots, n\}$. For vectors/matrices of ones and zeros we write $\mathbf{1}$ and $\mathbf{0}$, where the respective dimensions are clear from the context. The sharpness of a twice differentiable function $f: \mathbb{R}^d \rightarrow \mathbb{R}$ at a point $\boldsymbol{\theta}$ is defined as

$$S_f(\boldsymbol{\theta}) := \|\nabla^2 f(\boldsymbol{\theta})\| = \max_{\lambda \in \sigma(\nabla^2 f(\boldsymbol{\theta}))} |\lambda|,$$

²The properties shown in the two left columns correspond to fully-connected FFNs (FCNs) trained with mean squared error (MSE), while the Vision Transformer (ViT) in the right column uses cross-entropy loss. We discuss the resulting qualitative differences between both losses in Appendix H.4.

162 where $\|\cdot\|$ denotes the operator norm and $\sigma(\mathbf{M})$ the spectrum of a matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$. By
 163 \odot we denote the (entry-wise) Hadamard product between two vectors/matrices and write
 164 $\mathbf{z}^{\odot k} = \mathbf{z} \odot \dots \odot \mathbf{z}$ for the k -th Hadamard power. The support of a vector $\mathbf{z} \in \mathbb{R}^d$ is denoted
 165 by $\text{supp}(\mathbf{z}) = \{i \in [d] : z_i \neq 0\}$ and the diagonal matrix with diagonal \mathbf{z} by $\mathbf{D}_\mathbf{z} \in \mathbb{R}^{d \times d}$. For
 166 any index set $I \subset [d]$ and $\mathbf{z} \in \mathbb{R}^d$, we furthermore write $\mathbf{z}|_I \in \mathbb{R}^d$ for the vector that is zero
 167 on I^c and \mathbf{z} on I .

168 Our numerical results are presented in Section 2. To shed some light on the observed
 169 phenomena, we analyze a simple regression model in Section 3. Finally, we conclude in
 170 Section 4 with a discussion of our results. All proofs and further insights are deferred to the
 171 appendix.

172

173

174 1.3 RELATED WORKS

175

176

177 Before presenting our results in detail, let us review the current state of the art on analyzing
 178 the implicit bias of GF and GD, on EoS, which represent the two forms of regularization we
 179 study. Thereafter we discuss the question how generalization relates to each implicit bias.
 180 This section serves as a synopsis of Appendix A.

181

182 **Implicit bias of GF.** To understand the remarkable generalization properties of unreg-
 183 ularized gradient-based learning procedures for deep neural networks (Zhang et al., 2021;
 184 Belkin et al., 2019), a recent line of works has been analyzing the implicit bias of GD to-
 185 wards parsimoniously structured solutions in simplified settings such as linear classifica-
 186 tion (Soudry et al., 2018), matrix factorization (Gunasekar et al., 2017), training linear networks
 187 (Geyer et al., 2020), training two-layer networks for classification (Chizat & Bach, 2020),
 188 and training linear diagonal networks for regression (Vaskevicius et al., 2019). All of these
 189 results analyze GD with small or vanishing learning rate, i.e., the implicit biases identi-
 190 fied therein can be ascribed to the underlying GF dynamics. It is worth noting that there
 191 are other mechanisms inducing algorithmic regularization such as label noise (Pesme et al.,
 192 2021) or weight normalization (Chou et al., 2024b).

193

194 **Edge of Stability.** Whereas most of the above studies rely on vanishing learning rates,
 195 results by Cohen et al. (2021) on EoS suggest that GD under finite, realistic learning rates
 196 behaves notably differently from its infinitesimal limit. Recently, a thorough analysis of
 197 EoS has been provided for training linear classifiers (Wu et al., 2024) and shallow near-
 198 homogeneous networks (Cai et al., 2024) on the logistic loss via GD. In particular, GD with
 199 fixed learning rate $\eta > 0$ can only converge to sufficiently flat minima (Ahn et al., 2022),
 200 i.e., stationary points $\boldsymbol{\theta}_*$ of a loss \mathcal{L} with bounded sharpness $S_{\mathcal{L}}(\boldsymbol{\theta}_*) < 2/\eta$. Note that EoS
 201 was first observed for *stochastic gradient descent (SGD)* (Wu et al., 2018), for which the
 202 analogous sharpness bounds also depend on the batch size (Wu et al., 2022). Ghosh et al.
 203 (2025) show that large learning rates in deep linear networks induce a so-called beyond-EoS
 204 regime in which GD oscillates stably around the minimal sharpness solution.

205

206 **Generalization and sharpness.** In the past, various notions of sharpness have been stud-
 207 ied in connection to generalization. The idea that flat minima benefit generalization dates
 208 back to Wolpert (1993). Since then, many authors have conjectured that flatter solutions
 209 should generalize better. Nevertheless, the relationship between flatness and generalization
 210 remains disputed. Studies have found little correlation between sharpness and generalization
 211 performance (Kaur et al., 2023), even when using scaling invariant sharpness measures
 212 like *adaptive sharpness* (Kwon et al., 2021). On the contrary, in various cases the corre-
 213 lation is negative, i.e., sharper minima generalize better. Notably, one of these works by
 214 Andriushchenko et al. (2023a) observe correlation of generalization with parameters such as
 215 the learning rate, which agrees with the herein presented idea of an implicit bias trade-off
 216 that is governed by hyperparameters of GD.

217 *We emphasize that with the present work we do not contribute to resolving the question of*
 218 *which notion of sharpness (Tahmasebi et al., 2024) might be most accurate as a measure*
 219 *of generalization. In fact, we restrict ourselves to the so-called worst-case sharpness $S_{\mathcal{L}}$*
 220 *defined as the operator norm of the loss Hessian since this version of sharpness is provably*
 221 *regularized by GD with large learning rates (Ahn et al., 2022).*

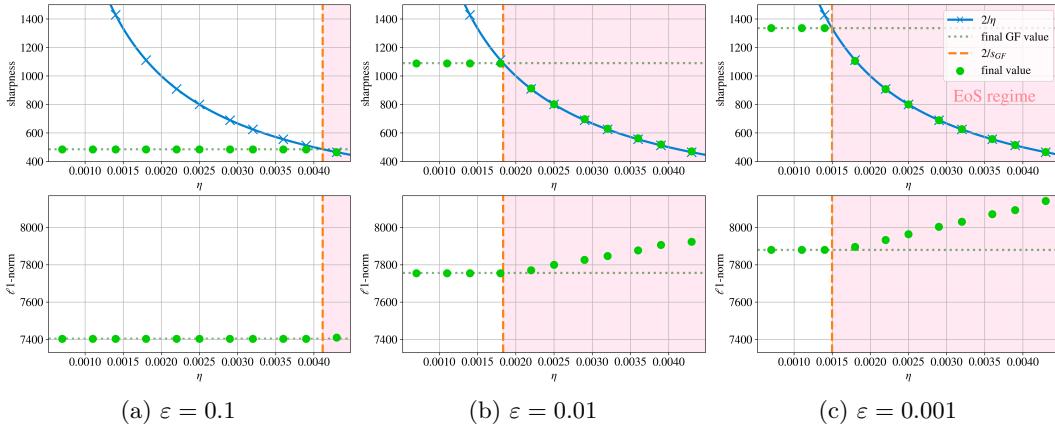


Figure 2: Sharpness and ℓ_1 -norm of final FCN models with tanh activation trained via MSE loss on CIFAR-10-5k for three different loss thresholds ε . Axis scales are equal for all three instances. Each plot illustrates a sharp regime transition as the learning rate crosses the critical threshold $\eta_c \approx 2/s_{GF}^\varepsilon$, shifting from the flow-aligned regime with nearly constant sharpness and norm to the EoS regime where sharpness decreases and the norm increases.

Generalization and ℓ_1 -norm. A possible explanation for the occasionally observed correlation between flatness and generalization can be deduced from Ding et al. (2024). The authors show for (overparameterized) matrix regression that sharpness and nuclear norm (ℓ_1 -norm on the spectrum) minimizers lie close to each other. In view of the well-established theory of sparse resp. low-rank recovery via ℓ_1 - resp. nuclear norm minimization (Foucart & Rauhut, 2013), good generalization of flat minima might just be consequence of flat minima lying close to nuclear norm minimizers, which provably generalize well in low-rank recovery. The observation that a single bias causes generalization might only stem from special situations in which several independent biases agree. This is also the case in scalar factorization Wang et al. (2022a, Appendix F.2). This point of view is supported by Wen et al. (2023) and aligns with our observations.

2 CONFLICTING BIASES

Across a wide range of training setups with varying architectures, activations, loss functions, and datasets, we consistently observe a trade-off between sharpness and norm of the final parameters as soon as the learning rate increases above a critical value. In Figure 1 we show examples of this transition, revealing two distinct regimes: The *flow-aligned regime* where both final sharpness and norm remain nearly constant with respect to the learning rate, and the *Edge-of-Stability (EoS) regime* where sharpness decreases hyperbolically and the ℓ_1 -norm increases approximately linearly. For GD trained until loss ε the critical learning rate at which this phase transition occurs depends on the gradient flow solution and is approximately given by $\eta_c := 2/s_{GF}^\varepsilon$. Here, $s_{GF}^\varepsilon := \max_{t \leq t_\varepsilon} S_L(\boldsymbol{\theta}(t_\varepsilon))$ denotes the maximal sharpness of the GF solution $\boldsymbol{\theta}$ until time $t_\varepsilon := \inf\{t: \mathcal{L}(\boldsymbol{\theta}(t)) \leq \varepsilon\}$, see Figure 2. When ε is clear from the context, we just write s_{GF} . We emphasize that this regime transition occurs when comparing final GD iterates initialized identically over the choice of learning rate, and does not correspond to the transition from Progressive Sharpening to EoS at $t_\eta := \inf\{t: S_L(\boldsymbol{\theta}_t) \geq 2/\eta\}$ observed for fixed learning rate η over the iterates $\boldsymbol{\theta}_k$ of GD (Cohen et al., 2021).

2.1 SYSTEMATIC EXPERIMENTAL ANALYSIS

To systematically investigate the trade-off between sharpness and norm minimization, we conduct experiments on standard vision datasets using both simple and moderately complex architectures. Since computing the sharpness during training involves estimating the largest

270 eigenvalue of the Hessian, which scales with both model and dataset size, we primarily use
 271 compact models to allow for evaluation across a broad range of learning rates.
 272

273 Following the experimental setup of Cohen et al. (2021), our base configuration consists of a
 274 fully connected ReLU network with two dense layers with 200 hidden neurons each, trained
 275 on the first 5,000 training examples from both MNIST and CIFAR-10 (LeCun et al., 2010;
 276 Krizhevsky et al., 2014). These two datasets provide complementary complexity levels and
 277 help ensure that the observed effects are not specific to a single data distribution.
 278

279 We train using full-batch gradient descent in order to cleanly isolate the fundamental trade-
 280 off between norm and sharpness bias driven by the learning rate η . This allows us to study
 281 the biases GD and GF induce without further confounding factors such as stochasticity or
 282 momentum. To ensure comparable convergence across settings, we train until we reach a
 283 fixed (training) loss threshold depending on the model.
 284

285 Once we fix a setup, we use the same weight initialization across all learning rates to isolate
 286 the effect of the step size. The exact choice of the learning rate schedule, along with further
 287 experimental details, is available in Appendix G.
 288

289 We perform a systematic investigation by varying the following core components of the
 290 training setup.
 291

- 292 (i) **Dataset size.** When training on the full MNIST and CIFAR-10 dataset, the phase
 293 transition persists, see Appendix H.1.
- 294 (ii) **Architecture.** We vary the architecture of the fully-connected network (FCN),
 295 as well as extend the FCN to a convolutional neural network, a ResNet and a
 296 Vision Transformer (Lecun et al., 1998; He et al., 2016; Dosovitskiy et al., 2021),
 297 see Appendix H.2.
- 298 (iii) **Activation function.** We study ReLU and tanh activations. The phase transition
 299 occurs in both settings, see Appendix H.3.
- 300 (iv) **Loss function.** On most settings, we compare both cross-entropy loss (CE) and
 301 mean squared error (MSE). The phase transitions are similar though differences in
 302 the time evolution exist, see Appendix H.4.
- 303 (v) **Loss threshold.** For every experiment, we vary the loss threshold to which we
 304 train, cf. Figure 2 and Appendix H.5. Note that varying the loss threshold can be
 305 interpreted as early stopping.
- 306 (vi) **Initialization.** When varying the initialization, the properties of the GF solution
 307 s_{GF} are changed. Consequently, the transition between both regimes happens at a
 308 different learning rate, see Section H.6.
- 309 (vii) **Parametrization.** We train FCNs with varying widths in the μP and kernel pa-
 310 rameterizations (Yang et al., 2022; Jacot et al., 2018) in Appendix H.7 where for μP
 311 we observe a certain width-independence of the spectral properties, cf. Noci et al.
 312 (2024).

313 Across all variations, we consistently observe the same trade-off between sharpness and
 314 norm, and the emergence of the flow-aligned and EoS regimes. Most figures showing these
 315 variations are deferred to Appendix I due to the page limit, along with further noteworthy
 316 observations from our experiments being noted in Appendix H.
 317

318 2.2 INTERPRETATION OF THE EXPERIMENTS

319 We now provide a high-level summary of our findings.
 320

321 **Flow-aligned regime.** In the flow-aligned regime ($\eta < \eta_c$), the behavior of GD closely
 322 mirrors that of continuous-time gradient flow. This regime is characterized by stable conver-
 323 gence of GD and minimal deviation from the gradient flow dynamics in terms of sharpness
 324 and norm. Intuitively, the sharpness of the solution in this regime stays within the stability
 325 limits set by the learning rate in (2), i.e., $S_{\mathcal{L}}(\theta_k) \leq 2/\eta$, allowing the discrete updates to
 326 track the continuous trajectory. However, we note that contrary to previous findings such

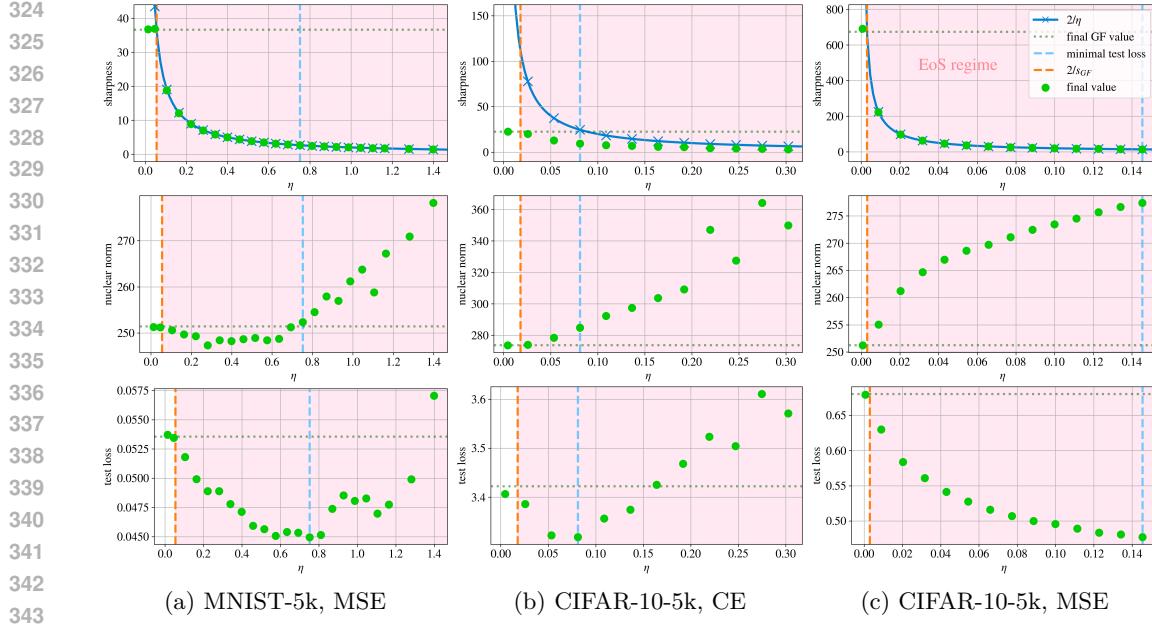


Figure 3: Final sharpness, nuclear norm, and test loss versus learning rate for three FCNs. On MNIST-5k with MSE loss (left), a clear U-shaped test loss indicates a trade-off between low sharpness and low nuclear norm. CIFAR-10-5k with CE loss (middle) shows a similar, though weaker trend. The best generalization typically occurs at intermediate learning rates where norm and sharpness biases are balanced. However, this is not universal — for instance CIFAR-10-5k with MSE loss (right) does not follow this pattern.

as by Arora et al. (2022), the absolute deviation from the GF trajectory is not necessarily negligible, see Appendix H.10. Nonetheless, the limits of GF and GD share nearly equal sharpness and norm values.

Edge-of-Stability regime. As the learning rate exceeds the critical threshold $\eta_c = 2/s_{GF}$, the dynamics of GD enter the EoS regime. Here, training is governed by EoS (Cohen et al., 2021): while the loss continues to decrease on average over time, the decrease is no longer monotone and the curvature of the loss at the iterates (as measured by $S_{\mathcal{L}}$) fluctuates just above $2/\eta$. As GD is unable to converge to an overly sharp solution (cf. Theorem B.2), the iterates oscillate towards flatter regions. If training ends during or just after this EoS phase, the solution sharpness will therefore be near $2/\eta$.

In this regime, the sharpness $S_{\mathcal{L}}$ of the final network parameters thus decreases hyperbolically with the learning rate, closely tracking the function $\eta \mapsto 2/\eta$. At the same time, the norm of the final parameters increases. In some cases, there is an initial, temporary decrease in norm before the overarching trend of increasing norm and decreasing sharpness takes over at larger learning rates. We highlight that this increase in norm is not specific to the choice of norm: we observe the same qualitative trend for the ℓ_1 , ℓ_2 -norm and the nuclear norm, suggesting a general increase in model complexity as the learning rate increases, see Appendix H.9.

Generalization. When comparing the test error of the produced solutions, see Figure 3, we note that minimal norm solutions in the flow-aligned regime never lead to optimal generalization, i.e., if the test error decreases towards one extreme, it is always towards higher learning rates and increasing norm. In some of the cases we even observe a U-curve of the test error suggesting that GD generalizes best when norm and sharpness biases are well-balanced, see Figure 3. The learning rate can then be interpreted as a regularization hyperparameter that controls generalization capacity of the resulting model. This aligns with recent independent experiments by Andriushchenko et al. (2023a).

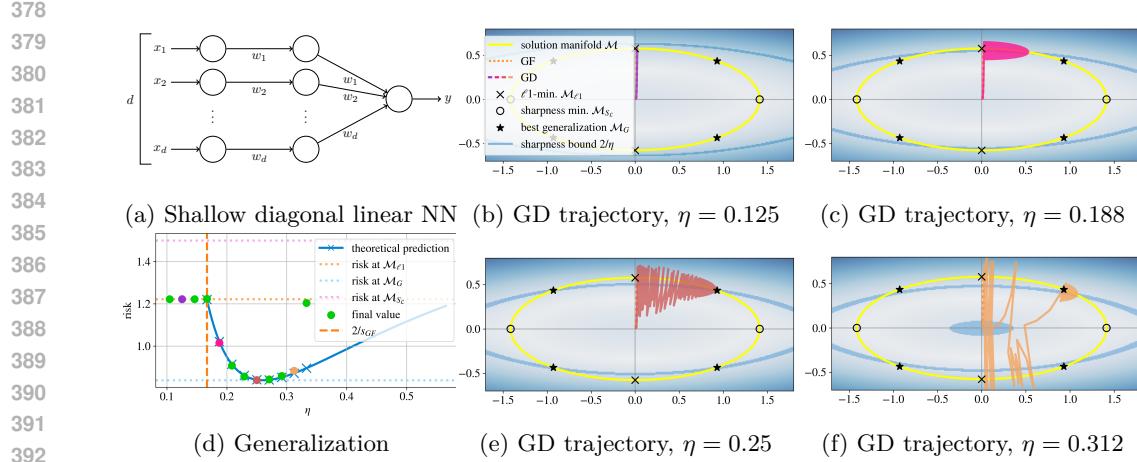


Figure 4: Two-layer diagonal linear model with weight sharing, shown in (4a). In (4b), (4c), and (4e) (4f), evolutions of weight iterates throughout training can be seen for different learning rates, where (4b) operates in the flow-aligned regime, and the others in the EoS regime. The background color map represents loss sharpness from low (white) to high (blue). The U-shaped generalization error is shown in (4d).

3 AN ELEMENTARY STUDY OF HOW IMPLICIT BIASES INTERACT

To shed some light on the empirical observations of Section 2, we study the implicit biases of GF and GD in the EoS regime in a simple regression task and show that for this setup, the norm and sharpness minimizers of the interpolating manifold are distinct, and neither is sufficient for best generalization. Assuming a *single data point* $(\mathbf{x}, y) \in \mathbb{R}^d \times \mathbb{R}$, we train a shallow diagonal linear network with shared weights $\mathbf{w} \in \mathbb{R}^d$ and without bias

$$\phi_{\mathbf{w}}: \mathbb{R}^d \rightarrow \mathbb{R}, \quad \phi_{\mathbf{w}}(\mathbf{z}) = \mathbf{w}^T \mathbf{D}_{\mathbf{w}} \mathbf{z}, \quad (3)$$

see Figure 4a, via the square loss $\mathcal{L}(y', y) = \frac{1}{2}(y' - y)^2$. The training objective is then

$$\min_{\mathbf{w} \in \mathbb{R}^d} \mathcal{L}(\phi_{\mathbf{w}}(\mathbf{x}), y) = \min_{\mathbf{w} \in \mathbb{R}^d} \mathcal{L}(\mathbf{w}) := \min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2} (\langle \mathbf{w}^{\odot 2}, \mathbf{x} \rangle - y)^2, \quad (4)$$

where we overload the notation \mathcal{L} for the sake of simplicity. Note that \odot denotes the Hadamard product and $\mathbf{z}^{\odot k} = \mathbf{z} \odot \dots \odot \mathbf{z}$ the k -th Hadamard power. We define the set of parameters of interpolating solutions $\phi_{\mathbf{w}}$ as

$$\mathcal{M} = \{\mathbf{w} \in \mathbb{R}^d : \mathcal{L}(\mathbf{w}) = 0\} \quad (5)$$

and note in the following lemma that \mathcal{M} is a Riemannian manifold in general. We provide the proof in Appendix C.

Lemma 3.1. *For \mathcal{L} as in (4), define \mathcal{M} as in (5) and assume that $\mathcal{M} \neq \emptyset$. If $\mathbf{x} \in \mathbb{R}_{\neq 0}^d$ and $y \neq 0$, then \mathcal{M} is a Riemannian manifold with tangent space $T_{\mathbf{w}}\mathcal{M} = (\mathbf{x} \odot \mathbf{w})^{\perp}$ at $\mathbf{w} \in \mathcal{M}$.*

While this training model is strongly simplistic, it allows us to explicitly compare the implicit biases induced by GF and by EoS, and to compute their generalization errors w.r.t. the realization of (\mathbf{x}, y) . Indeed, it is known that in this setting GF initialized at $\mathbf{w}_0 = \alpha \mathbf{1}$, for $\alpha > 0$ small, converges to an end-to-end model $\mathbf{w}_*^{\odot 2}$ that approximately minimizes the ℓ_1 -norm among all interpolating solutions (Chou et al., 2023), see Theorem B.1 in Appendix B.³ Similarly, under mild technical conditions on \mathcal{L} , which are fulfilled in the present study, it is well-known for GD with learning rate $\eta > 0$ that for almost every initialization $\mathbf{w}_0 \in \mathbb{R}^d$ the iterates \mathbf{w}_k can only converge to stationary points \mathbf{w}_∞ with $S_{\mathcal{L}}(\mathbf{w}_\infty) \leq 2/\eta$ (Ahn et al., 2022), see Theorem B.2 in Appendix B. In consequence, GD is implicitly restricted to limits with low sharpness if η is chosen sufficiently large.

³In consequence, the network parameters \mathbf{w}_* minimize the squared ℓ_2 -norm.

432 The following result now characterizes how the norm- and sharpness-minimizers of (4) relate.
 433 In particular, it illustrates that they are clearly distinct in general.

434 **Proposition 3.2.** *For $\mathbf{x} \in \mathbb{R}_{\neq 0}^d$ and \mathcal{L} as in (4) with $\mathcal{M} \neq \emptyset$ as in (5), the following hold:*

436 (i) *To have*

$$437 \quad \mathbf{w} \in \mathcal{M}_{\ell_1} := \arg \min_{\mathbf{z} \in \mathcal{M}} \|\mathbf{z}^{\odot 2}\|_1,$$

439 *it is necessary that $\mathbf{x}|_{\text{supp}(\mathbf{w})} = x_{\max} \cdot \mathbf{1}|_{\text{supp}(\mathbf{w})}$, for $x_{\max} = \max_i |x_i|$.*

440 *If $\mathbf{x} \in \mathbb{R}_{>0}^d$, this condition is also sufficient. In particular, we have in this case that*

$$442 \quad \mathcal{M}_{\ell_1} = \left\{ \mathbf{w} \in \mathbb{R}^d : \|\mathbf{w}\|_2^2 = \frac{y}{x_{\max}} \text{ and } \text{supp}(\mathbf{w}) \subset \arg \max_i x_i \right\}. \quad (6)$$

444 (ii) *To have*

$$446 \quad \mathbf{w} \in \mathcal{M}_{S_{\mathcal{L}}} := \arg \min_{\mathbf{z} \in \mathcal{M}} S_{\mathcal{L}}(\mathbf{z}),$$

448 *it is necessary that $\mathbf{x}|_{\text{supp}(\mathbf{w})} = x_0 \cdot \mathbf{1}|_{\text{supp}(\mathbf{w})}$, for some $x_0 \in \mathbb{R}$.*

449 *If $\mathbf{x} \in \mathbb{R}_{>0}^d$, it is necessary and sufficient that the previous condition holds with*
 450 *$x_0 = x_{\min} = \min_i x_i$. In particular, we have in this case that*

$$451 \quad \mathcal{M}_{S_{\mathcal{L}}} = \left\{ \mathbf{w} \in \mathbb{R}^d : \|\mathbf{w}\|_2^2 = \frac{y}{x_{\min}} \text{ and } \text{supp}(\mathbf{w}) \subset \arg \min_i x_i \right\}. \quad (7)$$

454 *Proof sketch:* To derive the necessary conditions, we calculate Riemannian gradients and
 455 Hessians along \mathcal{M} and use the respective first- and second-order necessary conditions. To
 456 derive the sufficient conditions and the explicit representations in (6) and (7), we construct
 457 simple minimizers based on canonical basis elements. The full proof is in Appendix D. \square

458 Proposition 3.2 shows that, in general, the norm- and sharpness-minimizer on \mathcal{M} do not
 459 agree. We mention that the assumption $\mathbf{x} \in \mathbb{R}_{\neq 0}^d$ is not restrictive since any zero coordinate
 460 of \mathbf{x} can be removed by reducing the problem dimension. In view of Theorems B.1 and B.2,
 461 we see that depending on the learning rate, GD with initialization $\mathbf{w}_0 = \alpha \mathbf{1}$, for $\alpha > 0$ close
 462 to zero, is implicitly more biased to two disjoint sets. For $\eta \rightarrow 0$, the limit of stable GD will
 463 lie close to the set in (6); as η increases, the limit of unstable GD (as far as it exists) will lie
 464 close to the set in (7). For $d = 2$, the situation is illustrated in Figure 4. We further note
 465 that the restriction of Theorem B.1 to non-negative parameters is not limiting the analysis
 466 since (6) always contains such solutions, i.e., in our setting an ℓ_1 -minimizer on $\mathcal{M} \cap \mathbb{R}_{\geq 0}^d$ is
 467 also a minimizer on \mathcal{M} .

468 Despite its simplicity, our toy model can reproduce the characteristic phase transitions of
 469 norm and sharpness (Figure 1) and the U-shaped generalization curve (Figure 3). For this,
 470 let us assume that the data follows a simple linear regression model with $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and
 471 $y = \langle \mathbf{1}, \mathbf{x} \rangle + \varepsilon$, for independent $\varepsilon \sim \mathcal{N}(0, 1)$. Then, the risk \mathcal{R} under \mathcal{L} can be computed
 472 explicitly and the best achievable generalization error of $\phi_{\mathbf{w}}$ trained via (4) can be identified,
 473 see Lemma E.1.

474 Assume we are given a generic draw of the single data point $(\mathbf{x}_0, y_0) \sim (\mathbf{x}, y)$ with $\mathbf{x}_0 \in \mathbb{R}_{\geq 0}^d$,
 475 i.e., we consider a draw (\mathbf{x}_0, y_0) from the conditional distribution $p((\mathbf{x}, y)|\mathbf{x} \geq \mathbf{0})$.⁴ Note
 476 that almost surely \mathbf{x}_0 will satisfy $|\text{supp}(\mathbf{x}_0)| \geq 2$, and have a unique minimal entry x_{\min} at
 477 index k_{\min} and a unique maximal entry x_{\max} at index k_{\max} such that the sets in (6) and
 478 (7) consist of two points each which only differ by a sign.

479 On this model, GD with learning rate η will minimize \mathcal{L} under constraints $S_{\mathcal{L}} \leq \frac{2}{\eta}$ due to its
 480 implicit sharpness regularization. We can now compare the limit of GD with initialization
 481 $\mathbf{w}_0 = \alpha \mathbf{1}$, for $\alpha > 0$ small, to three *idealized* training algorithms which, given input (\mathbf{x}_0, y_0) ,
 482 output the weight vector $\mathbf{w} \in \mathbb{R}^d$ of an interpolating solution $\phi_{\mathbf{w}}$:

484 ⁴In this discussion, (\mathbf{x}_0, y_0) takes the role of the single data point (\mathbf{x}, y) from before and we
 485 condition to non-negative data in order to apply Proposition 3.2. We examine removing the latter
 limitation in Section E.1.

486 (i) **Minimal norm:** $\mathcal{A}_{\ell_1} : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d$ with $\mathcal{A}_{\ell_1}(\mathbf{x}_0, y_0) = \sqrt{\frac{y_0}{x_{\max}}} \mathbf{e}_{k_{\max}}$. This corre-
487 sponds to the solution computed by GD with vanishing learning rate.
488

489 (ii) **Minimal sharpness:** $\mathcal{A}_{S_{\mathcal{L}}} : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d$ with $\mathcal{A}_{S_{\mathcal{L}}}(\mathbf{x}_0, y_0) = \sqrt{\frac{y_0}{x_{\min}}} \mathbf{e}_{k_{\min}}$. This
490 corresponds to the solution that would be computed by GD with extremely large
491 learning rate if convergence still happened.
492

493 (iii) **Minimal generalization error:** $\mathcal{A}_{\text{opt}} : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d$ with $\mathcal{A}_{\text{opt}}(\mathbf{x}_0, y_0)$ returning
494 a risk minimizer in \mathcal{M}_G (best generalizing points in \mathcal{M}).
495

496 Figure 4 shows four snapshots of the training dynamics for growing η . Figure 4b reflects
497 the situation where GD has no sharpness induced restrictions on \mathcal{M} and converges to a
498 minimizer in \mathcal{M}_{ℓ_1} , i.e. the output of \mathcal{A}_{ℓ_1} . As long as η is not too large (Figure 4c), the
499 generalization minimizer fall inside the feasible set. Due to EoS, the model finds a solution
500 with sharpness around $2/\eta$ yielding suboptimal generalization error, though risk improves
501 over \mathcal{M}_{ℓ_1} . For carefully tuned η , Figure 4e shows convergence of GD to a point close to
502 the output of \mathcal{A}_{opt} . For too large η , the sharpness constraints exclude \mathcal{M}_G and GD moves
503 closer to $\mathcal{M}_{S_{\mathcal{L}}}$. As Figure 4d illustrates, our toy model exhibits the U-shaped generalization
504 curve observed in various training simulations, and explains it by an interpolation between
505 implicit norm- and sharpness biases.
506

507 We note that in this example both \mathcal{M}_{ℓ_1} and $\mathcal{M}_{S_{\mathcal{L}}}$ lead to suboptimal generalization with
508 $\mathcal{R}(\mathcal{M}_{\ell_1}) < \mathcal{R}(\mathcal{M}_{S_{\mathcal{L}}})$. Due to its instability, GD already diverges for many η where the
509 feasible set of the constrained optimization problem is non-empty, i.e., although there exist
510 points on the solution manifold with sharpness $< 2/\eta$. Consequently, all convergent trajec-
511 tories in the EoS regime achieve better generalization than $\mathcal{R}(\mathcal{M}_{\ell_1})$, although the sharpness
512 minimizer induces a higher risk. This might be an explanation for why the U-shaped gen-
513 eralization curve is not always visible in our experiments.
514

515 We provide additional numerical experiments for the diagonal network in Appendix H.13.
516 In particular, note that the GD limit is often close to a KKT point of a sharpness-restricted
517 risk minimization on \mathcal{M} (Figure 16 and Lemma E.1). In Appendix F, we analyze a com-
518 parably simplified classification model for which sharpness minimization leads to better
519 generalization performance than norm-minimization.
520

521 4 DISCUSSION

522 Our experiments suggest that a single implicit bias of gradient descent is not sufficient to
523 explain the good generalization performance in deep learning. While solutions obtained
524 with vanishing learning rates may have an implicit bias towards simple structures, the bias
525 changes with increasing learning rate. This insight provides an explanation for the strong
526 empirical influence of the learning rate on model performance. Our theoretical analysis
527 further indicates that the learning rate balances between various implicit biases, and that good
528 generalization performance is only reached by careful fine-tuning of such hyperparameters
529 of GD. These insights from our simplified model open the door to a broader perspective on
530 implicit regularization which accounts for the interaction between multiple biases shaped by
531 the optimization dynamics. Future work extending our insights to additional known biases
532 and more realistic optimizers (e.g., SGD, Adam) will be important to fully translate these
533 insights into practical training settings.
534

535 4.1 LIMITATIONS

536 Our theoretical analysis is restricted to simple models due to the difficulty in explicitly
537 characterizing the implicit biases of GD in more general setups. In combination with our
538 empirical studies, it nevertheless provides consistent evidence for the observed phenom-
539 ena. Our study is further limited by only considering full-batch gradient descent as well as
540 two specific manifestations of implicit bias. Further empirical validation on other popular
541 optimizers, network classes and datasets would be desirable.
542

540
541 REPRODUCIBILITY STATEMENT

542 The complete experimental methodology is described in detail in Appendix G, and all ex-
 543 periments are fully reproducible. Source code will be released upon acceptance and is also
 544 provided as part of the supplementary material. Proofs of the main statements are included
 545 in Appendix C and D, with additional theoretical results and their corresponding proofs in
 546 E and F.

547
548 ETHICS STATEMENT

549 The presented work on implicit regularization is foundational in nature. The theory part
 550 is not tied to an application and also uses a simplified model. The experiments utilize
 551 established architectures, algorithms, and datasets. We therefore do not identify any specific
 552 ethical issues arising from this work.

553
554 LLM USAGE STATEMENT

555 We used large language models (OpenAI’s ChatGPT, Google’s Gemini, Writefull) for edito-
 556 rial assistance such as grammar, spelling, and word choice. In addition, we used OpenAI’s
 557 ChatGPT for limited coding support including plotting routines, assistance with bash scripts
 558 and resolving error messages. No substantive ideas, research contributions, or results were
 559 generated by AI tools.

560
561 REFERENCES

562 Kwangjun Ahn, Jingzhao Zhang, and Suvrit Sra. Understanding the unstable convergence of
 563 gradient descent. In *International conference on machine learning*, pp. 247–257. PMLR, 2022.

564 Kwangjun Ahn, Sébastien Bubeck, Sinho Chewi, Yin Tat Lee, Felipe Suárez, and Yi Zhang. Learning
 565 threshold neurons via edge of stability. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
 566 M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36,
 567 pp. 19540–19569. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/3e592c571de69a43d7a870ea89c7e33a-Paper-Conference.pdf.

568 Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware min-
 569 imization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu,
 570 and Sivan Sabato (eds.), *International Conference on Machine Learning, ICML 2022, 17-23 July
 571 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pp.
 572 639–668. PMLR, 2022. URL <https://proceedings.mlr.press/v162/andriushchenko22a.html>.

573 Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
 574 marion. A modern look at the relationship between sharpness and generalization. *arXiv preprint
 575 arXiv:2302.07011*, 2023a.

576 Maksym Andriushchenko, Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion. SGD with large step sizes learns sparse features. In *Proceedings of the 40th International
 577 Conference on Machine Learning*, volume 202, pp. 903–925. PMLR, 2023b.

578 Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
 579 factorization. In *Advances in Neural Information Processing Systems*, pp. 7413–7424, 2019.

580 Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on the edge of
 581 stability in deep learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
 582 Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine
 583 Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 948–1024. PMLR, 17–23
 Jul 2022.

584 Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E Woodworth, Nathan Srebro, Amir
 585 Globerson, and Daniel Soudry. On the implicit bias of initialization shape: Beyond infinitesimal
 586 mirror descent. In *International Conference on Machine Learning*, pp. 468–477. PMLR, 2021.

587 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
 588 practice and the classical bias–variance trade-off. *Proceedings of the National Academy of Sci-
 589 ences*, 116(32):15849–15854, 2019.

594 Nicolas Boumal. *An introduction to optimization on smooth manifolds*. Cambridge University Press,
 595 2023.

596 Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. *Foundations and Trends®*
 597 in Machine Learning

598 8(3-4):231–357, 2015.

599 Yuhang Cai, Jingfeng Wu, Song Mei, Michael Lindsey, and Peter Bartlett. Large stepsize gradient
 600 descent for non-homogeneous two-layer networks: Margin improvement and fast optimization.
 601 *Advances in Neural Information Processing Systems*, 37:71306–71351, 2024.

602 Dennis Chemnitz and Maximilian Engel. Characterizing dynamical stability of stochastic gradient
 603 descent in overparameterized learning. *arXiv preprint arXiv:2407.20209*, 2024.

604 Lei Chen and Joan Bruna. Beyond the edge of stability via two-step gradient updates. In *International
 605 Conference on Machine Learning*, pp. 4330–4391. PMLR, 2023.

606 Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
 607 trained with the logistic loss. In *Conference on learning theory*, pp. 1305–1338. PMLR, 2020.

608 Hung-Hsu Chou, Johannes Maly, and Holger Rauhut. More is less: inducing sparsity via overpa-
 609 rameterization. *Information and Inference: A Journal of the IMA*, 12(3):1437–1460, 2023.

610 Hung-Hsu Chou, Carsten Gieshoff, Johannes Maly, and Holger Rauhut. Gradient descent for deep
 611 matrix factorization: Dynamics and implicit bias towards low rank. *Applied and Computational
 612 Harmonic Analysis*, 68:101595, 2024a.

613 Hung-Hsu Chou, Holger Rauhut, and Rachel Ward. Robust implicit regularization via weight
 614 normalization. *Information and Inference: A Journal of the IMA*, 13(3):iaae022, 2024b.

615 Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent
 616 on neural networks typically occurs at the edge of stability. In *International Conference on
 617 Learning Representations*, 2021. URL <https://openreview.net/forum?id=jh-rTtvkGeM>.

618 Jeremy M Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati,
 619 Michal Badura, Daniel Suo, David Cardoze, Zachary Nado, George E Dahl, et al. Adaptive
 620 gradient methods at the edge of stability. *arXiv preprint arXiv:2207.14484*, 2022.

621 Lijun Ding, Dmitriy Drusvyatskiy, Maryam Fazel, and Zaid Harchaoui. Flat minima generalize
 622 for low-rank matrix recovery. *Information and Inference: A Journal of the IMA*, 13(2):iaae009,
 623 2024.

624 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
 625 for deep nets. In *International Conference on Machine Learning*, pp. 1019–1028. PMLR, 2017.

626 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 627 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 628 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
 629 tion at scale. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

630 Mathieu Even, Scott Pesme, Suriya Gunasekar, and Nicolas Flammarion. (s)GD over diagonal
 631 linear networks: Implicit bias, large stepsizes and edge of stability. In *Thirty-seventh Conference
 632 on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=uAyElhYKxg>.

633 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-
 634 mization for efficiently improving generalization. *CoRR*, abs/2010.01412, 2020. URL <https://arxiv.org/abs/2010.01412>.

635 Simon Foucart and Holger Rauhut. *A Mathematical Introduction to Compressive Sensing*.
 636 Birkhäuser, New York, NY, 2013.

637 Spencer Frei, Niladri S Chatterji, and Peter Bartlett. Benign overfitting without linearity: Neural
 638 network classifiers trained by gradient descent for noisy linear data. In *Conference on Learning
 639 Theory*, pp. 2668–2703. PMLR, 2022.

640 Khashayar Gatmiry, Zhiyuan Li, Sashank J Reddi, and Stefanie Jegelka. Simplicity bias via global
 641 convergence of sharpness minimization. *arXiv preprint arXiv:2410.16401*, 2024.

648 Kelly Geyer, Anastasios Kyrillidis, and Amir Kalev. Low-rank regularization and solution uniqueness
 649 in over-parameterized matrix sensing. In *Proceedings of the 23rd International Conference*
 650 *on Artificial Intelligence and Statistics*, pp. 930–940, 2020.

651 Avrajit Ghosh, Soo Min Kwon, Rongrong Wang, Saiprasad Ravishankar, and Qing Qu. Learning
 652 dynamics of deep linear networks beyond the edge of stability. *arXiv preprint arXiv:2502.20531*,
 653 2025.

654 Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Sre-
 655 bro. Implicit regularization in matrix factorization. In *Advances in Neural Information Processing*
 656 *Systems*, pp. 6151–6159, 2017.

657 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 658 recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
 659 pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.

660 Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima.
 661 In G. Tesauro, D. Touretzky, and T. Leen (eds.), *Advances in Neural Information Processing*
 662 *Systems*, volume 7. MIT Press, 1994. URL https://proceedings.neurips.cc/paper_files/paper/1994/file/01882513d5fa7c329e940dda99b12147-Paper.pdf.

663 Sepp Hochreiter and Jürgen Schmidhuber. Flat Minima. *Neural Computation*, 9(1):1–42, 01 1997.
 664 ISSN 0899-7667. doi: 10.1162/neco.1997.9.1.1. URL <https://doi.org/10.1162/neco.1997.9.1.1>.

665 Tom Jacobs, Chao Zhou, and Rebekka Burkholz. Mirror, mirror of the flow: How does regularization
 666 shape implicit bias? *CoRR*, abs/2504.12883, 2025. doi: 10.48550/ARXIV.2504.12883. URL
 667 <https://doi.org/10.48550/arXiv.2504.12883>.

668 Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
 669 generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
 670 N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in neural information processing systems*, vol-
 671 ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf. Read_Status: In Progress
 672 Read_Status_Date: 2023-10-05T07:33:41.285Z.

673 Stanisław Jastrzębski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amost
 674 Storkey. On the relation between the sharpest directions of DNN loss and the SGD step length.
 675 In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Skgeaj05t7>.

676 Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
 677 *Conference on learning theory*, pp. 1772–1798. PMLR, 2019.

678 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
 679 generalization measures and where to find them. *arXiv preprint arXiv:1912.02178*, 2019.

680 Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue and
 681 generalization. In *Proceedings on*, pp. 51–65. PMLR, 2023.

682 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 683 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
 684 *International Conference on Learning Representations*, 2017.

685 Itai Kreisler, Mor Shpigel Nacson, Daniel Soudry, and Yair Carmon. Gradient descent monotonically
 686 decreases the sharpness of gradient flow solutions in scalar networks and beyond. In *Proceedings*
 687 *of the 40th International Conference on Machine Learning*, ICML’23. JMLR.org, 2023.

688 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. <https://www.cs.toronto.edu/~kriz/cifar.html>, 2014.

689 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
 690 aware minimization for scale-invariant learning of deep neural networks. In *International Con-
 691 ference on Machine Learning*, pp. 5905–5914. PMLR, 2021.

692 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
 693 recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

702 Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
 703 *Neural networks: Tricks of the trade*, pp. 9–50. Springer, 2002.
 704

705 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs*
 706 [*Online*]. Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.
 707

708 Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
 709 for matrix factorization: Greedy low-rank learning. *arXiv preprint arXiv:2012.09839*, 2020.
 710

711 Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, ge-
 712 ometry, and complexity of neural networks. In *The 22nd international conference on artificial*
 713 *intelligence and statistics*, pp. 888–896. PMLR, 2019.
 714

715 Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normal-
 716 ization layers: Sharpness reduction. *Advances in Neural Information Processing Systems*, 35:
 717 34689–34708, 2022.
 718

719 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*.
 720 The MIT Press, 2nd edition, 2018. ISBN 0262039400.
 721

722 Lorenzo Noci, Alexandru Meterez, Thomas Hofmann, and Antonio Orvieto. Super consistency of
 723 neural network landscapes and learning rate transfer. In A. Globerson, L. Mackey, D. Belgrave,
 724 A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing*
 725 *Systems*, volume 37, pp. 102696–102743. Curran Associates, Inc., 2024.
 726

727 Hristo Papazov, Scott Pesme, and Nicolas Flammarion. Leveraging continuous time to understand
 728 momentum when training diagonal linear networks. In Sanjoy Dasgupta, Stephan Mandt, and
 729 Yingzhen Li (eds.), *International Conference on Artificial Intelligence and Statistics, 2-4 May*
 730 *2024, Palau de Congressos, Valencia, Spain*, volume 238 of *Proceedings of Machine Learning*
 731 *Research*, pp. 3556–3564. PMLR, 2024. URL <https://proceedings.mlr.press/v238/papazov24a.html>.
 732

733 Namuk Park and Songkuk Kim. How do vision transformers work? *arXiv preprint*
 734 *arXiv:2202.06709*, 2022.
 735

736 Barak A. Pearlmutter. Fast exact multiplication by the hessian. *Neural Computation*, 6(1):147–160,
 737 1994. doi: 10.1162/neco.1994.6.1.147.
 738

739 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 740 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
 741 and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning*
 742 *Research*, 12:2825–2830, 2011.
 743

744 Scott Pesme, Lucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of SGD for diagonal
 745 linear networks: a provable benefit of stochasticity. In *Advances in Neural Information Processing*
 746 *Systems*, volume 34, pp. 29218–29230, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/f4661398cb1a3abd3ffe58600bf11322-Abstract.html>.
 747

748 Carl Runge. Ueber die numerische Auflösung von Differentialgleichungen. *Mathematische Annalen*,
 749 46(2):167–178, 1895. doi: 10.1007/BF01446807.
 750

751 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
 752 implicit bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19
 753 (70):1–57, 2018.
 754

755 Dominik Stöger and Mahdi Soltanolkotabi. Small random initialization is akin to spectral learning:
 756 Optimization and generalization guarantees for overparameterized low-rank matrix reconstruc-
 757 tion. *Advances in Neural Information Processing Systems*, 34, 2021.
 758

759 Behrooz Tahmasebi, Ashkan Soleymani, Dara Bahri, Stefanie Jegelka, and Patrick Jaillet. A
 760 universal class of sharpness-aware minimization algorithms. *arXiv preprint arXiv:2406.03682*,
 761 2024.
 762

763 Gal Vardi. On the implicit bias in deep-learning algorithms. *Communications of the ACM*, 66(6):
 764 86–93, 2023.
 765

766 Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal
 767 sparse recovery. In *Advances in Neural Information Processing Systems*, pp. 2972–2983, 2019.
 768

756 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
757 Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
758 U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
759 nett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Asso-
760 ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fdb053c1c4a845aa-Paper.pdf.
761

762 Loucas Pillaud Vivien, Julien Reygner, and Nicolas Flammarion. Label noise (stochastic) gradient
763 descent implicitly solves the LASSO for quadratic parametrisation. In *Proceedings of Conference
764 on Learning Theory*, volume 178, pp. 2127–2159. PMLR, 2022.

765 Shuyang Wang and Diego Klabjan. A mirror descent perspective of smoothed sign descent. In Silvia
766 Chiappa and Sara Magliacane (eds.), *Conference on Uncertainty in Artificial Intelligence, Rio
767 Othon Palace, Rio de Janeiro, Brazil, 21-25 July 2025*, volume 286 of *Proceedings of Machine
768 Learning Research*, pp. 4515–4542. PMLR, 2025. URL <https://proceedings.mlr.press/v286/wang25h.html>.

770 Yuqing Wang, Minshuo Chen, Tuo Zhao, and Molei Tao. Large learning rate tames homogeneity:
771 Convergence and balancing effect. In *International Conference on Learning Representations*,
772 2022a.

773 Zixuan Wang, Zhouzi Li, and Jian Li. Analyzing sharpness along GD trajectory: Progressive
774 sharpening and edge of stability. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
775 Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022b. URL
776 <https://openreview.net/forum?id=thgItcQrJ4y>.

777 Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only minimize
778 sharpness to achieve better generalization. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
779 M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36,
780 pp. 1024–1035. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/0354767c6386386be17cabe4fc59711b-Paper-Conference.pdf.

781 David H. Wolpert. Bayesian backpropagation over i-o functions rather than weights. In J. Cowan,
782 G. Tesauro, and J. Alspector (eds.), *Advances in Neural Information Processing Systems*, vol-
783 ume 6. Morgan-Kaufmann, 1993. URL https://proceedings.neurips.cc/paper_files/paper/1993/file/d4c2e4a3297fe25a71d030b67eb83bfc-Paper.pdf.

784 Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
785 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
786 *Conference on Learning Theory*, pp. 3635–3673. PMLR, 2020.

787 Jingfeng Wu, Peter L Bartlett, Matus Telgarsky, and Bin Yu. Large stepsize gradient descent
788 for logistic loss: Non-monotonicity of the loss improves optimization efficiency. In *The Thirty
789 Seventh Annual Conference on Learning Theory*, pp. 5019–5073. PMLR, 2024.

790 Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient
791 descent. In *International Conference on Machine Learning*, pp. 37656–37684. PMLR, 2023.

792 Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
793 dynamical stability perspective. *Advances in Neural Information Processing Systems*, 31, 2018.

794 Lei Wu, Mingze Wang, and Weijie Su. The alignment property of sgd noise and how it helps
795 select flat minima: A stability analysis. *Advances in Neural Information Processing Systems*, 35:
796 4680–4693, 2022.

797 Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A walk with sgd. *arXiv preprint
798 arXiv:1802.08770*, 2018.

799 Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
800 Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
801 neural networks via zero-shot hyperparameter transfer, 2022. URL <https://arxiv.org/abs/2203.03466>.

802 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
803 deep learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):
804 107–115, 2021.

810 Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoretically
811 understanding why sgd generalizes better than adam in deep learning. *Advances in Neural*
812 *Information Processing Systems*, 33:21285–21296, 2020.

813 Xingyu Zhu, Zixuan Wang, Xiang Wang, Mo Zhou, and Rong Ge. Understanding edge-of-stability
814 training dynamics with a minimalist example. In *The Eleventh International Conference on*
815 *Learning Representations*, 2023.

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 SUPPLEMENT TO THE PAPER “CONFLICTING BIASES AT THE EDGE OF
 865 STABILITY: NORM VERSUS SHARPNESS REGULARIZATION”
 866

867 In this supplement, we provide additional numerical simulations and proofs that were
 868 skipped in the main paper.
 869

870 **CONTENTS**
 871

873 1	Introduction	1
874 1.1	Contribution	2
875 1.2	Notation and outline	3
877 1.3	Related works	4
879 2	Conflicting biases	5
881 2.1	Systematic experimental analysis	5
882 2.2	Interpretation of the experiments	6
884 3	An elementary study of how implicit biases interact	8
886 4	Discussion	10
888 4.1	Limitations	10
890 A	Related works — Extended discussion	19
893 B	Implicit norm and sharpness regularization	21
895 C	Proof of Lemma 3.1	21
897 D	Proof of Proposition 3.2	21
900 E	An elementary study of how implicit biases interact — Generalization	24
901 E.1	A more general regression analysis	26
903 F	An elementary study of how implicit biases interact II — Classification	28
905 G	Methodology	30
907 H	Effect of training configuration on sharpness–norm trade-off	31
909 H.1	Dataset size	32
910 H.2	Architecture	32
912 H.3	Activation function	33
913 H.4	Loss function	33
915 H.5	Loss threshold	34
916 H.6	Initialization	34
917 H.7	Parameterization	34

918	H.8 Number of iterations	36
919	H.9 Alternative norms and sharpness measures	36
920	H.10 Gradient descent solution distance	37
921	H.11 Evolution during training	37
922	H.12 Per-layer norms	39
923	H.13 The diagonal network	39
924	H.14 Other data modalities	41
925		
926		
927		
928		
929		
930	I Systematic overview of experiments	42
931		
932	I.1 FCNs with ReLU activation	45
933	I.1.1 On MNIST-5k	45
934	I.1.2 On CIFAR-10-5k	46
935	I.1.3 On full MNIST	46
936	I.1.4 On full CIFAR-10	47
937	I.2 FCNs with tanh activation	48
938	I.2.1 On MNIST-5k	48
939	I.2.2 On CIFAR-10-5k	49
940	I.3 CNNs with ReLU activation	50
941	I.3.1 On MNIST-5k	50
942	I.3.2 On full MNIST	51
943	I.3.3 On CIFAR-10-5k	51
944	I.4 Vision Transformer	52
945	I.4.1 On MNIST-5k	52
946	I.4.2 On CIFAR-10-5k	52
947	I.5 ResNet20	52
948	I.5.1 On CIFAR-10-5k	52
949	I.6 Varying width and depth	53
950	I.6.1 On MNIST-5k	53
951	I.6.2 On CIFAR-10-5k	55
952	I.7 Further configurations	58
953	I.7.1 Different loss goals	58
954	I.7.2 Other initialization seeds for FCN-ReLU on CIFAR-10-5k with the	
955	MSE loss	61
956	I.7.3 Scaled initialization for FCN-ReLU on CIFAR-10-5k with the MSE loss	61
957	I.8 Further properties	62
958	I.8.1 Alternative norms and distance from GF solution	62
959	I.8.2 Convergence speed and test accuracy	65
960		
961		
962		
963		
964		
965		
966		
967		
968		
969		
970		
971		

972 A RELATED WORKS — EXTENDED DISCUSSION
973974 We provide a more detailed review of the related literature here.
975976
977 **Implicit bias of GF.** To understand the remarkable generalization properties of unreg-
978 ularized gradient-based learning procedures for deep neural networks (Zhang et al., 2021;
979 Belkin et al., 2019), a recent line of works has been analyzing the implicit bias of GD to-
980 wards parsimoniously structured solutions in simplified settings such as linear classification
981 (Soudry et al., 2018; Ji & Telgarsky, 2019), matrix factorization (Gunasekar et al., 2017;
982 Arora et al., 2019; Chou et al., 2024a), training linear networks (Geyer et al., 2020; Stöger &
983 Soltanolkotabi, 2021), training two-layer networks for classification (Chizat & Bach, 2020;
984 Frei et al., 2022), and training linear diagonal networks for regression (Vaskevicius et al.,
985 2019; Woodworth et al., 2020; Azulay et al., 2021; Chou et al., 2023). All of these results
986 analyze GD with small or vanishing learning rate, i.e., the implicit biases identified therein
987 can be ascribed to the underlying GF dynamics.
988989
990 **Other types of implicit regularization of GD.** It is worth noting that there are
991 other mechanisms inducing algorithmic regularization such as label noise (Pesme et al.,
992 2021; Vivien et al., 2022) or weight normalization (Chou et al., 2024b), momentum gradient
993 descent (Papazov et al., 2024), smoothed sign descent (Wang & Klabjan, 2025) and explicit
994 regularization into the mirror flow (Jacobs et al., 2025). In (Andriushchenko et al., 2023b;
995 Even et al., 2023) an intriguing connection regarding implicit regularization induced by large
996 step sizes coupled with SGD noise has been discussed. In particular, for shallow diagonal
997 linear networks it has been shown that SGD with large learning rates implicitly regularizes
998 certain parameter norms (Wu & Su, 2023). For a broader overview on the topic including
999 further references we refer to the survey by Vardi (2023).
10001001
1002 **Edge of Stability.** Whereas most of the above works rely on vanishing learning rates,
1003 results by Cohen et al. (2021) on EoS suggest that GD under finite, realistic learning rates
1004 behaves notably differently from its infinitesimal limit. In the past few years, subsequent
1005 works have started to theoretically analyze the EoS regime. It is noted in Ahn et al. (2022)
1006 that GD with fixed learning rate $\eta > 0$ can only converge to stationary points θ_* of a loss
1007 \mathcal{L} if $S_{\mathcal{L}}(\theta_*) < 2/\eta$. In Chemnitz & Engel (2024), this stability criterion of stationary points
1008 has been generalized to SGD. Note that EoS was first observed for SGD (Wu et al., 2018),
1009 for which the analogous sharpness bounds also depend on the batch size (Wu et al., 2022).
1010 Arora et al. (2022) relate normalized GD on a loss \mathcal{L} to GD on the modified loss $\sqrt{\mathcal{L}}$ and
1011 show that EoS occurs $\mathcal{O}(\eta)$ -close to the manifold of interpolating solutions. Under various
1012 restrictive assumptions, progressive sharpening and EoS have been analyzed by Wang et al.
1013 (2022b); Chen & Bruna (2023); Zhu et al. (2023); Kreisler et al. (2023). Recently, a thorough
1014 analysis of EoS has been provided for training linear classifiers (Wu et al., 2024) and shallow
1015 near-homogeneous networks (Cai et al., 2024) on the logistic loss via GD. The authors show
1016 that large learning rates allow a loss decay of $\mathcal{O}(1/k^2)$ which exceeds the best known rates for
1017 vanilla GD from classical optimization. Cohen et al. (2021) extended their empirical study
1018 of EoS to adaptive GD-methods for which the stability criterion becomes more involved
1019 (Cohen et al., 2022). Finally, let us mention that applying early stopping to label noise SGD
1020 with small learning rate can also induce sharpness minimization and structural simplicity
1021 of the learned weights (Gatmiry et al., 2024). As opposed to our definition of sharpness,
1022 sometimes called *worst-case sharpness*, in the latter work sharpness is measured by the
1023 trace of $\nabla^2 \mathcal{L}$ also known as *average-case sharpness*. Additionally, Ghosh et al. (2025) show
1024 that when deep linear networks are trained with very large learning rates, gradient descent
1025 operates in a so-called beyond-EoS regime characterized by sustained oscillations around the
balanced minimum which is of minimum sharpness. In contrast, we only consider converged
trajectories, not ones which are in stable oscillations. Finally, we highlight that for models
with normalization layers, the sharpness scales inversely with the squared parameter norm
(Li et al., 2020; Lyu et al., 2022). Although this corresponds to a different GD dynamics
due to the explicit regularization, the resulting trade-off aligns with our main observation.

1026 **Sharpness and generalization.** In the past, various notions of sharpness have been studied
 1027 in connection to generalization. The idea that flat minima benefit generalization dates
 1028 back to Wolpert (1993), who argued this from a minimal description length perspective.
 1029 Later, Hochreiter & Schmidhuber (1994; 1997) proposed an algorithm designed to locate
 1030 flat minima, defining them as “large regions of connected acceptable minima,” where an
 1031 acceptable minimum is any point with empirical mean squared error below a certain thresh-
 1032 old. Notably, their formulation does not explicitly involve the Hessian. Following these
 1033 early works, many authors have conjectured that flatter solutions should generalize better
 1034 (Xing et al., 2018; Zhou et al., 2020; Park & Kim, 2022; Lyu et al., 2022). The prevailing
 1035 intuition is that solutions lying in flatter regions of the loss landscape are more robust to
 1036 perturbations (Keskar et al., 2017), which may contribute to improved generalization.
 1037

1038 Inspired by this idea, sharpness-aware minimization (SAM) has been proposed by Foret et al.
 1039 (2020) as an explicit regularization method that penalizes sharpness, successfully applied
 1040 in improving model generalization on benchmark datasets such as CIFAR-10 and CIFAR-
 1041 100. In Tahmasebi et al. (2024), SAM was extended to sharpness measures that are general
 1042 functions of the (spectrum of the) Hessian of the loss. The general sharpness formulation
 1043 presented therein encompasses various common notions of sharpness such as worst-case and
 1044 average-case sharpness.

1045 Despite these theoretical and empirical arguments, the relationship between flatness and
 1046 generalization remains disputed (Andriushchenko & Flammarion, 2022). Studies have found
 1047 little correlation between sharpness and generalization performance (Jiang et al., 2019; Kaur
 1048 et al., 2023). Furthermore, a re-parametrization argument by Dinh et al. (2017) shows that
 1049 sharpness measures such as $S_{\mathcal{L}}$ can be made arbitrarily large without affecting generalization,
 1050 challenging the notion that flatness is a necessary condition for good performance. Even
 1051 when using scaling invariant sharpness measures like *adaptive sharpness* (Kwon et al., 2021),
 1052 the empirical studies performed by Andriushchenko et al. (2023a) show that there is no
 1053 notable correlation between low sharpness and good generalization. On the contrary, in
 1054 various cases the correlation is negative, i.e., sharper minima generalize better. What is
 1055 most interesting about the latter work from our perspective, is that it observes correlation
 1056 of generalization with parameters such as the learning rate, which agrees with the herein
 1057 presented idea of an implicit bias trade-off that is governed by hyperparameters of GD.
 1058

1059 **Generalization and ℓ_1 -norm.** A possible explanation for the occasionally observed cor-
 1060 relation between flatness and generalization can be deduced from Ding et al. (2024). Therein
 1061 the authors show for (overparameterized) matrix factorization of $\mathbf{X}_* \in \mathbb{R}^{d_1 \times d_2}$ via

$$\min_{\mathbf{U} \in \mathbb{R}^{d_1 \times k}, \mathbf{V} \in \mathbb{R}^{d_2 \times k}} \|\mathbf{U}\mathbf{V}^T - \mathbf{X}_*\|_F^2,$$

1062 where $k \geq \text{rank}(\mathbf{X}_*)$ is arbitrarily large, that sharpness and nuclear norm (ℓ_1 -norm on the
 1063 spectrum) minimizers coincide. For (overparameterized) matrix regression

$$\min_{\mathbf{U} \in \mathbb{R}^{d_1 \times k}, \mathbf{V} \in \mathbb{R}^{d_2 \times k}} \|\mathcal{A}(\mathbf{U}\mathbf{V}^T) - \mathbf{y}\|_2^2, \quad (8)$$

1064 where $\mathbf{y} = \mathcal{A}(\mathbf{X}_*) + \mathbf{e}$, for $\mathcal{A}: \mathbb{R}^{d_1 \times d_2} \rightarrow \mathbb{R}^m$ and unknown noise $\mathbf{e} \in \mathbb{R}^m$, they relate the
 1065 distance between sharpness and nuclear norm minimizers to how close the measurement
 1066 operator \mathcal{A} is to identity. Good generalization of a solution $(\hat{\mathbf{U}}, \hat{\mathbf{V}})$ of (8), i.e., $\hat{\mathbf{U}}\hat{\mathbf{V}}^T \approx \mathbf{X}_*$,
 1067 is then proved if \mathcal{A} satisfies an appropriate *restricted isometry property (RIP)* for low-rank
 1068 matrices. However, it is not really clear which of the two types of regularization explains
 1069 the generalization. In view of the well-established theory of sparse resp. low-rank recovery
 1070 via ℓ_1 - resp. nuclear norm minimization (Foucart & Rauhut, 2013), one may assume in this
 1071 specific setting that good generalization of flat minima is just a consequence of the fact that
 1072 flat minima lie close to nuclear norm minimizers, which provably generalize well in low-rank
 1073 recovery. The observation that a single bias causes generalization might only stem from
 1074 special situations in which several independent biases agree. This is also the case in scalar
 1075 factorization Wang et al. (2022a, Appendix F.2.), where the sharpness of a minimizer is
 1076 equal to squared norm and the biases thus coincide. This point of view is supported by Wen
 1077 et al. (2023) and aligns with our observations.
 1078

1080 **B IMPLICIT NORM AND SHARPNESS REGULARIZATION**
1081

1082 In this section, we recall two established results on implicit bias of GF and GD. In the setting
1083 of Section 3, it is known that GF converges to an end-to-end model $\mathbf{w}_*^{\odot 2}$ that approximately
1084 minimizes a weighted ℓ_1 -norm among all interpolating solutions $\phi_{\mathbf{w}}(\mathbf{x}) = y$ if initialized close
1085 to the origin (Chou et al., 2023) where the weights of the ℓ_1 -norm depend on the chosen
1086 initialization. To avoid unnecessary technicalities, we formulate the result only for $\mathbf{w}_0 = \alpha \mathbf{1}$
1087 which induces a bias towards the unweighted ℓ_1 -norm.

1088 **Theorem B.1** (Implicit ℓ_1 -bias of GF (Chou et al., 2023)). *Let \mathcal{L} be defined as in (4) with
1089 \mathcal{M} as in (5). Assume that $\mathcal{M} \cap \mathbb{R}_{\geq 0}^d$ is non-empty and GF is applied with $\mathbf{w}_0 = \alpha \mathbf{1}$, for
1090 $\alpha > 0$. Then, GF converges to $\mathbf{w}_\infty \in \mathbb{R}^d$ with*

$$1092 \|\mathbf{w}_\infty^{\odot 2}\|_1 \leq \left(\min_{\mathbf{w} \in \mathcal{M} \cap \mathbb{R}_{\geq 0}^d} \|\mathbf{w}^{\odot 2}\|_1 \right) + \varepsilon(\alpha),$$

1094 where $\varepsilon(\alpha) > 0$ satisfies $\varepsilon(\alpha) \searrow 0$, for $\alpha \rightarrow 0$.

1096 The implicit sharpness regularization of GD for large learning rates can be deduced from
1097 the following result.

1098 **Theorem B.2** (Dynamic stability of GD (Ahn et al., 2022)). *Let $\eta > 0$ and $X \subset \mathbb{R}^p$. Let \mathcal{L}
1099 be twice continuously differentiable such that the operator $F: \mathbb{R}^p \rightarrow \mathbb{R}^p$, $F(w) = w - \eta \nabla \mathcal{L}(w)$
1100 satisfies that $F^{-1}(S)$ is a set of Lebesgue-measure zero, for any set $S \subset \mathbb{R}^p$ of measure zero.
1101 Assume furthermore that $\frac{1}{\eta}$ is not an eigenvalue of $\nabla^2 \mathcal{L}(w_*)$ for every stationary point w_*
1102 of \mathcal{L} . Let w_k be the iterates of GD with learning rate η . If $\|\nabla^2 \mathcal{L}(w)\|_2 > 2/\eta$ for every
1103 $w \in X$, then there exists a zero Lebesgue measure set A_X such that*

- 1105 • either $w_0 \in A_X$
- 1106 • or w_k does not converge to any $w \in X$.

1108 **C PROOF OF LEMMA 3.1**

1111 Lemma 3.1 is a special case of the following result for training diagonal linear L -layer
1112 networks with shared weights on a single data point. In this case, the loss \mathcal{L} is given by

$$1113 \mathcal{L}(\mathbf{w}) = \frac{1}{2}(\langle \mathbf{x}, \mathbf{w}^{\odot L} \rangle - y)^2. \quad (9)$$

1115 **Lemma C.1.** *For \mathcal{L} as in (9), define \mathcal{M} as in (5). If $\mathbf{x} \in \mathbb{R}_{\neq 0}^n$ and $y \neq 0$, then \mathcal{M} is a
1116 Riemannian manifold with tangent space $T_{\mathbf{w}}\mathcal{M} = (\mathbf{x} \odot \mathbf{w}^{\odot(L-1)})^\perp$ at $\mathbf{w} \in \mathcal{M}$.*

1118 *Proof.* Note that $\mathbf{w} \in \mathcal{M}$ is equivalent to

$$1120 h(\mathbf{w}) := \langle \mathbf{x}, \mathbf{w}^{\odot L} \rangle - y = 0,$$

1122 where $h: \mathbb{R}^d \rightarrow \mathbb{R}$. Since $Dh(\mathbf{w}) = L(\mathbf{x} \odot \mathbf{w}^{\odot L-1})^T$ and $\mathbf{w} \neq \mathbf{0}$ for any $\mathbf{w} \in \mathcal{M}$ due to
1123 $y \neq 0$, we have that $\text{rank}(Dh(\mathbf{w})) = 1$ for all $\mathbf{w} \in \mathcal{M}$. Hence, \mathcal{M} is a $(d-1)$ -dimensional
1124 submanifold in \mathbb{R}^d with tangent spaces

$$1125 T_{\mathbf{w}}\mathcal{M} = \ker(Dh(\mathbf{w})) = (\mathbf{x} \odot \mathbf{w}^{L-1})^\perp,$$

1127 e.g., see Boumal (2023). Smoothness of the manifold follows by equipping $T_{\mathbf{w}}\mathcal{M}$ with the
1128 Euclidean metric of \mathbb{R}^d . \square

1129 **D PROOF OF PROPOSITION 3.2**

1132 Before we prove Proposition 3.2, we note that the ℓ_1 -norm of $\mathbf{w}^{\odot 2}$ can be written as

$$1133 \|\mathbf{w}^{\odot 2}\|_1 = \|\mathbf{w}\|_2^2 \quad (10)$$

1134 and that the sharpness $S_{\mathcal{L}}(\mathbf{w})$ of \mathcal{L} at \mathbf{w} satisfies
 1135

$$1136 \quad S_{\mathcal{L}}(\mathbf{w}) = 4\|\mathbf{x} \odot \mathbf{w}\|_2^2, \quad (11)$$

1137 for any $\mathbf{w} \in \mathcal{M}$, where we used that
 1138

$$1139 \quad \nabla^2 \mathcal{L}(\mathbf{w}) = \mathbf{D}_{2(\langle \mathbf{x}, \mathbf{w}^{\odot 2} \rangle - y) \cdot \mathbf{x}} + 4(\mathbf{x} \odot \mathbf{w})(\mathbf{x} \odot \mathbf{w})^T.$$

1140 The necessary conditions of Proposition 3.2 are proven in the following lemma.

1141 **Lemma D.1.** *For $\mathbf{x} \in \mathbb{R}_{\neq 0}^d$ and \mathcal{L} as in (4) with \mathcal{M} as in (5), the following hold:*
 1142

1143 (i) *To have*

$$1144 \quad \mathbf{w} \in \arg \min_{\mathbf{z} \in \mathcal{M}} \|\mathbf{z}^{\odot 2}\|_1,$$

1146 *it is necessary that $\mathbf{x}|_{\text{supp}(\mathbf{w})} = x_0 \cdot \mathbf{1}|_{\text{supp}(\mathbf{w})}$, for $x_0 = \max_i |x_i|$.*
 1147

1148 (ii) *To have*

$$1149 \quad \mathbf{w} \in \arg \min_{\mathbf{z} \in \mathcal{M}} S_{\mathcal{L}}(\mathbf{z}),$$

1151 *it is necessary that $\mathbf{x}|_{\text{supp}(\mathbf{w})} = x_0 \cdot \mathbf{1}|_{\text{supp}(\mathbf{w})}$, for some $x_0 \in \mathbb{R}$. Furthermore, if
 1152 $\mathbf{x} \in \mathbb{R}_{>0}^d$, it is additionally necessary that $x_0 = \min_i x_i$.*
 1153

1154 *Proof.* In the proof we compute the Riemannian gradient $\text{grad}f$ and the Riemannian Hessian
 1155 $\text{Hess}f$ of a function f on \mathcal{M} . Note that

$$1157 \quad \text{grad}f(\mathbf{w}) = \mathbb{P}_{T_{\mathbf{w}}\mathcal{M}} \nabla f(\mathbf{w})$$

1158 and

$$1159 \quad [\text{Hess}f(\mathbf{w})](\mathbf{u}) = \mathbb{P}_{T_{\mathbf{w}}\mathcal{M}}([\nabla \text{grad}f(\mathbf{w})](\mathbf{u})),$$

1161 for any $\mathbf{w} \in \mathcal{M}$ and $\mathbf{u} \in T_{\mathbf{w}}\mathcal{M}$, where \mathbb{P}_U denotes the orthogonal projection onto the linear
 1162 subspace $U \subset \mathbb{R}^d$ (Boumal, 2023).

1163 We begin with (i). Define $f(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T \mathbf{w}$ and note that $f(\mathbf{w}) = \frac{1}{2}\|\mathbf{w}^{\odot 2}\|_1$ by (10). Hence,
 1164

$$1165 \quad \text{grad}f(\mathbf{w}) = \mathbb{P}_{T_{\mathbf{w}}\mathcal{M}} \nabla f(\mathbf{w}) = \mathbf{w} - \frac{1}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2} \mathbf{D}_{\mathbf{x}}\mathbf{w}\mathbf{w}^T \mathbf{D}_{\mathbf{x}} \cdot \mathbf{w}.$$

1167 To have $\text{grad}f(\mathbf{w}) = \mathbf{0}$, \mathbf{w} has to be an eigenvector of $\mathbf{D}_{\mathbf{x}}\mathbf{w}\mathbf{w}^T \mathbf{D}_{\mathbf{x}}$ with eigenvalue $\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2$
 1168 which is equivalent to $\mathbf{x}|_{\text{supp}(\mathbf{w})} = x_0 \cdot \mathbf{1}|_{\text{supp}(\mathbf{w})}$, for some $x_0 \in \mathbb{R}$. This is the first necessary
 1169 condition.

1170 Now define $G(\mathbf{w}) = \text{grad}f(\mathbf{w})$. Then,

$$1172 \quad [\nabla G(\mathbf{w})]_{ij} = \partial_j G(\mathbf{w})_i \\ 1173 \quad = \begin{cases} \frac{2}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^4} \cdot x_j^2 w_j \cdot x_i w_i \langle \mathbf{w}, \mathbf{D}_{\mathbf{x}}\mathbf{w} \rangle - \frac{2}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2} \cdot x_i x_j w_i w_j & i \neq j, \\ 1 - \frac{1}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2} \cdot (x_i \langle \mathbf{w}, \mathbf{D}_{\mathbf{x}}\mathbf{w} \rangle + 2x_i^2 w_i^2) + \frac{2}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^4} x_i^2 w_i \cdot x_i w_i \langle \mathbf{w}, \mathbf{D}_{\mathbf{x}}\mathbf{w} \rangle & i = j, \end{cases}$$

1176 such that

$$1177 \quad \nabla G(\mathbf{w}) = \mathbf{D}_{\mathbf{1} - \frac{\langle \mathbf{w}, \mathbf{D}_{\mathbf{x}}\mathbf{w} \rangle}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2} \cdot \mathbf{x}} - \frac{2}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2} \mathbf{D}_{\mathbf{x}}\mathbf{w}\mathbf{w}^T \mathbf{D}_{\mathbf{x}} + \frac{2\langle \mathbf{w}, \mathbf{D}_{\mathbf{x}}\mathbf{w} \rangle}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^4} \mathbf{D}_{\mathbf{x}}\mathbf{w}\mathbf{w}^T \mathbf{D}_{\mathbf{x}}^2.$$

1180 Consequently, we have that

$$1181 \quad [\text{Hess}f(\mathbf{w})](\mathbf{u}) = \mathbb{P}_{T_{\mathbf{w}}\mathcal{M}}([\nabla G(\mathbf{w})](\mathbf{u})) \\ 1182 \\ 1183 \quad = (\mathbf{I} - \frac{1}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2} \mathbf{D}_{\mathbf{x}}\mathbf{w}\mathbf{w}^T \mathbf{D}_{\mathbf{x}}) \cdot \left[(\mathbf{1} - \frac{\langle \mathbf{w}, \mathbf{D}_{\mathbf{x}}\mathbf{w} \rangle}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2} \cdot \mathbf{x}) \odot \mathbf{u} \right].$$

1185 For any \mathbf{w} satisfying the first necessary condition, we thus have that

$$1186 \quad \langle \mathbf{u}, [\text{Hess}f(\mathbf{w})](\mathbf{u}) \rangle = \mathbf{u}^T \cdot (\mathbf{I} - \frac{\mathbf{w}\mathbf{w}^T}{\|\mathbf{w}\|_2^2}) \cdot (\mathbf{1} - \frac{\mathbf{x}}{x_0}) \odot \mathbf{u} = \|\mathbf{u}\|_2^2 - \langle \mathbf{u}, \frac{\mathbf{x}}{x_0} \odot \mathbf{u} \rangle,$$

1188 where we used in the second equality that $\mathbf{x}|_{\text{supp}(\mathbf{w})} = x_0 \cdot \mathbf{1}|_{\text{supp}(\mathbf{w})}$ by which $(\mathbf{1} - \frac{\mathbf{x}}{x_0})|_{\text{supp}(\mathbf{w})} = \mathbf{0}$. Hence, $\langle \mathbf{u}, [\text{Hess}f(\mathbf{w})](\mathbf{u}) \rangle \geq 0$ can only hold for all $\mathbf{u} \in T_{\mathbf{w}}\mathcal{M}$ if $x_0 = \arg \max_i |x_i|$.

1192 To show (ii), we proceed analogously but consider $f(\mathbf{w}) = \frac{1}{2}\mathbf{D}_{\mathbf{x}}\mathbf{w}^T\mathbf{w}\mathbf{D}_{\mathbf{x}}$, and note that
1193 $f(\mathbf{w}) = \frac{1}{8}S_{\mathcal{L}}(\mathbf{w})$ by (11). Then, one can easily check that

$$1195 \text{grad}f(\mathbf{w}) = \mathbf{D}_{\mathbf{x}}^2\mathbf{w} - \frac{1}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2}\mathbf{D}_{\mathbf{x}}\mathbf{w}\mathbf{w}^T\mathbf{D}_{\mathbf{x}}^3 \cdot \mathbf{w},$$

1197 which implies the same first necessary condition. Now assume $\mathbf{x} \in \mathbb{R}_{>0}^d$. Then,

$$1199 \nabla^2 G(\mathbf{w}) = \mathbf{D}_{\mathbf{x}^{\odot 2} - \frac{\langle \mathbf{w}, \mathbf{D}_{\mathbf{x}}^3 \mathbf{w} \rangle}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2} \cdot \mathbf{x}} - \frac{2}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2}\mathbf{D}_{\mathbf{x}}\mathbf{w}\mathbf{w}^T\mathbf{D}_{\mathbf{x}}^3 + \frac{2\langle \mathbf{w}, \mathbf{D}_{\mathbf{x}}^3 \mathbf{w} \rangle}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^4}\mathbf{D}_{\mathbf{x}}\mathbf{w}\mathbf{w}^T\mathbf{D}_{\mathbf{x}}^2,$$

1201 such that

$$1203 [\text{Hess}f(\mathbf{w})](\mathbf{u}) = \left(\mathbf{I} - \frac{1}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2}\mathbf{D}_{\mathbf{x}}\mathbf{w}\mathbf{w}^T\mathbf{D}_{\mathbf{x}} \right) \cdot \left(\mathbf{x}^{\odot 2} - \frac{\langle \mathbf{w}, \mathbf{D}_{\mathbf{x}}^3 \mathbf{w} \rangle}{\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2} \cdot \mathbf{x} \right) \odot \mathbf{u}.$$

1205 For any \mathbf{w} satisfying the first necessary condition, we thus have that

$$1207 \langle \mathbf{u}, [\text{Hess}f(\mathbf{w})](\mathbf{u}) \rangle = \langle \mathbf{u}, \mathbf{D}_{\mathbf{x}}^2\mathbf{u} \rangle - x_0 \langle \mathbf{u}, \mathbf{D}_{\mathbf{x}}\mathbf{u} \rangle$$

1208 which implies for $\mathbf{x} \in \mathbb{R}_{>0}^d$ that $\langle \mathbf{u}, [\text{Hess}f(\mathbf{w})](\mathbf{u}) \rangle \geq 0$ can only hold for all $\mathbf{u} \in T_{\mathbf{w}}\mathcal{M}$ if
1209 $x_0 = \arg \min_i x_i$. \square

1211 The sufficient conditions are stated in the following lemma.

1212 **Lemma D.2.** *For $\mathbf{x} \in \mathbb{R}_{>0}^d$ and \mathcal{L} as in (4) with \mathcal{M} as in (5), we have the following:*

1214 (i) *To have*

$$1216 \mathbf{w} \in \arg \min_{\mathbf{z} \in \mathcal{M}} \|\mathbf{z}^{\odot 2}\|_1,$$

1217 *it is sufficient for $\mathbf{w} \in \mathcal{M}$ that $\text{supp}(\mathbf{w}) \subset \arg \max_k x_k$.*

1219 (ii) *To have*

$$1221 \mathbf{w} \in \arg \min_{\mathbf{z} \in \mathcal{M}} S_{\mathcal{L}}(\mathbf{z}),$$

1223 *it is sufficient for $\mathbf{w} \in \mathcal{M}$ that $\text{supp}(\mathbf{w}) \subset \arg \min_k x_k$.*

1224 *Proof.* First recall (10) and (11). We begin with (i). Let $k_* \in \arg \max_k x_k$. Since $\|\mathbf{w}\|_2^2 < y/x_{k_*}$ implies by our assumption on \mathbf{x} that $\langle \mathbf{x}, \mathbf{w}^{\odot 2} \rangle \leq x_{k_*} \|\mathbf{w}\|_2^2 < y$, i.e., $\mathbf{w} \notin \mathcal{M}$, and

$$1227 \sqrt{\frac{y}{x_{k_*}}}\mathbf{e}_{k_*} \in \mathcal{M} \quad \text{satisfies} \quad \left\| \sqrt{\frac{y}{x_{k_*}}}\mathbf{e}_{k_*} \right\|_2^2 = \frac{y}{x_{k_*}},$$

1229 we know by (10) that

$$1231 \min_{\mathbf{z} \in \mathcal{M}} \|\mathbf{z}^{\odot 2}\|_1 = \frac{y}{x_{k_*}}.$$

1233 For any $\mathbf{w} \in \mathcal{M}$ with $\text{supp}(\mathbf{w}) \subset \arg \max_k x_k$, we have that

$$1235 y = \langle \mathbf{x}, \mathbf{w}^{\odot 2} \rangle = x_{k_*} \|\mathbf{w}\|_2^2 = x_{k_*} \|\mathbf{w}^{\odot 2}\|_1$$

1236 and the claim in (i) follows.

1238 To see (ii) we proceed analogously. Let $k_* \in \arg \min_k x_k$. Since $\|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2 < yx_{k_*}$ implies by
1239 our assumption on \mathbf{x} that $\langle \mathbf{x}, \mathbf{w}^{\odot 2} \rangle \leq \frac{1}{x_{k_*}} \|\mathbf{D}_{\mathbf{x}}\mathbf{w}\|_2^2 < y$, i.e., $\mathbf{w} \notin \mathcal{M}$, and

$$1240 \sqrt{\frac{y}{x_{k_*}}}\mathbf{e}_{k_*} \in \mathcal{M} \quad \text{satisfies} \quad \left\| \mathbf{D}_{\mathbf{x}} \cdot \sqrt{\frac{y}{x_{k_*}}}\mathbf{e}_{k_*} \right\|_2^2 = yx_{k_*},$$

1242 we know by (11) that
 1243

$$\min_{\mathbf{z} \in \mathcal{M}} S_{\mathcal{L}}(\mathbf{z}) = yx_{k_*}.$$

1245 For any $\mathbf{w} \in \mathcal{M}$ with $\text{supp}(\mathbf{w}) \subset \arg \min_k x_k$, we have that
 1246

$$y = \langle \mathbf{x}, \mathbf{w}^{\odot 2} \rangle = x_{k_*} \|\mathbf{w}\|_2^2 = \frac{1}{x_{k_*}} S_{\mathcal{L}}(\mathbf{w})$$

1249 and the claim in (ii) follows. \square
 1250

1251 The specific shape of the minimizing sets (6) and (7) can easily be derived from the previous
 1252 two lemmas.

1253

E AN ELEMENTARY STUDY OF HOW IMPLICIT BIASES INTERACT — 1254 GENERALIZATION

1255

1257 Recalling the setting outlined in Section 3, let us assume that our data follows a simple
 1258 linear regression model with $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $y = \langle \mathbf{1}, \mathbf{x} \rangle + \varepsilon$, for independent $\varepsilon \sim \mathcal{N}(0, 1)$.
 1259 Then, the risk under \mathcal{L} can be computed explicitly and, given a single training data point
 1260 (\mathbf{x}_0, y_0) with $\mathbf{x}_0 \in \mathbb{R}_{\geq 0}^d$, the best achievable generalization error of $\phi_{\mathbf{w}}$ trained via (4) can
 1261 be computed as follows.⁵

1262 **Lemma E.1.** *Let \mathcal{L} be as in (4) and let $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d \times d})$ and $y = \langle \mathbf{1}, \mathbf{x} \rangle + \varepsilon$, for independent
 1263 $\varepsilon \sim \mathcal{N}(0, 1)$. Then,*

$$\mathcal{R}(\mathbf{w}) = \mathbb{E}_{(\mathbf{x}, y)} \mathcal{L}(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_4^4 - \|\mathbf{w}\|_2^2 + \frac{1}{2}(d+1).$$

1264 Let now $\eta > 0$ and $(\mathbf{x}_0, y_0) \in \mathbb{R}_{\geq 0}^d \times \mathbb{R}$, and define the corresponding risk minimization under
 1265 sharpness constraints $S_{\mathcal{L}}(\mathbf{w}) \leq \frac{2}{\eta}$ as

$$\min_{\mathbf{w} \in \mathbb{R}^d} \mathcal{R}(\mathbf{w}), \quad \text{s.t.} \quad \langle \mathbf{x}_0, \mathbf{w}^{\odot 2} \rangle = y_0, \quad S_{\mathcal{L}}(\mathbf{w}) \leq \frac{2}{\eta}. \quad (12)$$

1266 Fix any support $S_w \subset [d]$ with $S_w \cap \text{supp}(\mathbf{x}_0) \neq \emptyset$. Let \mathbf{w} be any vector such that $\text{supp}(\mathbf{w}) = S_w$ and

$$\mathbf{w}|_{S_w}^{\odot 2} = (\mathbf{1} - 2\lambda\eta\mathbf{x}_0^{\odot 2} - \nu\mathbf{x}_0)|_{S_w},$$

1267 for (λ, ν) as defined below:

- 1277 • If $S_{\mathcal{L}}(\mathbf{w}) \leq \frac{2}{\eta}$ and

$$\lambda = 0$$

$$\nu = \frac{\|\mathbf{x}_0|_{S_w}\|_1 - y_0}{\|\mathbf{x}_0|_{S_w}\|_2^2}$$

1282 with $\nu\|\mathbf{x}_0|_{S_w}\|_{\infty} < 1$, then \mathbf{w} is a KKT point of (12).

- 1283 • If $\mathbf{x}_0 \neq \alpha\mathbf{1}$, for all $\alpha \neq 0$, and

$$\begin{aligned} \lambda &= \frac{y_0\|\mathbf{x}_0|_{S_w}\|_3^3 + \|\mathbf{x}_0|_{S_w}\|_2^4 - \|\mathbf{x}_0|_{S_w}\|_1\|\mathbf{x}_0|_{S_w}\|_3^3 - \frac{1}{2\eta}\|\mathbf{x}_0|_{S_w}\|_2^2}{2\eta(\|\mathbf{x}_0|_{S_w}\|_2^2\|\mathbf{x}_0|_{S_w}\|_4^4 - \|\mathbf{x}_0|_{S_w}\|_3^6)} \\ \nu &= \frac{y_0\|\mathbf{x}_0|_{S_w}\|_4^4 + \|\mathbf{x}_0|_{S_w}\|_3^3\|\mathbf{x}_0|_{S_w}\|_2^2 - \|\mathbf{x}_0|_{S_w}\|_1\|\mathbf{x}_0|_{S_w}\|_4^4 - \frac{1}{2\eta}\|\mathbf{x}_0|_{S_w}\|_3^3}{\|\mathbf{x}_0|_{S_w}\|_3^6 - \|\mathbf{x}_0|_{S_w}\|_2^2\|\mathbf{x}_0|_{S_w}\|_4^4} \end{aligned} \quad (13)$$

1290 or $\mathbf{x}_0 = \alpha\mathbf{1}$, for some $\alpha \neq 0$, and (λ, ν) satisfying

$$\|\mathbf{x}_0|_{S_w}\|_1 - 2\eta\lambda\|\mathbf{x}_0|_{S_w}\|_3^3 - \nu\|\mathbf{x}_0|_{S_w}\|_2^2 = y_0, \quad (14)$$

1292 both with $\lambda \geq 0$ and $2\lambda\eta(x_0)_i + \nu(x_0)_i < 1$, for all $i \in S_w$, then \mathbf{w} is a KKT point
 1293 of (12).

1294
 1295 ⁵Note that (\mathbf{x}_0, y_0) takes in this section the role of the single data point (\mathbf{x}, y) from before and
 that we condition to non-negative data in order to apply Proposition 3.2.

1296 *This characterizes all KKT points of (12).*

1298 *Proof.* First note that

$$\begin{aligned}
 \mathcal{R}(\mathbf{w}) &= \mathbb{E}_{(\mathbf{x}, y)} \mathcal{L}(\mathbf{w}) = \frac{1}{2} \mathbb{E}_{(\mathbf{x}, y)} (\langle \mathbf{w}^{\odot 2}, \mathbf{x} \rangle - y)^2 \\
 &= \frac{1}{2} \left((\mathbf{w}^{\odot 2})^T \mathbb{E}(\mathbf{x} \mathbf{x}^T) \mathbf{w}^{\odot 2} - 2 \mathbb{E}(y \mathbf{x}^T) \mathbf{w}^{\odot 2} + \mathbb{E} y^2 \right) \\
 &= \frac{1}{2} \|\mathbf{w}^{\odot 2}\|_2^2 - \langle \mathbf{1}, \mathbf{w}^{\odot 2} \rangle + \frac{1}{2}(d+1) \\
 &= \frac{1}{2} \|\mathbf{w}\|_4^4 - \|\mathbf{w}\|_2^2 + \frac{1}{2}(d+1),
 \end{aligned}$$

1308 where we used in the penultimate line that $\mathbb{E}(y \mathbf{x}^T) = \mathbf{1}^T$ and $\mathbb{E}(y^2) = d+1$, and in the
1309 ultimate line that $\langle \mathbf{1}, \mathbf{w}^{\odot 2} \rangle = \|\mathbf{w}\|_2^2$ and $\|\mathbf{w}^{\odot 2}\|_2^2 = \|\mathbf{w}\|_4^4$.

1310 For the KKT analysis of Equation (12), we will drop the additive constant $\frac{1}{2}(d+1)$. We
1311 first re-write Equation (12) as
1312

$$\min_{\mathbf{w} \in \mathbb{R}^d} f(\mathbf{w}), \quad \text{s.t.} \quad h(\mathbf{w}) = 0, \quad g(\mathbf{w}) \leq 0.$$

1315 where

$$\begin{aligned}
 f(\mathbf{w}) &= \frac{1}{2} \|\mathbf{w}\|_4^4 - \|\mathbf{w}\|_2^2 \\
 h(\mathbf{w}) &= \langle \mathbf{x}_0, \mathbf{w}^{\odot 2} \rangle - y_0 \\
 g(\mathbf{w}) &= 2\eta \|\mathbf{x}_0 \odot \mathbf{w}\|_2^2 - 1.
 \end{aligned}$$

1321 The point \mathbf{w} satisfies the KKT conditions if there exists $\lambda, \nu \in \mathbb{R}$ such that

$$\begin{aligned}
 \nabla f(\mathbf{w}) + \nu \nabla h(\mathbf{w}) + \lambda \nabla g(\mathbf{w}) &= \mathbf{0} \\
 h(\mathbf{w}) &= 0 \\
 g(\mathbf{w}) &\leq 0 \\
 \lambda g(\mathbf{w}) &= 0 \\
 \lambda &\geq 0.
 \end{aligned}$$

1328 Plugging in, we obtain

$$2\mathbf{w}^{\odot 3} - 2\mathbf{w} + 2\nu \mathbf{x}_0 \odot \mathbf{w} + 4\lambda \eta \mathbf{x}_0^{\odot 2} \odot \mathbf{w} = \mathbf{0} \quad (15)$$

$$\langle \mathbf{x}_0, \mathbf{w}^{\odot 2} \rangle - y_0 = 0 \quad (16)$$

$$2\eta \|\mathbf{x}_0 \odot \mathbf{w}\|_2^2 - 1 \leq 0 \quad (17)$$

$$\lambda(2\eta \|\mathbf{x}_0 \odot \mathbf{w}\|_2^2 - 1) = 0 \quad (18)$$

$$\lambda \geq 0. \quad (19)$$

1336 By rewriting (15) as

$$(\mathbf{w}^{\odot 2} - \mathbf{1} + \nu \mathbf{x}_0 + 2\lambda \eta \mathbf{x}_0^{\odot 2}) \odot \mathbf{w} = \mathbf{0},$$

1339 we see that, for any $i \in [d]$, we have

$$w_i = 0 \quad \text{or} \quad w_i^2 = 1 - \nu(x_0)_i - 2\lambda\eta(x_0)_i^2. \quad (20)$$

1342 Consider any \mathbf{w} with $\text{supp}(\mathbf{w}) = S_w$ satisfying the KKT conditions.

1343 If $\lambda = 0$, we get that $\mathbf{w}|_{S_w}^{\odot 2} = (\mathbf{1} - \nu \mathbf{x}_0)|_{S_w}$ such that (16) yields that

$$\|\mathbf{x}_0|_{S_w}\|_1 - \nu \|\mathbf{x}_0|_{S_w}\|_2^2 = y_0 \quad \Leftrightarrow \quad \nu = \frac{\|\mathbf{x}_0|_{S_w}\|_1 - y_0}{\|\mathbf{x}_0|_{S_w}\|_2^2},$$

1347 which implies that a suitable ν exists iff $S_w \cap \text{supp}(\mathbf{x}_0) \neq \emptyset$ and $\nu < \min_{i \in S_w \cap \text{supp}(\mathbf{x}_0)} \frac{1}{(x_0)_i}$.

1348 The latter condition stems from the fact that non-zero entries of $\mathbf{w}^{\odot 2}$ have to be positive.

1349 Finally, to be a KKT point, \mathbf{w} has to satisfy (17).

1350 If $\lambda \neq 0$, we get that $\mathbf{w}|_{S_w}^{\odot 2} = (\mathbf{1} - 2\lambda\eta\mathbf{x}_0^{\odot 2} - \nu\mathbf{x}_0)|_{S_w}$ such that (16) and (18) yield that
 1351

$$\begin{aligned} \|\mathbf{x}_0|_{S_w}\|_1 - 2\eta\lambda\|\mathbf{x}_0|_{S_w}\|_3^3 - \nu\|\mathbf{x}_0|_{S_w}\|_2^2 &= y_0 \\ \|\mathbf{x}_0|_{S_w}\|_2^2 - 2\eta\lambda\|\mathbf{x}_0|_{S_w}\|_4^4 - \nu\|\mathbf{x}_0|_{S_w}\|_3^3 &= \frac{1}{2\eta}, \end{aligned}$$

1356 which is a solvable linear system iff $S_w \cap \text{supp}(\mathbf{x}_0) \neq \emptyset$. If $\mathbf{x}_0|_{S_w} \neq \alpha\mathbf{1}|_{S_w}$, for all $\alpha \neq 0$, the
 1357 unique solution is given by (13). Else, the system is underdetermined and only yields the
 1358 relation in (14). Finally, if $\lambda \geq 0$ and $(2\lambda\eta\mathbf{x}_0^{\odot 2} + \nu\mathbf{x}_0)|_{S_w} < \mathbf{1}|_{S_w}$ (positivity constraint for
 1359 non-zero entries of $\mathbf{w}^{\odot 2}$), any resulting \mathbf{w} yields the second type of KKT point. \square
 1360

1361 While it is cumbersome to analytically extract for general d which of the KKT points of
 1362 Lemma E.1 corresponds to a global minimizer, we can easily evaluate this numerically in
 1363 our toy example from Figure 4, see Section 3.
 1364

E.1 A MORE GENERAL REGRESSION ANALYSIS

1366 Since it is more natural to have unconditioned training data, let us now assume that our
 1367 data follows a general distribution $(\mathbf{x}, y) \sim \mathcal{D}$. Then, the risk for a parameter choice \mathbf{w}
 1368 under the model in (3)-(4) is given by
 1369

$$\mathcal{R}(\mathbf{w}) = \mathbb{E}_{(\mathbf{x}, y)} \mathcal{L}(\mathbf{w}) = \frac{1}{2} \left((\mathbf{w}^{\odot 2})^T \Sigma \mathbf{w}^{\odot 2} - 2\mu^T \mathbf{w}^{\odot 2} + \sigma^2 \right), \quad (21)$$

1370 where we define $\Sigma = \mathbb{E}(\mathbf{x}\mathbf{x}^T)$, $\mu = \mathbb{E}(y\mathbf{x})$, and $\sigma^2 = \mathbb{E}y^2$. Under mild technical assumptions on \mathcal{D} and considering a single training data point $(\mathbf{x}_0, y_0) \sim (\mathbf{x}, y)$, we can compare
 1371 the three (idealized) training algorithms \mathcal{A}_{ℓ_1} , $\mathcal{A}_{S_{\mathcal{L}}}$, and \mathcal{A}_{opt} from above which minimize
 1372 ℓ_1 -norm, sharpness, and generalization error on \mathcal{M} , respectively.
 1373

1374 **Proposition E.2.** *Assume that \mathcal{D} is a distribution such that Σ, μ, σ^2 are well-defined and
 1375 finite, that Σ is invertible, that $\mathbf{x} \in \mathbb{R}_{\geq 0}^d$ a.s., and that the entries of \mathbf{x} are a.s. distinct.
 1376 Then, given a single training data point $(\mathbf{x}_0, y_0) \sim (\mathbf{x}, y)$ we have that*
 1377

1378 (i) $\mathcal{A}_{\ell_1}(\mathbf{x}_0, y_0) = \sqrt{\frac{y_0}{x_{\max}}} \mathbf{e}_{k_{\max}}$, where k_{\max} is the index of the maximal entry of \mathbf{x}_0 .
 1379

1380 The expected generalization error is given by
 1381

$$\mathbb{E}_{(\mathbf{x}_0, y_0)} \mathcal{R}(\mathcal{A}_{\ell_1}(\mathbf{x}_0, y_0)) = \frac{1}{2} \left(\sigma^2 + \mathbb{E} \left(\frac{\Sigma_{k_{\max} k_{\max}} y_0^2}{x_{\max}^2} \right) + \mathbb{E} \left(\frac{\mu_{k_{\max}} y_0}{x_{\max}} \right) \right).$$

1382 (ii) $\mathcal{A}_{S_{\mathcal{L}}}(\mathbf{x}_0, y_0) = \sqrt{\frac{y_0}{x_{\min}}} \mathbf{e}_{k_{\min}}$, where k_{\min} is the index of the minimal entry of \mathbf{x}_0 . The
 1383 expected generalization error is given by
 1384

$$\mathbb{E}_{(\mathbf{x}_0, y_0)} \mathcal{R}(\mathcal{A}_{S_{\mathcal{L}}}(\mathbf{x}_0, y_0)) = \frac{1}{2} \left(\sigma^2 + \mathbb{E} \left(\frac{\Sigma_{k_{\min} k_{\min}} y_0^2}{x_{\min}^2} \right) + \mathbb{E} \left(\frac{\mu_{k_{\min}} y_0}{x_{\min}} \right) \right).$$

1385 (iii) $\mathcal{A}_{\text{opt}}(\mathbf{x}_0, y_0) = \left(\Sigma^{-\frac{1}{2}} (\mathcal{P}_{\mathbf{x}_{\Sigma}}^{\perp} \mu_{\Sigma} + \frac{y_0}{\|\mathbf{x}_{\Sigma}\|_2^2} \mathbf{x}_{\Sigma}) \right)^{\odot \frac{1}{2}}$, where $\mathcal{P}_{\mathbf{z}}$ denotes the orthogonal
 1386 projection onto $\text{span}\{\mathbf{z}\}$, $\mathbf{x}_{\Sigma} = \Sigma^{-\frac{1}{2}} \mathbf{x}_0$, and $\mu_{\Sigma} = \Sigma^{-\frac{1}{2}} \mu$. The expected generaliza-
 1387 tion error is given by
 1388

$$\begin{aligned} \mathbb{E}_{(\mathbf{x}_0, y_0)} \mathcal{R}(\mathcal{A}_{\text{opt}}(\mathbf{x}_0, y_0)) \\ = \frac{1}{2} \left(\sigma^2 + \mathbb{E} \left(\frac{y_0^2}{\|\mathbf{x}_{\Sigma}\|_2^2} \right) - 2\mu_{\Sigma}^T \mathbb{E} \left(\frac{y_0}{\|\mathbf{x}_{\Sigma}\|_2^2} \mathbf{x}_{\Sigma} \right) - \mu_{\Sigma}^T \mathbb{E} \mathcal{P}_{\mathbf{x}_{\Sigma}}^{\perp} \mu_{\Sigma} \right). \end{aligned}$$

1389 Although it is not possible to analytically evaluate the expectations on this level of generality,
 1390 the expected generalization error of $\mathcal{A}_{S_{\mathcal{L}}}(\mathbf{x}_0, y_0)$ will presumably be larger than the one of
 1391 $\mathcal{A}_{\ell_1}(\mathbf{x}_0, y_0)$ since $x_{\min} < x_{\max}$; just like in the specific setting in the beginning of Section E.
 1392

1404 *Proof of Proposition E.2.* By our assumptions on the distribution of \mathbf{x}_0 , Points (i) and (ii)
1405 follow from applying Proposition 3.2, and inserting the resulting minimizer into (21).
1406

1407 To derive (iii), we abbreviate $\tilde{\mathbf{w}} = \Sigma^{\frac{1}{2}} \mathbf{w}^{\odot 2}$, $\boldsymbol{\mu}_{\Sigma} = \Sigma^{-\frac{1}{2}} \boldsymbol{\mu}$, and $\mathbf{x}_{\Sigma} = \Sigma^{-\frac{1}{2}} \mathbf{x}_0$, and consider
1408 the linearly constrained optimization problem

$$1409 \min_{\mathbf{w} \in \mathcal{M}} \mathcal{R}(\mathbf{w}) = \frac{1}{2} \min_{\tilde{\mathbf{w}} \in \mathbb{R}^d} \|\tilde{\mathbf{w}}\|_2^2 - 2\boldsymbol{\mu}_{\Sigma}^T \tilde{\mathbf{w}} + \sigma^2, \quad \text{s.t. } \mathbf{x}_{\Sigma}^T \tilde{\mathbf{w}} = y_0. \quad (22)$$

1411 Since the objective is convex and the constraints are linear, the KKT-conditions of (22)
1412

$$1413 \begin{cases} 2\tilde{\mathbf{w}} - 2\boldsymbol{\mu}_{\Sigma} + \lambda \mathbf{x}_{\Sigma} = 0 \\ \mathbf{x}_{\Sigma}^T \tilde{\mathbf{w}} = y_0 \end{cases} \iff \begin{cases} \tilde{\mathbf{w}} = \boldsymbol{\mu}_{\Sigma} - \frac{1}{2} \lambda \mathbf{x}_{\Sigma} \\ \mathbf{x}_{\Sigma}^T \boldsymbol{\mu}_{\Sigma} - \frac{1}{2} \lambda \|\mathbf{x}_{\Sigma}\|_2^2 = y_0 \end{cases} \iff \begin{cases} \tilde{\mathbf{w}} = \boldsymbol{\mu}_{\Sigma} - \frac{1}{2} \lambda \mathbf{x}_{\Sigma} \\ \frac{1}{2} \lambda = \frac{1}{\|\mathbf{x}_{\Sigma}\|_2^2} (\mathbf{x}_{\Sigma}^T \boldsymbol{\mu}_{\Sigma} - y_0) \end{cases}$$

1416 are sufficient and necessary, and yield the unique minimizer
1417

$$1418 \tilde{\mathbf{w}}_* = \left(\mathbf{I} - \frac{\mathbf{x}_{\Sigma} \mathbf{x}_{\Sigma}^T}{\|\mathbf{x}_{\Sigma}\|_2^2} \right) \boldsymbol{\mu}_{\Sigma} + \frac{y_0}{\|\mathbf{x}_{\Sigma}\|_2^2} \mathbf{x}_{\Sigma}$$

1420 with
1421

$$1422 \mathcal{R}(\mathcal{A}_{\text{opt}}(\mathbf{x}_0, y_0)) = \frac{1}{2} (\|\tilde{\mathbf{w}}_*\|_2^2 - 2\boldsymbol{\mu}_{\Sigma}^T \tilde{\mathbf{w}}_* + \sigma^2) \\ 1423 = \frac{1}{2} \left(\left\| \mathcal{P}_{\mathbf{x}_{\Sigma}}^{\perp} \boldsymbol{\mu}_{\Sigma} + \frac{y_0}{\|\mathbf{x}_{\Sigma}\|_2^2} \mathbf{x}_{\Sigma} \right\|_2^2 - 2\boldsymbol{\mu}_{\Sigma}^T \left(\mathcal{P}_{\mathbf{x}_{\Sigma}}^{\perp} \boldsymbol{\mu}_{\Sigma} + \frac{y_0}{\|\mathbf{x}_{\Sigma}\|_2^2} \mathbf{x}_{\Sigma} \right) + \sigma^2 \right) \\ 1424 = \frac{1}{2} \left(\boldsymbol{\mu}_{\Sigma}^T \mathcal{P}_{\mathbf{x}_{\Sigma}}^{\perp} \boldsymbol{\mu}_{\Sigma} + \left\| \frac{y_0}{\|\mathbf{x}_{\Sigma}\|_2^2} \mathbf{x}_{\Sigma} \right\|_2^2 - 2\boldsymbol{\mu}_{\Sigma}^T \mathcal{P}_{\mathbf{x}_{\Sigma}}^{\perp} \boldsymbol{\mu}_{\Sigma} - 2 \frac{y_0}{\|\mathbf{x}_{\Sigma}\|_2^2} \boldsymbol{\mu}_{\Sigma}^T \mathbf{x}_{\Sigma} + \sigma^2 \right) \\ 1425 = \frac{1}{2} \left(\frac{y_0^2}{\|\mathbf{x}_{\Sigma}\|_2^2} - 2 \frac{y_0}{\|\mathbf{x}_{\Sigma}\|_2^2} \boldsymbol{\mu}_{\Sigma}^T \mathbf{x}_{\Sigma} - \boldsymbol{\mu}_{\Sigma}^T \mathcal{P}_{\mathbf{x}_{\Sigma}}^{\perp} \boldsymbol{\mu}_{\Sigma} + \sigma^2 \right).$$

1431 Consequently,

$$1432 \mathbb{E}_{(\mathbf{x}_0, y_0)} \mathcal{R}(\mathcal{A}_{\text{opt}}(\mathbf{x}_0, y_0)) \\ 1433 = \frac{1}{2} \left(\sigma^2 + \mathbb{E} \left(\frac{y_0^2}{\|\mathbf{x}_{\Sigma}\|_2^2} \right) - 2\boldsymbol{\mu}_{\Sigma}^T \mathbb{E} \left(\frac{y_0}{\|\mathbf{x}_{\Sigma}\|_2^2} \mathbf{x}_{\Sigma} \right) - \boldsymbol{\mu}_{\Sigma}^T \mathbb{E} \mathcal{P}_{\mathbf{x}_{\Sigma}}^{\perp} \boldsymbol{\mu}_{\Sigma} \right).$$

1436 \square

1438 We can now use Proposition E.2 to examine a regression task in which the feature distribution
1439 is a folded Gaussian and thus restricted to the positive orthant. Let $\mathbf{x} \sim |\mathcal{N}(0, \mathbf{I}_n)|$
1440 and $y = \langle \mathbf{1}, \mathbf{x} \rangle$. Then $\boldsymbol{\Sigma}$, $\boldsymbol{\mu}$, and σ^2 are given by
1441

$$1442 \Sigma_{ij} = \mathbb{E}(\mathbf{x}_i \mathbf{x}_j) = \begin{cases} 1 & \text{if } i = j \\ \frac{2}{\pi} & \text{if } i \neq j \end{cases} \\ 1443 \mu_i = \mathbb{E}(y \mathbf{x}_i) = \mathbb{E}(\mathbf{x}_i^2) + \sum_{j:j \neq i} \mathbb{E}(\mathbf{x}_i \mathbf{x}_j) = 1 + \frac{2(n-1)}{\pi} \\ 1444 \sigma^2 = \mathbb{E}(y^2) = \sum_i \mathbb{E}(\mathbf{x}_i^2) + \sum_{i,j:i \neq j} \mathbb{E}(\mathbf{x}_i \mathbf{x}_j) = n + \frac{2n(n-1)}{\pi}$$

1450 By Proposition E.2, we obtain the following results: For $\mathcal{A}_{\ell_1}(\mathbf{x}_0, y_0)$, the expected generalization
1451 error is given by

$$1452 \frac{1}{2} \left(\frac{n(2n-2+\pi)}{\pi} + \mathbb{E} \left(\frac{\langle \mathbf{1}, \mathbf{x}_0 \rangle^2}{x_{\max}^2} \right) + \frac{2n-2+\pi}{\pi} \mathbb{E} \left(\frac{\langle \mathbf{1}, \mathbf{x}_0 \rangle}{x_{\max}} \right) \right).$$

1455 Since $\langle \mathbf{1}, \mathbf{x}_0 \rangle \leq n x_{\max}$, the above expectation terms are bounded by
1456

$$1457 \mathbb{E} \frac{\langle \mathbf{1}, \mathbf{x}_0 \rangle^2}{x_{\max}^2} \leq n^2, \quad \mathbb{E} \frac{\langle \mathbf{1}, \mathbf{x}_0 \rangle}{x_{\max}} \leq n.$$

1458 For $\mathcal{A}_{S_L}(\mathbf{x}_0, y_0)$, the expected generalization error is given by
 1459

$$1460 \quad \frac{1}{2} \left(\frac{n(2n-2+\pi)}{\pi} + \mathbb{E} \left(\frac{\langle \mathbf{1}, \mathbf{x}_0 \rangle^2}{x_{\min}^2} \right) + \frac{2n-2+\pi}{\pi} \mathbb{E} \left(\frac{\langle \mathbf{1}, \mathbf{x}_0 \rangle}{x_{\min}} \right) \right).$$

1462 However, in this case due to x_{\min} the expectation blows up to infinity as shown below.
 1463

$$1464 \quad \mathbb{E} \frac{\langle \mathbf{1}, \mathbf{x}_0 \rangle}{x_{\min}} \geq \left(\frac{2}{\pi} \right)^{n/2} \int_{[0,1] \times [1,2]^{n-1}} \frac{x_1 + \dots + x_n}{\min_i x_i} e^{-\frac{1}{2}(x_1^2 + \dots + x_n^2)} dx_1 \dots dx_n$$

$$1466 \quad \geq \left(\frac{2}{\pi} \right)^{n/2} \underbrace{\int_{[0,1]} \frac{n-1}{x_1} e^{-\frac{1}{2}x_1^2} dx_1}_{=\infty} \underbrace{\int_{[1,2]^{n-1}} e^{-\frac{1}{2}(x_2^2 + \dots + x_n^2)} dx_2 \dots dx_n}_{>0} = \infty.$$

1469 Consequently, as in the simpler setting above we see that the implicit GF-regularization
 1470 leads to smaller generalization error than the sharpness regularization.
 1471

1472 F AN ELEMENTARY STUDY OF HOW IMPLICIT BIASES INTERACT II — 1473 CLASSIFICATION

1476 In this section, we extend our insights from Section 3 to a simple classification set-up. To
 1477 this end, define for data $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n \subset \mathbb{R}^{d+1} \times \{0, 1\}$ the logistic loss

$$1478 \quad \mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n (y_i \log(g(\langle \mathbf{w}, \mathbf{x}_i \rangle)) + (1 - y_i) \log(1 - g(\langle \mathbf{w}, \mathbf{x}_i \rangle))),$$

1481 where

$$1483 \quad g: \mathbb{R} \rightarrow \mathbb{R} \quad \text{with} \quad g(z) = \frac{1}{1 + e^{-z}}$$

1484 is the logistic function. Here, we assume that $\mathbf{w} = (\tilde{\mathbf{w}}, b)^T$ and that the data points are of
 1485 the form $\mathbf{x} = (\tilde{\mathbf{x}}, 1)^T$ such that the linear classifier $h_{\mathbf{w}}$ corresponding to parameters \mathbf{w} is
 1486 given by
 1487

$$1488 \quad h_{\mathbf{w}}(\mathbf{x}) = \mathbf{1}_{\{\mathbf{z} = (\tilde{\mathbf{z}}, 1): \langle \mathbf{w}, \mathbf{z} \rangle > 0\}}(\mathbf{x}) = \mathbf{1}_{\{\tilde{\mathbf{z}}: \langle \tilde{\mathbf{w}}, \tilde{\mathbf{z}} \rangle + b > 0\}}(\mathbf{x}).$$

1489 In the simplest possible case, we only have two data points with different labels. W.l.o.g.
 1490 we assume that one of the two data points is centered at the origin and that their distance
 1491 is normalized to one. Then we know the following.

1492 **Theorem F.1.** *Let $D = \{(\mathbf{x}_1, 0), (\mathbf{x}_2, 1)\} \subset \mathbb{R}^{d+1} \times \{0, 1\}$ where $\mathbf{x}_i = (\tilde{\mathbf{x}}_i, 1)^T$ with $\tilde{\mathbf{x}}_1 = \mathbf{0}$
 1493 and $\|\tilde{\mathbf{x}}_2\|_2 = 1$. Then,*

1495 (i) *the max-margin classifier of D is parametrized by any positive scalar multiple of
 1496 $\mathbf{w} = (\tilde{\mathbf{w}}, b)^T$ with $\tilde{\mathbf{w}} = \tilde{\mathbf{x}}_2$ and $b = -1/2$.*

1497 (ii) *the parameters minimizing the sharpness of \mathcal{L} over*

$$1499 \quad \mathcal{M} = \{\mathbf{w} = (\tilde{\mathbf{w}}, b): h_{\mathbf{w}}(\mathbf{x}_1) = 0, h_{\mathbf{w}}(\mathbf{x}_2) = 1, \text{ and } \|\tilde{\mathbf{w}}\|_2 = 1\}$$

1500 *are given by a min-margin classifier parametrized by $\mathbf{w} = (\tilde{\mathbf{w}}, b)$ with $\tilde{\mathbf{w}} = \tilde{\mathbf{x}}_2$ and
 1501 $b = 0$.*

1502 *Proof.* To see (i), just note that the decision boundary of the max-margin classifier in \mathbb{R}^d
 1503 must be orthogonal to $\tilde{\mathbf{x}}_2 - \tilde{\mathbf{x}}_1$ with $h_{\mathbf{w}}(\mathbf{x}_2) = 1$, i.e., $\tilde{\mathbf{w}} = \alpha(\tilde{\mathbf{x}}_2 - \tilde{\mathbf{x}}_1) = \alpha\tilde{\mathbf{x}}_2$, for $\alpha > 0$, and
 1504 that it must contain $\frac{1}{2}(\mathbf{x}_1 + \mathbf{x}_2)$ which implies that $0 = \langle \tilde{\mathbf{w}}, \frac{1}{2}(\mathbf{x}_1 + \mathbf{x}_2) \rangle + b = \frac{1}{2}\alpha\|\tilde{\mathbf{x}}_2\|_2^2 + b$,
 1505 i.e., $b = -\frac{1}{2}\alpha$.

1507 For (ii), we compute that

$$1509 \quad \mathcal{L}(\mathbf{w}) = \frac{1}{2} (\log(1 - g(\langle \mathbf{w}, \mathbf{x}_1 \rangle)) + \log(g(\langle \mathbf{w}, \mathbf{x}_2 \rangle)))$$

$$1511 \quad = \frac{1}{2} (\log(1 - g(b)) + \log(g(\langle \mathbf{w}, \mathbf{x}_2 \rangle))).$$

1512 By using that $g'(z) = g(z)(1 - g(z))$, we then get that
 1513

$$1514 \nabla \mathcal{L}(\mathbf{w}) = \frac{1}{2} (-g(\langle \mathbf{w}, \mathbf{x}_1 \rangle) \cdot \mathbf{x}_1 + (1 - g(\langle \mathbf{w}, \mathbf{x}_2 \rangle)) \cdot \mathbf{x}_2)$$

1515 and
 1516

$$1517 \nabla^2 \mathcal{L}(\mathbf{w}) = -\frac{1}{2} (g'(\langle \mathbf{w}, \mathbf{x}_1 \rangle) \cdot \mathbf{x}_1 \mathbf{x}_1^T + g'(\langle \mathbf{w}, \mathbf{x}_2 \rangle) \cdot \mathbf{x}_2 \mathbf{x}_2^T).$$

1518 To deduce the sharpness $S(\mathbf{w}) = \|\nabla^2 \mathcal{L}(\mathbf{w})\|$, we will compute the eigenvalues of the Hessian.
 1519 First note, that any vector in the image of $\nabla^2 \mathcal{L}(\mathbf{w})$ can be expressed as $\mathbf{x} = \alpha \mathbf{e}_{d+1} + \beta \mathbf{x}_2$.
 1520 Now assume $\mathbf{x} \neq \mathbf{0}$ is an eigenvector with eigenvalue $\lambda \neq 0$. Then, since $\mathbf{x}_1 = \mathbf{e}_{d+1}$,
 1521

$$1522 \nabla^2 \mathcal{L}(\mathbf{w}) \mathbf{x} = -\frac{1}{2} (g'(b)(\alpha + \beta) \mathbf{e}_{d+1} + g'(\langle \mathbf{w}, \mathbf{x}_2 \rangle)(\alpha + 2\beta) \mathbf{x}_2)$$

$$1523 = \lambda(\alpha \mathbf{e}_{d+1} + \beta \mathbf{x}_2),$$

1524 where we used that $\mathbf{x}_2^T \mathbf{e}_{d+1} = \mathbf{e}_{d+1}^T \mathbf{x}_2 = 1$, $\mathbf{x}_2^T \mathbf{x}_2 = 2$, and $\mathbf{e}_{d+1}^T \mathbf{e}_{d+1} = 1$. Matching
 1525 coefficients, we obtain the system
 1526

$$1527 \begin{pmatrix} \frac{1}{2}g'(b) + \lambda & \frac{1}{2}g'(b) \\ \frac{1}{2}g'(\langle \mathbf{w}, \mathbf{x}_2 \rangle) & g'(\langle \mathbf{w}, \mathbf{x}_2 \rangle) + \lambda \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = 0.$$

1528 Since $(\alpha, \beta) \neq \mathbf{0}$, this implies that the matrix has determinant zero and leads to the quadratic
 1529 equation
 1530

$$1531 \lambda^2 + \left(\frac{1}{2}g'(b) + g'(\langle \mathbf{w}, \mathbf{x}_2 \rangle) \right) \lambda + \frac{1}{4}g'(b) \cdot g'(\langle \mathbf{w}, \mathbf{x}_2 \rangle) = 0.$$

1532 Since $g'(b), g'(\langle \mathbf{w}, \mathbf{x}_2 \rangle) > 0$, the maximal solution of the latter system, i.e., the leading
 1533 eigenvalue of $\nabla^2 \mathcal{L}(\mathbf{w})$, is
 1534

$$1535 S(\mathbf{w}) = \|\nabla^2 \mathcal{L}(\mathbf{w})\| = \frac{\frac{1}{2}g'(b) + g'(\langle \mathbf{w}, \mathbf{x}_2 \rangle) + \sqrt{\frac{1}{4}g'(b)^2 + g'(\langle \mathbf{w}, \mathbf{x}_2 \rangle)^2}}{2}$$

$$1536 = \frac{1}{4} \left(g'(b) + 2g'(\langle \tilde{\mathbf{w}}, \tilde{\mathbf{x}}_2 \rangle + b) + \sqrt{g'(b)^2 + 4 \cdot g'(\langle \tilde{\mathbf{w}}, \tilde{\mathbf{x}}_2 \rangle + b)^2} \right).$$

1537 The parameter minimizing the sharpness is then
 1538

$$1539 \min_{\mathbf{w} \in \mathcal{M}} S_{\mathcal{L}}(\mathbf{w})$$

$$1540 = \frac{1}{4} \min_{\|\tilde{\mathbf{w}}\|_2=1} g'(b) + 2g'(\langle \tilde{\mathbf{w}}, \tilde{\mathbf{x}}_2 \rangle + b) +$$

$$1541 \quad \sqrt{g'(b)^2 + (2g'(\langle \tilde{\mathbf{w}}, \tilde{\mathbf{x}}_2 \rangle + b))^2}, \quad \text{s.t. } \begin{cases} b = \langle \mathbf{w}, \mathbf{x}_1 \rangle \leq 0 \\ \langle \tilde{\mathbf{w}}, \tilde{\mathbf{x}}_2 \rangle + b > 0 \end{cases}$$

$$1542 = \frac{1}{4} \min_{z \in (0,1]} g'(b) + 2g'(z + b) + \sqrt{g'(b)^2 + (2g'(z + b))^2}, \quad \text{s.t. } -z < b \leq 0$$

$$1543 \approx 0.277$$

1544 The minimum of the function is attained at $(z, b) = (1, 0)$ which means that $\tilde{\mathbf{w}} = \tilde{\mathbf{x}}_2$. \square
 1545

1546 Analogously to the regression case, we can now evaluate the max-margin and the sharpness
 1547 minimizing classifiers in terms of their expected generalization error in a toy set-up that
 1548 assumes only two samples. To satisfy the requirements of Theorem F.1, we propose the
 1549 following simple data generation process.
 1550

1551 Let the samples be generated as (\mathbf{x}_1, y_1) with $\tilde{\mathbf{x}}_1 = \mathbf{0}$ and $y_1 = 0$, and, for $k \geq 2$, as
 1552 $(\mathbf{x}_k, y_k) \sim (\mathbf{x}, 1)$ which follows a joint distribution with $\mathbf{x} \sim \frac{\mathbf{g}}{\|\mathbf{g}\|_2}$, where $\mathbf{g} \sim \mathcal{N}(\boldsymbol{\mu}, I)$ for
 1553 $\boldsymbol{\mu} \neq \mathbf{0}$. The classification task is thus to separate a Gaussian cluster that is projected to the
 1554 unit sphere from the origin. Given two samples (\mathbf{x}_1, y_1) and (\mathbf{x}_2, y_2) one can use Theorem
 1555 F.1 and numerically evaluate that the expected generalization error (Mohri et al., 2018). To
 1556 get a feeling of it, let us consider the two cases where $\|\boldsymbol{\mu}\| \ll 1$ and $\|\boldsymbol{\mu}\| \gg 1$. Let \mathbf{g}_0 and
 1557 \mathbf{g}'_0 be independent and distributed as $\mathcal{N}(0, I)$.
 1558

1566 Suppose $\|\mu\| \ll 1$. The expected generalization error for the max-margin classifier $\mathbf{w}_{max} =$
 1567 $(\tilde{\mathbf{w}}_{max}, b_{max})^T$ is
 1568

$$\begin{aligned} 1569 \mathbb{E}_{\tilde{\mathbf{x}}_2} \mathbb{P}_{\mathbf{x}}[h_{\mathbf{w}_{max}(\mathbf{x}) \neq 1}] &= \mathbb{E}_{\tilde{\mathbf{x}}_2} \mathbb{P}_{\mathbf{g}} \left[\left\langle \tilde{\mathbf{x}}_2, \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \right\rangle \leq \frac{1}{2} \right] \\ 1570 &\approx \mathbb{E}_{\mathbf{g}'_0} \mathbb{P}_{\mathbf{g}_0} \left[\left\langle \frac{\mathbf{g}'_0}{\|\mathbf{g}'_0\|_2}, \frac{\mathbf{g}_0}{\|\mathbf{g}_0\|_2} \right\rangle \leq \frac{1}{2} \right] \\ 1571 &\approx \frac{\gamma(\frac{d}{2} + \frac{1}{2})}{\gamma(\frac{d}{2})\gamma(\frac{1}{2})} \int_{-1}^{\frac{1}{2}} (1-x^2)^{\frac{d}{2}-1} dx \\ 1572 &\rightarrow 1 \text{ (as } d \text{ grows)} \\ 1573 \\ 1574 \\ 1575 \\ 1576 \end{aligned}$$

1577 because $(1-x^2)^{\frac{d}{2}-1}$ concentrates well around $x=0$. On the other hand, the expected
 1578 generalization error for the sharpness minimizing classifier $\mathbf{w}_{min} = (\tilde{\mathbf{w}}_{min}, b_{min})$ is
 1579

$$\begin{aligned} 1580 \mathbb{E}_{\tilde{\mathbf{x}}_2} \mathbb{P}_{\mathbf{x}}[h_{\mathbf{w}_{min}(\mathbf{x}) \neq 1}] &= \mathbb{E}_{\tilde{\mathbf{x}}_2} \mathbb{P}_{\mathbf{g}} \left[\left\langle \tilde{\mathbf{x}}_2, \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \right\rangle \leq 0 \right] \\ 1581 &\approx \mathbb{E}_{\mathbf{g}'_0} \mathbb{P}_{\mathbf{g}_0} \left[\left\langle \frac{\mathbf{g}'_0}{\|\mathbf{g}'_0\|_2}, \frac{\mathbf{g}_0}{\|\mathbf{g}_0\|_2} \right\rangle \leq 0 \right] \\ 1582 &= \frac{1}{2}, \\ 1583 \\ 1584 \\ 1585 \end{aligned}$$

1586 where we used symmetry of the distribution in the last step. We see that in contrast to Sec-
 1587 tion E here the sharpness minimizer leads to a significantly smaller expected generalization
 1588 error than the GF-induced regularization.

1589 Now suppose that $\|\mu\| \gg 1$. The expected generalization error for the max-margin classifier
 1590 is
 1591

$$\begin{aligned} 1592 \mathbb{E}_{\tilde{\mathbf{x}}_2} \mathbb{P}_{\mathbf{x}}[h_{\mathbf{w}_{max}(\mathbf{x}) \neq 1}] &= \mathbb{E}_{\mathbf{g}'} \mathbb{P}_{\mathbf{g}} \left[\left\langle \frac{\mathbf{g}'}{\|\mathbf{g}'\|_2}, \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \right\rangle \leq \frac{1}{2} \right] \\ 1593 &\approx \mathbb{E}_{\mathbf{g}'} \mathbb{P}_{\mathbf{g}} \left[\left\langle \frac{\mathbf{g}'_0 + \mu}{\|\mu\|_2}, \frac{\mathbf{g}_0 + \mu}{\|\mu\|_2} \right\rangle \leq \frac{1}{2} \right] \\ 1594 &\approx \mathbb{E}_{\mathbf{g}'} \mathbb{P}_{\mathbf{g}} \left[\langle \mathbf{g}'_0 + \mathbf{g}_0, \mu \rangle \leq -\frac{1}{2} \|\mu\|_2^2 \right] \\ 1595 &= \frac{1}{\sqrt{2}(2\pi)^{\frac{d}{2}}} \int_{-\infty}^{-\frac{1}{2}\|\mu\|_2} e^{-\frac{1}{4}x^2} dx \\ 1596 &= \frac{1}{(2\pi)^{\frac{d-1}{2}}} \cdot \Phi \left(-\frac{1}{2\sqrt{2}} \|\mu\|_2 \right) \\ 1597 \\ 1598 \\ 1599 \\ 1600 \\ 1601 \\ 1602 \end{aligned}$$

1603 where Φ denotes the cumulative distribution function of the standard normal distribution.
 1604 Similarly, the expected generalization error for the sharpness minimizing classifier is
 1605

$$\begin{aligned} 1606 \mathbb{E}_{\tilde{\mathbf{x}}_2} \mathbb{P}_{\mathbf{x}}[h_{\mathbf{w}_{min}(\mathbf{x}) \neq 1}] &= \mathbb{E}_{\tilde{\mathbf{x}}_2} \mathbb{P}_{\mathbf{g}} \left[\left\langle \tilde{\mathbf{x}}_2, \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \right\rangle \leq 0 \right] \\ 1607 &\approx \mathbb{E}_{\mathbf{g}'_0} \mathbb{P}_{\mathbf{g}_0} \left[\langle \mathbf{g}'_0 + \mathbf{g}_0, \mu \rangle \leq -\|\mu\|_2^2 \right] \\ 1608 &= \frac{1}{\sqrt{2}(2\pi)^{d/2}} \int_{-\infty}^{-\|\mu\|_2} e^{-\frac{1}{4}x^2} dx \\ 1609 &= \frac{1}{(2\pi)^{\frac{d-1}{2}}} \cdot \Phi \left(-\frac{1}{\sqrt{2}} \|\mu\|_2 \right). \\ 1610 \\ 1611 \\ 1612 \\ 1613 \\ 1614 \end{aligned}$$

1615 Here, both expected generalization errors are small.

1616 G METHODOLOGY

1617 To ensure reproducibility, we follow a standard procedure for each experimental configura-
 1618 tion, which is defined by a specific combination of dataset, architecture, activation function,
 1619

1620 and loss function. To isolate the effect of the learning rate, we fix the initialization across
 1621 all runs within a configuration. We initialize using the default PyTorch scheme, which is a
 1622 modified LeCun initialization (LeCun et al., 2002): Fixing a random seed, initial entries of
 1623 each weight matrix are uniformly sampled from the interval $(-1/\sqrt{n_{l-1}}, 1/\sqrt{n_{l-1}})$, where
 1624 n_{l-1} is the input dimension of the respective matrix.

1625 We begin by computing the gradient flow solution using a fourth-order Runge-Kutta inte-
 1626 grator (Runge, 1895). At each iteration step, we record the sharpness of the training loss.
 1627 We also save model checkpoints whenever the training loss first drops below a power of ten
 1628 (i.e., 10^{-1} , 10^{-2} , etc.). From this gradient flow trajectory, we extract two key statistics: the
 1629 sharpness at initialization (s_0) and the maximum sharpness observed during the trajectory
 1630 (s_{GF}). The values $1/s_0$ and $2/s_{GF}$ are of particular interest. Taking the learning rate of
 1631 $1/s_0$ has been suggested as a heuristic for optimal step size selection for non-adaptive GD
 1632 (Cohen et al., 2021), and for learning rates above $2/s_{GF}$, the well-known stability condition
 1633 (2) is violated at some point of the gradient flow trajectory, suggesting that the loss decrease
 1634 is not guaranteed there.

1635 We construct the learning rate schedule for each configuration using two regular grids: a
 1636 fine grid focused on the critical transition region, and a coarse grid which allows us to study
 1637 the trade-off of the regularization in the EoS regime.

1638 The fine grid consists of 12 points uniformly spaced with step size $\frac{1}{2s_{GF}}$ in the interval
 1639 $[\frac{1}{2s_{GF}}, \frac{6}{s_{GF}}]$. The coarse grid includes nine uniformly spaced learning rates interpolated
 1640 in the interval $[\frac{6}{s_{GF}}, \frac{2}{s_0}]$, and additionally includes all learning rates sampled at the step
 1641 size $\frac{1}{8} \cdot (\frac{2}{s_0} - \frac{6}{s_{GF}})$ which are strictly greater than zero, and above until divergence. If we
 1642 observe divergence already within the $[\frac{6}{s_{GF}}, \frac{2}{s_0}]$ interval, we manually refine the schedule by
 1643 decreasing the step size.

1644 For each learning rate in the schedule, we train the model using full-batch gradient descent
 1645 until the training loss falls below a fixed threshold (see table 1 for the exact configura-
 1646 tion). During training, we record the sharpness and ℓ_1 -norm every 10 epochs, and similar
 1647 to the gradient flow experiments, we save the model checkpoints at every power-of-ten loss
 1648 threshold. To compute the Hessian, we approximate its leading eigenvalues using the Lanc-
 1649 zos algorithm applied to Hessian-vector products, which can be efficiently computed via
 1650 backpropagation (Pearlmutter, 1994).

1651 All experiments are fully reproducible, and the code is available in the supplementary ma-
 1652 terial. Our implementation builds upon the original code by Cohen et al. (2021).

1653 We ran the experiments on a heterogeneous computing infrastructure. Our hardware in-
 1654 cluded NVIDIA A100, RTX 2080 Ti, TITAN RTX, RTX 3090 Ti, and RTX A6000 GPUs.
 1655 Because GPU performance and availability varied across machines, we do not report a pre-
 1656 cise total runtime. However, the study required substantial computational effort: for each
 1657 of the more than a dozen model configurations, we evaluated at least 20 learning rates, with
 1658 individual runs ranging from a few minutes (for small models) to hundreds of hours (for
 1659 larger models).

1662 H EFFECT OF TRAINING CONFIGURATION ON SHARPNESS-NORM 1663 TRADE-OFF

1664 As described in Section 2.1, we systematically investigate variants of our base configuration
 1665 (fully-connected ReLU feed-forward network (FCN) with three layers, 200 hidden neurons
 1666 each, trained on the first 5,000 examples of MNIST or CIFAR with mean squared error) to
 1667 demonstrate the relationship between sharpness and implicit regularization for varying step
 1668 size.

1669 We vary the dataset size, architecture, activation functions, loss functions, initialization
 1670 and parameterization. While quantitative metrics such as the critical learning rate η_c and
 1671 absolute sharpness values differ, we consistently observe the norm-sharpness regularization
 1672 trade-off.

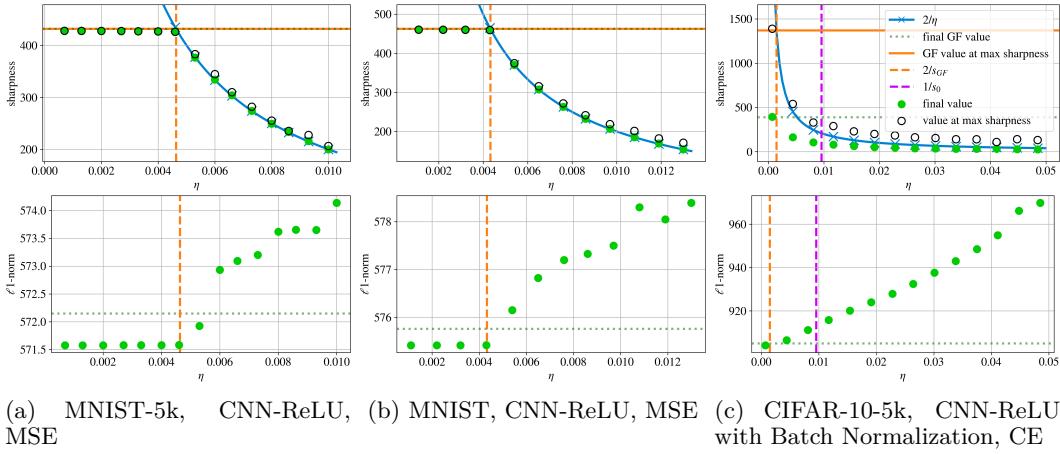


Figure 5: Different configurations using the CNN architecture. We observe that the ℓ_1 -norm increase flattens out more towards larger η in comparison to the FCN.

In the following sections, we describe the findings on each variation and illustrate it with few representative plots. In all cases, we observe the same overall qualitative behavior. Additional supporting plots are included in the systematic overview of all experimental runs across configurations, provided in Appendix I and summarized in Table 1. For each of these configurations, we present both the coarse and fine-grained learning rate schedules to emphasize the transition region around η_c as well as the behavior at larger learning rates.

H.1 DATASET SIZE

Most of our experiments use a subset of 5,000 training examples of MNIST and CIFAR-10 respectively, chosen to allow tractable estimation of sharpness across a wide range of learning rates. To confirm that our findings are not specific to the small dataset sizes, we run a limited number of configurations on the full MNIST and CIFAR-10 training sets. In Figure 5, we show the comparison of the sharpness and ℓ_1 -norm for a CNN with ReLU activation for MSE loss. The GF solution changes slightly, but the overall phenomena persists and the values are relatively similar. We present additional figures on the full MNIST (see Appendix I.1.3, I.3.2, I.4.1) and full CIFAR (I.1.4) in Appendix I.

H.2 ARCHITECTURE

Our base model is a two-hidden-layer fully connected neural network (FCN), where each hidden layer consists of 200 neurons, with input and output layer sizes depending on the dataset.

To study the influence of the FCN architecture, we vary its widths and depths, namely experiments with $2\times$, $3\times$, and $10\times$ width, while keeping depth fixed, $2\times$ and $3\times$ depth, keeping width fixed, and $2\times$ and $3\times$ both width and depth. In other words, the considered FCN model shapes are: 200×2 , 400×2 , 600×2 , 2000×2 , 200×4 , 200×6 , 400×4 , and 600×6 where the first number is the number of hidden neurons per hidden layer, and the second corresponds to the number of hidden layers.

While across most of these experiments the sharpness-norm tradeoff is ever-present and consistent with the behavior of the standard model, increasing width alone on the MNIST-5k dataset leads to a dissolution of the trend of increasing norm. Here in the EoS regime the norm first decreases and then stays near constant (Figures 37, 38, and 39). However, we believe this to be the result of the limited range of learning rates, since for experiments increasing both width and depth we can see a similar decrease in norm at first, but a robust overall increase afterwards (Figures 42 and 43).

We further extend our analysis beyond the fully connected baseline by evaluating several alternative architectures: Convolutional networks (CNNs) with ReLU activations (Figure 5 and Appendix I.3), ResNet (Appendix I.5), and a Vision Transformer (Appendix I.4). For CNNs, the ℓ_1 -norm flattens out more for increasing η in comparison to the FCN. For the CNN with Batch Normalization, comparably higher learning rates still converge. We do not observe a qualitative change of the phenomena for the ResNet and ViT architectures.

The CNNs (Lecun et al., 1998) consist of two convolutional layers with 32 filters, each using 3×3 kernels, stride 1, and padding 1. Each convolution is followed by an activation function (ReLU or tanh) and a 2×2 maximum pooling operation. A fully connected layer after flattening maps the features to class logits. We further include an alternative architecture that applies batch normalization within the CNN.

The ResNet-20 model (He et al., 2016) consists of three residual layers, with three blocks per layer. Each block contains two 3×3 convolutions followed by batch normalization and ReLU activation. Between stages, spatial down-sampling is performed using average pooling. To match feature dimensions across residual connections, the skip paths are adjusted using batch normalization and zero-padding along the channel dimension.

The Vision Transformer (ViT) (Dosovitskiy et al., 2021) splits the input image into non-overlapping patches (7×7 for MNIST, 4×4 for CIFAR-10), embeds each patch into a latent space (dimension 64 for MNIST, 128 for CIFAR-10), and processes the resulting sequences with transformer encoder layers (4 for MNIST; 6 for CIFAR-10), using 4 attention heads per layer. Each configuration includes a learnable class token and positional embeddings, and ends with a linear classifier applied to the class token output.

H.3 ACTIVATION FUNCTION

We evaluate the effect of activation functions by comparing ReLU and tanh in fully connected networks on MNIST-5k (Appendix I.1.1, I.2.1) and on CIFAR-10-5k (Appendix I.1.2, I.2.2). Across all configurations, the sharpness–norm trade-off and the transition between flow-aligned and EoS regimes are consistently observed.

H.4 LOSS FUNCTION

We compare the behavior of cross-entropy (CE) and mean squared error (MSE) for both the base configuration and additional architectures, see Figure 5 for a comparison of the trade-off comparing both MSE and CE for MNIST-5k for a ReLU CNN and Appendix I for all other setups.

Compared to MSE, the sharpness profile for varying η when training with CE differs. In the flow-aligned phase, the final sharpness values for CE are still similar in magnitude but consistently below the maximum sharpness of its corresponding GF. In contrast, for MSE the final sharpness is at s_{GF} . The transition to the EoS regime still occurs approximately at $\eta = 2/s_{GF}$. For large η , the sharpness values remain below the $2/\eta$ curve but qualitatively still decrease as η increases for the EoS regime.

We observe for the sharpness of the iterates during training that after an initial increase (progressive sharpening) and an oscillatory phase around $2/\eta$, the sharpness subsequently decreases again significantly. This phenomenon, originally remarked in Cohen et al. (2021), appears more pronounced in our results, as they used a higher loss-threshold beyond which the strong decrease starts occurring. Although the final sharpness values therefore do not follow the $2/\eta$ relationship, the training iterates rise toward this value and oscillate around it before the sharpness drops. In our plots, we visualize the smoothed sharpness around its maximum to highlight this trend. The effect during the training is illustrated in Figure 13 for selected learning rates.

Training with CE often fails to converge at learning rates even below $1/s_0$ (s_0 denoting the sharpness at initialization), while training with MSE often converges at comparatively higher values. This aligns with previous findings on the geometry of the log-loss landscape (Soudry et al., 2018), which indicate that the loss surface becomes flatter as the parameter

1782 norm increases. Because of the exponential in the CE loss equation, the loss decreases with
 1783 growing parameter norm and, as a result, parameters only converge in direction. However,
 1784 when the learning rate is too high early in the training, the high curvature of the loss
 1785 landscape leads to instability or stagnation before this directional convergence effect.
 1786

1787 **H.5 LOSS THRESHOLD**

1790 In Section 2, we show how the loss threshold ε directly affects the critical learning rate
 1791 η_c at which (approximately) the sharpness–norm phase transition occurs, given by $2/s_{\text{GF}}^\varepsilon$.
 1792 This effect is illustrated in Figure 2 for an FCN with tanh activation on CIFAR-10-5k,
 1793 trained with MSE loss. Comparing identical models trained to different loss thresholds, we
 1794 observe that smaller ε values yield higher $s_{\text{GF}}^\varepsilon$, resulting in a lower η_c and thus shifting the
 1795 transition point between the flow-aligned and EoS regimes. We confirm this trend across
 1796 multiple architectures in Appendix I.7.1.

1797 This dependence on ε is naturally related to early stopping: A higher loss threshold corre-
 1798 sponds to a point before the model begins to overfit on the training set, where the test loss
 1799 is still decreasing. In contrast, very small loss thresholds reflect the late phase of training,
 1800 where the characteristic U-shaped test loss curve over time is evident. There, the training
 1801 loss continues to drop, but the test loss increases slowly. By varying ε , we can thus study
 1802 the sharpness and norm trade-offs under different degrees of overfitting. However, note that
 1803 we do not link ε to the validation loss, as it is commonly done when using early stopping as
 1804 a regularizer during training.

1805 **H.6 INITIALIZATION**

1806 We vary the initialization seed in fully connected networks trained on CIFAR-10-5k to test
 1807 the sensitivity of the transition to random initialization, see Figure 6. While the critical
 1808 learning rate η_c shifts with initialization, due to a different initial sharpness s_0 and maximum
 1809 of the flow trajectory s_{GF} , the qualitative structure remains intact.

1810 We also perform experiments with increased initialization scale, scaling all initial weights
 1811 $\times 5$ and $\times 10$. As a result, the maximal sharpness along the trajectory occurs already at
 1812 initialization, which drastically alters the optimization dynamics and sharpness evolution.
 1813 The sharpness decreases at first, and, if reaching the $2/\eta$ threshold, oscillates around this
 1814 value. In general, the training is highly unstable with leads to divergence of the training
 1815 at many small learning rates. Still, the $\times 5$ -scaled initializations result in somewhat similar
 1816 qualitative behaviors in the observed values as our default scale. For $10\times$ scaling, the
 1817 training diverges already at learning rates smaller than η_c . In addition, the final ℓ_1 -norm
 1818 reaches very high values and decreases with increasing learning rate. These results suggest
 1819 that the mechanism of implicit regularization differs at such large scales. We note that
 1820 this aligns with previous works on EoS which often implicitly assume a sufficiently small
 1821 initialization to permit progressive sharpening.

1822 We provide further figures with varying initialization seeds and scales in Appendix I.7.2 and
 1823 I.7.3, respectively.

1824 **H.7 PARAMETERIZATION**

1825 Different parameterizations of the forward pass are known to place training in qualitatively
 1826 different regimes with respect to feature learning (Noci et al., 2024), which is why we test the
 1827 norm-sharpness tradeoff for this setup. We focus on the μP and kernel parameterizations
 1828 (Yang et al., 2022; Jacot et al., 2018). The kernel parameterization corresponds to NTK-
 1829 like scaling, where feature learning diminishes with width, while μP remains in the feature-
 1830 learning regime with width-independent gradient magnitudes and transferable learning-rates
 1831 for models of varying widths (Yang et al., 2022). Recent work by Noci et al. (2024) further
 1832 suggests that the Hessian spectrum also transfers for μP .

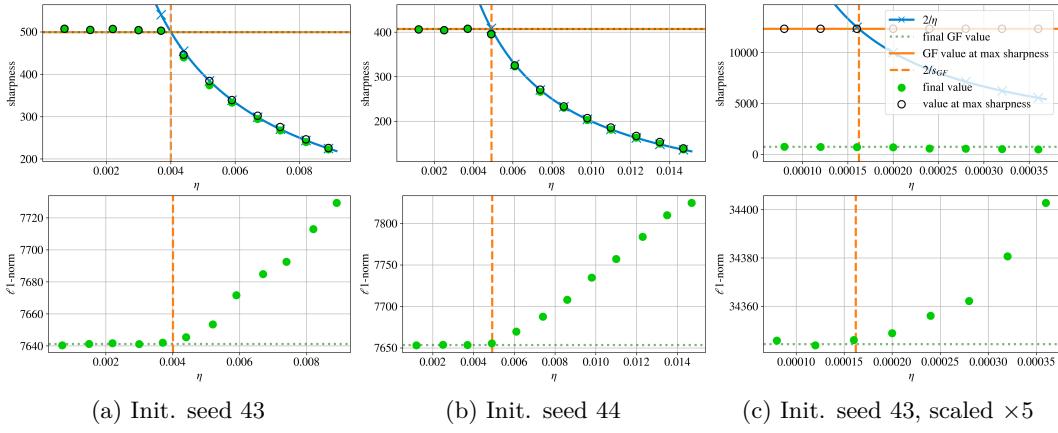


Figure 6: Effect of varying initialization seed and scaling at initialization on the sharpness–norm trade-off. All columns show sharpness and ℓ_1 -norm curves for the same architecture (FCN-ReLU), dataset (CIFAR-10-5k), and loss function (MSE), all trained until loss 0.01. While the different seed does not affect the overall behavior, scaling disrupts adherence of solution sharpness to the $2/\eta$ curve. Effect on norm is however preserved.

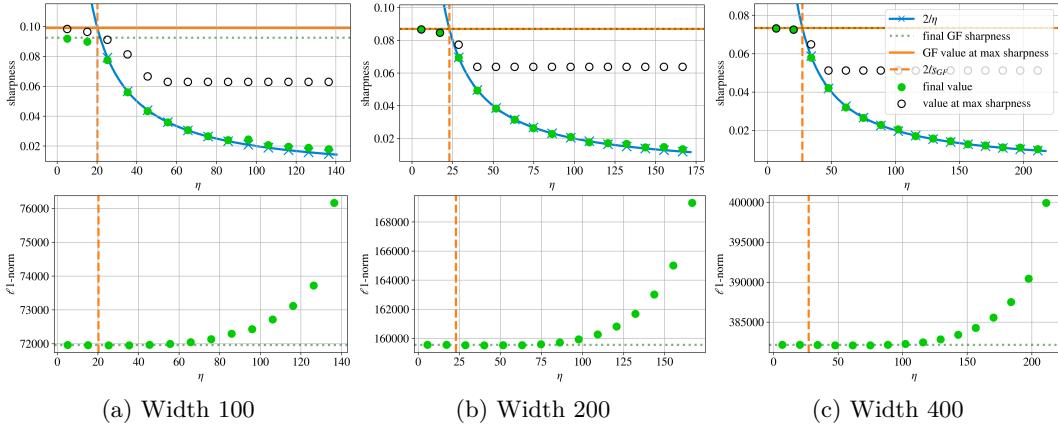


Figure 7: Sharpness (top row) and ℓ_1 -norm of final classifiers (bottom row) for μ P parametrization with widths 100, 200, and 400 on MNIST-5k with MSE and loss goal 0.1.

Both used parameterizations use fully connected feed-forward networks with ReLU activations. Each hidden layer of width n_l computes

$$h_l = \frac{1}{\sqrt{n_{l-1}}} \sigma(W_l h_{l-1})$$

with weights initialized as $(W_l)_{ij} \sim \mathcal{N}(0, 1)$. In the kernel parametrization the final layer is obtained as $f(x) = W_L h_L$, while in the μ P parametrization the logits are rescaled by the width of the last hidden layer $f(x) = \frac{1}{\sqrt{n_L}} W_L h_L$. This differs from the normal parameterization in all other experiments where the $1/\sqrt{n_{l-1}}$ factor in the forward pass is missing and the weights are initialized uniformly with variance $1/(3n_{l-1})$. The hypothesis spaces are the same in both settings, however the reparameterization changes the dynamics and is hence of interest with respect to implicit regularization.

For the μ P parameterization, the sharpness plots (top row of Figure 7) show approximately constant sharpness for small learning rates and a decrease along the $2/\eta$ curve for larger learning rates, with similar values in the flow-aligned regime across widths. The ℓ_1 -norm plots (bottom row) reveal the usual pattern across widths of increasing final parameter ℓ_1 for increasing learning rate. The absolute norms differ due to model size, but the growth

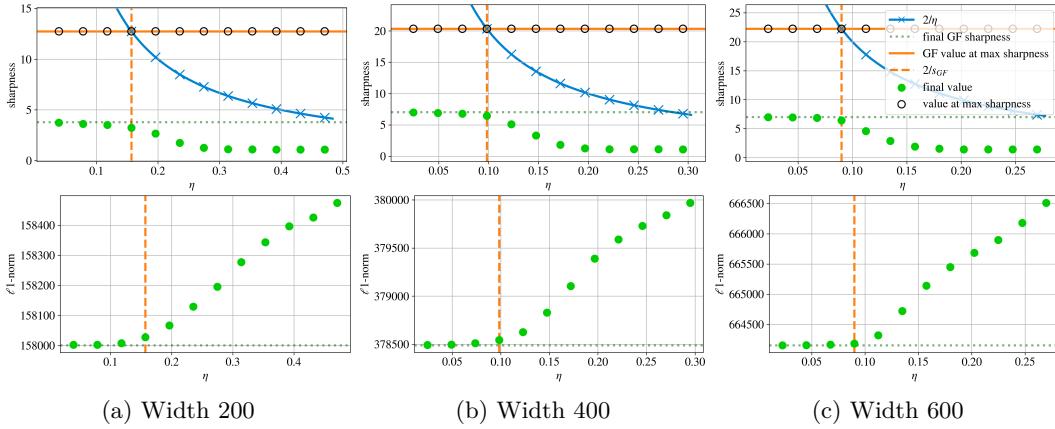


Figure 8: Sharpness (top row) and ℓ_1 -norm of final classifiers (bottom row) for kernel parametrization with widths 200, 400, and 600 on MNIST-5k with MSE and loss goal 0.1.

of the norm as η increases is approximately consistent (though divergence happens slightly earlier for smaller models). This is expected for the μ P parametrization, as the parameter update magnitudes are independent of the model width. After rescaling the learning rate proportionally to width, the results align across the models of different widths which matches the results by Noci et al. (2024).

For the kernel parametrization we observe that the ℓ_1 -norm of the parameters (bottom row of Figure 8) remains stable for small learning rates and starts to increase once η crosses the critical threshold, with the transition occurring at learning rates of the same order across widths⁶. The sharpness plots (top row) show that the maximum sharpness coincides with the sharpness at initialization, similar to the large-initialization experiments in Section H.6. Because of the different parameterization, sharpness no longer tracks the $2/\eta$ curve, yet the qualitative pattern is consistent across widths: sharpness stays flat below the threshold and decreases gradually thereafter.

H.8 NUMBER OF ITERATIONS

A notable difference between the two regimes lies in the relationship between learning rate and convergence speed. While the small learning rates of the flow-aligned regime lead to slower convergence in absolute terms, increasing the step size within this regime significantly accelerates optimization, with the number of iterations required to reach a fixed training loss decreasing at an approximate rate of $1/\eta$. As further shown in Section I.8.1, this rate of convergence speed acceleration with respect to the learning rate is higher in the flow-aligned regime than in the EoS regime.

H.9 ALTERNATIVE NORMS AND SHARPNESS MEASURES

In most of the paper, we focus on the ℓ_1 -norm of the GD solution. In Figure 9, we compare the ℓ_1 -norm to the nuclear and ℓ_2 -norms, which look qualitatively similar. We provide more examples in Section I.8.1.

Similarly, as our primary measure of sharpness we use throughout most of the paper the top eigenvalue of the loss Hessian. This notion of sharpness, though commonly used, has been shown to allow for being made arbitrarily large by means of reparametrization without affecting generalization (Dinh et al. (2017)). This can make it ill-suited for studying connections to generalization performance. Therefore in Figure 10 we compare different notions of sharpness, including re-scaling invariant measures such as adaptive sharpness

⁶Note that the norm of the weight matrices (after adjusting for the different widths) differs slightly due to the randomness. The change in randomness is comparable to the variance indicated by experiments when changing the initialization seed, see Section H.6.

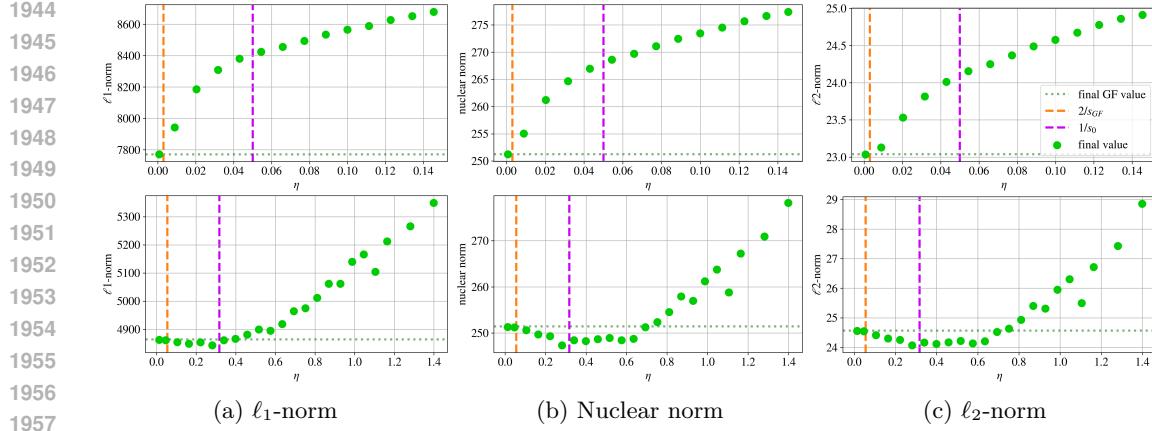


Figure 9: Each row shows the ℓ_1 -norm, the nuclear norm, and the ℓ_2 -norm of the solution for different models - both use FCN-ReLU with MSE loss, in the top row on CIFAR-10-5k, in the bottom row on MNIST-5k. As expected, the behavior of the different norms is approximately equivalent

(Kwon et al. (2021)), showing they share the overall decreasing behavior in the EoS regime similar to the worst-case sharpness.

H.10 GRADIENT DESCENT SOLUTION DISTANCE

We measure the distance between the final solutions of GF and GD across different learning rates. This analysis provides insight into how closely GD tracks the continuous-time dynamics and how this relationship evolves as we move through the flow-aligned and EoS regimes.

In Figure 11, we show this relationship for two of our standard models. Comparing this figure with Figure 9, we can see that even though the qualitative behavior of the ℓ_1 -norm and ℓ_1 -distance from the GF solution are nearly equal, the distance of solutions for $\eta < \eta_c$ is already relatively high. This suggests that while in the flow-aligned regime, GD reaches solutions of similar sharpness and norm as GF, in absolute terms these solutions are non-negligibly different. Furthermore, comparing the scales of the two figures shows, that the increase in distance from the GF solution is much larger than the increase in absolute ℓ_1 -norm. Therefore, increasing the learning rate within the EoS regime likely results in movement of the solution in a direction more misaligned with the GF solution than the origin. Section I.8.1 shows this for further configurations.

Additionally, in Figure 12 we compare the parameter ℓ_1 -norm to the ℓ_1 -distance from the untrained model at initialization. When examining this quantity for the final learned models plotted against the learning rate, the distance from initialization shows a similar qualitative trend as the parameter norm. In the flow-aligned regime, the distance to initialization is still approximately constant, before robustly increasing in the EoS regime. This is consistent with what can be expected since the models are initialized small relative to the norm of the final parameters.

H.11 EVOLUTION DURING TRAINING

In Figure 13, we illustrate how sharpness, ℓ_1 -norm and loss evolve over the course of training in intrinsic time, i.e $\eta \cdot \#$ iterations. The sharpness increases initially (progressive sharpening) until reaching $2/\eta$, and then oscillates around this value. For very small learning rates, the increase stops earlier (aligned with the maximum sharpness of the corresponding GF). The norm rises without oscillation, suggesting that the oscillation occurs along a direction that preserves the parameter norm. The norm grows faster for larger learning rates. The loss decreases monotonically at first, then with oscillation after the sharpness has risen to $2/\eta$.

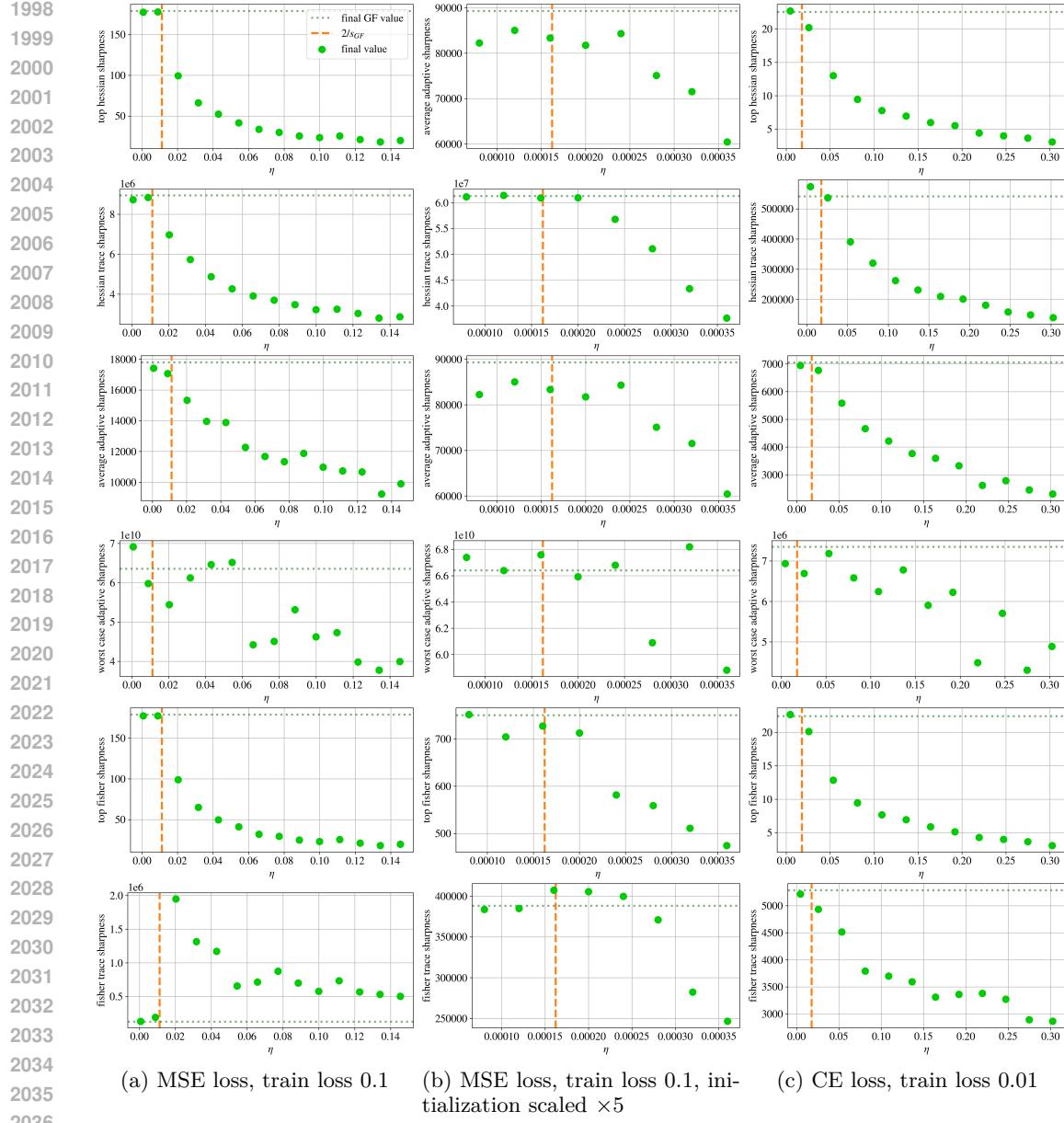


Figure 10: Each column represents a different setting: All display an FCN-ReLU network on CIFAR-10-5k, but in the first we show MSE loss with standard initialization, in the second MSE loss with scaled initialization and in the last CE loss. Each row shows a different measure of sharpness. Top to bottom these are: top eigenvalue of the loss Hessian (used throughout the paper), trace of the loss Hessian, average-case and worst-case adaptive sharpness (Kwon et al. (2021)), and top eigenvalue and trace of the Fisher information matrix (Liang et al. (2019)). Note that all measures display a general decreasing behavior with the exception of the Fisher trace on standard MSE loss (bottom left), where there is a sharp increase around the critical threshold η_c , from which the decreasing behavior starts. The scaled experiments show slightly more irregularity, but still preserve this general decrease.

In contrast to MSE loss, for training with CE loss, the sharpness decreases again after a period of oscillation. These dynamics in sharpness and loss were first systematically studied by Cohen et al. (2021). Our primary focus is on the dependence of final values on the learning rate, which complements these observations.

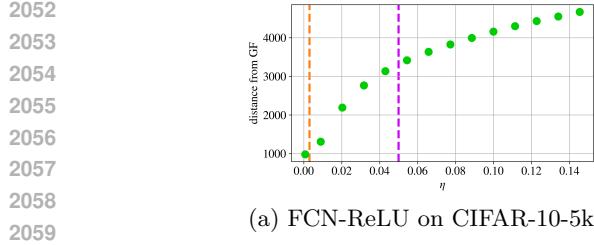
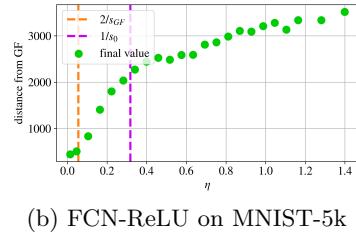


Figure 11: ℓ_1 -distance of the GD solution from the GF solution. Not to be confused with distance from the GF trajectory - here we measure only final values. On both examples we can see an increasing behavior similar to that of solution ℓ_1 -norm.

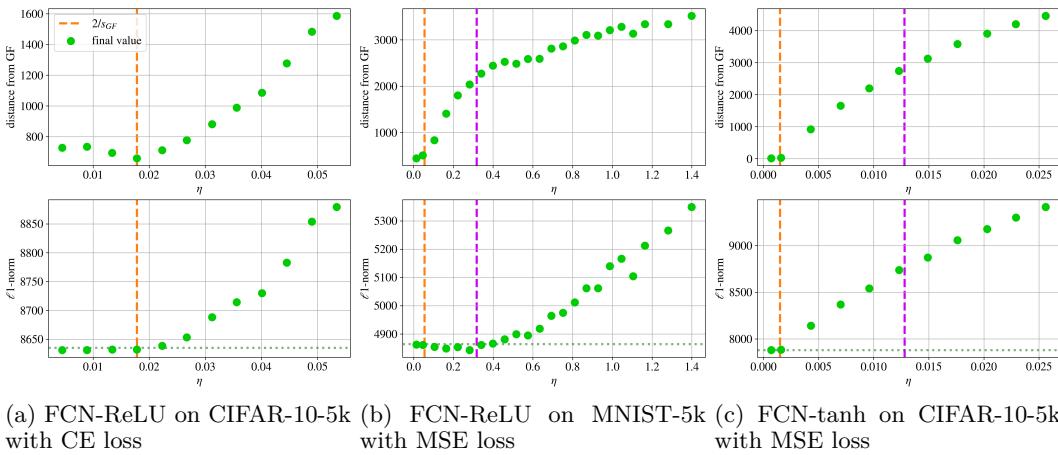


Figure 12: The top row shows for each setting the ℓ_1 -distance of the final models from their initialization, while the bottom row shows the absolute norm. As expected, the qualitative behavior remains almost identical.

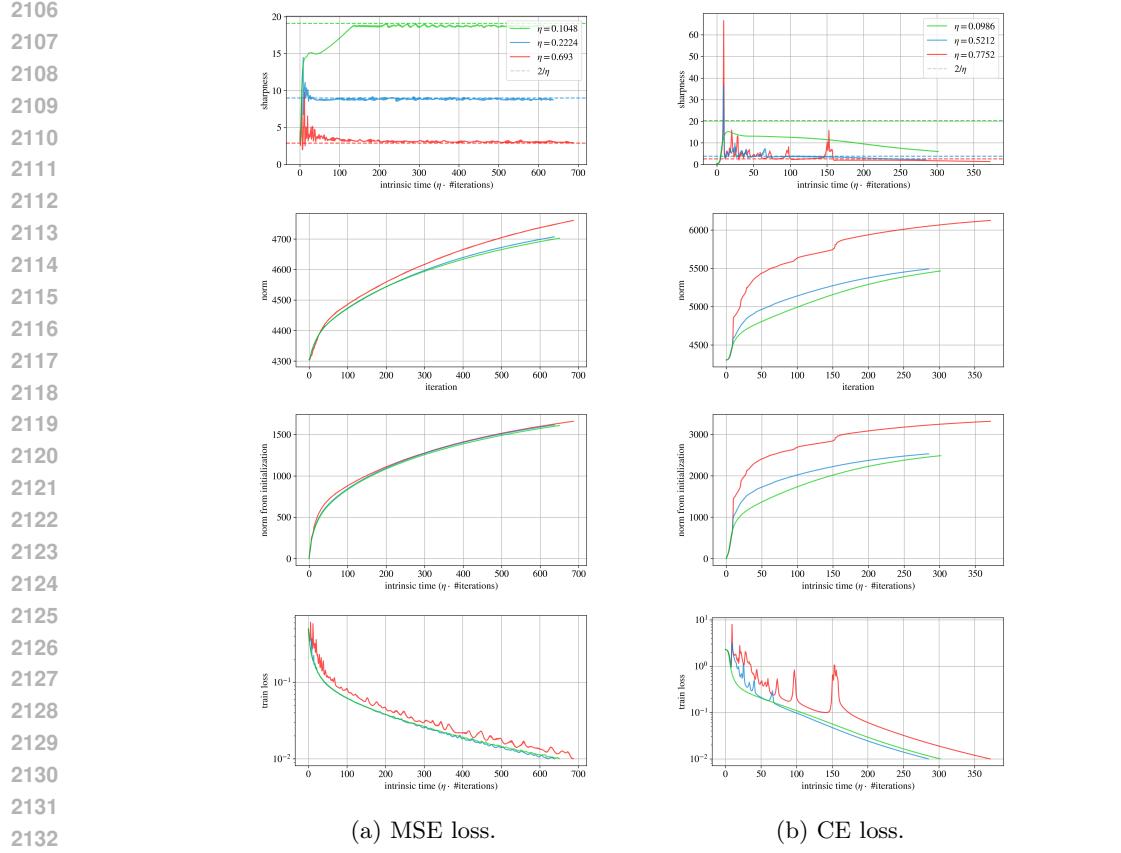
Similar to Figure 12, we compare the evolution of the parameter norm and the distance to the initialization in the second and third row of Figure 13. We observe that the distance follows closely a translated and scaled version of the parameter norm’s trajectory. It naturally starts at 0 and then grows significantly before entering the Edge of Stability. In comparison to the parameter norm evolution, here the rate of growth slows down to a larger extent after entering EoS, which supports the intuition that the chaotic EoS updates have a smaller cumulative effect on the solution’s magnitude.

H.12 PER-LAYER NORMS

In Figure 14 we present the layer norms when training the standard ReLU FCN on MNIST-5k and CIFAR-10-5k. As one can see, all layers show an increasing trend. As one might expect, the increase is relative to the number of parameters of the respective layer.

H.13 THE DIAGONAL NETWORK

For the diagonal network discussed in Section 3, we present the sharpness, norm, and generalization values for different learning rates in Figure 15. We can explicitly compute the ℓ_1 -norm on the solution manifold under the sharpness constraint $2/\eta$, yielding the predicted line in Figure 15b. We emphasize that these curves look qualitatively similar to the more realistic models on MNIST and CIFAR-10 described throughout the empirical experiments section. Note that divergence occurs already for learning rates η below the theoretical divergence threshold when the sharpness of all points on the solution manifold is above $2/\eta$.



2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Figure 13: For three different learning rates, we display the sharpness, ℓ_1 -norm, norm from initialization and train loss for both MSE (left) and CE loss (right column), both on MNIST-5k, FCN-ReLU, loss goal 0.01. We clearly observe the progressive sharpening and oscillations once the sharpness reaches $2/\eta$. For CE loss, the sharpness at the iterates drop after a oscillatory phase.

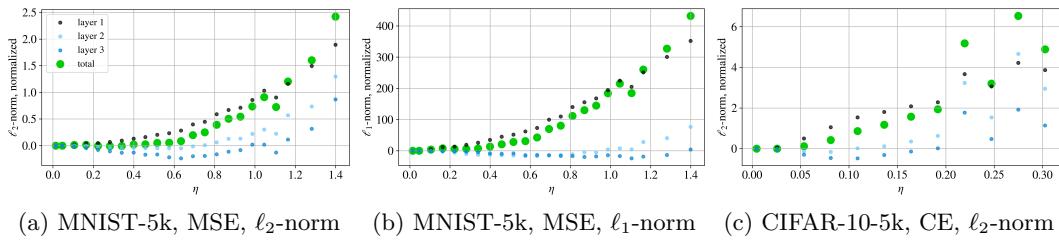


Figure 14: Layer-wise norms of the final solution our ReLU-FCN on MNIST-5k and CIFAR-10-5k for different learning rates. We individually normalize each group by subtracting the value of the norm at the smallest learning rate. All layers show an increasing trend, which is relative to the layer size.

We model generalization using a simple Gaussian data distribution (see Appendix E), which produces an (idealized) U-shaped curve, consistent with the behavior observed for many other realistic setups.

In Figure 16, we provide all trajectories of the iterates (cf. Figure 4).

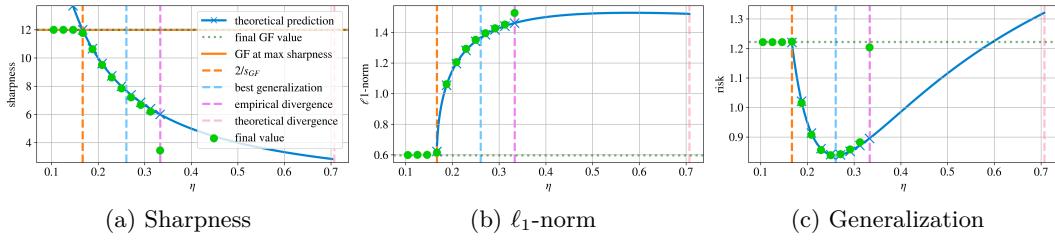


Figure 15: Final sharpness, ℓ_1 -norm and generalization of a two-dimensional diagonal linear network with weight sharing, described in Section 3. The behavior corresponds to that of more realistic models studied throughout the paper.

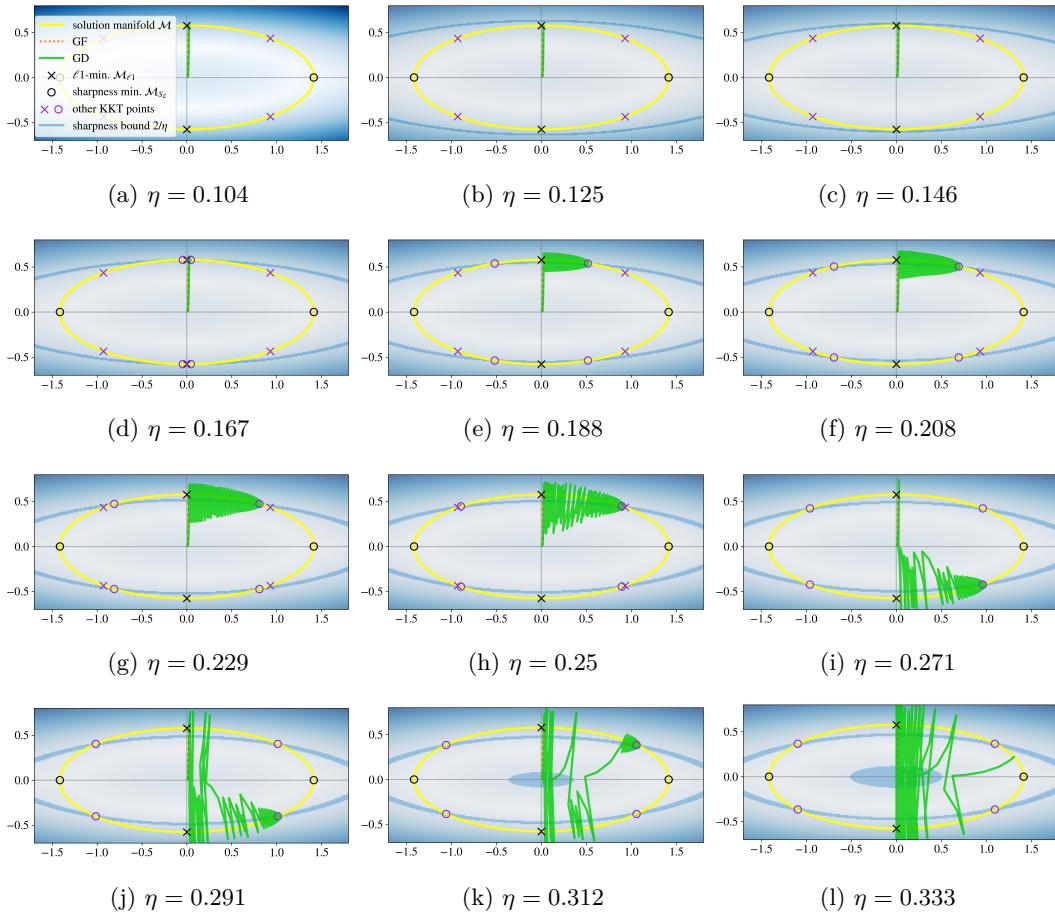


Figure 16: Iterates of weights of the two-dimensional diagonal linear network throughout training, for increasing learning rate. There is a clear distinction between the flow-aligned regime (16a)-(16d), where GD closely tracks the GF trajectory, and the EoS regime (16e)-(16l), where at some point GD begins to oscillate away from GF, until converging to one of the first solutions whose sharpness is less than $2/\eta$ (intersection of the yellow solution manifold \mathcal{M} and blue sharpness bound). This aligns with the intuition stemming from Theorem B.2. In purple, we mark the KKT points from Lemma E.1.

H.14 OTHER DATA MODALITIES

While the systematic evaluation presented in this paper focuses on the image domain, we also include examples suggesting that the observed trade-off is not limited to images. We consider

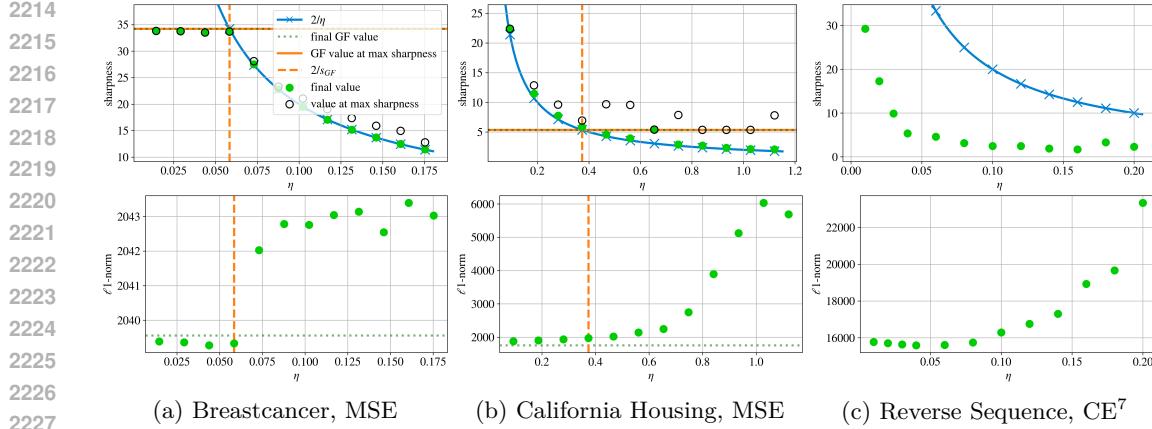


Figure 17: We show the sharpness, ℓ_1 -norm and test loss for two tabular and a sequence-to-sequence data set. This indicates that our results extend beyond the image sector.

a synthetic sequence-reversal task and two tabular tasks, one for binary classification and one for regression.

For the sequence domain, we use a synthetic sequence-reversal task with a fixed sequence length 10 and vocabulary size 9. Each input is sequence of 10 tokens sampled uniformly from $\{1, \dots, 9\}$. The target is its exact reversal. We train using teacher forcing. The model is a standard encoder-decoder transformer (Vaswani et al., 2017) with two encoder and two decoder layers, each using four attention heads, a model dimension of 64, and a feed-forward width of 128. The inputs pass through learned token embeddings and fixed sinusoidal positional encodings, and the decoder uses a causal mask for autoregressive prediction. A linear layer maps decoder outputs to vocabulary logits.

For the tabular tasks, we use the california housing (regression) and breastcancer (classification) dataset by scikit-learn (Pedregosa et al., 2011). The california housing dataset contains aggregated demographic and housing features (e.g., average number of rooms) and to be predicted is the median house value. The breast cancer Wisconsin dataset contains 30 cell nuclei features such as radius or texture, and the goal is to identify whether a tumor sample is malignant or benign. For both datasets, we standardize all input features by subtracting the training-set mean and dividing by the training-set standard deviation for each feature dimension, and we apply the same transformation to the targets. The model is our standard feed-forward network with two-hidden layers and width 200.

For both data modalities, we observe the similar characteristic trade-off of sharpness and norm which we show in Figure 17. In contrast, the sharpness value is not constant but increasing when decreasing the learning rate.

I SYSTEMATIC OVERVIEW OF EXPERIMENTS

All performed experiments are summarized in Table 1. For most of these configurations, we present both coarse and fine-grained learning rate schedules to emphasize the transition region between flow-aligned and EoS regime around η_c , as well as the behavior at larger learning rates, demonstrating the trade-off between increasing ℓ_1 -norm and decreasing sharpness for varying the learning rate. Table 1 specifies for each setting the following attributes:

- **Model.** We state the model architecture (see Section H.2) and activation used. For the FCN models where we vary width and depth, we also indicate the size. When we do not specify a size, we refer to the standard architecture of 200×2 .

⁷We do not include the GF lines as we only run GD for this setup.

2268 • **Dataset.** MNIST or CIFAR-10, with the "-5k" suffix indicating that we train only
 2269 on the first 5000 data points of the train set, while still testing on the full test set.
 2270

2271

2272 • **Loss.** Mean square error (MSE) or cross-entropy (CE).
 2273

2274

2275 • **Seed.** The random seed used for generating weights at initialization. For experi-
 2276 ments using a scaled initialization, the scaling factor is given.
 2277

2278

2279 • **Loss Goal.** We stop training gradient flow and gradient descent for each learning
 2280 rate upon reaching this train loss value.
 2281

2282

2283 • **U-Shape.** For each setting we state whether optimal test loss aligns with either
 2284 learning rate extreme, indicating a generalization advantage of either low-norm or
 2285 low-sharpness bias. Settings where the optimum is attained for mid-range learning
 2286 rates are marked by \checkmark , settings with an alignment towards either extreme by \times , and
 2287 somewhat inconclusive settings by either mark in brackets. In our experiments, in
 2288 all cases with a clear optimum extreme alignment, the alignment is always towards
 2289 high learning rates, that is, towards low sharpness solutions.
 2290

2291 • **Figures.** List of figures throughout the paper where the respective setting appears.
 2292

2293 In the main part of the systematic review, we present for each setting sharpness, ℓ_1 -norm
 2294 and test loss plots, for both a fine-grained set of learning rate values focused around the
 2295 critical threshold and a coarse set showing large-scale behaviors. In the plots we show
 2296

2297

2298 • the final respective value attained for each learning rate represented by green dots;
 2299

2300

2301 • a horizontal dotted green line indicating the final value reached by the gradient
 2302 flow;
 2303

2304

2305 • a vertical dashed orange line showing the critical learning rate threshold of $2/\eta_{GF}$,
 2306 for the transition from the flow-aligned to the EoS regime;
 2307

2308

2309 • for coarse-grained plots, a vertical dashed purple line, indicating the inverse value
 2310 of sharpness at initialization, which has been proposed as a heuristic for learning
 2311 rate initialization, if the line is missing this means that the GD did not converge
 2312 for such learning rate;
 2313

2314

2315 • for sharpness plots, the $2/\eta$ curve, for η being the learning rate variable, shown in
 2316 blue with crosses at each used learning rate value;
 2317

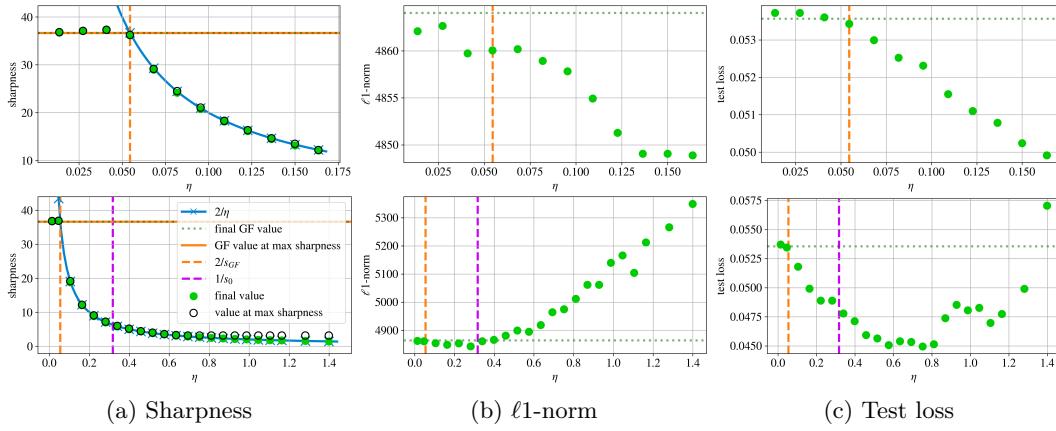
2318

2319 • for sharpness plots, the maximum value reached throughout training, indicated by
 2320 black circles;
 2321

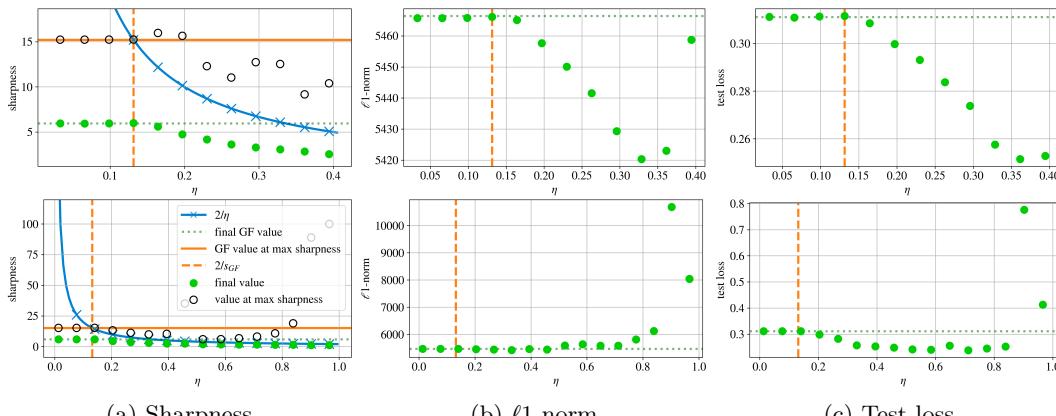
2322 • for sharpness plots, a horizontal orange line showing the maximal GF sharpness.

Table 1: Full list of experimental configurations.

Model	Dataset	Loss	Seed	Loss Goal	U-Shape	Figures
FCN-ReLU	MNIST-5k	MSE	43	0.0001	✓	3a,13,9,11b, 18,64,72
FCN-ReLU	MNIST-5k	MSE	43	0.001	✓	51
FCN-ReLU	MNIST-5k	MSE	43	0.01	✓	52
FCN-ReLU	MNIST-5k	MSE	43	0.1	✓	53
FCN-ReLU	MNIST-5k	CE	43	0.01	✓	19,65,73
FCN-ReLU	MNIST-5k	CE	43	0.1	✓	54
FCN-ReLU	CIFAR-10-5k	MSE	43	0.0001	✗	1a,3c,9,11a, 20,68,76
FCN-ReLU	CIFAR-10-5k	MSE	43	0.001	✗	55
FCN-ReLU	CIFAR-10-5k	MSE	43	0.01	✗	6a,56
FCN-ReLU	CIFAR-10-5k	MSE	43	0.1	(✗)	57,10
FCN-ReLU	CIFAR-10-5k	MSE	44	0.01	✗	6b,59
FCN-ReLU	CIFAR-10-5k	MSE	45	0.01	✗	60
FCN-ReLU	CIFAR-10-5k	MSE	43, ×5	0.1	✗	6c,61,10
FCN-ReLU	CIFAR-10-5k	CE	43	0.01	✓	3b,21,69,77,10
FCN-ReLU	CIFAR-10-5k	CE	43	0.1	✓	58
FCN-ReLU	CIFAR-10-5k	CE	43, ×5	0.01	✗	62
FCN-ReLU	CIFAR-10-5k	CE	43, ×10	0.01	✗	63
FCN-ReLU	MNIST	MSE	43	0.01	✓	1b,22,66,74
FCN-ReLU	MNIST	CE	43	0.01	(✓)	23,67,75
FCN-ReLU	CIFAR-10	CE	43	0.1	✗	24
FCN-ReLU 400 × 2	MNIST-5k	MSE	43	0.01	✗	37
FCN-ReLU 600 × 2	MNIST-5k	MSE	43	0.01	(✗)	38
FCN-ReLU 2000 × 2	MNIST-5k	MSE	43	0.01	✗	39
FCN-ReLU 200 × 4	MNIST-5k	MSE	43	0.01	(✗)	40
FCN-ReLU 200 × 6	MNIST-5k	MSE	43	0.01	(✓)	41
FCN-ReLU 400 × 4	MNIST-5k	MSE	43	0.01	✗	42
FCN-ReLU 600 × 6	MNIST-5k	MSE	43	0.01	(✓)	43
FCN-ReLU 400 × 2	CIFAR-10-5k	MSE	43	0.01	✗	44
FCN-ReLU 600 × 2	CIFAR-10-5k	MSE	43	0.01	✗	45
FCN-ReLU 2000 × 2	CIFAR-10-5k	MSE	43	0.01	✗	46
FCN-ReLU 200 × 4	CIFAR-10-5k	MSE	43	0.01	✓	47
FCN-ReLU 200 × 6	CIFAR-10-5k	MSE	43	0.01	✓	48
FCN-ReLU 400 × 4	CIFAR-10-5k	MSE	43	0.01	✓	49
FCN-ReLU 600 × 6	CIFAR-10-5k	MSE	43	0.01	✓	50
FCN-tanh	MNIST-5k	MSE	43	0.1	✗	25
FCN-tanh	MNIST-5k	CE	43	0.01	(✓)	26
FCN-tanh	CIFAR-10-5k	MSE	43	0.001	✗	2c,27,70,78
FCN-tanh	CIFAR-10-5k	MSE	43	0.01	✗	2b
FCN-tanh	CIFAR-10-5k	MSE	43	0.1	(✗)	2a
FCN-tanh	CIFAR-10-5k	CE	43	0.01	✓	28,71,79
CNN-ReLU	MNIST-5k	MSE	43	0.1	✓	5a,29
CNN-ReLU	MNIST-5k	CE	43	0.01	✓	30
CNN-ReLU	MNIST	MSE	43	0.1	(✗)	5b,31
CNN-ReLU	MNIST	CE	43	0.01	✓	32
CNN-ReLU BN	CIFAR-10-5k	CE	43	0.01	5c,33	
ViT-ReLU	MNIST-5k	CE	43	0.1	(✓)	1c,34
ViT-ReLU	CIFAR-10-5k	CE	43	1	(✓)	35
ResNet20-ReLU	CIFAR-10-5k	CE	43	0.1	(✗)	36

2376 I.1 FCNs WITH RELU ACTIVATION
23772378
2379 I.1.1 ON MNIST-5K
2380
2381
2382
2383
2384
2385
2386

2401 Figure 18: **MSE loss.** FCN-ReLU, MNIST-5k, train loss 0.0001. Both rows show the same
2402 setting, but different ranges of learning rate η - the top row includes the fine grid, focused on
2403 the transition from the flow-aligned to the EoS regime, while the coarse grid in the bottom
2404 row displays more large-scale behavior, going typically up to diverging learning rates.
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414



2427 Figure 19: **CE loss.** FCN-ReLU, MNIST-5k, train loss 0.01
2428
2429

I.1.2 ON CIFAR-10-5K

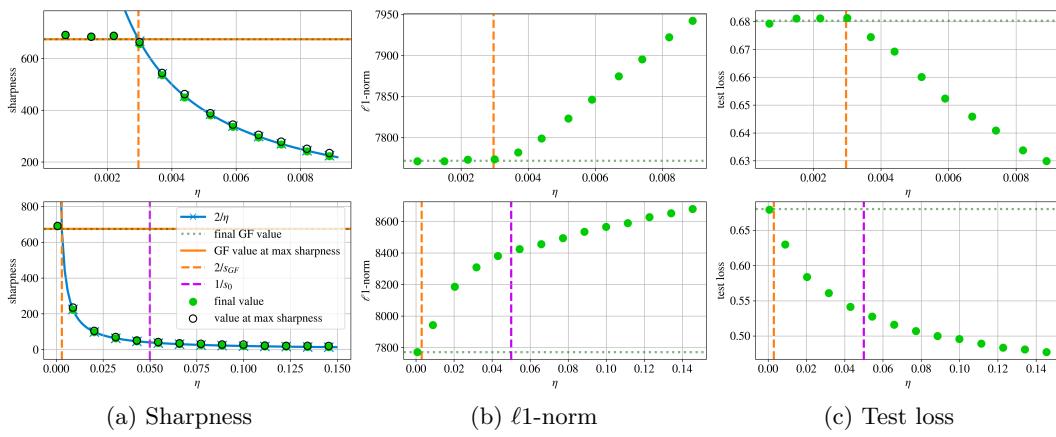


Figure 20: MSE loss. FCN-ReLU, CIFAR-10-5k, train loss 0.0001

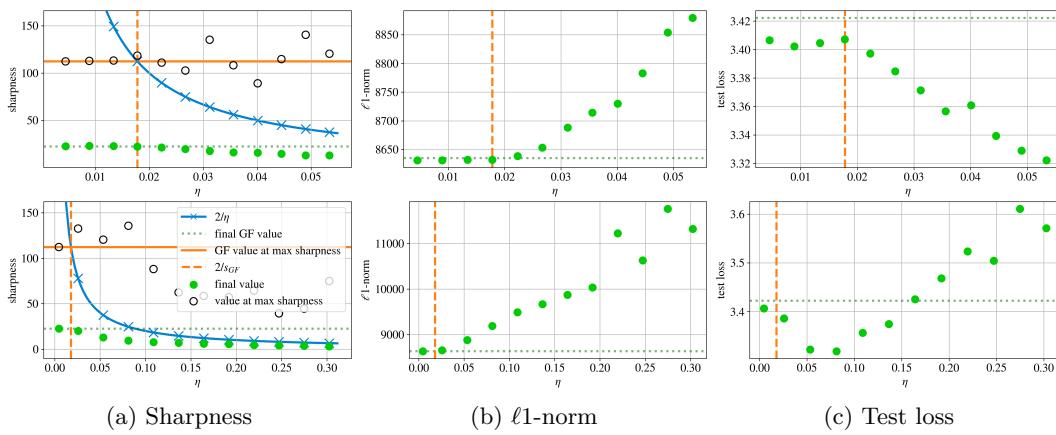


Figure 21: CE loss. FCN-ReLU, CIFAR-10-5k, train loss 0.01

I.1.3 ON FULL MNIST

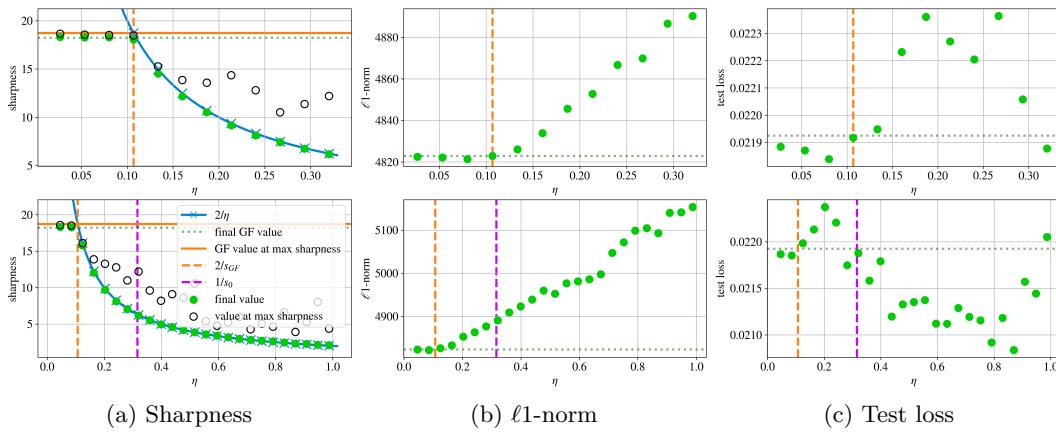
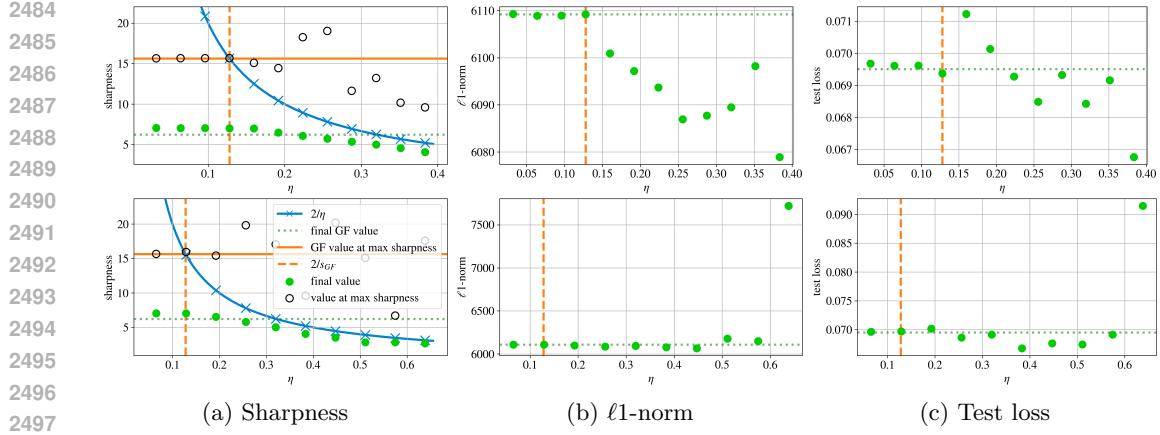
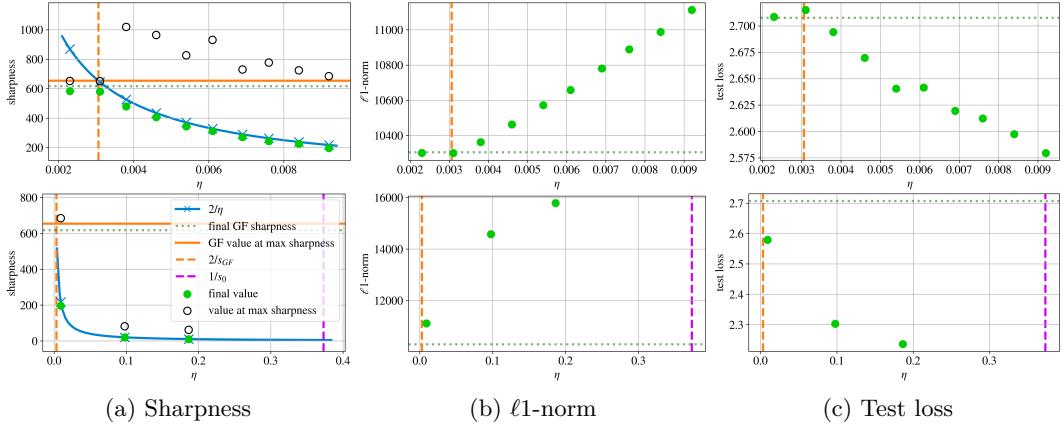


Figure 22: MSE loss. FCN-ReLU, MNIST, train loss 0.01

Figure 23: **CE loss.** FCN-ReLU, MNIST, train loss 0.01

I.1.4 ON FULL CIFAR-10

Figure 24: **CE loss.** FCN-ReLU, CIFAR-10, train loss 0.1

2538 I.2 FCNs WITH TANH ACTIVATION

2539

2540

2541

2542 I.2.1 ON MNIST-5K

2543

2544

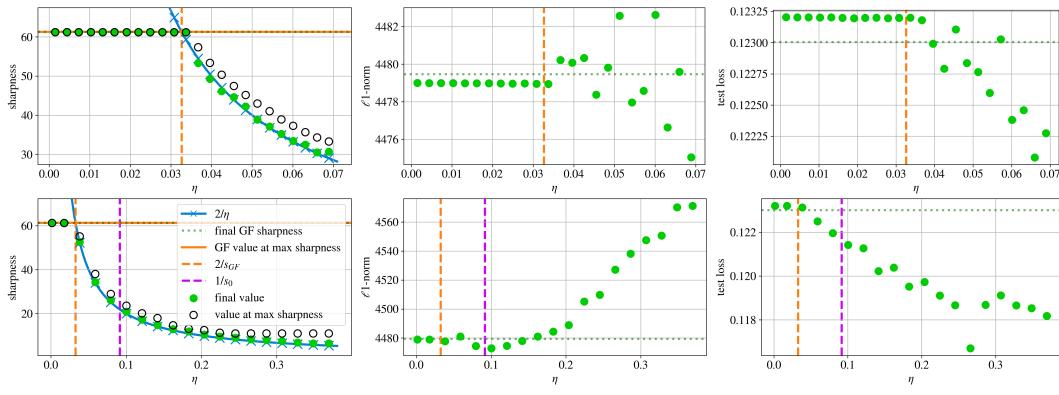
2545

2546

2547

2548

2549



(a) Sharpness

(b) ℓ_1 -norm

(c) Test loss

Figure 25: MSE loss. FCN-tanh, MNIST-5k, train loss 0.1

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

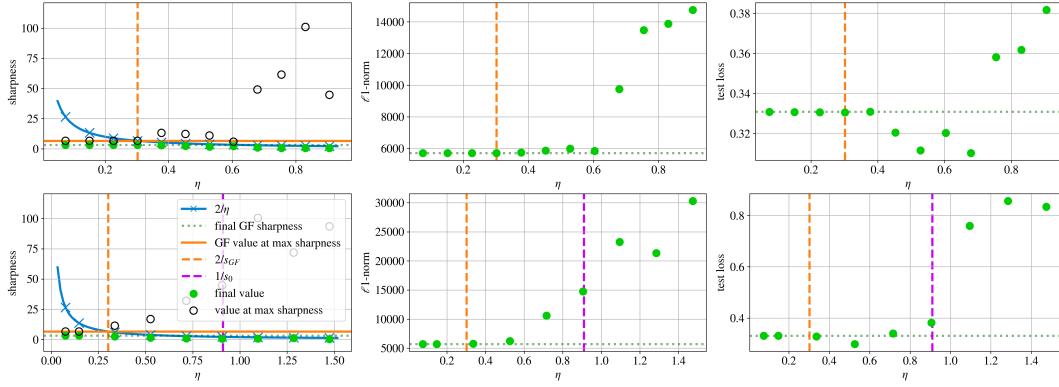
2572

2573

2574

2575

2576



(a) Sharpness

(b) ℓ_1 -norm

(c) Test loss

2589

2590

2591

Figure 26: CE loss. FCN-tanh, MNIST-5k, train loss 0.01

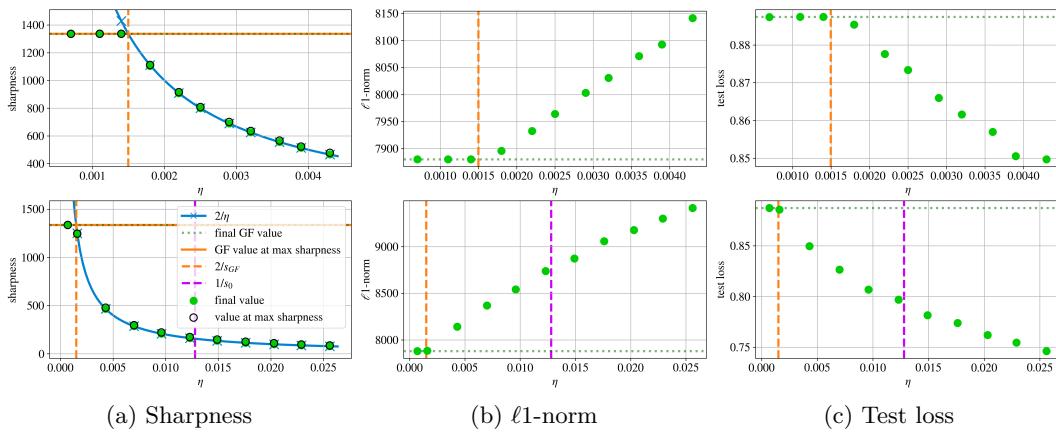
2592 I.2.2 ON CIFAR-10-5K
2593
2594
2595
2596
2597
2598
2599
2600
2601

Figure 27: MSE loss. FCN-tanh, CIFAR-10-5k, train loss 0.001

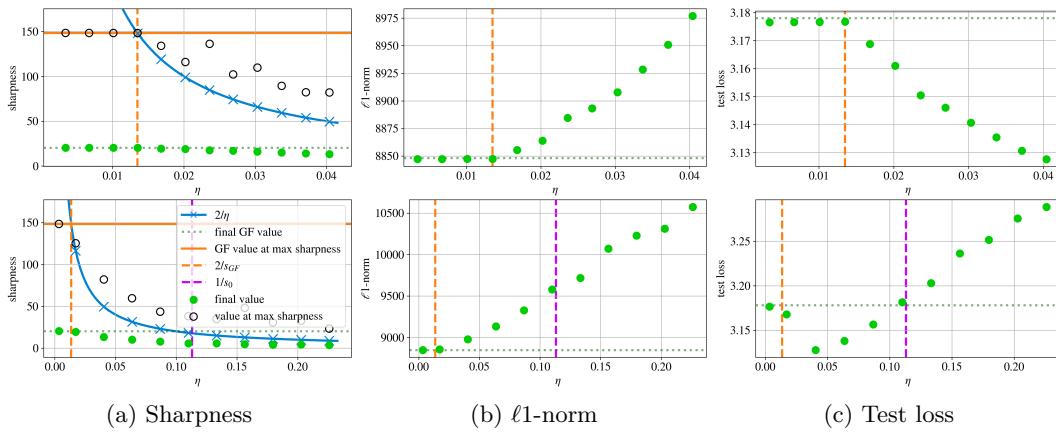


Figure 28: CE loss. FCN-tanh, CIFAR-10-5k, train loss 0.01

2646 I.3 CNNs WITH RELU ACTIVATION

2647

2648

2649

2650 I.3.1 ON MNIST-5K

2651

2652

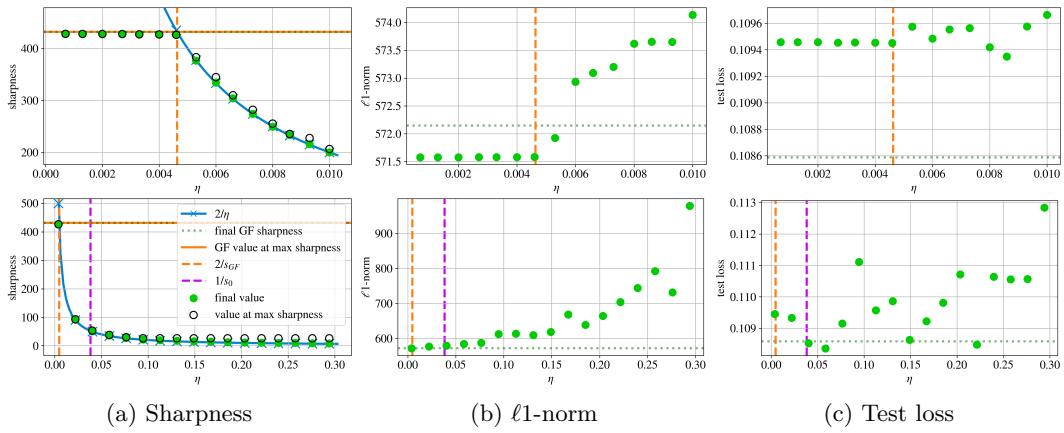
2653

2654

2655

2656

2657



2673 Figure 29: MSE loss. CNN-ReLU, MNIST-5k, train loss 0.1

2674

2675

2676

2677

2678

2679

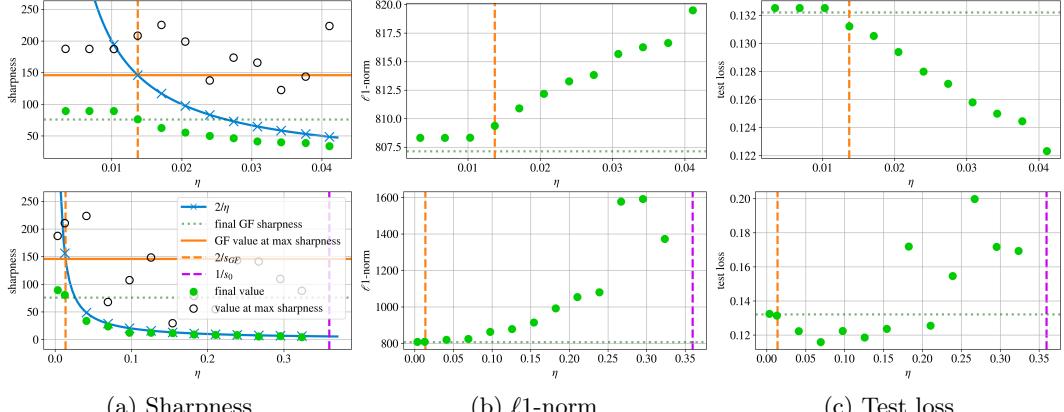
2680

2681

2682

2683

2684

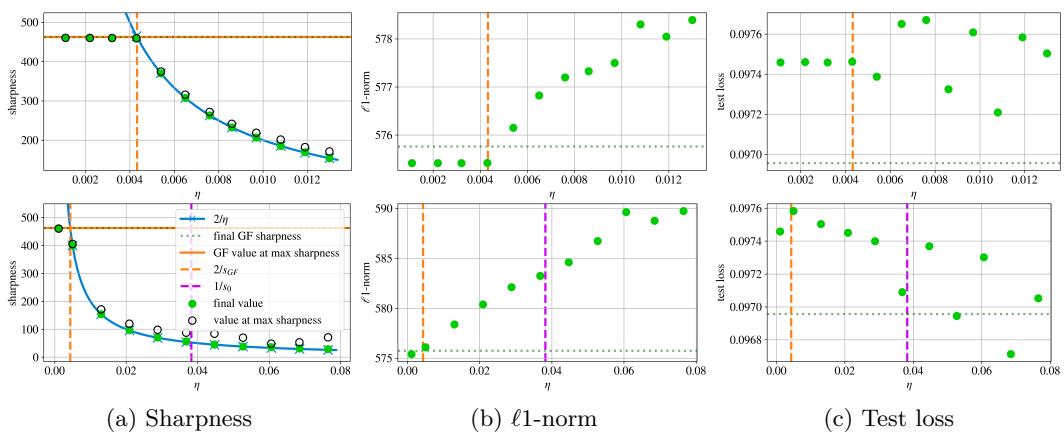
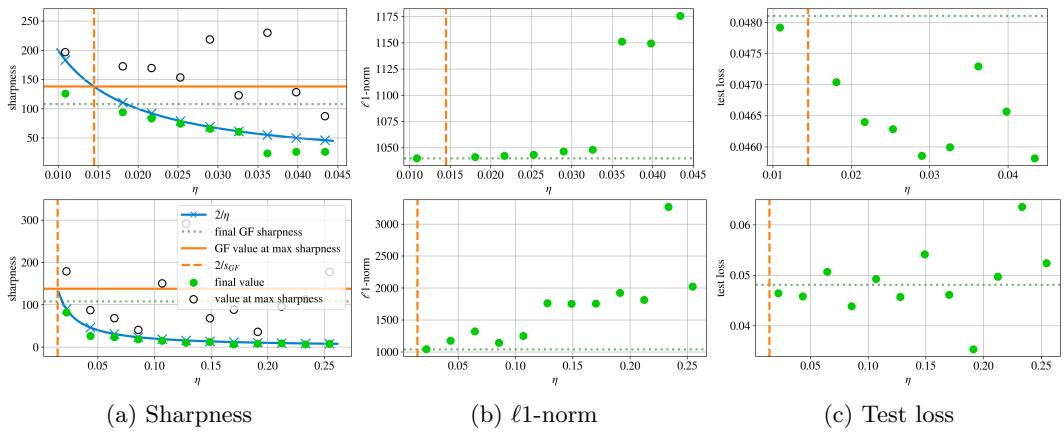


2697 Figure 30: CE loss. CNN-ReLU, MNIST-5k, train loss 0.01

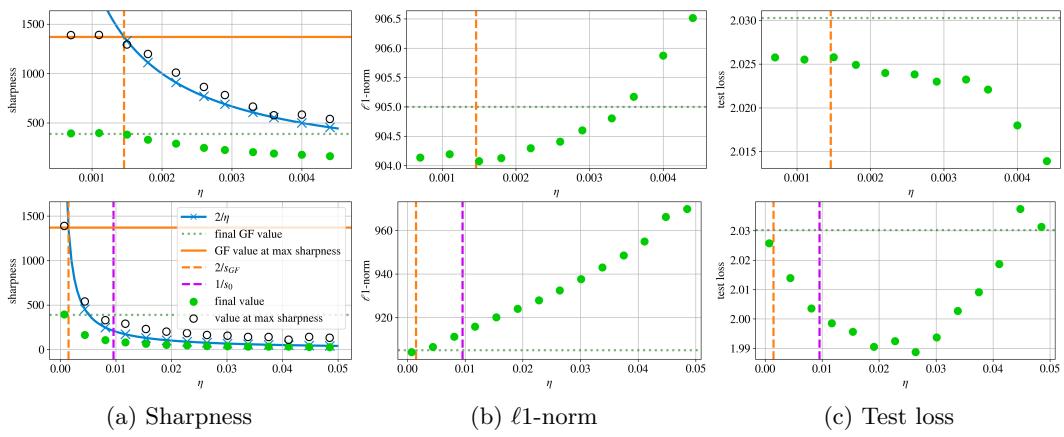
2698

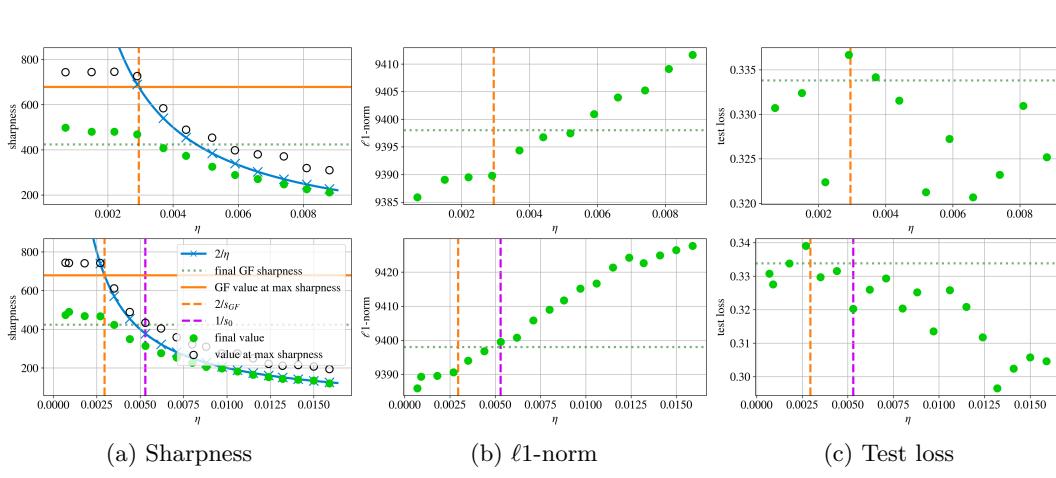
2699

I.3.2 ON FULL MNIST

Figure 31: **MSE loss.** CNN-ReLU, MNIST, train loss 0.1Figure 32: **CE loss.** CNN-ReLU, MNIST, train loss 0.01

I.3.3 ON CIFAR-10-5K

Figure 33: **CE loss.** CNN-ReLU with Batch Normalization, CIFAR-10-5k, train loss 0.01

2754 I.4 VISION TRANSFORMER
27552756 I.4.1 ON MNIST-5K
2757

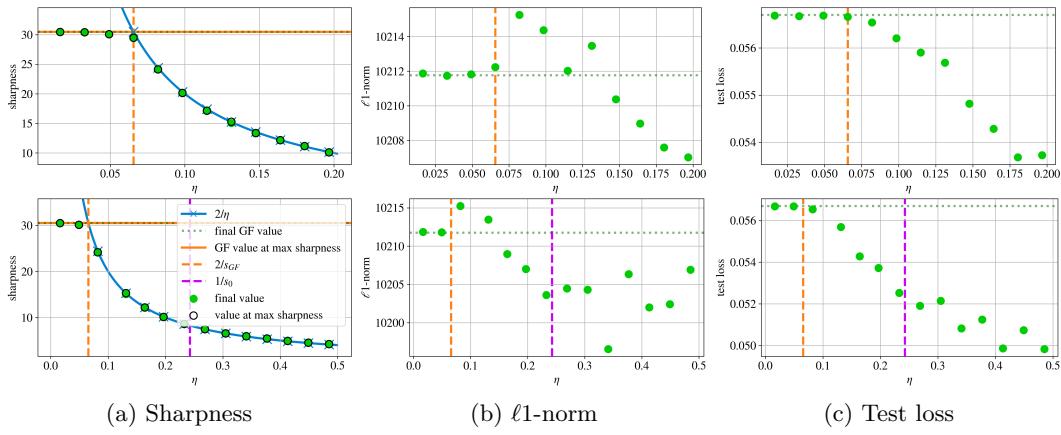
2808 I.6 VARYING WIDTH AND DEPTH
28092810 I.6.1 ON MNIST-5k
2811

Figure 37: FCN-ReLU, 2× width (400 × 2). Train loss 0.01, MNIST-5k, MSE loss

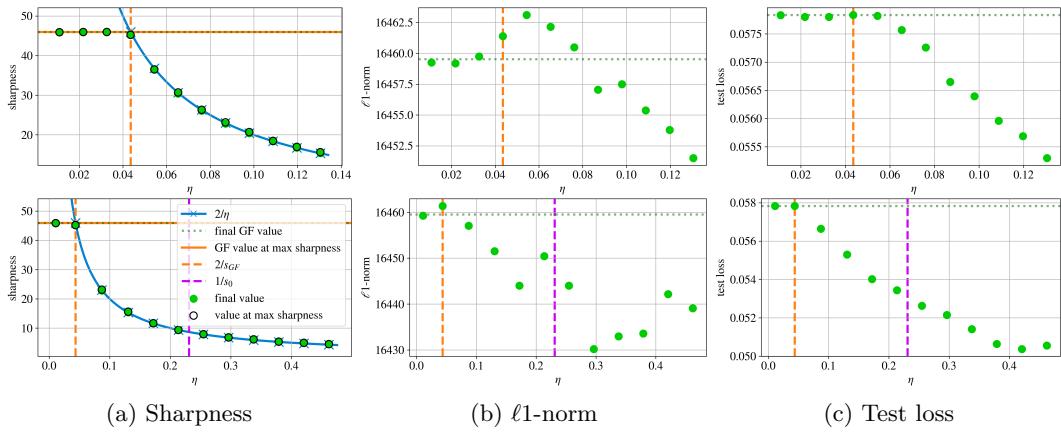


Figure 38: FCN-ReLU, 3× width (600 × 2). Train loss 0.01, MNIST-5k, MSE loss

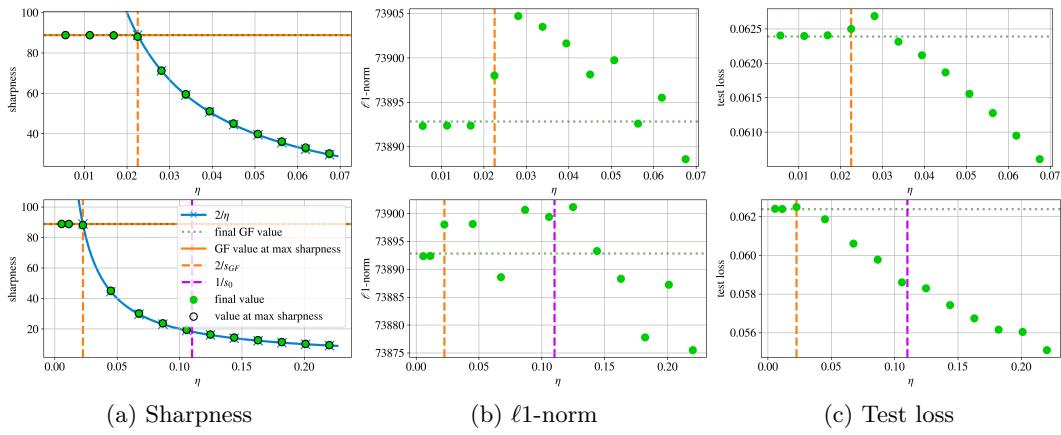
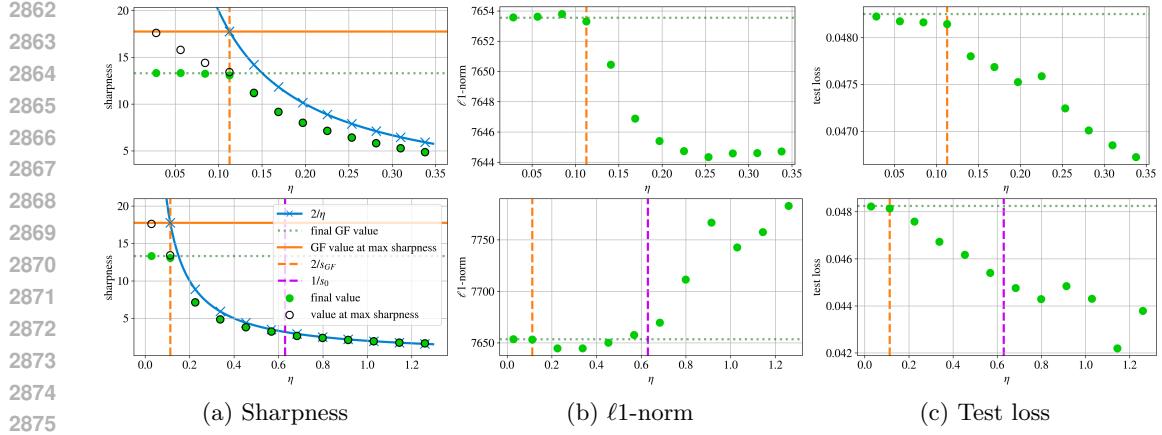
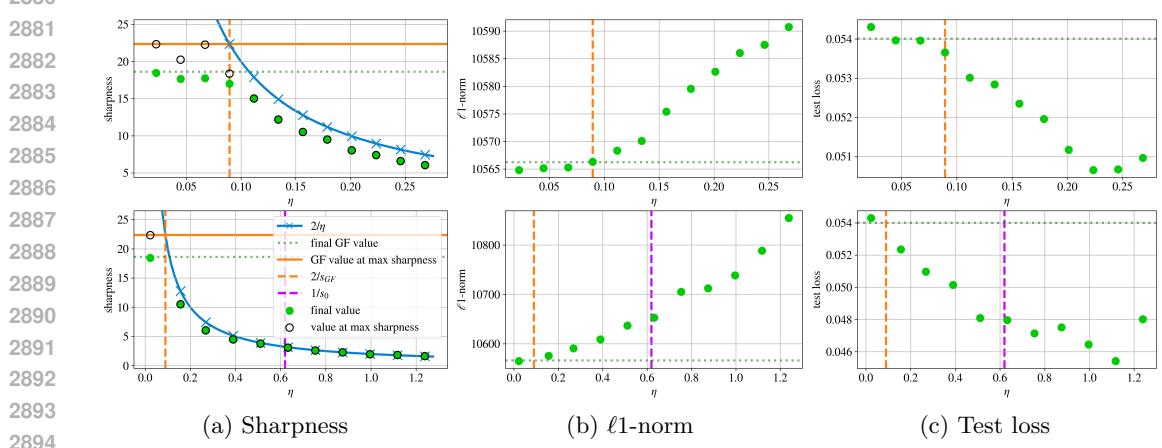
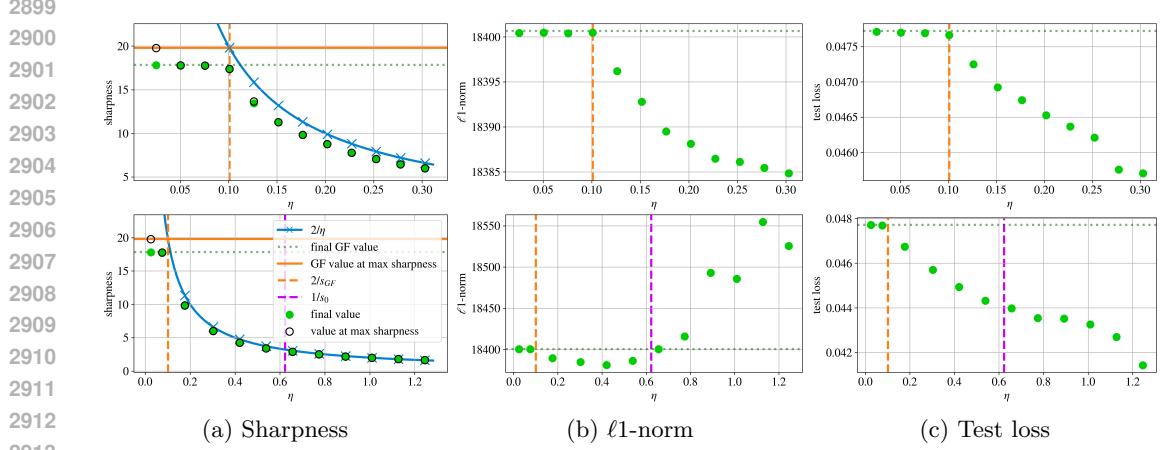


Figure 39: FCN-ReLU, 10× width (2000 × 2). Train loss 0.01, MNIST-5k, MSE loss

Figure 40: **FCN-ReLU, 2× depth (200 × 4)**. Train loss 0.01, MNIST-5k, MSE lossFigure 41: **FCN-ReLU, 3× depth (200 × 6)**. Train loss 0.01, MNIST-5k, MSE lossFigure 42: **FCN-ReLU, 2× width and depth (400 × 4)**. Train loss 0.01, MNIST-5k, MSE loss

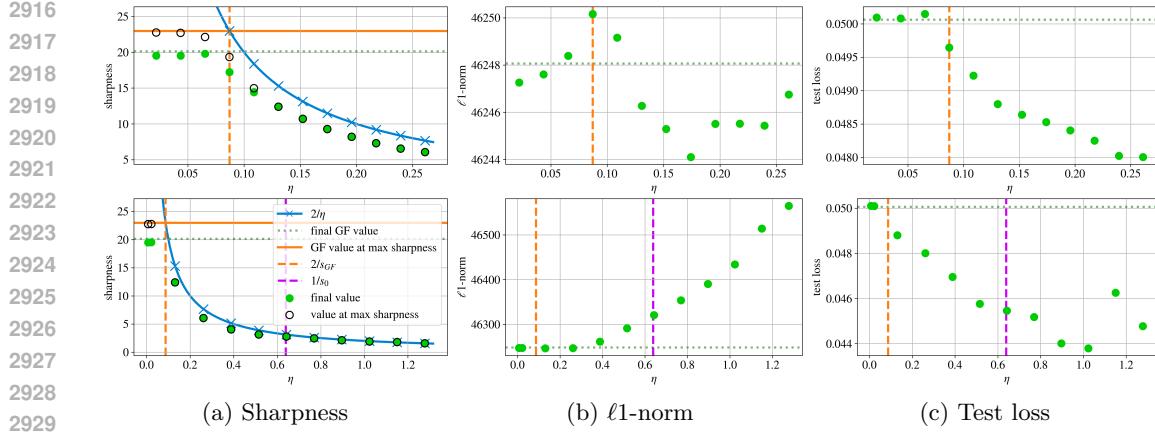


Figure 43: **FCN-ReLU, 3× width and depth (600 × 6).** Train loss 0.01, MNIST-5k, MSE loss

I.6.2 ON CIFAR-10-5K

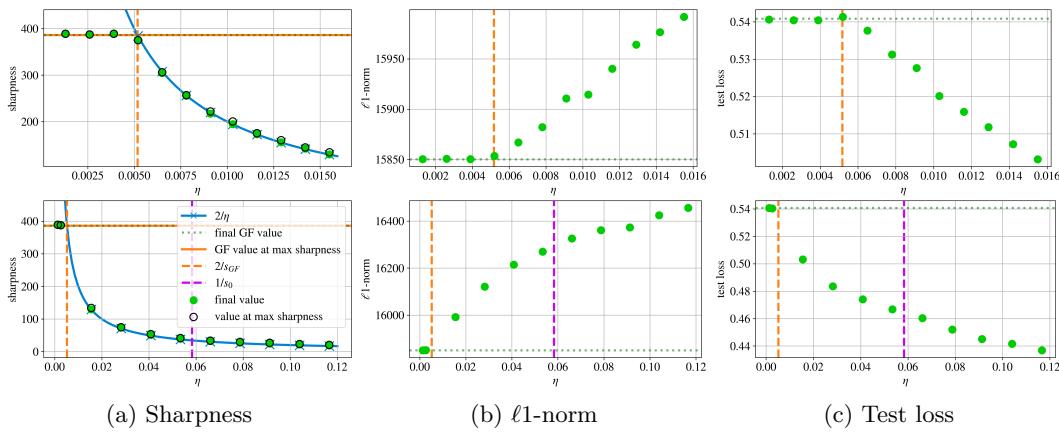


Figure 44: **FCN-ReLU, 2× width (400 × 2).** Train loss 0.01, CIFAR-10-5k, MSE loss

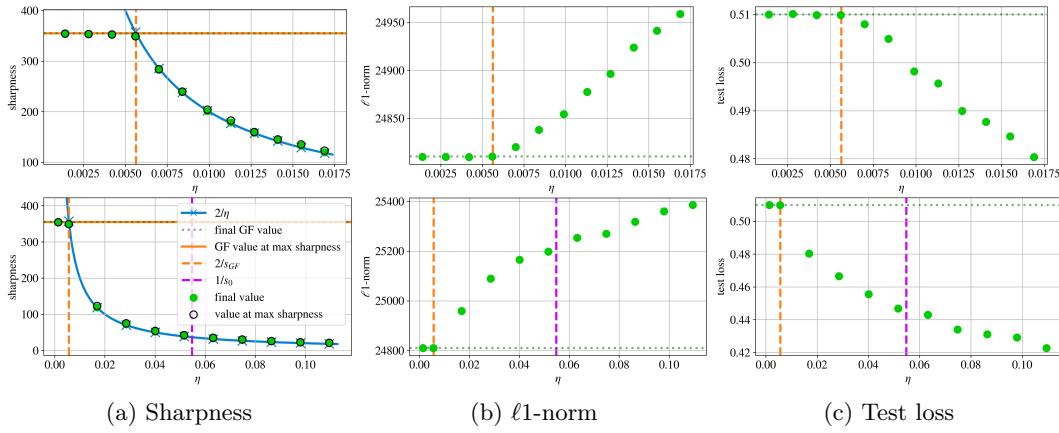
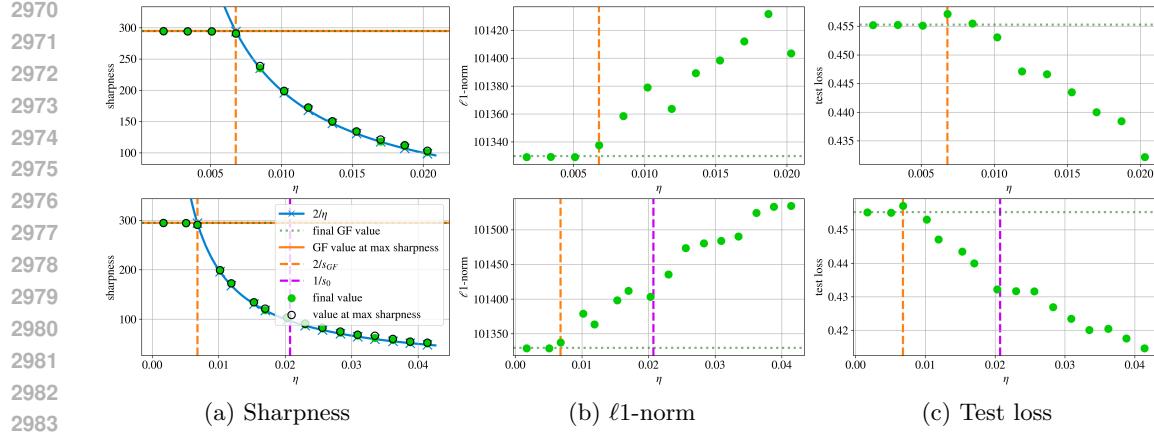
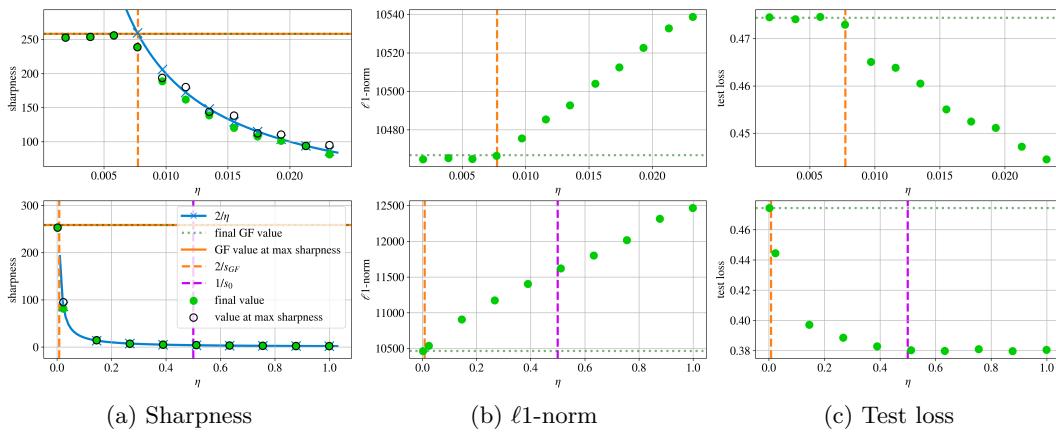
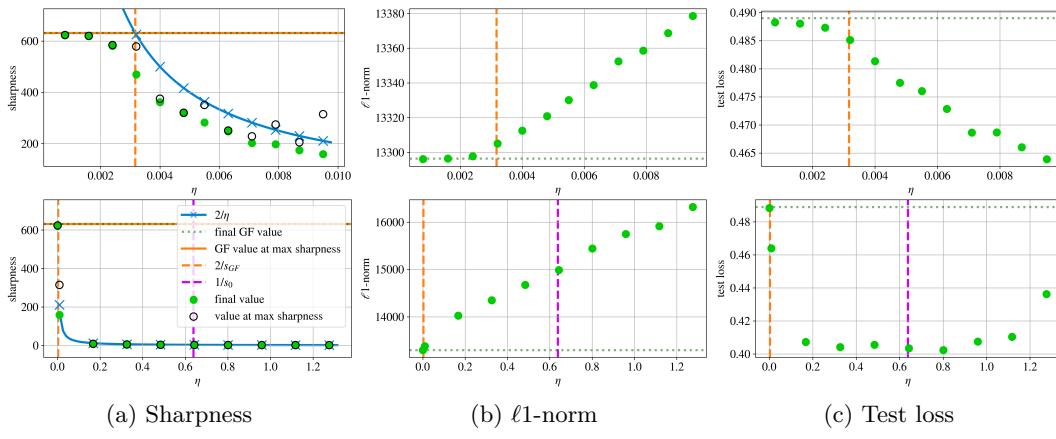
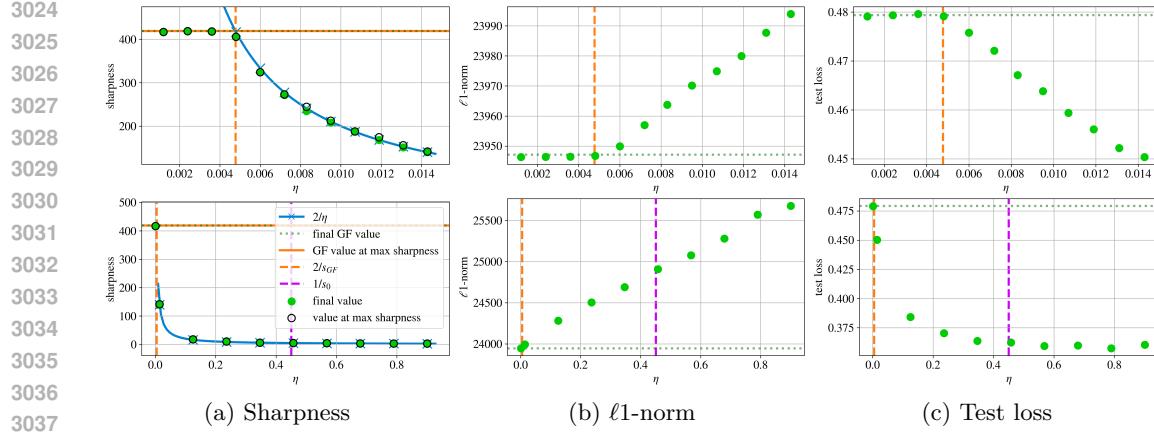
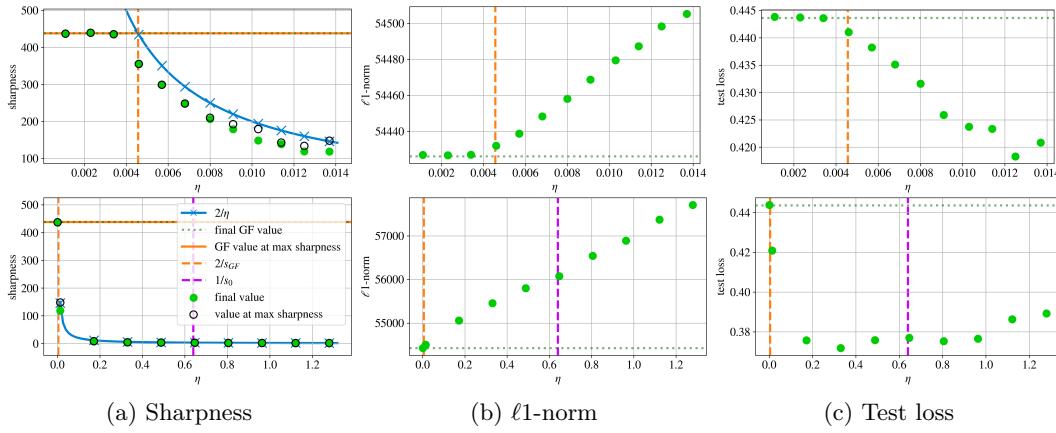


Figure 45: **FCN-ReLU, 3× width (600 × 2).** Train loss 0.01, CIFAR-10-5k, MSE loss

Figure 46: **FCN-ReLU, 10× width** (2000×2). Train loss 0.01, CIFAR-10-5k, MSE lossFigure 47: **FCN-ReLU, 2× depth** (200×4). Train loss 0.01, CIFAR-10-5k, MSE lossFigure 48: **FCN-ReLU, 3× depth** (200×6). Train loss 0.01, CIFAR-10-5k, MSE loss



3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061



3078 I.7 FURTHER CONFIGURATIONS

3079

3080

3081

I.7.1 DIFFERENT LOSS GOALS

3082

3083

3084

FCN-RELU ON MNIST-5K WITH THE MSE LOSS

3085

3086

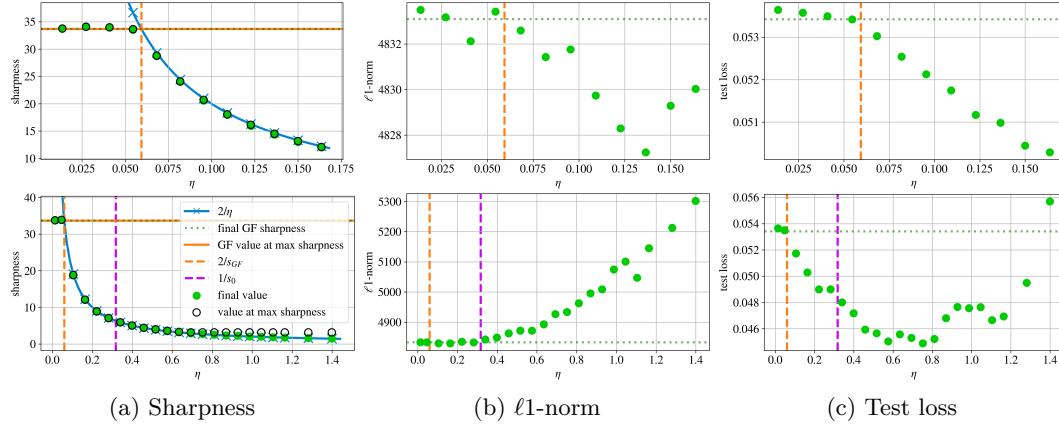
3087

3088

3089

3090

3091



(a) Sharpness

(b) ℓ_1 -norm

(c) Test loss

Figure 51: Train loss 0.001. FCN-ReLU, MNIST-5k, MSE loss

3105

3106

3107

3108

3109

3110

3111

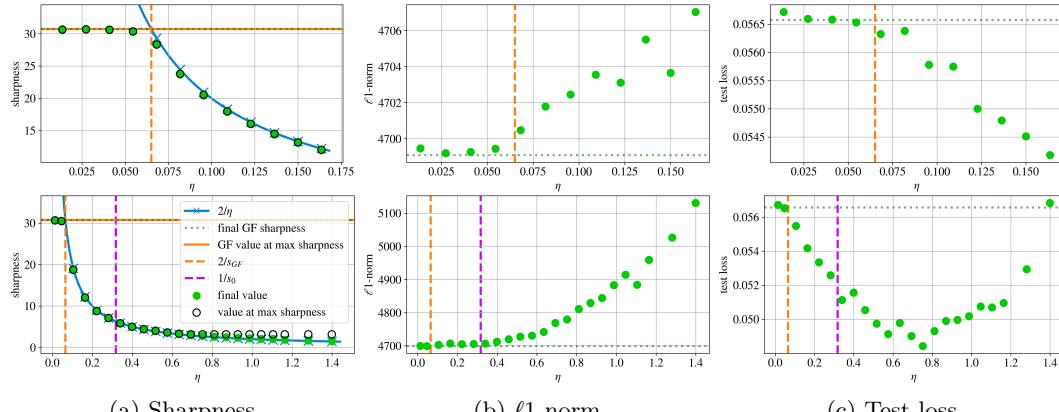
3112

3113

3114

3115

3116



(a) Sharpness

(b) ℓ_1 -norm

(c) Test loss

Figure 52: Train loss 0.01. FCN-ReLU, MNIST-5k, MSE loss

3129

3130

3131

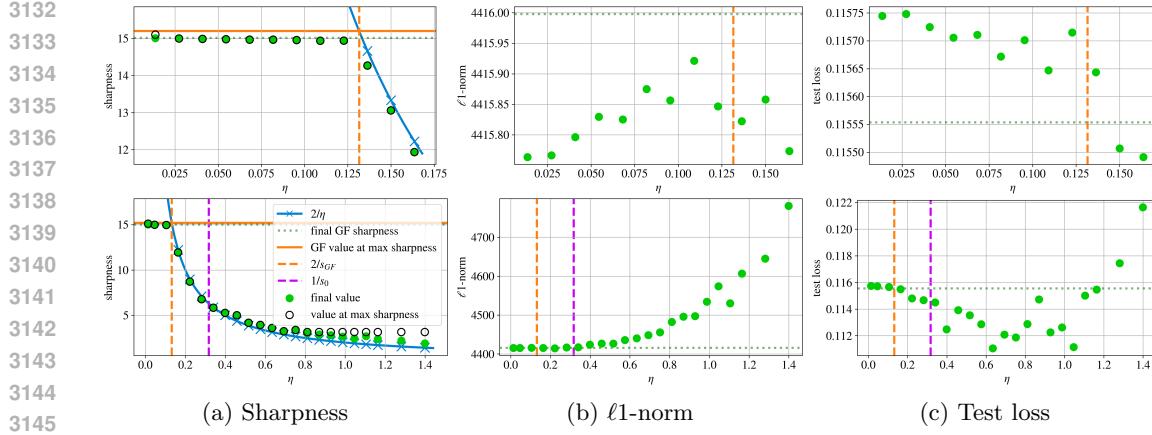


Figure 53: Train loss 0.1. FCN-ReLU, MNIST-5k, MSE loss

FCN-RELU ON MNIST-5K WITH THE CE LOSS

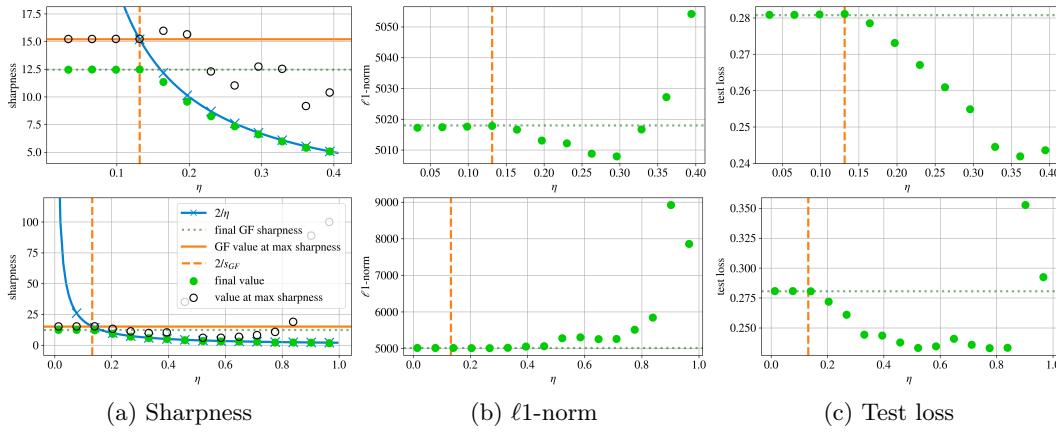


Figure 54: Train loss 0.1. FCN-ReLU, MNIST-5k, CE loss

FCN-RELU ON CIFAR-10-5K WITH THE MSE LOSS

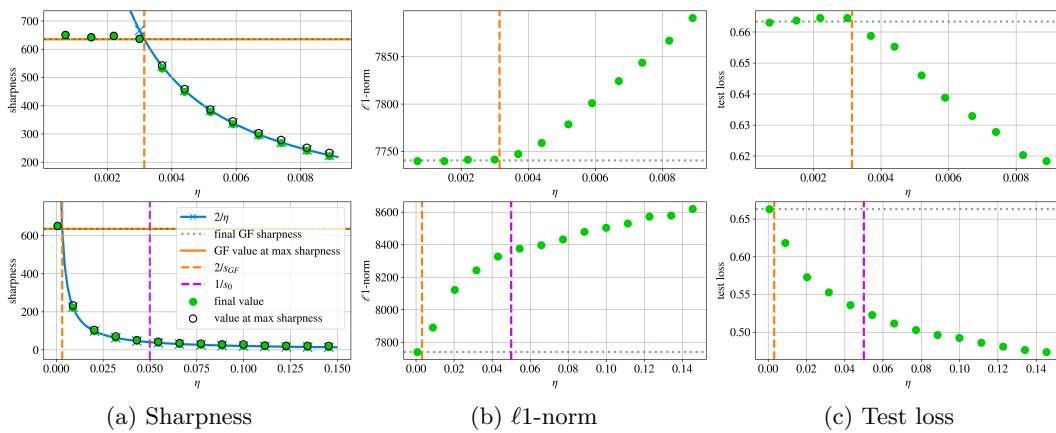


Figure 55: Train loss 0.001. FCN-ReLU, CIFAR-10-5k, MSE loss

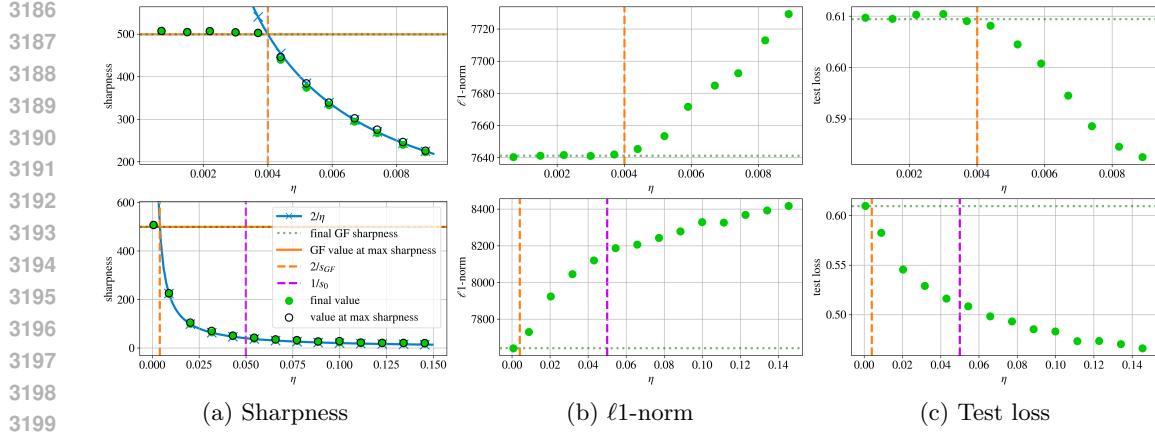


Figure 56: Train loss 0.01. FCN-ReLU, CIFAR-10-5k, MSE loss

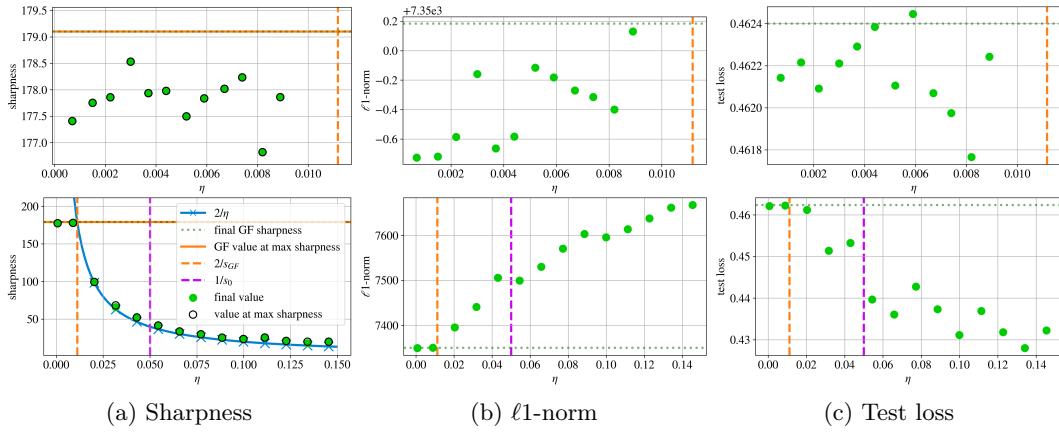


Figure 57: Train loss 0.1. FCN-ReLU, CIFAR-10-5k, MSE loss

FCN-RELU ON CIFAR-10-5K WITH THE CE LOSS

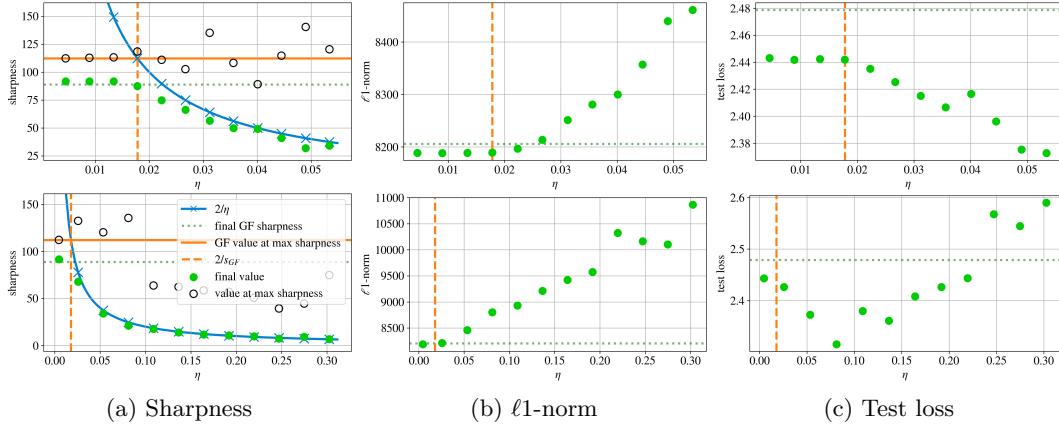


Figure 58: Train loss 0.1. FCN-ReLU, CIFAR-10-5k, CE loss

I.7.2 OTHER INITIALIZATION SEEDS FOR FCN-RELU ON CIFAR-10-5K WITH THE MSE LOSS



Figure 59: **Seed 44.** FCN-ReLU, CIFAR-10-5k, MSE loss, train loss 0.01

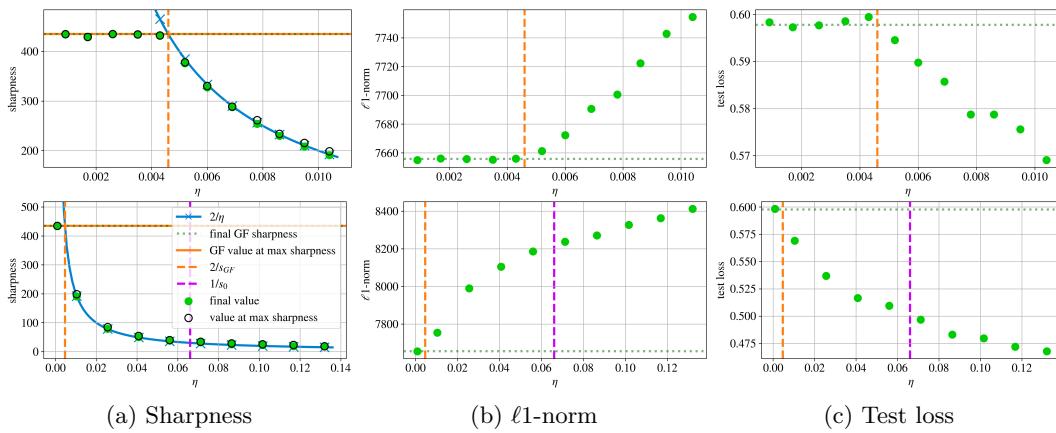


Figure 60: **Seed 45.** FCN-ReLU, CIFAR-10-5k, MSE loss, train loss 0.01

I.7.3 SCALED INITIALIZATION FOR FCN-RELU ON CIFAR-10-5K WITH THE MSE LOSS

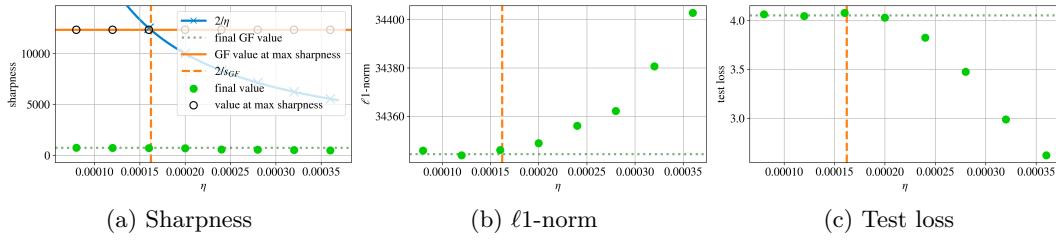
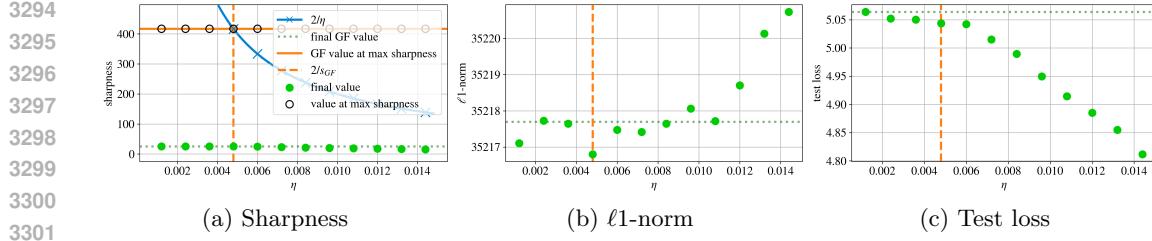
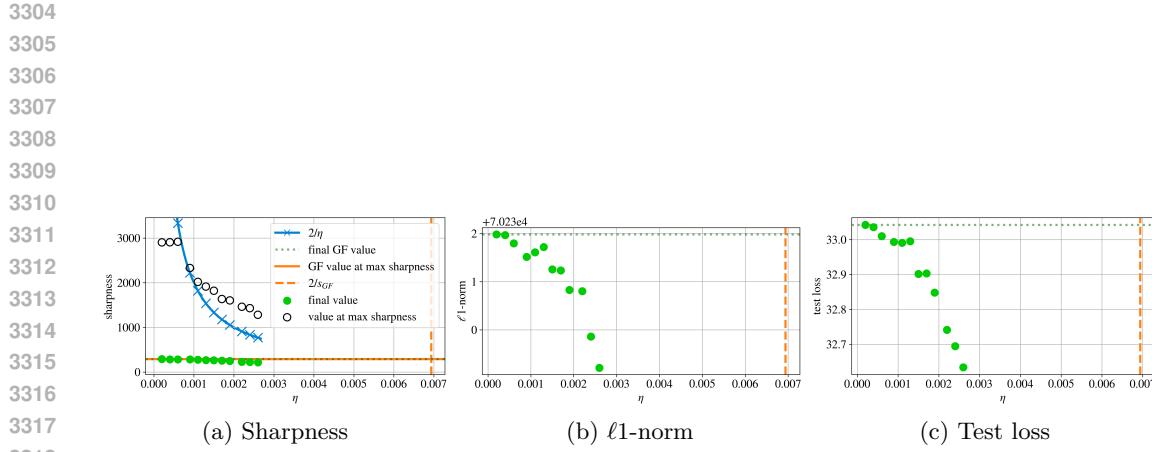


Figure 61: Initialization from seed 43 scaled $\times 5$. FCN-ReLU, CIFAR-10-5k, MSE loss, train loss 0.1



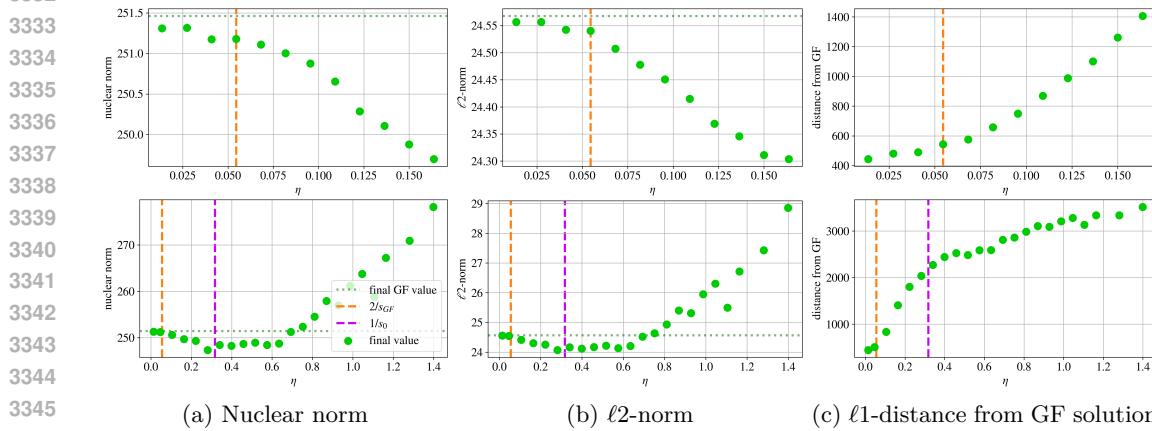
3302 Figure 62: **Initialization from seed 43 scaled $\times 5$.** FCN-ReLU, CIFAR-10-5k, CE loss,
3303 train loss 0.01



3319 Figure 63: **Initialization from seed 43 scaled $\times 10$.** FCN-ReLU, CIFAR-10-5k, CE loss,
3320 train loss 0.01

I.8 FURTHER PROPERTIES

I.8.1 ALTERNATIVE NORMS AND DISTANCE FROM GF SOLUTION



3349 Figure 64: **FCN-ReLU on MNIST-5k with the MSE loss.** Train loss 0.0001

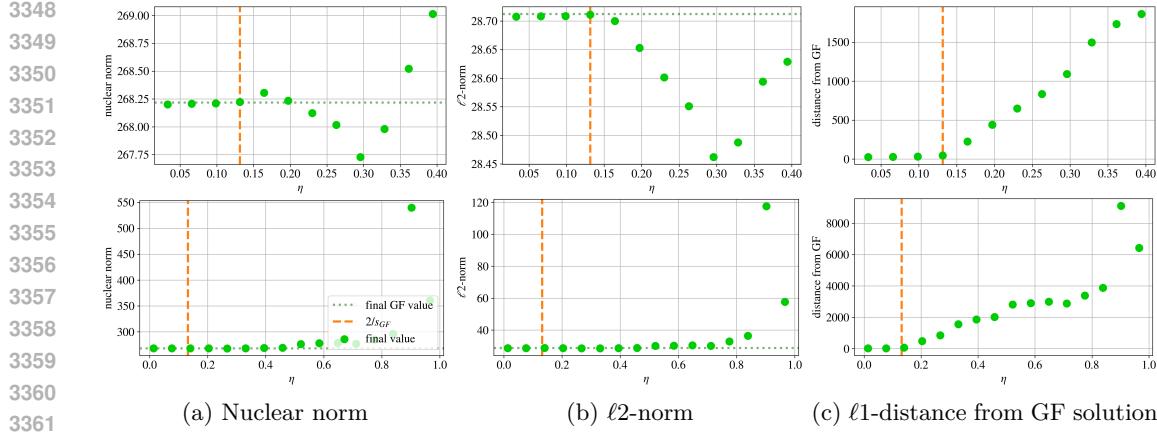


Figure 65: FCN-ReLU on MNIST-5k with the CE loss. Train loss 0.01

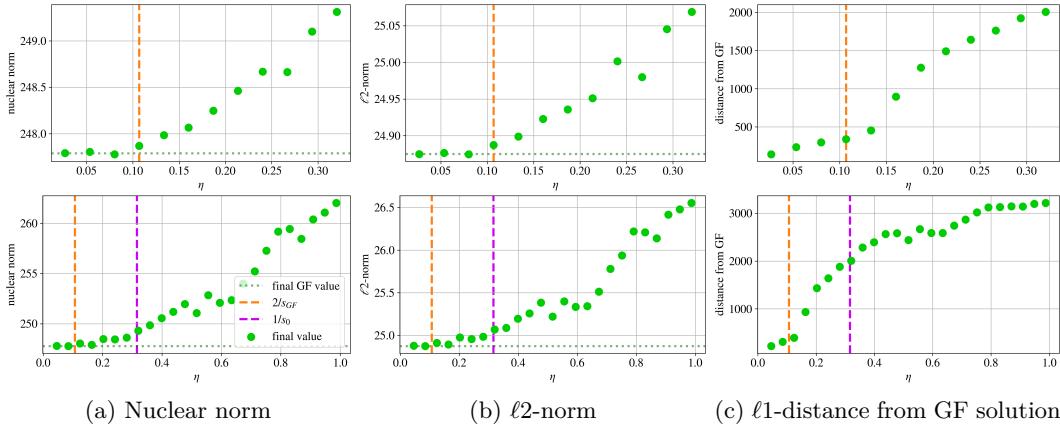


Figure 66: FCN-ReLU on full MNIST with the MSE loss. Train loss 0.01

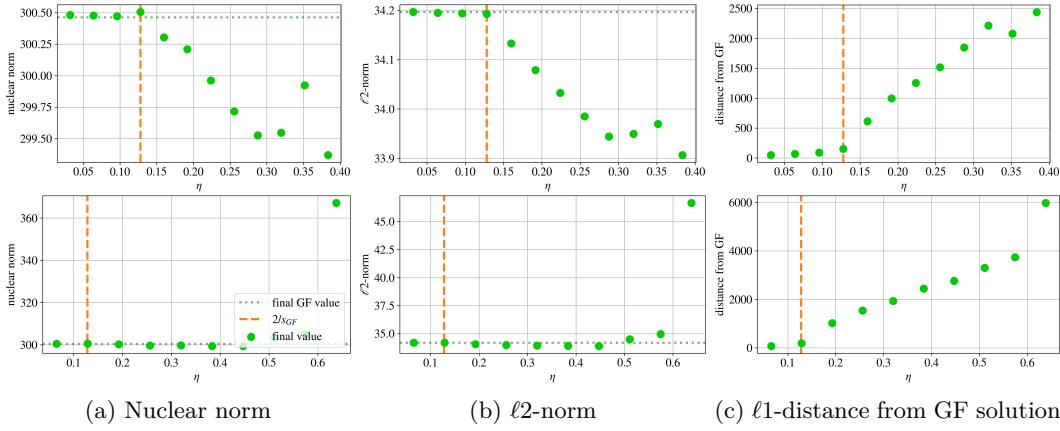


Figure 67: FCN-ReLU on full MNIST with the CE loss. Train loss 0.01

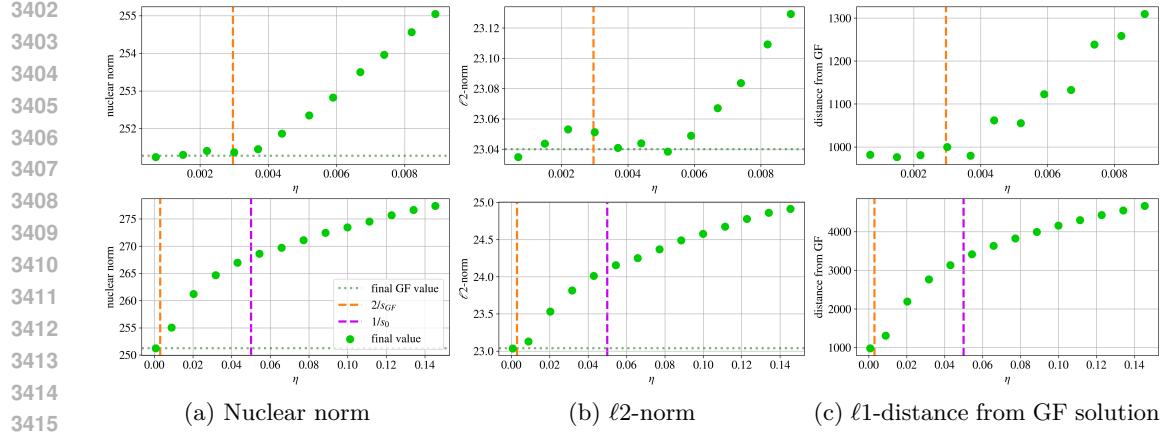


Figure 68: **FCN-ReLU on CIFAR-10-5k with the MSE loss.** Train loss 0.0001

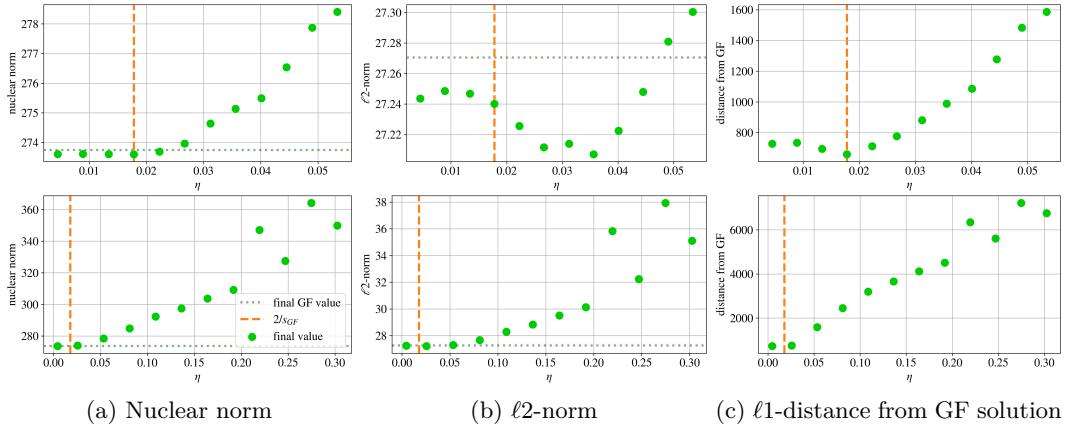


Figure 69: FCN-ReLU on CIFAR-10-5k with the CE loss. Train loss 0.01

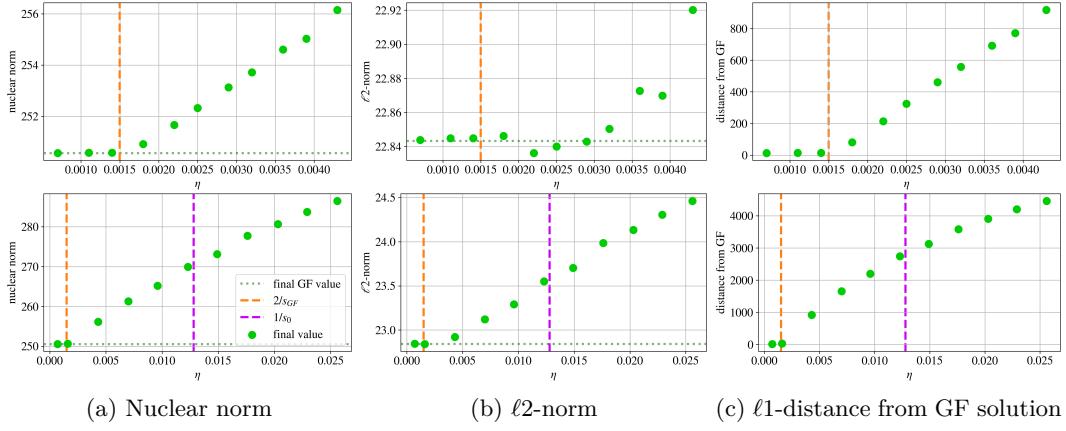


Figure 70: FCN-tanh on CIFAR-10-5k with the MSE loss. Train loss 0.001

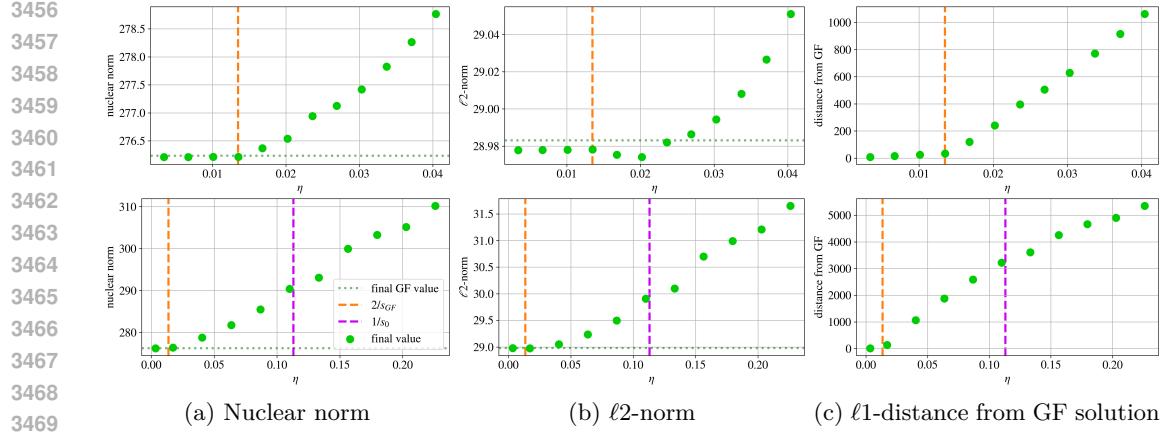


Figure 71: FCN-tanh on CIFAR-10-5k with the CE loss. Train loss 0.01

I.8.2 CONVERGENCE SPEED AND TEST ACCURACY

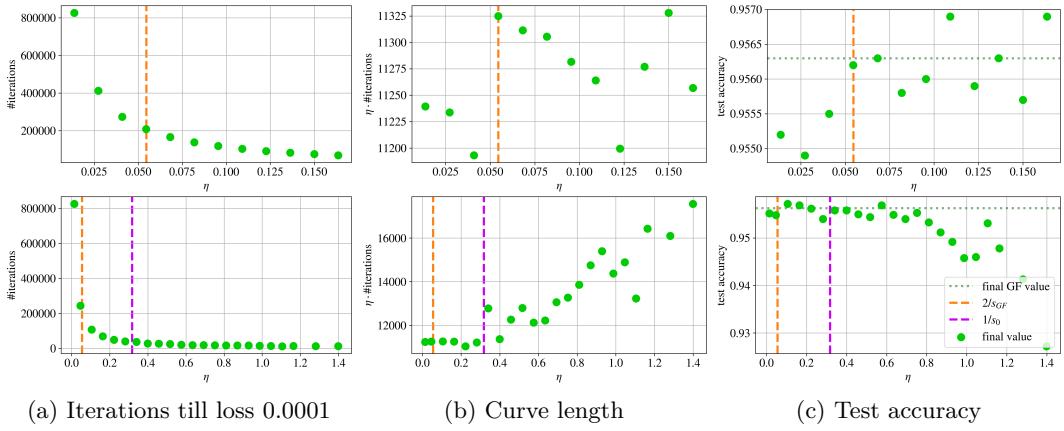
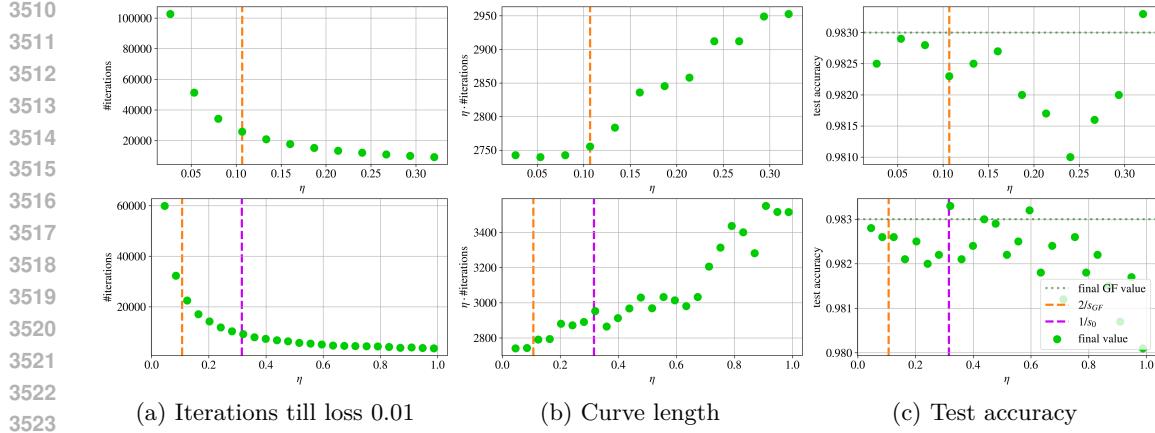
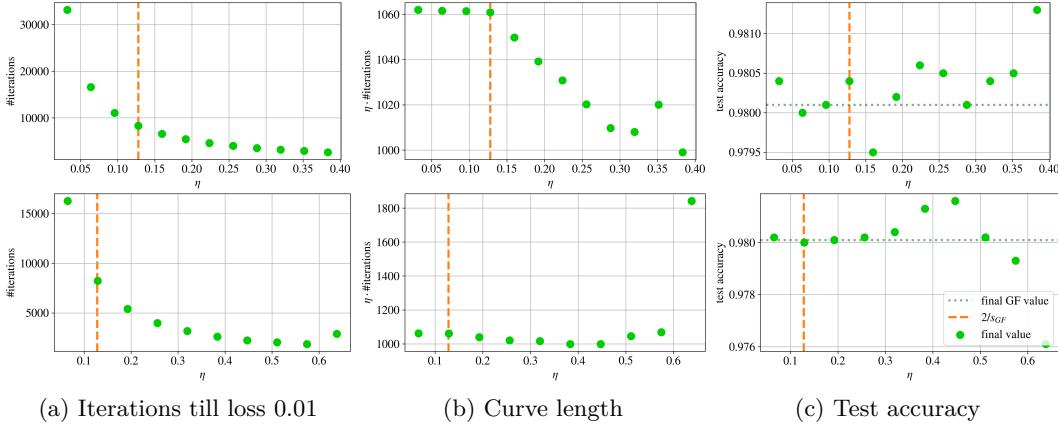
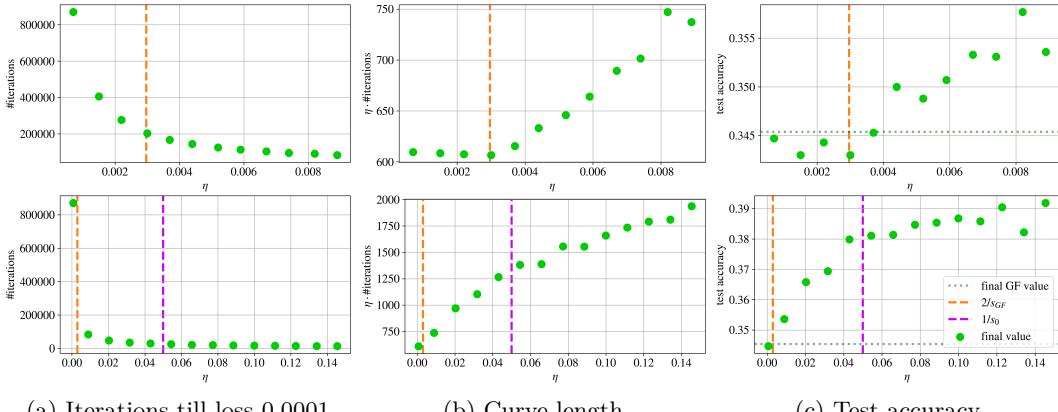


Figure 72: FCN-ReLU on MNIST-5k with the MSE loss. Train loss 0.0001



Figure 73: FCN-ReLU on MNIST-5k with the CE loss. Train loss 0.01

3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
35433549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
35633574
3575
3576
3577
3578
3579
3580
3581
3582
3583

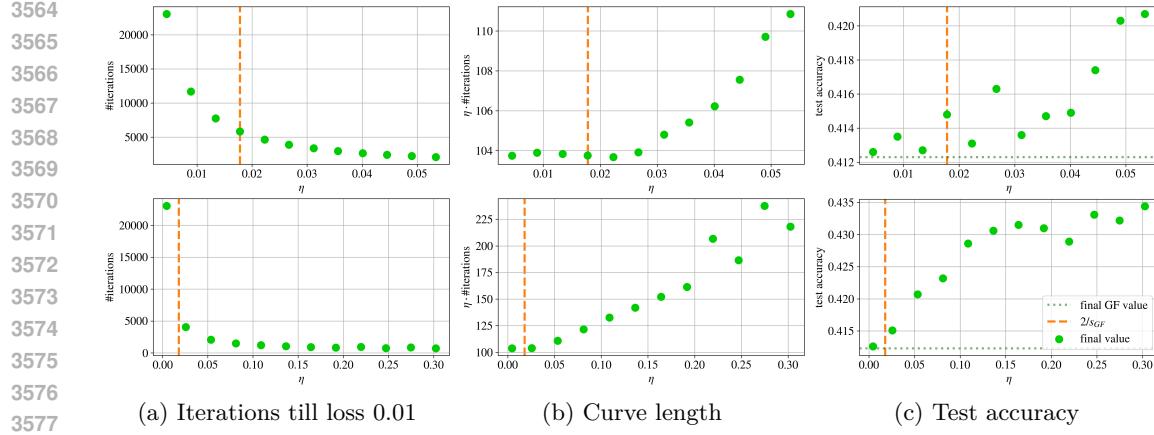


Figure 77: FCN-ReLU on CIFAR-10-5k with the CE loss. Train loss 0.01

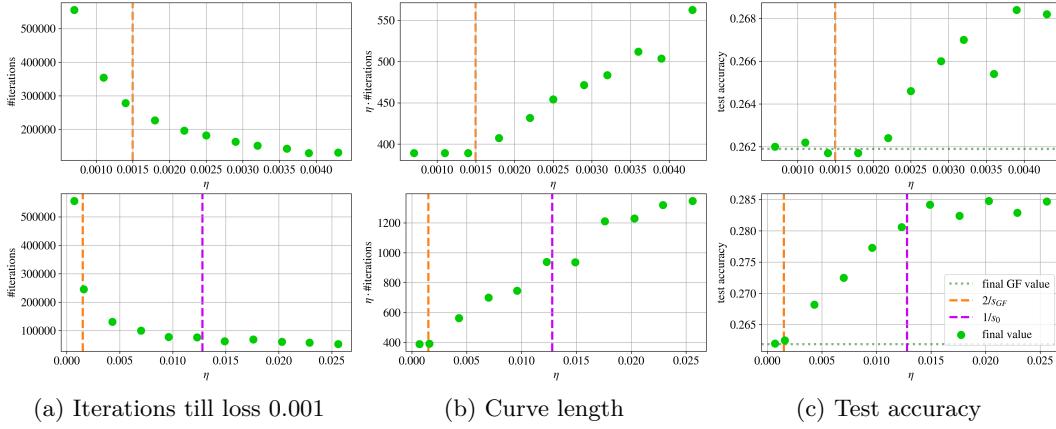


Figure 78: FCN-tanh on CIFAR-10-5k with the MSE loss. Train loss 0.001

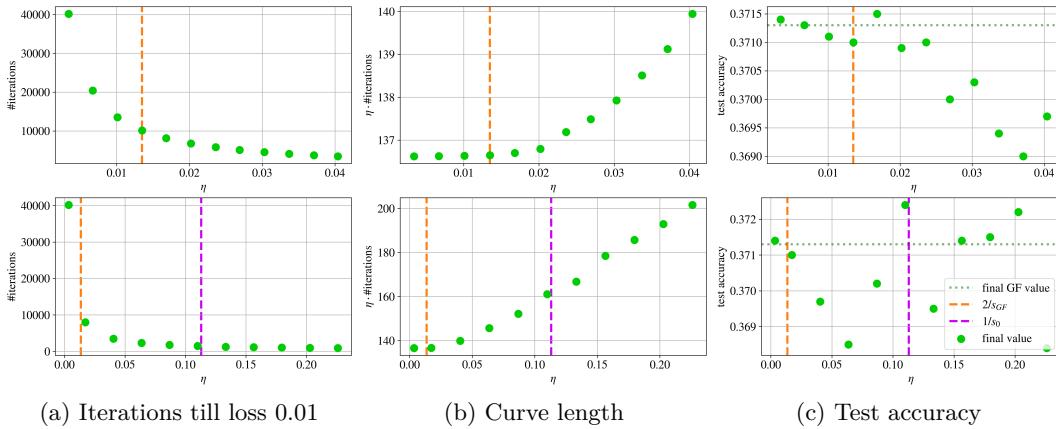


Figure 79: FCN-tanh on CIFAR-10-5k with the CE loss. Train loss 0.01