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Abstract

A widely believed explanation for the remarkable generalization capacities
of overparameterized neural networks is that the optimization algorithms
used for training induce an implicit bias towards benign solutions. To grasp
this theoretically, recent works examine gradient descent and its variants in
simplified training settings, often assuming vanishing learning rates. These
studies reveal various forms of implicit regularization, such as ℓ1-norm min-
imizing parameters in regression and max-margin solutions in classification.
Concurrent findings show that moderate to large learning rates exceeding
standard stability thresholds lead to faster, albeit oscillatory, convergence
in the so-called Edge-of-Stability regime, and induce an implicit bias to-
wards minima of low sharpness (norm of training loss Hessian).
In this work, we argue that a comprehensive understanding of the gener-
alization performance of gradient descent requires analyzing the interac-
tion between these various forms of implicit regularization. We empirically
demonstrate that the learning rate balances between low parameter norm
and low sharpness of the trained model. We furthermore prove for diagonal
linear networks trained on a simple regression task that neither implicit
bias alone minimizes the generalization error. These findings demonstrate
that focusing on a single implicit bias is insufficient to explain good gener-
alization, and they motivate a broader view of implicit regularization that
captures the dynamic trade-off between norm and sharpness induced by
non-negligible learning rates.

1 Introduction

First-order methods such as gradient descent (GD) are at the core of optimization in deep
learning, used to train models which generalize remarkably well to unseen data while being
able to interpolate random noise (Zhang et al., 2021). A widely believed explanation for this
impressive generalization ability on meaningful data is that GD and its variants exhibit an
implicit bias — a tendency of the optimization algorithm to favor well-structured solutions.
When rigorously characterizing this implicit bias for full-batch GD, recent works often con-
sider small learning rates or even the corresponding gradient flow (GF), which is GD’s
continuous time limit under infinitely small learning rates. For classification tasks, GF has
been shown to favor max-margin solutions (Soudry et al., 2018). In regression tasks us-
ing diagonal linear networks initialized near the origin, GF induces an implicit bias toward
parameters of minimal ℓ1-norm (Woodworth et al., 2020). In practice, however, optimiza-
tion relies on finite learning rates that are bounded away from zero, raising the question of
whether these explanations remain valid also in such scenarios.
At the same time, it was observed for standard architectures that full-batch GD can minimize
the training loss even with learning rates that are larger than what classical optimization
theory would require (Jastrzębski et al., 2019; Cohen et al., 2021). To be more precise, when
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optimizing a (locally) L-smooth1 loss function L : Rp → R via full-batch GD, i.e.,

θk+1 = θk − η∇L(θk) (1)

with fixed learning rate η > 0, it is well-known (Bubeck et al., 2015) that

L(θk+1) ≤ L(θk) − η

(
1 − Lη

2

)
∥∇L(θk)∥2

2, (2)

which means that monotonic decrease of GD is only ensured for η < 2/L. This sug-
gests for general twice differentiable L that GD with learning rate η becomes unstable
if ∥∇2L(θk)∥ > 2/η. As a result, the training loss L is not to be expected to decrease in
these sharp regions of the loss landscape.
When training neural networks via GD with fixed η > 0, it was however confirmed in ex-
tensive simulations (Cohen et al., 2021) that the sharpness SL(θk) = ∥∇2L(θk)∥ of the
training loss L at iterate θk increases along the GD trajectory until it exceeds the critical
value 2/η at some θk0 . For k > k0, the sharpness of the iterates starts hovering around and
slightly above this value (see Figure 12 for illustration). In this phase, the loss decreases
non-monotonically and faster than when using adaptive learning rates that stay in the stable
regime ηk < 2/SL(θk). Accordingly, the authors dubbed the phases k < k0 “Progressive
Sharpening” and the phase k > k0 “Edge of Stability (EoS)”. In practice, convergence in
the EoS regime is attractive due to the fast average loss decay. It was even suggested that
large learning rates and thus EoS might be necessary to learn certain functions (Ahn et al.,
2023). More importantly, recent works on EoS showed that large learning rates induce an
implicit bias of GD towards minimizers with low sharpness (Ahn et al., 2022). Indeed, for
fixed η > 0 and twice differentiable L, GD can only converge towards stationary points θ⋆

with SL(θ⋆) < 2/η.
In summary, these different lines of works suggest that GD in (1) exhibits at least two distinct
but entangled forms of implicit bias; one stemming from the underlying GF θ′ = −∇L(θ)
and one induced by its learning rate η. To fully understand the success of GD-based training
via implicit bias, it is therefore insufficient to analyze each bias in isolation. Instead, it is
essential to understand the trade-off between various biases and answer the central question:
How do different implicit biases interact when GD is used for training neural networks? A
better understanding of this interaction may ultimately lead to more principled choices in
the design of training algorithms and hyperparameters.

1.1 Contribution

Our work focuses on the two previously mentioned biases: the sharpness regularization
induced by large learning rates (Ahn et al., 2022) and the norm-regularization induced by
vanishing learning rates due to the compositional structure of feedforward networks (FFNs)
(Woodworth et al., 2020; Chou et al., 2023). Our contribution consists of three major points:

(i) Implicit bias trade-off in training: Across a wide range of settings, we empir-
ically demonstrate that at the end of training there is a trade-off between small
ℓ1-norm of the parameters and small sharpness of the training loss. This trade-off
is controlled by the learning rate. When comparing the final solutions across a
range of learning rates (see Section 2), we observe a sharp phase transition at a
data- and model-dependent critical learning rate ηc. Below ηc, both the ℓ1-norm
and sharpness remain nearly constant. Above ηc, increasing the learning rate leads
to an overall trend of increasing ℓ1-norm and decreasing sharpness. We emphasize
that this phase transition occurs when comparing final GD iterates over the choice of
learning rate, and does not correspond to the transition from Progressive Sharpening
to EoS observed for fixed learning rate η over the iterates θk of GD (Cohen et al.,
2021). Furthermore, our observations are not specifically linked to the ℓ1-norm of
the parameters, see Appendix H.9.

1A differentiable function L : Rp → R is called L-smooth if ∇L : Rp → Rp is L-Lipschitz. If L is
twice differentiable, this is equivalent to the Hessian having operator norm ∥∇2L∥ bounded by L.
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(a) Fully-connected network
(FCN) on CIFAR-10-5k

(b) FCN on MNIST (c) Vision transformer (ViT)
on MNIST-5k2

Figure 1: A critical learning rate ηc = 2/sGF marks a sharp phase transition between
two regimes, a flow-aligned regime, where solutions match gradient flow in sharpness and
norm, and an Edge-of-Stability (EoS) regime, where sharpness decreases while the ℓ1-norm
increases, indicating a trade-off between low sharpness and small norm. Here, three models
are trained with full-batch gradient descent with varying learning rates. This behavior is
observed consistently across a wide range of experiments, see Section 2.1.

(ii) Impact on generalization: Remarkably, low generalization error often does not
align with either extreme of the learning rate spectrum and never aligns with min-
imal ℓ1-norm. In some settings, the test error follows a U-shaped curve, with the
best generalization occurring at intermediate learning rates where norm and sharp-
ness biases are balanced, see Section 2.2. The learning rate can be interpreted as a
regularization hyperparameter that controls generalization capacity of the resulting
model, cf. Andriushchenko et al. (2023a).

(iii) Theoretical analysis of a simple model: Restricting ourselves to the strongly
simplified setting of training a shallow diagonal linear network with shared weights
for regression on a single data point with square loss, in Section 3 we analyze how
the ℓ1- and sharpness minimizer on the solution manifold L = 0 are related and
how they compare in terms of generalization. In fact, we can show that the lowest
expected generalization error is attained by neither of them. Serving as a basic
counterexample in which single biases do not generalize optimally, this supports our
conjecture that the generalization behavior of neural networks can not be explained
by a single implicit bias of GD. We analyze a comparably simple classification setting
in Appendix F.

To illustrate the effect of bias entanglement and the influence of the learning rate on the
resulting trade-off right away, we present a prototypical experiment in Figure 1.

1.2 Notation and outline

In the remainder of the paper, we denote vectors x ∈ Rd and matrices X ∈ Rn×d by bold
lower and upper case letters, and abbreviate [n] := {1, . . . , n}. For vectors/matrices of ones
and zeros we write 1 and 0, where the respective dimensions are clear from the context.
The sharpness of a twice differentiable function f : Rd → R at a point θ is defined as

Sf (θ) := ∥∇2f(θ)∥ = max
λ∈σ(∇2f(θ))

|λ|,

2The properties shown in the two left columns correspond to fully-connected FFNs (FCNs)
trained with mean squared error (MSE), while the Vision Transformer (ViT) in the right column
uses cross-entropy loss. We discuss the resulting qualitative differences between both losses in
Appendix H.4.
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where ∥ · ∥ denotes the operator norm and σ(M) the spectrum of a matrix M ∈ Rd×d. By
⊙ we denote the (entry-wise) Hadamard product between two vectors/matrices and write
z⊙k = z ⊙ · · · ⊙ z for the k-th Hadamard power. The support of a vector z ∈ Rd is denoted
by supp(z) = {i ∈ [d] : zi ̸= 0} and the diagonal matrix with diagonal z by Dz ∈ Rd×d. For
any index set I ⊂ [d] and z ∈ Rd, we furthermore write z|I ∈ Rd for the vector that is zero
on Ic and z on I.
Our numerical results are presented in Section 2. To shed some light on the observed
phenomena, we analyze a simple regression model in Section 3. Finally, we conclude in
Section 4 with a discussion of our results. All proofs and further insights are deferred to the
appendix.

1.3 Related works

Before presenting our results in detail, let us review the current state of the art on analyzing
the implicit bias of GF and GD, on EoS, which represent the two forms of regularization we
study. Thereafter we discuss the question how generalization relates to each implicit bias.
This section serves as a synopsis of Appendix A.
Implicit bias of GF. To understand the remarkable generalization properties of unreg-
ularized gradient-based learning procedures for deep neural networks (Zhang et al., 2021;
Belkin et al., 2019), a recent line of works has been analyzing the implicit bias of GD to-
wards parsimoniously structured solutions in simplified settings such as linear classification
(Soudry et al., 2018), matrix factorization (Gunasekar et al., 2017), training linear networks
(Geyer et al., 2020), training two-layer networks for classification (Chizat & Bach, 2020),
and training linear diagonal networks for regression (Vaskevicius et al., 2019). All of these
results analyze GD with small or vanishing learning rate, i.e., the implicit biases identi-
fied therein can be ascribed to the underlying GF dynamics. It is worth noting that there
are other mechanisms inducing algorithmic regularization such as label noise (Pesme et al.,
2021) or weight normalization (Chou et al., 2024b).
Edge of Stability. Whereas most of the above studies rely on vanishing learning rates,
results by Cohen et al. (2021) on EoS suggest that GD under finite, realistic learning rates
behaves notably differently from its infinitesimal limit. Recently, a thorough analysis of
EoS has been provided for training linear classifiers (Wu et al., 2024) and shallow near-
homogeneous networks (Cai et al., 2024) on the logistic loss via GD. In particular, GD with
fixed learning rate η > 0 can only converge to sufficiently flat minima (Ahn et al., 2022),
i.e., stationary points θ⋆ of a loss L with bounded sharpness SL(θ⋆) < 2/η. Note that EoS
was first observed for stochastic gradient descent (SGD) (Wu et al., 2018), for which the
analogous sharpness bounds also depend on the batch size (Wu et al., 2022).
Generalization and sharpness. In the past, various notions of sharpness have been stud-
ied in connection to generalization. The idea that flat minima benefit generalization dates
back to Wolpert (1993). Since then, many authors have conjectured that flatter solutions
should generalize better. Nevertheless, the relationship between flatness and generalization
remains disputed. Studies have found little correlation between sharpness and generaliza-
tion performance (Kaur et al., 2023), even when using scaling invariant sharpness measures
like adaptive sharpness (Kwon et al., 2021). On the contrary, in various cases the corre-
lation is negative, i.e., sharper minima generalize better. Notably, one of these works by
Andriushchenko et al. (2023a) observe correlation of generalization with parameters such as
the learning rate, which agrees with the herein presented idea of an implicit bias trade-off
that is governed by hyperparameters of GD.
We emphasize that with the present work we do not contribute to resolving the question of
which notion of sharpness (Tahmasebi et al., 2024) might be most accurate as a measure
of generalization. In fact, we restrict ourselves to the so-called worst-case sharpness SL
defined as the operator norm of the loss Hessian since this version of sharpness is provably
regularized by GD with large learning rates (Ahn et al., 2022).
Generalization and ℓ1-norm. A possible explanation for the occasionally observed cor-
relation between flatness and generalization can be deduced from Ding et al. (2024). The
authors show for (overparameterized) matrix regression that sharpness and nuclear norm
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(a) ε = 0.1 (b) ε = 0.01 (c) ε = 0.001

Figure 2: Sharpness and ℓ1-norm of final FCN models with tanh activation trained via MSE
loss on CIFAR-10-5k for three different loss thresholds ε. Axis scales are equal for all three
instances. Each plot illustrates a sharp regime transition as the learning rate crosses the
critical threshold ηc ≈ 2/sε

GF, shifting from the flow-aligned regime with nearly constant
sharpness and norm to the EoS regime where sharpness decreases and the ℓ1-norm increases.

(ℓ1-norm on the spectrum) minimizers lie close to each other. In view of the well-established
theory of sparse resp. low-rank recovery via ℓ1- resp. nuclear norm minimization (Foucart &
Rauhut, 2013), good generalization of flat minima might just be consequence of flat minima
lying close to nuclear norm minimizers, which provably generalize well in low-rank recovery.
The observation that a single bias causes generalization might only stem from special situ-
ations in which several independent biases agree. This point of view is supported by Wen
et al. (2023) and aligns with our observations.

2 Conflicting biases

Across a wide range of training setups with varying architectures, activations, loss functions,
and datasets, we consistently observe a trade-off between sharpness and ℓ1-norm of the final
classifier as soon as the learning rate increases above a critical value. In Figure 1 we show
examples of this transition, revealing two distinct regimes: The flow-aligned regime where
both final sharpness and ℓ1-norm remain nearly constant with respect to the learning rate,
and the Edge-of-Stability (EoS) regime where sharpness decreases hyperbolically and the
ℓ1-norm increases approximately linearly. For GD trained until loss ε the critical learning
rate at which this phase transition occurs depends on the gradient flow solution and is
approximately given by ηc := 2/sε

GF. Here, sε
GF := maxt≤tε

SL(θ(tε)) denotes the maximal
sharpness of the GF solution θ until time tε := inf{t : L(θ(t)) ≤ ε}, see Figure 2. When
ε is clear from the context, we just write sGF. We emphasize that this regime transition
occurs when comparing final GD iterates initialized identically over the choice of learning
rate, and does not correspond to the transition from Progressive Sharpening to EoS at
tη := inf{t : SL(θt) ≥ 2/η} observed for fixed learning rate η over the iterates θk of GD
(Cohen et al., 2021).

2.1 Systematic experimental analysis

To systematically investigate the trade-off between sharpness and ℓ1-norm minimization, we
conduct experiments on standard vision datasets using both simple and moderately complex
architectures. Since computing the sharpness during training involves estimating the largest
eigenvalue of the Hessian, which scales with both model and dataset size, we primarily use
compact models to allow for evaluation across a broad range of learning rates.
Following the experimental setup of Cohen et al. (2021), our base configuration consists of a
fully connected ReLU network with two dense layers with 200 hidden neurons each, trained
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on the first 5,000 training examples from both MNIST and CIFAR-10 (LeCun et al., 2010;
Krizhevsky et al., 2014). These two datasets provide complementary complexity levels and
help ensure that the observed effects are not specific to a single data distribution.
We train using full-batch gradient descent in order to cleanly isolate the fundamental trade-
off between norm and sharpness bias driven by the learning rate η. This allows us to study
the biases GD and GF induce without further confounding factors such as stochasticity or
momentum.
To ensure comparable convergence across settings, we train until we reach a fixed (training)
loss threshold depending on the model.
Once we fix a setup, we use the same weight initialization across all learning rates to isolate
the effect of the step size. The exact choice of the learning rate schedule, along with further
experimental details, is available in Appendix G.
We perform a systematic investigation by varying the following core components of the
training setup.

(i) Dataset size. When training on the full MNIST and CIFAR-10 dataset, the phase
transition persists, see Appendix H.1.

(ii) Architecture. We vary the architecture of the fully-connected network (FCN),
as well as extend the FCN to a convolutional neural network, a ResNet and a
Vision Transformer (Lecun et al., 1998; He et al., 2016; Dosovitskiy et al., 2021),
see Appendix H.2.

(iii) Activation function. We study ReLU and tanh activations. The phase transition
occurs in both settings, see Appendix H.3.

(iv) Loss function. On most settings, we compare both cross-entropy loss (CE) and
mean squared error (MSE). The phase transitions are similar though differences in
the time evolution exist, see Appendix H.4.

(v) Loss threshold. For every experiment, we vary the loss threshold to which we
train, cf. Figure 2 and Appendix H.5. Note that varying the loss threshold can be
interpreted as early stopping.

(vi) Initialization. When varying the initialization, the properties of the GF solution
sGF are changed. Consequently, the transition between both regimes happens at a
different learning rate, see Section H.6.

(vii) Parametrization. We train FCNs with varying widths in the µP and kernel pa-
rameterizations (Yang et al., 2022; Jacot et al., 2018) in Appendix H.7 where for µP
we observe a certain width-independence of the spectral properties, cf. Noci et al.
(2024).

Across all variations, we consistently observe the same trade-off between sharpness and ℓ1-
norm, and the emergence of the flow-aligned and EoS regimes. Most figures showing these
variations are deferred to Appendix I due to the page limit, along with further noteworthy
observations from our experiments being noted in Appendix H.

2.2 Interpretation of the experiments

We now provide a high-level summary of our findings.
Flow-aligned regime. In the flow-aligned regime (η < ηc), the behavior of GD closely
mirrors that of continuous-time gradient flow. This regime is characterized by stable conver-
gence of GD and minimal deviation from the gradient flow dynamics in terms of sharpness
and ℓ1-norm. Intuitively, the sharpness of the solution in this regime stays within the stabil-
ity limits set by the learning rate in (2), i.e., SL(θk) ≤ 2/η, allowing the discrete updates to
track the continuous trajectory. However, we note that contrary to previous findings such
as by Arora et al. (2022), the absolute deviation from the GF trajectory is not necessarily
negligible, see Appendix H.10. Nonetheless, the limits of GF and GD share nearly equal
sharpness and ℓ1-norm values.
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(a) MNIST-5k, MSE (b) CIFAR-10-5k, CE (c) CIFAR-10-5k, MSE

Figure 3: Final sharpness, ℓ1-norm, and test loss versus learning rate for three FCNs. On
MNIST-5k with MSE loss (left), a clear U-shaped test loss indicates a trade-off between low
sharpness and low ℓ1-norm. CIFAR-10-5k with CE loss (middle) shows a similar, though
weaker trend. The best generalization typically occurs at intermediate learning rates where
norm and sharpness biases are balanced. However, this is not universal — for instance
CIFAR-10-5k with MSE loss (right) does not follow this pattern.

Edge-of-Stability regime. As the learning rate exceeds the critical threshold ηc = 2/sGF,
the dynamics of GD enter the EoS regime. Here, training is governed by EoS (Cohen et al.,
2021): while the loss continues to decrease on average over time, the decrease is no longer
monotone and the curvature of the loss at the iterates (as measured by SL) fluctuates just
above 2/η. As GD is unable to converge to an overly sharp solution (cf. Theorem B.2), the
iterates oscillate towards flatter regions. If training ends during or just after this EoS phase,
the solution sharpness will therefore be near 2/η.
In this regime, the sharpness SL of the final network parameters thus decreases hyperbol-
ically with the learning rate, closely tracking the function η 7→ 2/η. At the same time,
the ℓ1-norm of the final parameters increases. In some cases, there is an initial, temporary
decrease in norm before the overarching trend of increasing norm and decreasing sharpness
takes over at larger learning rates. We highlight that this increase in norm is not specific
to the ℓ1-norm: we observe the same qualitative trend for the ℓ2-norm and the nuclear
norm, suggesting a general increase in model complexity as the learning rate increases, see
Appendix H.9.
Generalization. When comparing the test error of the produced solutions, see Figure 3,
we note that minimal norm solutions in the flow-aligned regime never lead to optimal gen-
eralization, i.e., if the test error decreases towards one extreme, it is always towards higher
learning rates and increasing ℓ1-norm. In some of the cases we even observe a U-curve of the
test error suggesting that GD generalizes best when ℓ1- and sharpness bias are well-balanced,
see Figure 3. The learning rate can then be interpreted as a regularization hyperparam-
eter that controls generalization capacity of the resulting model. This aligns with recent
independent experiments by Andriushchenko et al. (2023a).

3 An elementary study of how implicit biases interact

To shed some light on the empirical observations of Section 2, we study the implicit biases of
GF and GD in the EoS regime in a simple regression task and show that for this setup, the
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(a) Shallow diagonal linear NN (b) GD trajectory, η = 0.102 (c) GD trajectory, η = 0.167

Figure 4: Two-layer diagonal linear model with weight sharing, shown in (4a). In (4b) and
(4c), evolutions of weight iterates throughout training can be seen for different learning
rates, where (4b) operates in the flow-aligned regime, while (4c) is in EoS regime. The
background color map represents loss sharpness from low (white) to high (blue).

ℓ1-norm and sharpness minimizers of the interpolating manifold are distinct, and neither is
sufficient for best generalization. Assuming a single data point (x, y) ∈ Rd × R, we train a
shallow diagonal linear network with shared weights w ∈ Rd and without bias

ϕw : Rd → R, ϕw(z) = wT Dwz, (3)

see Figure 4a, via the square loss L(y′, y) = 1
2 (y′ − y)2. The training objective is then

min
w∈Rd

L(ϕw(x), y) = min
w∈Rd

L(w) := min
w∈Rd

1
2

(〈
w⊙2, x

〉
− y

)2
, (4)

where we overload the notation L for the sake of simplicity. Note that ⊙ denotes the
Hadamard product and z⊙k = z ⊙ · · · ⊙ z the k-th Hadamard power. We define the set of
parameters of interpolating solutions ϕw as

M = {w ∈ Rd : L(w) = 0} (5)

and note in the following lemma that M is a Riemannian manifold in general. We provide
the proof in Appendix C.
Lemma 3.1. For L as in (4), define M as in (5) and assume that M ≠ ∅. If x ∈ Rd

̸=0 and
y ̸= 0, then M is a Riemannian manifold with tangent space TwM = (x ⊙ w)⊥ at w ∈ M.

While this training model is strongly simplistic, it allows us to explicitly compare the implicit
biases induced by GF and by EoS, and to compute their generalization errors w.r.t. the
realization of (x, y). Indeed, it is known that in this setting GF initialized at w0 = α1, for
α > 0 small, converges to weights w⋆ that approximately minimize the ℓ1-norm among all
interpolating solutions (Chou et al., 2023), see Theorem B.1 in Appendix B. Similarly, under
mild technical conditions on L, which are fulfilled in the present study, it is well-known for
GD with learning rate η > 0 that for almost every initialization w0 ∈ Rd the iterates wk can
only converge to stationary points w∞ with SL(w∞) ≤ 2/η (Ahn et al., 2022), see Theorem
B.2 in Appendix B. In consequence, GD is implicitly restricted to limits with low sharpness
if η is chosen sufficiently large.
The following result now characterizes how the ℓ1- and sharpness-minimizers of (4) relate.
In particular, it illustrates that they are clearly distinct in general.
Proposition 3.2. For x ∈ Rd

̸=0 and L as in (4) with M ≠ ∅ as in (5), the following hold:

(i) To have

w ∈ Mℓ1 := arg min
z∈M

∥z⊙2∥1,

it is necessary that x|supp(w) = xmax · 1|supp(w), for xmax = maxi |xi|.
If x ∈ Rd

>0, this condition is also sufficient. In particular, we have in this case that

Mℓ1 =
{

w ∈ Rd : ∥w∥2
2 = y

xmax
and supp(w) ⊂ arg max

i
xi

}
. (6)
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(ii) To have

w ∈ MSL := arg min
z∈M

SL(z),

it is necessary that x|supp(w) = x0 · 1|supp(w), for some x0 ∈ R.
If x ∈ Rd

>0, it is necessary and sufficient that the previous condition holds with
x0 = xmin = mini xi. In particular, we have in this case that

MSL =
{

w ∈ Rd : ∥w∥2
2 = y

xmin
and supp(w) ⊂ arg min

i
xi

}
. (7)

Proof sketch: To derive the necessary conditions, we calculate Riemannian gradients and
Hessians along M and use the respective first- and second-order necessary conditions. To
derive the sufficient conditions and the explicit representations in (6) and (7), we construct
simple minimizers of the problem based on canonical basis elements. The details are provided
in Appendix D.

Proposition 3.2 shows that, in general, the ℓ1- and sharpness-minimizer on M do not agree.
We mention that the assumption x ∈ Rd

̸=0 is not restrictive since any zero coordinate of x
can be removed by reducing the problem dimension. In view of Theorems B.1 and B.2, we
see that depending on the learning rate, GD with initialization w0 = α1, for α > 0 close to
zero, is implicitly more biased to two disjoint sets. For η → 0, the limit of stable GD will
lie close to the set in (6); as η increases, the limit of unstable GD (as far as it exists) will lie
close to the set in (7). For d = 2, the situation is illustrated in Figure 4. We further note
that the restriction of Theorem B.1 to non-negative parameters is not limiting the analysis
since (6) always contains such solutions, i.e., in our setting an ℓ1-minimizer on M ∩ Rd

≥0 is
also a minimizer on M.
In Appendix E, we demonstrate that the expected generalization error of solutions on M
only minimizing ℓ1-norm or sharpness can be far from optimal, while ℓ1-minimization still
outperforms sharpness minimization. We analyze a comparably simplified classification
model for which sharpness minimization leads to better generalization performance than
ℓ1-minimization in Appendix F. Finally, we provide additional numerical experiments for
the diagonal network in Appendix H.12.

4 Discussion

Our experiments suggest that a single implicit bias of gradient descent is not sufficient to
explain the good generalization performance in deep learning. While solutions obtained
with vanishing learning rates may have an implicit bias towards simple structures, the bias
changes with increasing learning rate. This insight provides an explanation for the strong
empirical influence of the learning rate on model performance. Our theoretical analysis fur-
ther indicates that the learning rate balances between various implicit biases, and that good
generalization performance is only reached by careful fine-tuning of such hyperparameters
of GD. These insights from our simplified model open the door to a broader perspective on
implicit regularization which accounts for the interaction between multiple biases shaped by
the optimization dynamics.

4.1 Limitations

Our theoretical analysis is restricted to simple models due to the difficulty in explicitly
characterizing the implicit biases of GD in more general setups. In combination with our
empirical studies, it nevertheless provides consistent evidence for the observed phenom-
ena. Our study is further limited by only considering full-batch gradient descent as well as
two specific manifestations of implicit bias. Further empirical validation on other popular
optimizers, network classes and datasets would be desirable.
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Supplement to the paper “Conflicting Biases at the Edge of
Stability: Norm versus Sharpness Regularization”

In this supplement, we provide additional numerical simulations and proofs that were
skipped in the main paper.
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A Related works — Extended discussion

We provide a more detailed review of the related literature here.

Implicit bias of GF. To understand the remarkable generalization properties of unreg-
ularized gradient-based learning procedures for deep neural networks (Zhang et al., 2021;
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Belkin et al., 2019), a recent line of works has been analyzing the implicit bias of GD to-
wards parsimoniously structured solutions in simplified settings such as linear classification
(Soudry et al., 2018; Ji & Telgarsky, 2019), matrix factorization (Gunasekar et al., 2017;
Arora et al., 2019; Chou et al., 2024a), training linear networks (Geyer et al., 2020; Stöger &
Soltanolkotabi, 2021), training two-layer networks for classification (Chizat & Bach, 2020;
Frei et al., 2022), and training linear diagonal networks for regression (Vaskevicius et al.,
2019; Woodworth et al., 2020; Azulay et al., 2021; Chou et al., 2023). All of these results
analyze GD with small or vanishing learning rate, i.e., the implicit biases identified therein
can be ascribed to the underlying GF dynamics.

Other types of implicit regularization of GD. It is worth noting that there are other
mechanisms inducing algorithmic regularization such as label noise (Pesme et al., 2021;
Vivien et al., 2022) or weight normalization (Chou et al., 2024b). In (Andriushchenko et al.,
2023b; Even et al., 2023) an intriguing connection regarding implicit regularization induced
by large step sizes coupled with SGD noise has been discussed. In particular, for shallow
diagonal linear networks it has been shown that SGD with large learning rates implicitly
regularizes certain parameter norms (Wu & Su, 2023). For a broader overview on the topic
including further references we refer to the survey by Vardi (2023).

Edge of Stability. Whereas most of the above works rely on vanishing learning rates,
results by Cohen et al. (2021) on EoS suggest that GD under finite, realistic learning rates
behaves notably differently from its infinitesimal limit. In the past few years, subsequent
works have started to theoretically analyze the EoS regime. It is noted in Ahn et al. (2022)
that GD with fixed learning rate η > 0 can only converge to stationary points θ⋆ of a loss
L if SL(θ⋆) < 2/η. In Chemnitz & Engel (2024), this stability criterion of stationary points
has been generalized to SGD. Note that EoS was first observed for SGD (Wu et al., 2018),
for which the analogous sharpness bounds also depend on the batch size (Wu et al., 2022).
Arora et al. (2022) relate normalized GD on a loss L to GD on the modified loss

√
L and

show that EoS occurs O(η)-close to the manifold of interpolating solutions. Under various
restrictive assumptions, progressive sharpening and EoS have been analyzed by Wang et al.
(2022); Chen & Bruna (2023); Zhu et al. (2023). Recently, a thorough analysis of EoS has
been provided for training linear classifiers (Wu et al., 2024) and shallow near-homogeneous
networks (Cai et al., 2024) on the logistic loss via GD. The authors show that large learning
rates allow a loss decay of O(1/k2) which exceeds the best known rates for vanilla GD from
classical optimization. Cohen et al. (2021) extended their empirical study of EoS to adaptive
GD-methods for which the stability criterion becomes more involved (Cohen et al., 2022).
Finally, let us mention that applying early stopping to label noise SGD with small learning
rate can also induce sharpness minimization and structural simplicity of the learned weights
(Gatmiry et al., 2024). As opposed to our definition of sharpness, sometimes called worst-
case sharpness, in the latter work sharpness is measured by the trace of ∇2L also known as
average-case sharpness.

Sharpness and generalization. In the past, various notions of sharpness have been stud-
ied in connection to generalization. The idea that flat minima benefit generalization dates
back to Wolpert (1993), who argued this from a minimal description length perspective.
Later, Hochreiter & Schmidhuber (1994; 1997) proposed an algorithm designed to locate
flat minima, defining them as “large regions of connected acceptable minima,” where an
acceptable minimum is any point with empirical mean squared error below a certain thresh-
old. Notably, their formulation does not explicitly involve the Hessian. Following these
early works, many authors have conjectured that flatter solutions should generalize better
(Xing et al., 2018; Zhou et al., 2020; Park & Kim, 2022; Lyu et al., 2022). The prevailing
intuition is that solutions lying in flatter regions of the loss landscape are more robust to
perturbations (Keskar et al., 2017), which may contribute to improved generalization.
Inspired by this idea, sharpness-aware minimization (SAM) has been proposed by Foret et al.
(2020) as an explicit regularization method that penalizes sharpness, successfully applied
in improving model generalization on benchmark datasets such as CIFAR-10 and CIFAR-
100. In Tahmasebi et al. (2024), SAM was extended to sharpness measures that are general
functions of the (spectrum of the) Hessian of the loss. The general sharpness formulation
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presented therein encompasses various common notions of sharpness such as worst-case and
average-case sharpness.
Despite these theoretical and empirical arguments, the relationship between flatness and
generalization remains disputed. Studies have found little correlation between sharpness
and generalization performance (Jiang et al., 2019; Kaur et al., 2023). Furthermore, a re-
parametrization argument by Dinh et al. (2017) shows that sharpness measures such as SL
can be made arbitrarily large without affecting generalization, challenging the notion that
flatness is a necessary condition for good performance. Even when using scaling invariant
sharpness measures like adaptive sharpness (Kwon et al., 2021), the empirical studies per-
formed by Andriushchenko et al. (2023a) show that there is no notable correlation between
low sharpness and good generalization. On the contrary, in various cases the correlation is
negative, i.e., sharper minima generalize better. What is most interesting about the latter
work from our perspective, is that it observes correlation of generalization with parameters
such as the learning rate, which agrees with the herein presented idea of an implicit bias
trade-off that is governed by hyperparameters of GD.

Generalization and ℓ1-norm. A possible explanation for the occasionally observed cor-
relation between flatness and generalization can be deduced from Ding et al. (2024). Therein
the authors show for (overparameterized) matrix factorization of X⋆ ∈ Rd1×d2 via

min
U∈Rd1×k,V∈Rd2×k

∥UVT − X⋆∥2
F ,

where k ≥ rank(X⋆) is arbitrarily large, that sharpness and nuclear norm (ℓ1-norm on the
spectrum) minimizers coincide. For (overparameterized) matrix regression

min
U∈Rd1×k,V∈Rd2×k

∥A(UVT ) − y∥2
2, (8)

where y = A(X⋆) + e, for A : Rd1×d2 → Rm and unknown noise e ∈ Rm, they relate the
distance between sharpness and nuclear norm minimizers to how close the measurement
operator A is to identity. Good generalization of a solution (Û, V̂) of (8), i.e., ÛV̂T ≈ X⋆,
is then proved if A satisfies an appropriate restricted isometry property (RIP) for low-rank
matrices. However, it is not really clear which of the two types of regularization explains
the generalization. In view of the well-established theory of sparse resp. low-rank recovery
via ℓ1- resp. nuclear norm minimization (Foucart & Rauhut, 2013), one may assume in this
specific setting that good generalization of flat minima is just a consequence of the fact that
flat minima lie close to nuclear norm minimizers, which provably generalize well in low-rank
recovery. The observation that a single bias causes generalization might only stem from
special situations in which several independent biases agree. This point of view is supported
by Wen et al. (2023) and aligns with our observations.

B Implicit norm and sharpness regularization

In this section, we recall two established results on implicit bias of GF and GD. In the setting
of Section 3, it is known that GF converges to weights w⋆ that approximately minimize a
weighted ℓ1-norm among all interpolating solutions ϕw(x) = y if initialized close to the origin
(Chou et al., 2023) where the weights of the ℓ1-norm depend on the chosen initialization.
To avoid unnecessary technicalities, we formulate the result only for w0 = α1 which induces
a bias towards the unweighted ℓ1-norm.
Theorem B.1 (Implicit ℓ1-bias of GF (Chou et al., 2023)). Let L be defined as in (4) with
M as in (5). Assume that M ∩ Rd

≥0 is non-empty and GF is applied with w0 = α1, for
α > 0. Then, GF converges to w∞ ∈ Rd with

∥w⊙2
∞ ∥1 ≤

(
min

w∈M∩Rd
≥0

∥w⊙2∥1

)
+ ε(α),

where ε(α) > 0 satisfies ε(α) ↘ 0, for α → 0.

The implicit sharpness regularization of GD for large learning rates can be deduced from
the following result.
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Theorem B.2 (Dynamic stability of GD (Ahn et al., 2022)). Let η > 0 and X ⊂ Rp. Let L
be twice continuously differentiable such that the operator F : Rp → Rp, F (w) = w−η∇L(w)
satisfies that F −1(S) is a set of Lebesgue-measure zero, for any set S ⊂ Rp of measure zero.
Assume furthermore that 1

η is not an eigenvalue of ∇2L(w⋆) for every stationary point w⋆

of L. Let wk be the iterates of GD with learning rate η. If ∥∇2L(w)∥2 > 2/η for every
w ∈ X, then there exists a zero Lebesgue measure set AX such that

• either w0 ∈ AX

• or wk does not converge to any w ∈ X.

C Proof of Lemma 3.1

Lemma 3.1 is a special case of the following result for training diagonal linear L-layer
networks with shared weights on a single data point. In this case, the loss L is given by

L(w) = 1
2(⟨x, w⊙L⟩ − y)2. (9)

Lemma C.1. For L as in (9), define M as in (5). If x ∈ Rn
̸=0 and y ̸= 0, then M is a

Riemannian manifold with tangent space TwM = (x ⊙ w⊙(L−1))⊥ at w ∈ M.

Proof. Note that w ∈ M is equivalent to
h(w) := ⟨x, w⊙L⟩ − y = 0,

where h : Rd → R. Since Dh(w) = L(x ⊙ w⊙L−1)T and w ̸= 0 for any w ∈ M due to
y ̸= 0, we have that rank(Dh(w)) = 1 for all w ∈ M. Hence, M is a (d − 1)-dimensional
submanifold in Rd with tangent spaces

TwM = ker(Dh(w)) = (x ⊙ wL−1)⊥,

e.g., see Boumal (2023). Smoothness of the manifold follows by equipping TwM with the
Euclidean metric of Rd.

D Proof of Proposition 3.2

Before we prove Proposition 3.2, we note that the ℓ1-norm of w⊙2 can be written as
∥w⊙2∥1 = ∥w∥2

2 (10)
and that the sharpness SL(w) of L at w satisfies

SL(w) = 4∥x ⊙ w∥2
2, (11)

for any w ∈ M, where we used that
∇2L(w) = D2(⟨x,w⊙2⟩−y)·x + 4(x ⊙ w)(x ⊙ w)T .

The necessary conditions of Proposition 3.2 are proven in the following lemma.
Lemma D.1. For x ∈ Rd

̸=0 and L as in (4) with M as in (5), the following hold:

(i) To have

w ∈ arg min
z∈M

∥z⊙2∥1,

it is necessary that x|supp(w) = x0 · 1|supp(w), for x0 = maxi |xi|.

(ii) To have
w ∈ arg min

z∈M
SL(z),

it is necessary that x|supp(w) = x0 · 1|supp(w), for some x0 ∈ R. Furthermore, if
x ∈ Rd

>0, it is additionally necessary that x0 = mini xi.
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Proof. In the proof we compute the Riemannian gradient gradf and the Riemannian Hessian
Hessf of a function f on M. Note that

gradf(w) = PTwM∇f(w)
and

[Hessf(w)](u) = PTwM([∇gradf(w)](u)),
for any w ∈ M and u ∈ TwM, where PU denotes the orthogonal projection onto the linear
subspace U ⊂ Rd (Boumal, 2023).
We begin with (i). Define f(w) = 1

2 wT w and note that f(w) = 1
2 ∥w⊙2∥1 by (10). Hence,

gradf(w) = PTwM∇f(w) = w − 1
∥Dxw∥2

2
DxwwT Dx · w.

To have gradf(w) = 0, w has to be an eigenvector of DxwwT Dx with eigenvalue ∥Dxw∥2
2

which is equivalent to x|supp(w) = x0 · 1|supp(w), for some x0 ∈ R. This is the first necessary
condition.
Now define G(w) = gradf(w). Then,
[∇G(w)]ij = ∂jG(w)i

=
{ 2

∥Dxw∥4
2

· x2
jwj · xiwi⟨w, Dxw⟩ − 2

∥Dxw∥2
2

· xixjwiwj i ̸= j,

1 − 1
∥Dxw∥2

2
· (xi⟨w, Dxw⟩ + 2x2

i w2
i ) + 2

∥Dxw∥4
2
x2

i wi · xiwi⟨w, Dxw⟩ i = j,

such that

∇G(w) = D1− ⟨w,Dxw⟩
∥Dxw∥2

2
·x − 2

∥Dxw∥2
2

DxwwT Dx + 2⟨w, Dxw⟩
∥Dxw∥4

2
DxwwT D2

x.

Consequently, we have that
[Hessf(w)](u) = PTwM([∇G(w)](u))

= (I − 1
∥Dxw∥2

2
DxwwT Dx) ·

[
(1 − ⟨w, Dxw⟩

∥Dxw∥2
2

· x) ⊙ u
]

.

For any w satisfying the first necessary condition, we thus have that

⟨u, [Hessf(w)](u)⟩ = uT · (I − wwT

∥w∥2
2

) · (1 − x
x0

) ⊙ u = ∥u∥2
2 − ⟨u,

x
x0

⊙ u⟩,

where we used in the second equality that x|supp(w) = x0 · 1|supp(w) by which (1 −
x
x0

)|supp(w) = 0. Hence, ⟨u, [Hessf(w)](u)⟩ ≥ 0 can only hold for all u ∈ TwM if
x0 = arg maxi |xi|.
To show (ii), we proceed analogously but consider f(w) = 1

2 DxwT wDx, and note that
f(w) = 1

8 SL(w) by (11). Then, one can easily check that

gradf(w) = D2
xw − 1

∥Dxw∥2
2

DxwwT D3
x · w,

which implies the same first necessary condition. Now assume x ∈ Rd
>0. Then,

∇2G(w) = D
x⊙2− ⟨w,D3

xw⟩
∥Dxw∥2

2
·x

− 2
∥Dxw∥2

2
DxwwT D3

x + 2⟨w, D3
xw⟩

∥Dxw∥4
2

DxwwT D2
x,

such that

[Hessf(w)](u) =
(

I − 1
∥Dxw∥2

2
DxwwT Dx

)
·
(

x⊙2 − ⟨w, D3
xw⟩

∥Dxw∥2
2

· x
)

⊙ u.

For any w satisfying the first necessary condition, we thus have that
⟨u, [Hessf(w)](u)⟩ = ⟨u, D2

xu⟩ − x0⟨u, Dxu⟩

which implies for x ∈ Rd
>0 that ⟨u, [Hessf(w)](u)⟩ ≥ 0 can only hold for all u ∈ TwM if

x0 = arg mini xi.
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The sufficient conditions are stated in the following lemma.
Lemma D.2. For x ∈ Rd

>0 and L as in (4) with M as in (5), we have the following:

(i) To have

w ∈ arg min
z∈M

∥z⊙2∥1,

it is sufficient for w ∈ M that supp(w) ⊂ arg maxk xk.

(ii) To have
w ∈ arg min

z∈M
SL(z),

it is sufficient for w ∈ M that supp(w) ⊂ arg mink xk.

Proof. First recall (10) and (11). We begin with (i). Let k∗ ∈ arg maxk xk. Since ∥w∥2
2 <

y/xk⋆
implies by our assumption on x that ⟨x, w⊙2⟩ ≤ xk⋆

∥w∥2
2 < y, i.e., w /∈ M, and√

y

xk⋆

ek∗ ∈ M satisfies
∥∥∥√

y

xk⋆

ek∗

∥∥∥2

2
= y

xk⋆

,

we know by (10) that

min
z∈M

∥z⊙2∥1 = y

xk⋆

.

For any w ∈ M with supp(w) ⊂ arg maxk xk, we have that

y = ⟨x, w⊙2⟩ = xk⋆
∥w∥2

2 = xk⋆
∥w⊙2∥1

and the claim in (i) follows.
To see (ii) we proceed analogously. Let k∗ ∈ arg mink xk. Since ∥Dxw∥2

2 < yxk⋆
implies by

our assumption on x that ⟨x, w⊙2⟩ ≤ 1
xk⋆

∥Dxw∥2
2 < y, i.e., w /∈ M, and√

y

xk⋆

ek∗ ∈ M satisfies
∥∥∥Dx ·

√
y

xk⋆

ek∗

∥∥∥2

2
= yxk⋆

,

we know by (11) that
min
z∈M

SL(z) = yxk⋆
.

For any w ∈ M with supp(w) ⊂ arg mink xk, we have that

y = ⟨x, w⊙2⟩ = xk⋆∥w∥2
2 = 1

xk⋆

SL(w)

and the claim in (ii) follows.

The specific shape of the minimizing sets (6) and (7) can easily be derived from the previous
two lemmas.

E An elementary study of how implicit biases interact —
Generalization

Recalling the setting outlined in Section 3, let us assume that our data follows a simple
linear regression model with x ∼ N (0, I) and y = ⟨1, x⟩ + ε, for independent ε ∼ N (0, 1).
Then, the risk under L can be computed explicitly and, given a single training data point
(x0, y0) with x0 ∈ Rd

≥0, the best achievable generalization error of ϕw trained via (4) can
be computed as follows.3

3Note that (x0, y0) takes in this section the role of the single data point (x, y) from before and
that we condition to non-negative data in order to apply Proposition 3.2.
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Lemma E.1. Let L be as in (4) and let x ∼ N (0, Id×d) and y = ⟨1, x⟩+ε, for independent
ε ∼ N (0, 1). Then,

R(w) = E (x,y) L(w) = 1
2(∥w⊙2∥2 − 1)2 + d

2 .

Moreover, for every (x0, y0) ∈ Rd
≥0 × R with |supp(x0)| ≥ 2 and M ≠ ∅, we have that

min
w∈M

R(w) = R
(√

y0

∥x0∥2
2

x⊙ 1
2

0

)
.

Proof. First note that

R(w) = E (x,y) L(w) = 1
2 E (x,y)(⟨w⊙2, x⟩ − y)2

= 1
2

(
(w⊙2)T E (xxT )w⊙2 − 2E (yxT )w⊙2 + E y2

)
= 1

2∥w⊙2∥2
2 − ⟨1, w⊙2⟩ + 1

2(d + 1)

= 1
2(∥w⊙2∥2 − 1)2 + d

2 ,

where we used in the penultimate line that E (yxT ) = 1 and E (y2) = d + 1, and in the
ultimate line that ⟨1, w⊙2⟩ = ∥w⊙2∥2.
Let us now assume that (x0, y0) is given such that x0 ∈ Rd

≥0 and M ≠ ∅. Note that

min
w∈M

R(w) = min
w̃∈Rd

≥0

1
2(∥w̃∥2 − 1)2 + d

2 , s.t. ⟨x0, w̃⟩ = y0, (12)

where w̃ = w⊙2. Since ⟨x0, z⟩ ≤ ∥x0∥2 < ∥x0∥1 = y0, for every unit norm vector z ∈ Rd

and every x0 ∈ Rd
≥0 with |supp(x0)| ≥ 2, i.e., the constraints in (12) represent a hyperplane

perpendicular to x0 and not intersecting the unit ℓ2-ball, it is clear that the minimum is
achieved for

w̃⋆ = arg min
w̃∈Rd

≥0

∥w̃∥2, s.t. ⟨x0, w̃⟩ = y0

= y0

∥x0∥2
2

x0.

The claim follows since w̃ = w⊙2.

Assume we are given a generic draw of the single data point (x0, y0) ∼ (x, y) with x0 ∈ Rd
≥0,

i.e., we consider draw (x0, y0) from the conditional distribution p((x, y)|x ≥ 0). Note that
almost surely x0 will satisfy |supp(x0)| ≥ 2, and have a unique minimal entry xmin at index
kmin and a unique maximal entry xmax at index kmax such that the sets in (6) and (7) are
singletons. We can now compare three (idealized) training algorithms which, given input
(x0, y0), output the weight vector w ∈ Rd of an interpolating solution ϕw:

(i) Minimal ℓ1-norm: Aℓ1 : Rd × R → Rd with Aℓ1(x0, y0) =
√

y0
xmax

ekmax . This
corresponds to the solution computed by GD with vanishing learning rate.

(ii) Minimal sharpness: ASL : Rd × R → Rd with ASL(x0, y0) =
√

y0
xmin

ekmin . This
corresponds to the solution computed by GD with large learning rate (if convergence
still happens).

(iii) Minimal generalization error: Aopt : Rd × R → Rd with Aopt(x0, y0) =√
y0

∥x0∥2
2
x⊙ 1

2
0 . This corresponds to the best achievable generalization error for any

interpolating ϕw.
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Since y0 = ∥x0∥1 + ε, we know by high-dimensional concentration phenomena (Vershynin,
2018) that y0 = O(d) w.h.p. Consequently,

R(Aopt(x0, y0)) ≈ d +
√

d ≪ 2d ≈ R(Aℓ1(x0, y0)) ≤ R(ASL(x0, y0)).
We see that the implicit ℓ1-bias leads to better generalization than the implicit sharpness-
bias in this example. More importantly, both achieved generalization errors, by implicit ℓ1-
norm or implicit sharpness minimization alone, are far from the best possible generalization
error.

E.1 A more general regression analysis

Since it is more natural to have unconditioned training data, let us now assume that our
data follows a general distribution (x, y) ∼ D. Then, the risk for a parameter choice w
under the model in (3)-(4) is given by

R(w) = E (x,y) L(w) = 1
2

(
(w⊙2)T Σw⊙2 − 2µT w⊙2 + σ2

)
, (13)

where we define Σ = E (xxT ), µ = E (yx), and σ2 = E y2. Under mild technical assump-
tions on D and considering a single training data point (x0, y0) ∼ (x, y), we can compare
the three (idealized) training algorithms Aℓ1 , ASL , and Aopt from above which minimize
ℓ1-norm, sharpness, and generalization error on M, respectively.
Proposition E.2. Assume that D is a distribution such that Σ, µ, σ2 are well-defined and
finite, that Σ is invertible, that x ∈ Rd

≥0 a.s., and that the entries of x are a.s. distinct.
Then, given a single training data point (x0, y0) ∼ (x, y) we have that

(i) Aℓ1(x0, y0) =
√

y0
xmax

ekmax , where kmax is the index of the maximal entry of x0.
The expected generalization error is given by

E (x0,y0) R(Aℓ1(x0, y0)) = 1
2

(
σ2 + E

(Σkmaxkmaxy2
0

x2
max

)
+ E

(µkmaxy0

xmax

))
.

(ii) ASL(x0, y0) =
√

y0
xmin

ekmin , where kmin is the index of the minimal entry of x0. The
expected generalization error is given by

E (x0,y0) R(ASL(x0, y0)) = 1
2

(
σ2 + E

(Σkminkminy2
0

x2
min

)
+ E

(µkminy0

xmin

))
.

(iii) Aopt(x0, y0) =
(

Σ− 1
2
(
P⊥

xΣ
µΣ + y0

∥xΣ∥2
2
xΣ

))⊙ 1
2 , where Pz denotes the orthogonal

projection onto span{z}, xΣ = Σ− 1
2 x0, and µΣ = Σ− 1

2 µ. The expected generaliza-
tion error is given by

E (x0,y0) R(Aopt(x0, y0))

= 1
2

(
σ2 + E

( y2
0

∥xΣ∥2
2

)
− 2µT

Σ E
( y0

∥xΣ∥2
2

xΣ

)
− µT

Σ E P⊥
xΣ

µΣ

)
.

Although it is not possible to analytically evaluate the expectations on this level of generality,
the expected generalization error of ASL(x0, y0) will presumably be larger than the one of
Aℓ1(x0, y0) since xmin < xmax; just like in the specific setting in the beginning of Section E.

Proof of Proposition E.2. By our assumptions on the distribution of x0, Points (i) and (ii)
follow from applying Proposition 3.2, and inserting the resulting minimizer into (13).

To derive (iii), we abbreviate w̃ = Σ 1
2 w⊙2, µΣ = Σ− 1

2 µ, and xΣ = Σ− 1
2 x0, and consider

the linearly constrained optimization problem

min
w∈M

R(w) = 1
2 min

w̃∈Rd
∥w̃∥2

2 − 2µT
Σw̃ + σ2, s.t. xT

Σw̃ = y0. (14)
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Since the objective is convex and the constraints are linear, the KKT-conditions of (14){
2w̃ − 2µΣ + λxΣ = 0
xT

Σw̃ = y0
⇐⇒

{
w̃ = µΣ − 1

2 λxΣ
xT

ΣµΣ − 1
2 λ∥xΣ∥2

2 = y0
⇐⇒

{
w̃ = µΣ − 1

2 λxΣ
1
2 λ = 1

∥xΣ∥2
2
(xT

ΣµΣ − y0)

are sufficient and necessary, and yield the unique minimizer

w̃⋆ =
(

I − xΣxT
Σ

∥xΣ∥2
2

)
µΣ + y0

∥xΣ∥2
2

xΣ

with

R(Aopt(x0, y0)) = 1
2

(
∥w̃⋆∥2

2 − 2µT
Σw̃⋆ + σ2)

= 1
2

(∥∥∥P⊥
xΣ

µΣ + y0

∥xΣ∥2
2

xΣ

∥∥∥2

2
− 2µT

Σ

(
P⊥

xΣ
µΣ + y0

∥xΣ∥2
2

xΣ

)
+ σ2

)
= 1

2

(
µT

ΣP⊥
xΣ

µΣ +
∥∥∥ y0

∥xΣ∥2
2

xΣ

∥∥∥2

2
− 2µT

ΣP⊥
xΣ

µΣ − 2 y0

∥xΣ∥2
2

µT
ΣxΣ + σ2

)
= 1

2

(
y2

0
∥xΣ∥2

2
− 2 y0

∥xΣ∥2
2

µT
ΣxΣ − µT

ΣP⊥
xΣ

µΣ + σ2
)

.

Consequently,

E (x0,y0) R(Aopt(x0, y0))

= 1
2

(
σ2 + E

( y2
0

∥xΣ∥2
2

)
− 2µT

Σ E
( y0

∥xΣ∥2
2

xΣ

)
− µT

Σ E P⊥
xΣ

µΣ

)
.

We can now use Proposition E.2 to examine a regression task in which the feature distri-
bution is a folded Gaussian and thus restricted to the positive orthant. Let x ∼ |N (0, In)|
and y = ⟨1, x⟩. Then Σ, µ, and σ2 are given by

Σij = E(xixj) =
{

1 if i = j
2
π if i ̸= j

µi = E(yxi) = E(x2
i ) +

∑
j:j ̸=i

E(xixj) = 1 + 2(n − 1)
π

σ2 = E(y2) =
∑

i

E(x2
i ) +

∑
i,j:i ̸=j

E(xixj) = n + 2n(n − 1)
π

By Proposition E.2, we obtain the following results: For Aℓ1(x0, y0), the expected general-
ization error is given by

1
2

(
n(2n − 2 + π)

π
+ E

( ⟨1, x0⟩2

x2
max

)
+ 2n − 2 + π

π
E

( ⟨1, x0⟩
xmax

))
.

Since ⟨1, x0⟩ ≤ nxmax, the above expectation terms are bounded by

E
⟨1, x0⟩2

x2
max

≤ n2, E
⟨1, x0⟩
xmax

≤ n.

For ASL(x0, y0), the expected generalization error is given by

1
2

(
n(2n − 2 + π)

π
+ E

( ⟨1, x0⟩2

x2
min

)
+ 2n − 2 + π

π
E

( ⟨1, x0⟩
xmin

))
.
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However, in this case due to xmin the expectation blows up to infinity as shown below.

E
⟨1, x0⟩
xmin

≥
( 2

π

)n/2 ∫
[0,1]×[1,2]n−1

x1 + · · · + xn

mini xi
e− 1

2 (x2
1+···+x2

n)dx1 · · · dxn

≥
( 2

π

)n/2 ∫
[0,1]

n − 1
x1

e− 1
2 x2

1dx1︸ ︷︷ ︸
=∞

∫
[1,2]n−1

e− 1
2 (x2

2+···+x2
n)dx2 · · · dxn︸ ︷︷ ︸

>0

= ∞.

Consequently, as in the simpler setting above we see that the implicit GF-regularization
leads to smaller generalization error than the sharpness regularization.

F An elementary study of how implicit biases interact II —
Classification

In this section, we extend our insights from Section 3 to a simple classification set-up. To
this end, define for data D = {(xi, yi)}n

i=1 ⊂ Rd+1 × {0, 1} the logistic loss

L(w) = 1
n

n∑
i=1

(yi log(g(⟨w, xi⟩)) + (1 − yi) log(1 − g(⟨w, xi⟩))) ,

where

g : R → R with g(z) = 1
1 + e−z

is the logistic function. Here, we assume that w = (w̃, b)T and that the data points are of
the form x = (x̃, 1)T such that the linear classifier hw corresponding to parameters w is
given by

hw(x) = 1{z=(z̃,1) : ⟨w,z⟩>0}(x) = 1{z̃ : ⟨w̃,z̃⟩+b>0}(x).
In the simplest possible case, we only have two data points with different labels. W.l.o.g.
we assume that one of the two data points is centered at the origin and that their distance
is normalized to one. Then we know the following.
Theorem F.1. Let D = {(x1, 0), (x2, 1)} ⊂ Rd+1 × {0, 1} where xi = (x̃i, 1)T with x̃1 = 0
and ∥x̃2∥2 = 1. Then,

(i) the max-margin classifier of D is parametrized by any positive scalar multiple of
w = (w̃, b)T with w̃ = x̃2 and b = −1/2.

(ii) the parameters minimizing the sharpness of L over
M = {w = (w̃, b) : hw(x1) = 0, hw(x2) = 1, and ∥w̃∥2 = 1}

are given by a min-margin classifier parametrized by w = (w̃, b) with w̃ = x̃2 and
b = 0.

Proof. To see (i), just note that the decision boundary of the max-margin classifier in Rd

must be orthogonal to x̃2 − x̃1 with hw(x2) = 1, i.e., w̃ = α(x̃2 − x̃1) = αx̃2, for α > 0, and
that it must contain 1

2 (x1 + x2) which implies that 0 = ⟨w̃, 1
2 (x1 + x2)⟩ + b = 1

2 α∥x̃2∥2
2 + b,

i.e., b = − 1
2 α.

For (ii), we compute that

L(w) = 1
2 (log(1 − g(⟨w, x1⟩)) + log(g(⟨w, x2⟩)))

= 1
2 (log(1 − g(b)) + log(g(⟨w, x2⟩))) .

By using that g′(z) = g(z)(1 − g(z)), we then get that

∇L(w) = 1
2 (−g(⟨w, x1⟩) · x1 + (1 − g(⟨w, x2⟩)) · x2)
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and

∇2L(w) = −1
2

(
g′(⟨w, x1⟩) · x1xT

1 + g′(⟨w, x2⟩) · x2xT
2

)
.

To deduce the sharpness S(w) =
∥∥∇2L(w)

∥∥, we will compute the eigenvalues of the Hessian.
First note, that any vector in the image of ∇2L(w) can be expressed as x = αed+1 + βx2.
Now assume x ̸= 0 is an eigenvector with eigenvalue λ ̸= 0. Then, since x1 = ed+1,

∇2L(w)x = −1
2

(
g′(b) (α + β) ed+1 + g′(⟨w, x2⟩) (α + 2β) x2)

)
= λ(αed+1 + βx2),

where we used that xT
2 ed+1 = eT

d+1x2 = 1, xT
2 x2 = 2, and eT

d+1ed+1 = 1. Matching
coefficients, we obtain the system( 1

2 g′(b) + λ 1
2 g′(b)

1
2 g′(⟨w, x2⟩) g′(⟨w, x2⟩) + λ

) (
α
β

)
= 0.

Since (α, β) ̸= 0, this implies that the matrix has determinant zero and leads to the quadratic
equation

λ2 +
(1

2g′(b) + g′(⟨w, x2⟩)
)

λ + 1
4g′(b) · g′(⟨w, x2⟩) = 0.

Since g′(b), g′(⟨w, x2⟩) > 0, the maximal solution of the latter system, i.e., the leading
eigenvalue of ∇2L(w), is

S(w) =
∥∥∇2L(w)

∥∥ =
1
2 g′(b) + g′(⟨w, x2⟩) +

√
1
4 g′(b)2 + g′(⟨w, x2⟩)2

2
=1

4

(
g′(b) + 2g′(⟨w̃, x̃2⟩ + b) +

√
g′(b)2 + 4 · g′(⟨w̃, x̃2⟩ + b)2

)
.

The parameter minimizing the sharpness is then

min
w∈M

SL(w)

= 1
4 min

∥w̃∥2=1
g′(b) + 2g′(⟨w̃, x̃2⟩ + b)+

√
g′(b)2 + (2g′(⟨w̃, x̃2⟩ + b))2, s.t.

{
b = ⟨w, x1⟩ ≤ 0
⟨w̃, x̃2⟩ + b > 0

= 1
4 min

z∈(0,1]
g′(b) + 2g′(z + b) +

√
g′(b)2 + (2g′(z + b))2, s.t. − z < b ≤ 0

≈ 0.277

The minimum of the function is attained at (z, b) = (1, 0) which means that w̃ = x̃2.

Analogously to the regression case, we can now evaluate the max-margin and the sharpness
minimizing classifiers in terms of their expected generalization error in a toy set-up that
assumes only two samples. To satisfy the requirements of Theorem F.1, we propose the
following simple data generation process.
Let the samples be generated as (x1, y1) with x̃1 = 0 and y1 = 0, and, for k ≥ 2, as
(xk, yk) ∼ (x, 1) which follows a joint distribution with x ∼ g

∥g∥2
, where g ∼ N (µ, I) for

µ ̸= 0. The classification task is thus to separate a Gaussian cluster that is projected to the
unit sphere from the origin. Given two samples (x1, y1) and (x2, y2) one can use Theorem
F.1 and numerically evaluate that the expected generalization error (Mohri et al., 2018). To
get a feeling of it, let us consider the two cases where ∥µ∥ ≪ 1 and ∥µ∥ ≫ 1. Let g0 and
g′

0 be independent and distributed as N (0, I).
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Suppose ∥µ∥ ≪ 1. The expected generalization error for the max-margin classifier wmax =
(w̃max, bmax)T is

Ex̃2Px[hwmax(x)̸=1] = Ex̃2Pg

[〈
x̃2,

g
∥g∥2

〉
≤ 1

2

]
≈ Eg′

0
Pg0

[〈 g′
0

∥g′
0∥2

,
g0

∥g0∥2

〉
≤ 1

2

]
≈

γ( d
2 + 1

2 )
γ( d

2 )γ( 1
2 )

∫ 1
2

−1
(1 − x2) d

2 −1dx

→ 1 (as d grows)

because (1 − x2) d
2 −1 concentrates well around x = 0. On the other hand, the expected

generalization error for the sharpness minimizing classifier wmin = (w̃min, bmin) is

Ex̃2Px[hwmin(x) ̸=1] = Ex̃2Pg

[〈
x̃2,

g
∥g∥2

〉
≤ 0

]
≈ Eg′

0
Pg0

[〈 g′
0

∥g′
0∥2

,
g

∥g0∥2

〉
≤ 0

]
= 1

2 ,

where we used symmetry of the distribution in the last step. We see that in contrast to Sec-
tion E here the sharpness minimizer leads to a significantly smaller expected generalization
error than the GF-induced regularization.
Now suppose that ∥µ∥ ≫ 1. The expected generalization error for the max-margin classifier
is

Ex̃2Px[hwmax(x)̸=1] = Eg′Pg

[〈 g′

∥g′∥2
,

g
∥g∥2

〉
≤ 1

2

]
≈ Eg′Pg

[〈g′
0 + µ

∥µ∥2
,

g0 + µ

∥µ∥2

〉
≤ 1

2

]
≈ Eg′Pg

[
⟨g′

0 + g0, µ⟩ ≤ −1
2∥µ∥2

2

]
= 1

√
2(2π) d

2

∫ − 1
2 ∥µ∥2

−∞
e− 1

4 x2
dx

= 1
(2π) d−1

2
· Φ

(
− 1

2
√

2
∥µ∥2

)
where Φ denotes the cumulative distribution function of the standard normal distribution.
Similarly, the expected generalization error for the sharpness minimizing classifier is

Ex̃2Px[hwmin(x)̸=1] = Ex̃2Pg

[〈
x̃2,

g
∥g∥2

〉
≤ 0

]
≈ Eg′

0
Pg0

[
⟨g′

0 + g0, µ⟩ ≤ −∥µ∥2
2

]
= 1√

2(2π)d/2

∫ −∥µ∥2

−∞
e− 1

4 x2
dx

= 1
(2π) d−1

2
· Φ

(
− 1√

2
∥µ∥2

)
.

Here, both expected generalization errors are small.

G Methodology

To ensure reproducibility, we follow a standard procedure for each experimental configura-
tion, which is defined by a specific combination of dataset, architecture, activation function,

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

and loss function. To isolate the effect of the learning rate, we fix the initialization across
all runs within a configuration. We initialize using the default PyTorch scheme, which is a
modified LeCun initialization (LeCun et al., 2002): Fixing a random seed, initial entries of
each weight matrix are uniformly sampled from the interval

(
−1/

√
nl−1, 1/

√
nl−1

)
, where

nl−1 is the input dimension of the respective matrix.
We begin by computing the gradient flow solution using a fourth-order Runge-Kutta inte-
grator (Runge, 1895). At each iteration step, we record the sharpness of the training loss.
We also save model checkpoints whenever the training loss first drops below a power of ten
(i.e., 10−1, 10−2, etc.). From this gradient flow trajectory, we extract two key statistics: the
sharpness at initialization (s0) and the maximum sharpness observed during the trajectory
(sGF). The values 1/s0 and 2/sGF are of particular interest. Taking the learning rate of
1/s0 has been suggested as a heuristic for optimal step size selection for non-adaptive GD
(Cohen et al., 2021), and for learning rates above 2/sGF, the well-known stability condition
(2) is violated at some point of the gradient flow trajectory, suggesting that the loss decrease
is not guaranteed there.
We construct the learning rate schedule for each configuration using two regular grids: a
fine grid focused on the critical transition region, and a coarse grid which allows us to study
the trade-off of the regularization in the EoS regime.
The fine grid consists of 12 points uniformly spaced with step size 1

2sGF
in the interval[ 1

2sGF
, 6

sGF

]
. The coarse grid includes nine uniformly spaced learning rates interpolated

in the interval
[ 6

sGF
, 2

s0

]
, and additionally includes all learning rates sampled at the step

size 1
8 ·

( 2
s0

− 6
sGF

)
which are strictly greater than zero, and above until divergence. If we

observe divergence already within the
[ 6

sGF
, 2

s0

]
interval, we manually refine the schedule by

decreasing the step size.
For each learning rate in the schedule, we train the model using full-batch gradient descent
until the training loss falls below a fixed threshold (see table 1 for the exact configura-
tion). During training, we record the sharpness and ℓ1-norm every 10 epochs, and similar
to the gradient flow experiments, we save the model checkpoints at every power-of-ten loss
threshold. To compute the Hessian, we approximate its leading eigenvalues using the Lanc-
zos algorithm applied to Hessian-vector products, which can be efficiently computed via
backpropagation (Pearlmutter, 1994).
All experiments are fully reproducible, and the code is available in the supplementary ma-
terial. Our implementation builds upon the original code by Cohen et al. (2021).
We ran the experiments on a heterogeneous computing infrastructure. Our hardware in-
cluded NVIDIA A100, RTX 2080 Ti, TITAN RTX, RTX 3090 Ti, and RTX A6000 GPUs.
Because GPU performance and availability varied across machines, we do not report a pre-
cise total runtime. However, the study required substantial computational effort: for each
of the more than a dozen model configurations, we evaluated at least 20 learning rates, with
individual runs ranging from a few minutes (for small models) to hundreds of hours (for
larger models).

H Effect of training configuration on sharpness–norm
trade-off

As described in Section 2.1, we systematically investigate variants of our base configuration
(fully-connected ReLU feed-forward network (FCN) with three layers, 200 hidden neurons
each, trained on the first 5, 000 examples of MNIST or CIFAR with mean squared error) to
demonstrate the relationship between sharpness and implicit regularization for varying step
size.
We vary the dataset size, architecture, activation functions, loss functions, initialization
and parameterization. While quantitative metrics such as the critical learning rate ηc and
absolute sharpness values differ, we consistently observe the norm-sharpness regularization
trade-off.
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(a) MNIST-5k, CNN-ReLU,
MSE

(b) MNIST, CNN-ReLU, MSE (c) MNIST, CNN-ReLU, CE

Figure 5: Different configurations using the CNN architecture. We observe that the ℓ1-norm
increase flattens out more towards larger η in comparison to the FCN.

In the following sections, we describe the findings on each variation and illustrate it with
few representative plots. In all cases, we observe the same overall qualitative behavior.
Additional supporting plots are included in the systematic overview of all experimental
runs across configurations, provided in Appendix I and summarized in Table 1. For each of
these configurations, we present both the coarse and fine-grained learning rate schedules to
emphasize the transition region around ηc as well as the behavior at larger learning rates.

H.1 Dataset size

Most of our experiments use a subset of 5, 000 training examples of MNIST and CIFAR-10
respectively, chosen to allow tractable estimation of sharpness across a wide range of learning
rates. To confirm that our findings are not specific to the small dataset sizes, we run a limited
number of configurations on the full MNIST and CIFAR-10 training sets. In Figure 5, we
show the comparison of the sharpness and ℓ1-norm for a CNN with ReLU activation for
MSE loss. The GF solution changes slightly, but the overall phenomena persists and the
values are relatively similar. We present additional figures on the full MNIST (see Appendix
I.1.3, I.3.2, I.4.1) and full CIFAR (I.1.4) in Appendix I.

H.2 Architecture

Our base model is a two-hidden-layer fully connected neural network (FCN), where each
hidden layer consists of 200 neurons, with input and output layer sizes depending on the
dataset.
To study the influence of the FCN architecture, we vary its widths and depths, namely
experiments with 2×, 3×, and 10× width, while keeping depth fixed, 2× and 3× depth,
keeping width fixed, and 2× and 3× both width and depth. In other words, the considered
FCN model shapes are: 200 × 2, 400 × 2, 600 × 2, 2000 × 2, 200 × 4, 200 × 6, 400 × 4, and
600 × 6 where the first number is the number of hidden neurons per hidden layer, and the
second corresponds to the number of hidden layers.
While across most of these experiments the sharpness-norm tradeoff is ever-present and
consistent with the behavior of the standard model, increasing width alone on the MNIST-
5k dataset leads to a dissolution of the trend of increasing norm. Here in the EoS regime
the norm first decreases and then stays near constant (Figures 33, 34, and 35). However,
we believe this to be the result of the limited range of learning rates, since for experiments
increasing both width and depth we can see a similar decrease in norm at first, but a robust
overall increase afterwards (Figures 38 and 39).
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We further extend our analysis beyond the fully connected baseline by evaluating several
alternative architectures: Convolutional networks (CNNs) with ReLU activations (Figure 5
and Appendix I.3), ResNet (Appendix I.5), and a Vision Transformer (Appendix I.4). For
CNNs, the ℓ1-norm flattens out more for increasing η in comparison to the FCN. We do not
observe a qualitative change of the phenomena for the ResNet and ViT architectures.
The CNNs (Lecun et al., 1998) consist of two convolutional layers with 32 filters, each
using 3 × 3 kernels, stride 1, and padding 1. Each convolution is followed by an activation
function (ReLU or tanh) and a 2 × 2 maximum pooling operation. A fully connected layer
after flattening maps the features to class logits.
The ResNet-20 model (He et al., 2016) consists of three residual layers, with three blocks per
layer. Each block contains two 3×3 convolutions followed by batch normalization and ReLU
activation. Between stages, spatial down-sampling is performed using average pooling. To
match feature dimensions across residual connections, the skip paths are adjusted using
batch normalization and zero-padding along the channel dimension.
The Vision Transformer (ViT) (Dosovitskiy et al., 2021) splits the input image into non-
overlapping patches (7×7 for MNIST, 4×4 for CIFAR-10), embeds each patch into a latent
space (dimension 64 for MNIST, 128 for CIFAR-10), and processes the resulting sequences
with transformer encoder layers (4 for MNIST; 6 for CIFAR-10), using 4 attention heads
per layer. Each configuration includes a learnable class token and positional embeddings,
and ends with a linear classifier applied to the class token output.

H.3 Activation function

We evaluate the effect of activation functions by comparing ReLU and tanh in fully con-
nected networks on MNIST-5k (Appendix I.1.1, I.2.1) and on CIFAR-10-5k (Appendix I.1.2,
I.2.2). Across all configurations, the sharpness–norm trade-off and the transition between
flow-aligned and EoS regimes are consistently observed.

H.4 Loss function

We compare the behavior of cross-entropy (CE) and mean squared error (MSE) for both
the base configuration and additional architectures, see Figure 5 for a comparison of the
trade-off comparing both MSE and CE for MNIST-5k for a ReLU CNN and Appendix I for
all other setups.
Compared to MSE, the sharpness profile for varying η when training with CE differs. In
the flow-aligned phase, the final sharpness values for CE are still similar in magnitude but
consistently below the maximum sharpness of its corresponding GF. In contrast, for MSE
the final sharpness is at sGF. The transition to the EoS regime still occurs approximately at
η = 2/sGF. For large η, the sharpness values remain below the 2/η curve but qualitatively
still decrease as η increases for the EoS regime.
We observe for the sharpness of the iterates during training that after an initial increase
(progressive sharpening) and an oscillatory phase around 2/η, the sharpness subsequently
decreases again significantly. This phenomenon, originally remarked in Cohen et al. (2021),
appears more pronounced in our results, as they used a higher loss-threshold beyond which
the strong decrease starts occurring. Although the final sharpness values therefore do not
follow the 2/η relationship, the training iterates rise toward this value and oscillate around
it before the sharpness drops. In our plots, we visualize the smoothed sharpness around its
maximum to highlight this trend. The effect during the training is illustrated in Figure 12
for selected learning rates.
Training with CE often fails to converge at learning rates even below 1/s0 (s0 denoting
the sharpness at initialization), while training with MSE often converges at comparatively
higher values. This aligns with previous findings on the geometry of the log-loss landscape
(Soudry et al., 2018), which indicate that the loss surface becomes flatter as the parameter
norm increases. Because of the exponential in the CE loss equation, the loss decreases with
growing parameter norm and, as a result, parameters only converge in direction. However,
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(a) Init. seed 43 (b) Init. seed 44 (c) Init. seed 43, scaled ×5

Figure 6: Effect of varying initialization seed and scaling at initialization on the sharp-
ness–norm trade-off. All columns show sharpness and ℓ1-norm curves for the same architec-
ture (FCN-ReLU), dataset (CIFAR-10-5k), and loss function (MSE), all trained until loss
0.01. While the different seed does not affect the overall behavior, scaling disrupts adherence
of solution sharpness to the 2/η curve. Effect on norm is however preserved.

when the learning rate is too high early in the training, the high curvature of the loss
landscape leads to instability or stagnation before this directional convergence effect.

H.5 Loss threshold

In Section 2, we show how the loss threshold ε directly affects the critical learning rate
ηc at which (approximately) the sharpness–norm phase transition occurs, given by 2/sε

GF.
This effect is illustrated in Figure 2 for an FCN with tanh activation on CIFAR-10-5k,
trained with MSE loss. Comparing identical models trained to different loss thresholds, we
observe that smaller ε values yield higher sε

GF, resulting in a lower ηc and thus shifting the
transition point between the flow-aligned and EoS regimes. We confirm this trend across
multiple architectures in Appendix I.7.1.
This dependence on ε is naturally related to early stopping: A higher loss threshold corre-
sponds to a point before the model begins to overfit on the training set, where the test loss
is still decreasing. In contrast, very small loss thresholds reflect the late phase of training,
where the characteristic U-shaped test loss curve over time is evident. There, the training
loss continues to drop, but the test loss increases slowly. By varying ε, we can thus study
the sharpness and norm trade-offs under different degrees of overfitting. However, note that
we do not link ε to the validation loss, as it is commonly done when using early stopping as
a regularizer during training.

H.6 Initialization

We vary the initialization seed in fully connected networks trained on CIFAR-10-5k to test
the sensitivity of the transition to random initialization, see Figure 6. While the critical
learning rate ηc shifts with initialization, due to a different initial sharpness s0 and maximum
of the flow trajectory sGF, the qualitative structure remains intact.
We also perform experiments with increased initialization scale, scaling all initial weights ×5
and ×10. The ×5-scaled initializations result in similar qualitative behaviors in the observed
values as our default scale. For 10× scaling, the training diverges already at learning rates
smaller than ηc. In addition, the final ℓ1 norm reaches very high values and decreases with
increasing learning rate.
We provide further figures with varying initialization seeds and scales in Appendix I.7.2 and
I.7.3, respectively.
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(a) Width 100 (b) Width 200 (c) Width 400

Figure 7: Sharpness (top row) and ℓ1-norm of final classifiers (bottom row) for µP
parametrization with widths 100, 200, and 400 on MNIST-5k with MSE and loss goal 0.1.

H.7 Parameterization

Different parameterizations of the forward pass are known to place training in qualitatively
different regimes with respect to feature learning (Noci et al., 2024), which is why we test the
norm-sharpness tradeoff for this setup. We focus on the µP and kernel parameterizations
(Yang et al., 2022; Jacot et al., 2018). The kernel parameterization corresponds to NTK-
like scaling, where feature learning diminishes with width, while µP remains in the feature-
learning regime with width-independent gradient magnitudes and transferable learning-rates
for models of varying widths (Yang et al., 2022). Recent work by Noci et al. (2024) further
suggests that the Hessian spectrum also transfers for µP.
Both used parameterizations use fully connected feed-forward networks with ReLU activa-
tions. Each hidden layer of width nl computes

hl = 1
√

nl−1
σ (Wlhl−1)

with weights initialized as (Wl)ij ∼ N (0, 1). In the kernel parametrization the final layer is
obtained as f(x) = WLhL, while in the µP parametrization the logits are rescaled by the
width of the last hidden layer f(x) = 1√

nL
WLhL. This differs from the normal parameteri-

zation in all other experiments where the 1/
√

nl−1 factor in the forward pass is missing and
the weights are initialized uniformly with variance 1/(3nl−1). The hypothesis spaces are the
same in both settings, however the reparameterization changes the dynamics and is hence
of interest with respect to implicit regularization.
For the µP parameterization, the sharpness plots (top row of Figure 7) show approximately
constant sharpness for small learning rates and a decrease along the 2/η curve for larger
learning rates, with similar values in the flow-aligned regime across widths. The ℓ1-norm
plots (bottom row) reveal the usual pattern across widths of increasing final parameter ℓ1
for increasing learning rate. The absolute norms differ due to model size, but the growth
of the norm as η increases is approximately consistent (though divergence happens slightly
earlier for smaller models). This is expected for the µP parametrization, as the parameter
update magnitudes are independent of the model width. After rescaling the learning rate
proportionally to width, the results align across the models of different widths.
For the kernel parametrization we observe that the ℓ1-norm of the parameters (bottom row
of Figure 8) remains stable for small learning rates and starts to increase once η crosses the
critical threshold, with the transition occurring at learning rates of the same order across
widths4. The sharpness plots (top row) show that the maximum sharpness coincides with

4Note that the norm of the weight matrices (after adjusting for the different widths) differs
slightly due to the randomness. The change in randomness is comparable to the variance indicated
by experiments when changing the initialization seed, see Section H.6.
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(a) Width 200 (b) Width 400 (c) Width 600

Figure 8: Sharpness (top row) and ℓ1-norm of final classifiers (bottom row) for kernel
parametrization with widths 200, 400, and 600 on MNIST-5k with MSE and loss goal 0.1.

the sharpness at initialization, similar to the large-initialization experiments in Section H.6.
Because of the different parameterization, sharpness no longer tracks the 2/η curve, yet the
qualitative pattern is consistent across widths: sharpness stays flat below the threshold and
decreases gradually thereafter.

H.8 Number of iterations

A notable difference between the two regimes lies in the relationship between learning rate
and convergence speed. While the small learning rates of the flow-aligned regime lead to
slower convergence in absolute terms, increasing the step size within this regime significantly
accelerates optimization, with the number of iterations required to reach a fixed training
loss decreasing at an approximate rate of 1/η. As further shown in Section I.8.1, this rate of
convergence speed acceleration with respect to the learning rate is higher in the flow-aligned
regime than in the EoS regime.

H.9 Alternative norms

In most of the paper, we focus on the ℓ1-norm of the GD solution. In Figure 9, we compare
the ℓ1-norm to the nuclear and ℓ2-norms. While all norms typically adhere to the same
pattern, the behavior of the nuclear norm tends to mirror closely that of the ℓ1-norm, while
the ℓ2-norm sometimes displays more irregularity. For further examples refer to Section
I.8.1.

H.10 Gradient descent solution distance

We measure the distance between the final solutions of GF and GD across different learn-
ing rates. This analysis provides insight into how closely GD tracks the continuous-time
dynamics and how this relationship evolves as we move through the flow-aligned and EoS
regimes.
In Figure 10, we show this relationship for two of our standard models. Comparing this
figure with 9, we can see that even though the qualitative behavior of the ℓ1-norm and ℓ1-
distance from the GF solution are nearly equal, the distance of solutions for η < ηc is already
relatively high. This suggests that while in the flow-aligned regime, GD reaches solutions
of similar sharpness and norm as GF, in absolute terms these solutions are non-negligibly
different. Furthermore, comparing the scales of the two figures shows, that the increase
in distance from the GF solution is much larger than the increase in absolute ℓ1-norm.
Therefore, increasing the learning rate within the EoS regime likely results in movement of
the solution in a direction more misaligned with the GF solution than the origin. Section
I.8.1 shows this for further configurations.
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(a) ℓ1-norm (b) Nuclear norm (c) ℓ2-norm

Figure 9: Each row shows the ℓ1-norm, the nuclear norm, and the ℓ2-norm of the solution
for different models - both use FCN-ReLU with MSE loss, in the top row on CIFAR-10-
5k, in the bottom row on MNIST-5k. As expected, the behavior of the different norms is
approximately equivalent

(a) FCN-ReLU on CIFAR-10-5k (b) FCN-ReLU on MNIST-5k

Figure 10: ℓ1-distance of the GD solution from the GF solution. Not to be confused with
distance from the GF trajectory - here we measure only final values. On both examples we
can see an increasing behavior similar to that of solution ℓ1-norm.

Additionally, in Figure 11 we compare the parameter ℓ1-norm to the ℓ1-distance from the
untrained model at initialization. When examining this quantity for the final learned models
plotted against the learning rate, the distance from initialization shows a similar qualitative
trend as the parameter norm. In the flow-aligned regime, the distance to initialization is still
approximately constant, before robustly increasing in the EoS regime. This is consistent
with what can be expected since the models are initialized small relative to the norm of the
final parameters.

H.11 Evolution during training

In Figure 12, we illustrate how sharpness, ℓ1-norm and loss evolve over the course of train-
ing. The sharpness increases initially (progressive sharpening) until reaching 2/η, and then
oscillates around this value. For very small learning rates, the increase stops earlier (aligned
with the maximum sharpness of the corresponding GF). The norm rises without oscillation,
suggesting that the oscillation occurs along a direction that preserves the parameter norm.
The loss decreases monotonically at first, then with oscillation after the sharpness has risen
to 2/η. In contrast to MSE loss, for training with CE loss, the sharpness decreases again
after a period of oscillation. These dynamics in sharpness and loss were first systematically
studied by Cohen et al. (2021). Our primary focus is on the dependence of final values on
the learning rate, which complements these observations.
Similar to Figure 11, we compare the evolution of the parameter norm and the distance to the
initialization in the second and third row of Figure 12. We observe that the distance follows
closely a translated and scaled version of the parameter norm’s trajectory. It naturally starts
at 0 and then grows significantly before entering the Edge of Stability. In comparison to
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(a) FCN-ReLU on CIFAR-10-5k
with CE loss

(b) FCN-ReLU on MNIST-5k
with MSE loss

(c) FCN-tanh on CIFAR-10-5k
with MSE loss

Figure 11: The top row shows for each setting the ℓ1-distance of the final models from their
initialization, while the bottom row shows the absolute norm. As expected, the qualitative
behavior remains almost identical.

the parameter norm evolution, here the rate of growth slows down to a larger extent after
entering EoS, which supports the intuition that the chaotic EoS updates have a smaller
cumulative effect on the solution’s magnitude.

H.12 The diagonal network

For the diagonal network discussed in Section 3, we present the sharpness and norm values
for different learning rates in Figure 13. Note that they behave qualitatively similarly to
the more realistic models on MNIST and CIFAR-10 described throughout the empirical
experiments section. Additional trajectories of the iterates (cf. Figure 4b, 4c) for all other
learning rates are provided in Figure 14.

I Systematic overview of experiments

All performed experiments are summarized in Table 1. For most of these configurations,
we present both coarse and fine-grained learning rate schedules to emphasize the transition
region between flow-aligned and EoS regime around ηc, as well as the behavior at larger learn-
ing rates, demonstrating the trade-off between increasing ℓ1-norm and decreasing sharpness
for varying the learning rate.
Table 1 specifies for each setting the following attributes:

• Model. We state the model architecture (see Section H.2) and activation used. For
the FCN models where we vary width and depth, we also indicate the size. When
we do not specify a size, we refer to the standard architecture of 200 × 2.

• Dataset. MNIST or CIFAR-10, with the "-5k" suffix indicating that we train only
on the first 5000 data points of the train set, while still testing on the full test set.

• Loss. Mean square error (MSE) or cross-entropy (CE).
• Seed. The random seed used for generating weights at initialization. For experi-

ments using a scaled initialization, the scaling factor is given.
• Loss Goal. We stop training gradient flow and gradient descent for each learning

rate upon reaching this train loss value.
• U-Shape. For each setting we state whether optimal test loss aligns with either

learning rate extreme, indicating a generalization advantage of either low-norm or
low-sharpness bias. Settings where the optimum is attained for mid-range learning
rates are marked by ✓, settings with an alignment towards either extreme by ×, and
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(a) MSE loss. (b) CE loss.

Figure 12: For four different learning rates, we display the sharpness, ℓ1-norm, norm from
initialization and train loss for both MSE (left) and CE loss (right column), both on MNIST-
5k, FCN-ReLU, loss goal 0.01. We clearly observe the progressive sharpening and oscillations
once the sharpness reaches 2/η. For CE loss, the sharpness at the iterates drop after a
oscillatory phase.

(a) Sharpness (b) ℓ1-norm

Figure 13: Final sharpness and ℓ1-norm of two-dimensional diagonal linear network with
weight sharing, described in Section 3. The behavior corresponds to that of more realistic
models studied throughout the paper.

somewhat inconclusive settings by either mark in brackets. In our experiments, in
all cases with a clear optimum extreme alignment, the alignment is always towards
high learning rates, that is, towards low sharpness solutions.

• Figures. List of figures throughout the paper where the respective setting appears.

In the main part of the systematic review, we present for each setting sharpness, ℓ1-norm
and test loss plots, for both a fine-grained set of learning rate values focused around the
critical threshold and a coarse set showing large-scale behaviors. In the plots we show

• the final respective value attained for each learning rate represented by green dots;
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(a) η = 0.08 (b) η = 0.091 (c) η = 0.102

(d) η = 0.113 (e) η = 0.124 (f) η = 0.135

(g) η = 0.146 (h) η = 0.157 (i) η = 0.167

(j) η = 0.178 (k) η = 0.189 (l) η = 0.2

Figure 14: Iterates of weights of the two-dimensional diagonal linear network throughout
training, for increasing learning rate. There is a clear distinction between the flow-aligned
regime (14a)-(14c), where GD closely tracks the GF trajectory, and the EoS regime (14d)-
(14l), where at some point GD begins to oscillate away from GF, until converging to one
of the first solutions whose sharpness is less than 2/η. This corresponds to the intuition
stemming from Theorem B.2.

• a horizontal dotted green line indicating the final value reached by the gradient
flow;

• a vertical dashed orange line showing the critical learning rate threshold of 2/ηGF ,
for the transition from the flow-aligned to the EoS regime;

• for coarse-grained plots, a vertical dashed purple line, indicating the inverse value
of sharpness at initialization, which has been proposed as a heuristic for learning
rate initialization, if the line is missing this means that the GD did not converge
for such learning rate;

• for sharpness plots, the 2/η curve, for η being the learning rate variable, shown in
blue with crosses at each used learning rate value;

• for sharpness plots, the maximum value reached throughout training, indicated by
black circles;

• for sharpness plots, a horizontal orange line showing the maximal sharpness attained
throughout the GF trajectory.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 1: Full list of experimental configurations.

Model Dataset Loss Seed Loss U- Figures
Goal Shape

FCN-ReLU MNIST-5k MSE 43 0.0001 ✓ 3a,12,9,10b,
15,60,68

FCN-ReLU MNIST-5k MSE 43 0.001 ✓ 47
FCN-ReLU MNIST-5k MSE 43 0.01 ✓ 48
FCN-ReLU MNIST-5k MSE 43 0.1 ✓ 49
FCN-ReLU MNIST-5k CE 43 0.01 ✓ 16,61,69
FCN-ReLU MNIST-5k CE 43 0.1 ✓ 50
FCN-ReLU CIFAR-10-5k MSE 43 0.0001 × 1a,3c,9,10a,

17,64,72
FCN-ReLU CIFAR-10-5k MSE 43 0.001 × 51
FCN-ReLU CIFAR-10-5k MSE 43 0.01 × 6a,52
FCN-ReLU CIFAR-10-5k MSE 43 0.1 (×) 53
FCN-ReLU CIFAR-10-5k MSE 44 0.01 × 6b,55
FCN-ReLU CIFAR-10-5k MSE 45 0.01 × 56
FCN-ReLU CIFAR-10-5k MSE 43, ×5 0.1 × 6c,57
FCN-ReLU CIFAR-10-5k CE 43 0.01 ✓ 3b,18,65,73
FCN-ReLU CIFAR-10-5k CE 43 0.1 ✓ 54
FCN-ReLU CIFAR-10-5k CE 43, ×5 0.01 × 58
FCN-ReLU CIFAR-10-5k CE 43, ×10 0.01 × 59
FCN-ReLU MNIST MSE 43 0.01 ✓ 1b,19,62,70
FCN-ReLU MNIST CE 43 0.01 (✓) 20,63,71
FCN-ReLU CIFAR-10 CE 43 0.1 × 21
FCN-ReLU 400 × 2 MNIST-5k MSE 43 0.01 × 33
FCN-ReLU 600 × 2 MNIST-5k MSE 43 0.01 (×) 34
FCN-ReLU 2000 × 2 MNIST-5k MSE 43 0.01 × 35
FCN-ReLU 200 × 4 MNIST-5k MSE 43 0.01 (×) 36
FCN-ReLU 200 × 6 MNIST-5k MSE 43 0.01 (✓) 37
FCN-ReLU 400 × 4 MNIST-5k MSE 43 0.01 × 38
FCN-ReLU 600 × 6 MNIST-5k MSE 43 0.01 (✓) 39
FCN-ReLU 400 × 2 CIFAR-10-5k MSE 43 0.01 × 40
FCN-ReLU 600 × 2 CIFAR-10-5k MSE 43 0.01 × 41
FCN-ReLU 2000 × 2 CIFAR-10-5k MSE 43 0.01 × 42
FCN-ReLU 200 × 4 CIFAR-10-5k MSE 43 0.01 ✓ 43
FCN-ReLU 200 × 6 CIFAR-10-5k MSE 43 0.01 ✓ 44
FCN-ReLU 400 × 4 CIFAR-10-5k MSE 43 0.01 ✓ 45
FCN-ReLU 600 × 6 CIFAR-10-5k MSE 43 0.01 ✓ 46
FCN-tanh MNIST-5k MSE 43 0.1 × 22
FCN-tanh MNIST-5k CE 43 0.01 (✓) 23
FCN-tanh CIFAR-10-5k MSE 43 0.001 × 2c,24,66,74
FCN-tanh CIFAR-10-5k MSE 43 0.01 × 2b
FCN-tanh CIFAR-10-5k MSE 43 0.1 (×) 2a
FCN-tanh CIFAR-10-5k CE 43 0.01 ✓ 25,67,75
CNN-ReLU MNIST-5k MSE 43 0.1 ✓ 5a,26
CNN-ReLU MNIST-5k CE 43 0.01 ✓ 27
CNN-ReLU MNIST MSE 43 0.1 (×) 5b,28
CNN-ReLU MNIST CE 43 0.01 ✓ 5c,29
ViT-ReLU MNIST-5k CE 43 0.1 (✓) 1c,30
ViT-ReLU CIFAR-10-5k CE 43 1 (✓) 31
ResNet20-ReLU CIFAR-10-5k CE 43 0.1 (×) 32
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I.1 FCNs with ReLU activation

I.1.1 On MNIST-5k

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 15: MSE loss. FCN-ReLU, MNIST-5k, train loss 0.0001. Both rows show the same
setting, but different ranges of learning rate η - the top row includes the fine grid, focused on
the transition from the flow-aligned to the EoS regime, while the coarse grid in the bottom
row displays more large-scale behavior, going typically up to diverging learning rates.

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 16: CE loss. FCN-ReLU, MNIST-5k, train loss 0.01
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I.1.2 On CIFAR-10-5k

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 17: MSE loss. FCN-ReLU, CIFAR-10-5k, train loss 0.0001

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 18: CE loss. FCN-ReLU, CIFAR-10-5k, train loss 0.01

I.1.3 On full MNIST

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 19: MSE loss. FCN-ReLU, MNIST, train loss 0.01
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(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 20: CE loss. FCN-ReLU, MNIST, train loss 0.01

I.1.4 On full CIFAR-10

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 21: CE loss. FCN-ReLU, CIFAR-10, train loss 0.1
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I.2 FCNs with tanh activation

I.2.1 On MNIST-5k

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 22: MSE loss. FCN-tanh, MNIST-5k, train loss 0.1

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 23: CE loss. FCN-tanh, MNIST-5k, train loss 0.01
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I.2.2 On CIFAR-10-5k

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 24: MSE loss. FCN-tanh, CIFAR-10-5k, train loss 0.001

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 25: CE loss. FCN-tanh, CIFAR-10-5k, train loss 0.01
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I.3 CNNs with ReLU activation

I.3.1 On MNIST-5k

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 26: MSE loss. CNN-ReLU, MNIST-5k, train loss 0.1

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 27: CE loss. CNN-ReLU, MNIST-5k, train loss 0.01
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I.3.2 On full MNIST

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 28: MSE loss. CNN-ReLU, MNIST, train loss 0.1

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 29: CE loss. CNN-ReLU, MNIST, train loss 0.01

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

I.4 Vision Transformer

I.4.1 On MNIST-5k

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 30: CE loss. ViT, MNIST-5k, train loss 0.1

I.4.2 On CIFAR-10-5k

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 31: CE loss. ViT, CIFAR-10-5k, train loss 1

I.5 ResNet20

I.5.1 On CIFAR-10-5k

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 32: CE loss. ResNet20, CIFAR-10-5k, train loss 0.1
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I.6 Varying width and depth

I.6.1 On MNIST-5k

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 33: FCN-ReLU, 2× width (400 × 2). Train loss 0.01, MNIST-5k, MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 34: FCN-ReLU, 3× width (600 × 2). Train loss 0.01, MNIST-5k, MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 35: FCN-ReLU, 10× width (2000 × 2). Train loss 0.01, MNIST-5k, MSE loss
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(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 36: FCN-ReLU, 2× depth (200 × 4). Train loss 0.01, MNIST-5k, MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 37: FCN-ReLU, 3× depth (200 × 6). Train loss 0.01, MNIST-5k, MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 38: FCN-ReLU, 2× width and depth (400 × 4). Train loss 0.01, MNIST-5k,
MSE loss
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(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 39: FCN-ReLU, 3× width and depth (600 × 6). Train loss 0.01, MNIST-5k,
MSE loss

I.6.2 On CIFAR-10-5k

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 40: FCN-ReLU, 2× width (400 × 2). Train loss 0.01, CIFAR-10-5k, MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 41: FCN-ReLU, 3× width (600 × 2). Train loss 0.01, CIFAR-10-5k, MSE loss
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(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 42: FCN-ReLU, 10× width (2000 × 2). Train loss 0.01, CIFAR-10-5k, MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 43: FCN-ReLU, 2× depth (200 × 4). Train loss 0.01, CIFAR-10-5k, MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 44: FCN-ReLU, 3× depth (200 × 6). Train loss 0.01, CIFAR-10-5k, MSE loss
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(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 45: FCN-ReLU, 2× width and depth (400 × 4). Train loss 0.01, CIFAR-10-5k,
MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 46: FCN-ReLU, 3× width and depth (600 × 6). Train loss 0.01, CIFAR-10-5k,
MSE loss
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I.7 Further configurations

I.7.1 Different loss goals

FCN-ReLU on MNIST-5k with the MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 47: Train loss 0.001. FCN-ReLU, MNIST-5k, MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 48: Train loss 0.01. FCN-ReLU, MNIST-5k, MSE loss
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(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 49: Train loss 0.1. FCN-ReLU, MNIST-5k, MSE loss

FCN-ReLU on MNIST-5k with the CE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 50: Train loss 0.1. FCN-ReLU, MNIST-5k, CE loss

FCN-ReLU on CIFAR-10-5k with the MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 51: Train loss 0.001. FCN-ReLU, CIFAR-10-5k, MSE loss
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(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 52: Train loss 0.01. FCN-ReLU, CIFAR-10-5k, MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 53: Train loss 0.1. FCN-ReLU, CIFAR-10-5k, MSE loss

FCN-ReLU on CIFAR-10-5k with the CE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 54: Train loss 0.1. FCN-ReLU, CIFAR-10-5k, CE loss
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I.7.2 Other initialization seeds for FCN-ReLU on CIFAR-10-5k with the
MSE loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 55: Seed 44. FCN-ReLU, CIFAR-10-5k, MSE loss, train loss 0.01

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 56: Seed 45. FCN-ReLU, CIFAR-10-5k, MSE loss, train loss 0.01

I.7.3 Scaled initialization for FCN-ReLU on CIFAR-10-5k with the MSE
loss

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 57: Initialization from seed 43 scaled ×5. FCN-ReLU, CIFAR-10-5k, MSE loss,
train loss 0.1
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(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 58: Initialization from seed 43 scaled ×5. FCN-ReLU, CIFAR-10-5k, CE loss,
train loss 0.01

(a) Sharpness (b) ℓ1-norm (c) Test loss

Figure 59: Initialization from seed 43 scaled ×10. FCN-ReLU, CIFAR-10-5k, CE loss,
train loss 0.01

I.8 Further properties

I.8.1 Alternative norms and distance from GF solution

(a) Nuclear norm (b) ℓ2-norm (c) ℓ1-distance from GF solution

Figure 60: FCN-ReLU on MNIST-5k with the MSE loss. Train loss 0.0001
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(a) Nuclear norm (b) ℓ2-norm (c) ℓ1-distance from GF solution

Figure 61: FCN-ReLU on MNIST-5k with the CE loss. Train loss 0.01

(a) Nuclear norm (b) ℓ2-norm (c) ℓ1-distance from GF solution

Figure 62: FCN-ReLU on full MNIST with the MSE loss. Train loss 0.01

(a) Nuclear norm (b) ℓ2-norm (c) ℓ1-distance from GF solution

Figure 63: FCN-ReLU on full MNIST with the CE loss. Train loss 0.01
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(a) Nuclear norm (b) ℓ2-norm (c) ℓ1-distance from GF solution

Figure 64: FCN-ReLU on CIFAR-10-5k with the MSE loss. Train loss 0.0001

(a) Nuclear norm (b) ℓ2-norm (c) ℓ1-distance from GF solution

Figure 65: FCN-ReLU on CIFAR-10-5k with the CE loss. Train loss 0.01

(a) Nuclear norm (b) ℓ2-norm (c) ℓ1-distance from GF solution

Figure 66: FCN-tanh on CIFAR-10-5k with the MSE loss. Train loss 0.001
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(a) Nuclear norm (b) ℓ2-norm (c) ℓ1-distance from GF solution

Figure 67: FCN-tanh on CIFAR-10-5k with the CE loss. Train loss 0.01

I.8.2 Convergence speed and test accuracy

(a) Iterations till loss 0.0001 (b) Curve length (c) Test accuracy

Figure 68: FCN-ReLU on MNIST-5k with the MSE loss. Train loss 0.0001

(a) Iterations till loss 0.01 (b) Curve length (c) Test accuracy

Figure 69: FCN-ReLU on MNIST-5k with the CE loss. Train loss 0.01
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(a) Iterations till loss 0.01 (b) Curve length (c) Test accuracy

Figure 70: FCN-ReLU on full MNIST with the MSE loss. Train loss 0.01

(a) Iterations till loss 0.01 (b) Curve length (c) Test accuracy

Figure 71: FCN-ReLU on full MNIST with the CE loss. Train loss 0.01

(a) Iterations till loss 0.0001 (b) Curve length (c) Test accuracy

Figure 72: FCN-ReLU on CIFAR-10-5k with the MSE loss. Train loss 0.0001
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(a) Iterations till loss 0.01 (b) Curve length (c) Test accuracy

Figure 73: FCN-ReLU on CIFAR-10-5k with the CE loss. Train loss 0.01

(a) Iterations till loss 0.001 (b) Curve length (c) Test accuracy

Figure 74: FCN-tanh on CIFAR-10-5k with the MSE loss. Train loss 0.001

(a) Iterations till loss 0.01 (b) Curve length (c) Test accuracy

Figure 75: FCN-tanh on CIFAR-10-5k with the CE loss. Train loss 0.01
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