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ABSTRACT

A widely believed explanation for the remarkable generalization capacities
of overparameterized neural networks is that the optimization algorithms
used for training induce an implicit bias towards benign solutions. To grasp
this theoretically, recent works examine gradient descent and its variants in
simplified training settings, often assuming vanishing learning rates. These
studies reveal various forms of implicit regularization, such as norm mini-
mizing parameters in regression and max-margin solutions in classification.
Concurrent findings show that moderate to large learning rates exceeding
standard stability thresholds lead to faster, albeit oscillatory, convergence
in the so-called Edge-of-Stability regime, and induce an implicit bias to-
wards minima of low sharpness (norm of training loss Hessian).

In this work, we argue that a comprehensive understanding of the gener-
alization performance of gradient descent requires analyzing the interac-
tion between these various forms of implicit regularization. We empirically
demonstrate that the learning rate balances between low parameter norm
and low sharpness of the trained model. We furthermore prove for diagonal
linear networks trained on a simple regression task that neither implicit
bias alone minimizes the generalization error. These findings demonstrate
that focusing on a single implicit bias is insufficient to explain good gener-
alization, and they motivate a broader view of implicit regularization that
captures the dynamic trade-off between norm and sharpness induced by
non-negligible learning rates.

1 INTRODUCTION

First-order methods such as gradient descent (GD) are at the core of optimization in deep
learning, used to train models which generalize remarkably well to unseen data while being
able to interpolate random noise (Zhang et all |2021). A widely believed explanation for this
impressive generalization ability on meaningful data is that GD and its variants exhibit an
implicit bias — a tendency of the optimization algorithm to favor well-structured solutions.

When rigorously characterizing this implicit bias for full-batch GD, recent works often con-
sider small learning rates or even the corresponding gradient flow (GF), which is GD’s
continuous time limit under infinitely small learning rates. For classification tasks, GF has
been shown to favor max-margin solutions (Soudry et all 2018]). In regression tasks us-
ing diagonal linear networks initialized near the origin, GF induces an implicit bias toward
parameters of minimal norm (Woodworth et al., 2020). In practice, however, optimiza-
tion relies on finite learning rates that are bounded away from zero, raising the question of
whether these explanations remain valid also in such scenarios.

At the same time, it was observed for standard architectures that full-batch GD can minimize
the training loss even with learning rates that are larger than what classical optimization
theory would require (Jastrzebski et al., [2019; |Cohen et al.,[2021). To be more precise, when
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optimizing a (locally) L—smootkﬂ loss function £: RP — R via full-batch GD, i.e.,
Ory1 =0, —nVL(O) (1)
with fixed learning rate n > 0, it is well-known (Bubeck et al., [2015) that

£O) < £0) 0 (1= 57} IR ©)

which means that monotonic decrease of GD is only ensured for n < 2/L. This sug-
gests for general twice differentiable £ that GD with learning rate 1 becomes unstable
if ||[V2L(0%)|| > 2/n. As a result, the training loss £ is not to be expected to decrease in
these sharp regions of the loss landscape.

When training neural networks via GD with fixed n > 0, it was however confirmed in ex-
tensive simulations (Cohen et al., [2021) that the sharpness S;(0x) = [[V2L(6y)| of the
training loss £ at iterate 0 increases along the GD trajectory until it exceeds the critical
value 2/n at some 0y,. For k > ko, the sharpness of the iterates starts hovering around and
slightly above this value (see Figure for illustration). In this phase, the loss decreases
non-monotonically and faster than when using adaptive learning rates that stay in the stable
regime 7 < 2/S£(0x). Accordingly, the authors dubbed the phases k < ko “Progressive
Sharpening” and the phase k > ko “Edge of Stability (EoS)”. In practice, convergence in
the EoS regime is attractive due to the fast average loss decay. It was even suggested that
large learning rates and thus EoS might be necessary to learn certain functions (Ahn et al.)
2023). More importantly, recent works on EoS showed that large learning rates induce an
implicit bias of GD towards minimizers with low sharpness (Ahn et al., [2022). Indeed, for
fixed 7 > 0 and twice differentiable £, GD can only converge towards stationary points 0,
with S (6,) < 2/n.

In summary, these different lines of works suggest that GD in (|1)) exhibits at least two distinct
but entangled forms of implicit bias; one stemming from the underlying GF 8’ = —V.L(0)
and one induced by its learning rate 1. To fully understand the success of GD-based training
via implicit bias, it is therefore insufficient to analyze each bias in isolation. Instead, it is
essential to understand the trade-off between various biases and answer the central question:
How do different implicit biases interact when GD is used for training neural networks? A
better understanding of this interaction may ultimately lead to more principled choices in
the design of training algorithms and hyperparameters.

1.1 CONTRIBUTION

Our work focuses on the two previously mentioned biases: the sharpness regularization
induced by large learning rates (Ahn et al., [2022)) and the norm-regularization induced by
vanishing learning rates due to the compositional structure of feedforward networks (FFNs)
(Woodworth et al.,|2020; |Chou et al.,[2023). Our contribution consists of three major points:

(i) Implicit bias trade-off in training: Across a wide range of settings, we empir-
ically demonstrate that at the end of training there is a trade-off between small
norm of the parameters and small sharpness of the training loss. This trade-off is
controlled by the learning rate. When comparing the final solutions across a range
of learning rates (see Section , we observe a sharp phase transition at a data- and
model-dependent critical learning rate 7.. Below 7., both the norm and sharpness
remain nearly constant. Above 7., increasing the learning rate leads to an overall
trend of increasing norm and decreasing sharpness. We emphasize that this phase
transition occurs when comparing final GD iterates over the choice of learning rate,
and does not correspond to the transition from Progressive Sharpening to FoS o0b-
served for fized learning rate n over the iterates 0y of GD (Cohen et all 2021).
To highlight that our observations do not depend on the specific choice of norm, we
present different norms in Figures [ —[3, and compare different norm choices in

Appendiz[H.9

LA differentiable function £: R? — R is called L-smooth if VL£: R? — RP? is L-Lipschitz. If £ is
twice differentiable, this is equivalent to the Hessian having operator norm ||V2£|| bounded by L.
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Figure 1: A critical learning rate 7. = 2/sgr marks a sharp phase transition between

two regimes, a flow-aligned regime, where solutions match gradient flow in sharpness and
norm, and an Edge-of-Stability (EoS) regime, where sharpness decreases while the £5-norm
increases, indicating a trade-off between low sharpness and small norm. Here, three models
are trained with full-batch gradient descent with varying learning rates. This behavior is
observed consistently across a wide range of experiments, see Section

(ii) Impact on generalization: Remarkably, low generalization error often does not
align with either extreme of the learning rate spectrum and never aligns with min-
imal norm. In some settings, the test error follows a U-shaped curve, with the best
generalization occurring at intermediate learning rates where norm and sharpness
biases are balanced, see Section [2.2] The learning rate can be interpreted as a
regularization hyperparameter that controls generalization capacity of the resulting
model, cf. |Andriushchenko et al| (2023al).

(iii) Theoretical analysis of a simple model: Restricting ourselves to the strongly
simplified setting of training a shallow diagonal linear network with shared weights
for regression on a single data point with square loss, in Section [3] we analyze how
the norm- and sharpness minimizers on the solution manifold £ = 0 are related and
how they compare in terms of generalization. In fact, we provide scenarios where
the lowest expected generalization error is attained by neither of them and the
learning rate controls the generalization performance of the GD solution. Serving
as a basic counterexample in which single biases do not generalize optimally, this
supports our conjecture that the generalization behavior of neural networks can
not be explained by a single implicit bias of GD. We analyze a comparably simple
classification setting in Appendix [F]

To illustrate the effect of bias entanglement and the influence of the learning rate on the
resulting trade-off right away, we present a prototypical experiment in Figure [I]

1.2 NOTATION AND OUTLINE

In the remainder of the paper, we denote vectors x € R and matrices X € R"*? by bold
lower and upper case letters, and abbreviate [n] := {1,...,n}. For vectors/matrices of ones
and zeros we write 1 and 0, where the respective dimensions are clear from the context.
The sharpness of a twice differentiable function f: R? — R at a point 6 is defined as

S5(6) = [V2FO)] = | max 1.

2The properties shown in the two left columns correspond to fully-connected FFNs (FCNs)
trained with mean squared error (MSE), while the Vision Transformer (ViT) in the right column
uses cross-entropy loss. We discuss the resulting qualitative differences between both losses in

Appendix @
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where || - || denotes the operator norm and o(M) the spectrum of a matrix M € R4, By
©® we denote the (entry-wise) Hadamard product between two vectors/matrices and write
zOF =z ® .- ®z for the k-th Hadamard power. The support of a vector z € R is denoted
by supp(z) = {i € [d]: z; # 0} and the diagonal matrix with diagonal z by D, € R?*?. For
any index set I C [d] and z € RY, we furthermore write z|; € R? for the vector that is zero
on I¢ and z on I.

Our numerical results are presented in Section To shed some light on the observed
phenomena, we analyze a simple regression model in Section [3} Finally, we conclude in
Section [d] with a discussion of our results. All proofs and further insights are deferred to the
appendix.

1.3 RELATED WORKS

Before presenting our results in detail, let us review the current state of the art on analyzing
the implicit bias of GF and GD, on EoS, which represent the two forms of regularization we
study. Thereafter we discuss the question how generalization relates to each implicit bias.
This section serves as a synopsis of Appendix [A]

Implicit bias of GF. To understand the remarkable generalization properties of unreg-
ularized gradient-based learning procedures for deep neural networks (Zhang et al., 2021}
Belkin et al., 2019), a recent line of works has been analyzing the implicit bias of GD to-
wards parsimoniously structured solutions in simplified settings such as linear classification
(Soudry et al., 2018]), matrix factorization (Gunasekar et al.l|2017)), training linear networks
(Geyer et al., [2020), training two-layer networks for classification (Chizat & Bach [2020)),
and training linear diagonal networks for regression (Vaskevicius et al., [2019). All of these
results analyze GD with small or vanishing learning rate, i.e., the implicit biases identi-
fied therein can be ascribed to the underlying GF dynamics. It is worth noting that there
are other mechanisms inducing algorithmic regularization such as label noise (Pesme et al.,
2021) or weight normalization (Chou et al., |2024b).

Edge of Stability. Whereas most of the above studies rely on vanishing learning rates,
results by |Cohen et al.| (2021)) on EoS suggest that GD under finite, realistic learning rates
behaves notably differently from its infinitesimal limit. Recently, a thorough analysis of
EoS has been provided for training linear classifiers (Wu et al., [2024) and shallow near-
homogeneous networks (Cai et al.,|2024) on the logistic loss via GD. In particular, GD with
fixed learning rate n > 0 can only converge to sufficiently flat minima (Ahn et al.| [2022),
i.e., stationary points 8, of a loss £ with bounded sharpness S, (6,) < 2/n. Note that EoS
was first observed for stochastic gradient descent (SGD) (Wu et al. |2018), for which the
analogous sharpness bounds also depend on the batch size (Wu et al., 2022)). |Ghosh et al.
(2025) show that large learning rates in deep linear networks induce a so-called beyond—EoS
regime in which GD oscillates stabely around the minimal sharpness solution.

Generalization and sharpness. In the past, various notions of sharpness have been stud-
ied in connection to generalization. The idea that flat minima benefit generalization dates
back to Wolpert| (1993)). Since then, many authors have conjectured that flatter solutions
should generalize better. Nevertheless, the relationship between flatness and generalization
remains disputed. Studies have found little correlation between sharpness and generaliza-
tion performance (Kaur et al 2023]), even when using scaling invariant sharpness measures
like adaptive sharpness (Kwon et all |2021). On the contrary, in various cases the corre-
lation is negative, i.e., sharper minima generalize better. Notably, one of these works by
Andriushchenko et al.| (2023al) observe correlation of generalization with parameters such as
the learning rate, which agrees with the herein presented idea of an implicit bias trade-off
that is governed by hyperparameters of GD.

We emphasize that with the present work we do not contribute to resolving the question of
which notion of sharpness (Tahmasebi et all, |2024) might be most accurate as a measure
of generalization. In fact, we restrict ourselves to the so-called worst-case sharpness Sp
defined as the operator norm of the loss Hessian since this version of sharpness is provably
reqularized by GD with large learning rates (Ahn et all |2022).
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Figure 2: Sharpness and ¢1-norm of final FCN models with tanh activation trained via MSE
loss on CIFAR-10-5k for three different loss thresholds €. Axis scales are equal for all three
instances. Each plot illustrates a sharp regime transition as the learning rate crosses the
critical threshold 7. ~ 2/s&, shifting from the flow-aligned regime with nearly constant
sharpness and norm to the EoS regime where sharpness decreases and the norm increases.

Generalization and ¢;-norm. A possible explanation for the occasionally observed cor-
relation between flatness and generalization can be deduced from Ding et al.| (2024). The
authors show for (overparameterized) matrix regression that sharpness and nuclear norm
(¢1-norm on the spectrum) minimizers lie close to each other. In view of the well-established
theory of sparse resp. low-rank recovery via £1- resp. nuclear norm minimization
7 good generalization of flat minima might just be consequence of flat minima
lying close to nuclear norm minimizers, which provably generalize well in low-rank recovery.
The observation that a single bias causes generalization might only stem from special situa-
tions in which several independent biases agree. This is also the case in scalar factorization
[Wang et al| (2022a, Appendix F.2). This point of view is supported by Wen et al.| (2023)
and aligns with our observations.

2 CONFLICTING BIASES

Across a wide range of training setups with varying architectures, activations, loss functions,
and datasets, we consistently observe a trade-off between sharpness and norm of the final
parameters as soon as the learning rate increases above a critical value. In Figure|[l| we show
examples of this transition, revealing two distinct regimes: The flow-aligned regime where
both final sharpness and norm remain nearly constant with respect to the learning rate,
and the Edge-of-Stability (EoS) regime where sharpness decreases hyperbolically and the
{1-norm increases approximately linearly. For GD trained until loss ¢ the critical learning
rate at which this phase transition occurs depends on the gradient flow solution and is
approximately given by 7. 1= 2/s¢ . Here, sgp := maxy<¢. Sz (0(t.)) denotes the maximal
sharpness of the GF solution 8 until time ¢, := inf{¢t: £(0(t)) < ¢}, see Figure 2l When
€ is clear from the context, we just write sgp. We emphasize that this regime transition
occurs when comparing final GD iterates initialized identically over the choice of learning
rate, and does not correspond to the transition from Progressive Sharpening to EoS at
t, = inf{t: S,(6:) > 2/n} observed for fixed learning rate n over the iterates 6 of GD
(Cohen et al., 2021).

2.1 SYSTEMATIC EXPERIMENTAL ANALYSIS

To systematically investigate the trade-off between sharpness and norm minimization, we
conduct experiments on standard vision datasets using both simple and moderately complex
architectures. Since computing the sharpness during training involves estimating the largest
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eigenvalue of the Hessian, which scales with both model and dataset size, we primarily use
compact models to allow for evaluation across a broad range of learning rates.

Following the experimental setup of |Cohen et al.|(2021]), our base configuration consists of a
fully connected ReLU network with two dense layers with 200 hidden neurons each, trained
on the first 5,000 training examples from both MNIST and CIFAR-10 (LeCun et al., [2010;
Krizhevsky et al.l |2014)). These two datasets provide complementary complexity levels and
help ensure that the observed effects are not specific to a single data distribution.

We train using full-batch gradient descent in order to cleanly isolate the fundamental trade-
off between norm and sharpness bias driven by the learning rate n. This allows us to study
the biases GD and GF induce without further confounding factors such as stochasticity or
momentum. To ensure comparable convergence across settings, we train until we reach a
fixed (training) loss threshold depending on the model.

Once we fix a setup, we use the same weight initialization across all learning rates to isolate
the effect of the step size. The exact choice of the learning rate schedule, along with further
experimental details, is available in Appendix [G]

We perform a systematic investigation by varying the following core components of the
training setup.

(i) Dataset size. When training on the full MNIST and CIFAR-10 dataset, the phase
transition persists, see Appendix [H.1]

(ii) Architecture. We vary the architecture of the fully-connected network (FCN),
as well as extend the FCN to a convolutional neural network, a ResNet and a
Vision Transformer (Lecun et all [1998; He et al., |2016; Dosovitskiy et al., 2021]),

see Appendix [H.2]

(iii) Activation function. We study ReLU and tanh activations. The phase transition
occurs in both settings, see Appendix [H.3]

(iv) Loss function. On most settings, we compare both cross-entropy loss (CE) and
mean squared error (MSE). The phase transitions are similar though differences in
the time evolution exist, see Appendix

(v) Loss threshold. For every experiment, we vary the loss threshold to which we
train, cf. Figure 2] and Appendix Note that varying the loss threshold can be
interpreted as early stopping.

(vi) Initialization. When varying the initialization, the properties of the GF solution
sar are changed. Consequently, the transition between both regimes happens at a
different learning rate, see Section [H.0]

(vii) Parametrization. We train FCNs with varying widths in the yP and kernel pa-
rameterizations (Yang et al., 2022; |Jacot et al.,[2018]) in Appendixwhere for uP
we observe a certain width-independence of the spectral properties, cf. [Noci et al.
(2024).

Across all variations, we consistently observe the same trade-off between sharpness and
norm, and the emergence of the flow-aligned and EoS regimes. Most figures showing these
variations are deferred to Appendix [ due to the page limit, along with further noteworthy
observations from our experiments being noted in Appendix [H]

2.2 INTERPRETATION OF THE EXPERIMENTS

We now provide a high-level summary of our findings.

Flow-aligned regime. In the flow-aligned regime (n < 7.), the behavior of GD closely
mirrors that of continuous-time gradient flow. This regime is characterized by stable conver-
gence of GD and minimal deviation from the gradient flow dynamics in terms of sharpness
and norm. Intuitively, the sharpness of the solution in this regime stays within the stability
limits set by the learning rate in (2)), i.e., Sz(6x) < 2/n, allowing the discrete updates to
track the continuous trajectory. However, we note that contrary to previous findings such
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Figure 3: Final sharpness, nuclear norm, and test loss versus learning rate for three FCNs.
On MNIST-5k with MSE loss (left), a clear U-shaped test loss indicates a trade-off between
low sharpness and low nuclear norm. CIFAR-10-5k with CE loss (middle) shows a similar,
though weaker trend. The best generalization typically occurs at intermediate learning rates
where norm and sharpness biases are balanced. However, this is not universal — for instance
CIFAR-10-5k with MSE loss (right) does not follow this pattern.

as by |Arora et al| (2022), the absolute deviation from the GF trajectory is not necessarily
negligible, see Appendix Nonetheless, the limits of GF and GD share nearly equal
sharpness and norm values.

Edge-of-Stability regime. As the learning rate exceeds the critical threshold 7. = 2/sgF,
the dynamics of GD enter the EoS regime. Here, training is governed by EoS
2021): while the loss continues to decrease on average over time, the decrease is no longer
monotone and the curvature of the loss at the iterates (as measured by S) fluctuates just
above 2/n. As GD is unable to converge to an overly sharp solution (cf. Theorem , the
iterates oscillate towards flatter regions. If training ends during or just after this EoS phase,
the solution sharpness will therefore be near 2/7.

In this regime, the sharpness S, of the final network parameters thus decreases hyperbol-
ically with the learning rate, closely tracking the function n — 2/7. At the same time,
the norm of the final parameters increases. In some cases, there is an initial, temporary
decrease in norm before the overarching trend of increasing norm and decreasing sharpness
takes over at larger learning rates. We highlight that this increase in norm is not specific to
the choice of norm: we observe the same qualitative trend for the £1, £3-norm and the nu-
clear norm, suggesting a general increase in model complexity as the learning rate increases,

see Appendix [.9}

Generalization. When comparing the test error of the produced solutions, see Figure
we note that minimal norm solutions in the flow-aligned regime never lead to optimal gen-
eralization, i.e., if the test error decreases towards one extreme, it is always towards higher
learning rates and increasing norm. In some of the cases we even observe a U-curve of
the test error suggesting that GD generalizes best when norm and sharpness biases are
well-balanced, see Figure 3] The learning rate can then be interpreted as a regularization
hyperparameter that controls generalization capacity of the resulting model. This aligns
with recent independent experiments by [Andriushchenko et al.| (2023a)).




Under review as a conference paper at ICLR 2026

olution manifold M ¢
GF * 05 * *
-~ GD
£1-min. My 3 ooi—e. -
O sharpness min. My,
best generalization Mg
sharpness bound 2/ & ~05 * A X
o <
1

=15 -1.0 -0.5 0.0 0.5 1.0 1.5 -15 -1.0 -0.5 0.0 0.5

(a) Shallow diagonal linear NN (b) GD trajectory, n = 0.125  (c) GD trajectory, n = 0.188

— theoretical prediction

I
14 } risk at My T T
1 risk at Mg 05 . 05 * 3 *
L 12{ 000 . risk at M,
= 1 ® final value
| —= Usgr 001 O o 00{ O o
10 i /
]
. * * s * *
! — -0.5
: X 05 % 05 <
10 L5 -5 -10 -05 00 05 10 15

01 02 03 04 05 15 -10 -05 00 05
n

(d) Generalization (e) GD trajectory, n = 0.25 (f) GD trajectory, n = 0.312

Figure 4: Two-layer diagonal linear model with weight sharing, shown in . In , ,
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The U-shaped generalization error is shown in .

3 AN ELEMENTARY STUDY OF HOW IMPLICIT BIASES INTERACT

To shed some light on the empirical observations of Section [2] we study the implicit biases
of GF and GD in the EoS regime in a simple regression task and show that for this setup,
the norm and sharpness minimizers of the interpolating manifold are distinct, and neither
is sufficient for best generalization. Assuming a single data point (x,y) € R% x R, we train
a shallow diagonal linear network with shared weights w € R¢ and without bias

bw: R =R, ¢y(z) =w Dyaz, (3)
see Figure via the square loss £(y',y) = 2(y' — y)?. The training objective is then

1 2
in £ ,y) = min L = min — ©2 x) — , 4
min £(¢w(x),y) = min L(w) := min 5 ((w,x) —y) (4)
where we overload the notation £ for the sake of simplicity. Note that ® denotes the
Hadamard product and z% = z® --- ® z the k-th Hadamard power. We define the set of
parameters of interpolating solutions ¢, as

M ={w e R L(w) =0} (5)

and note in the following lemma that M is a Riemannian manifold in general. We provide
the proof in Appendix [C}

Lemma 3.1. For L as in , define M as in and assume that M # 0. Ifx € Rio and
y # 0, then M is a Riemannian manifold with tangent space TyM = (x O W)+ at w € M.

While this training model is strongly simplistic, it allows us to explicitly compare the implicit
biases induced by GF and by EoS, and to compute their generalization errors w.r.t. the
realization of (x,y). Indeed, it is known that in this setting GF initialized at wo = a1,
for a > 0 small, converges to an end-to-end model w®? that approximately minimizes the
¢;-norm among all interpolating solutions (Chou et al.,2023)), see Theorem in Appendix
Similarly, under mild technical conditions on £, which are fulfilled in the present study,
it is well-known for GD with learning rate i > 0 that for almost every initialization w, € R?
the iterates wy can only converge to stationary points we, with Sg(weo) < 2/
, see Theorem in Appendix In consequence, GD is implicitly restricted to limits
with low sharpness if 7 is chosen sufficiently large.

3In consequence, the network parameters w, minimize the squared ¢2-norm.
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The following result now characterizes how the norm- and sharpness-minimizers of relate.
In particular, it illustrates that they are clearly distinct in general.

Proposition 3.2. Forx € Rio and L as in with M # 0 as in , the following hold:

(i) To have

W E My, = arg min 1291,

it is necessary that X|supp(w) = Tmax - Llsupp(w): fOT Tmax = max; |;].
Ifx € Rio; this condition is also sufficient. In particular, we have in this case that

My, = {W eRe: ||wl|2 = and supp(w) C argmaxa:i} . (6)
K3

max
(ii) To have
we Mg, = arg min Sr(z),

it is necessary that X|supp(w) = 20 - Lsupp(w), for some o € R.

Ifx € R‘io, it is necessary and sufficient that the previous condition holds with
T = Tmin = Min; x;. In particular, we have in this case that

Mg, = {W eRY: w3 = and supp(w) C argminazi} . (7)

min

Proof sketch: To derive the necessary conditions, we calculate Riemannian gradients and
Hessians along M and use the respective first- and second-order necessary conditions. To
derive the sufficient conditions and the explicit representations in @ and @, we construct
simple minimizers based on canonical basis elements. The full proof is in Appendix O]

Proposition [3.2) shows that, in general, the norm- and sharpness-minimizer on M do not
agree. We mention that the assumption x € RY %o is not restrictive since any zero coordinate
of x can be removed by reducing the problem dimension. In view of Theorems [B.1]and [B.2]
we see that depending on the learning rate, GD with initialization wy = a1, for @ > 0 close
to zero, is implicitly more biased to two disjoint sets. For n — 0, the limit of stable GD will
lie close to the set in @; as 7 increases, the limit of unstable GD (as far as it exists) will lie
close to the set in (7). For d = 2, the situation is illustrated in Figure [4f We further note
that the restriction of Theorem @ to non-negative parameters is not limiting the analysm
since @ always contains such solutions, i.e., in our setting an ¢;-minimizer on M N R>o is
also a minimizer on M.

Despite its simplicity, our toy model can reproduce the characteristic phase transitions of
norm and sharpness (Figure[1]) and the U-shaped generalization curve (Figure . For this,
let us assume that the data follows a simple linear regression model with x ~ A (0,I) and
y = (1,x) + ¢, for independent € ~ A(0,1). Then, the risk R under £ can be computed
explicitly and the best achievable generalization error of ¢y, trained via can be identified,
see Lemma [E11

Assume we are given a generic draw of the single data point (xg, y0) ~ (X,y) with xo € R>O,

i.e., we consider a draw (xg,yo) from the conditional distribution p((x,y)|x > 0 E| Note
that almost surely xo will satisfy |[supp(x0)| > 2, and have a unique minimal entry i, at
index kpin, and a unique maximal entry Tpax at index kmax such that the sets in @ and
@ consist of two points each which only differ by a sign.

On this model, GD with learning rate n will minimize £ under constraints S, < % due to its
implicit sharpness regularization. We can now compare the limit of GD with initialization
wo = a1, for @ > 0 small, to three idealized training algorithms which, given input (xq, yo),
output the weight vector w € R? of an interpolating solution ¢y:

“In this discussion, (Xo,%0) takes the role of the single data point (x,%) from before and we
condition to non-negative data in order to apply Proposition We examine removing the latter
limitation in Section [E-T}
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(i) Minimal norm: Ay, : R? x R — R? with Ay, (x0,%0) = 1/=2—e,... This corre-

Tmax max

sponds to the solution computed by GD with vanishing learning rate.

(ii) Minimal sharpness: Ag,.: R? x R — R? with Ag, (x0,%0) = {/-2e,,.. This

ZTmin
corresponds to the solution that would be computed by GD with extremely large
learning rate if convergence still happened.

(iii) Minimal generalization error: A,y : R? x R — R? with A (%0, %0) returning
a risk minimizer in Mg (best generalizing points in M).

Figure [4] shows four snapshots of the training dynamics for growing 7. Figure [b] reflects
the situation where GD has no sharpness induced restrictions on M and converges to a
minimizer in My,, i.e. the output of A,,. As long as 5 is not too large (Figure 7 the
generalization minimizer fall inside the feasible set. Due to EoS, the model finds a solution
with sharpness around 2/n yielding suboptimal generalization error, though risk improves
over My,. For carefully tuned n, Figure Fi_El shows convergence of GD to a point close to
the output of Agpt. For too large 7, the sharpness constraints exclude Mg and GD moves
closer to Mg,. As Figure Fi_?[l illustrates, our toy model exhibits the U-shaped generalization
curve observed in various training simulations, and explains it by an interpolation between
implicit norm- and sharpness biases.

We note that in this example both My, and Mg, lead to suboptimal generalization with
R(My,) < R(Msg,.). Due to its instability, GD already diverges for many n where the
feasible set of the constrained optimization problem is non-empty, i.e., although there exist
points on the solution manifold with sharpness < 2/7. Consequently, all convergent trajec-
tories in the EoS regime achieve better generalization than R(My, ), although the sharpness
minimizer induces a higher risk. This might be an explanation for why the U-shaped gen-
eralization curve is not always visible in our experiments.

We provide additional numerical experiments for the diagonal network in Appendix [H.13]
In particular, note that the GD limit is often close to a KKT point of a sharpness-restricted
risk minimization on M (Figure and Lemma . In Appendix [F| we analyze a com-
parably simplified classification model for which sharpness minimization leads to better
generalization performance than norm-minimization.

4  DISCUSSION

Our experiments suggest that a single implicit bias of gradient descent is not sufficient to
explain the good generalization performance in deep learning. While solutions obtained
with vanishing learning rates may have an implicit bias towards simple structures, the bias
changes with increasing learning rate. This insight provides an explanation for the strong
empirical influence of the learning rate on model performance. Our theoretical analysis fur-
ther indicates that the learning rate balances between various implicit biases, and that good
generalization performance is only reached by careful fine-tuning of such hyperparameters
of GD. These insights from our simplified model open the door to a broader perspective on
implicit regularization which accounts for the interaction between multiple biases shaped by
the optimization dynamics. Future work extending our insights to additional known biases
and more realistic optimizers (e.g., SGD, Adam) will be important to fully translate these
insights into practical training settings.

4.1 LIMITATIONS

Our theoretical analysis is restricted to simple models due to the difficulty in explicitly
characterizing the implicit biases of GD in more general setups. In combination with our
empirical studies, it nevertheless provides consistent evidence for the observed phenom-
ena. Our study is further limited by only considering full-batch gradient descent as well as
two specific manifestations of implicit bias. Further empirical validation on other popular
optimizers, network classes and datasets would be desirable.
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REPRODUCIBILITY STATEMENT

The complete experimental methodology is described in detail in Appendix [G] and all ex-
periments are fully reproducible. Source code will be released upon acceptance and is also
provided as part of the supplementary material. Proofs of the main statements are included
in Appendix [C]and [D] with additional theoretical results and their corresponding proofs in

[El and [F1

ETHICS STATEMENT

The presented work on implicit regularization is foundational in nature. The theory part
is not tied to an application and also uses a simplified model. The experiments utilize
established architectures, algorithms, and datasets. We therefore do not identify any specific
ethical issues arising from this work.

LLM USAGE STATEMENT

We used large language models (OpenAI’s ChatGPT, Google’s Gemini, Writefull) for edito-
rial assistance such as grammar, spelling, and word choice. In addition, we used OpenAl’s
ChatGPT for limited coding support including plotting routines, assistance with bash scripts
and resolving error messages. No substantive ideas, research contributions, or results were
generated by Al tools.
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SUPPLEMENT TO THE PAPER “CONFLICTING BIASES AT THE EDGE OF
STABILITY: NORM VERSUS SHARPNESS REGULARIZATION”

In this supplement, we provide additional numerical simulations and proofs that were
skipped in the main paper.
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A  RELATED WORKS — EXTENDED DISCUSSION

We provide a more detailed review of the related literature here.

Implicit bias of GF. To understand the remarkable generalization properties of unreg-
ularized gradient-based learning procedures for deep neural networks (Zhang et al. [2021}
Belkin et al. 2019), a recent line of works has been analyzing the implicit bias of GD to-
wards parsimoniously structured solutions in simplified settings such as linear classification
(Soudry et al., 2018} |Ji & Telgarsky}, 2019)), matrix factorization (Gunasekar et al. 2017}
Arora et al.,2019; |Chou et al.| [2024a)), training linear networks (Geyer et al.l 2020; [Stoger &
Soltanolkotabi, [2021)), training two-layer networks for classification (Chizat & Bachl 2020
Frei et al.| [2022), and training linear diagonal networks for regression (Vaskevicius et al.
2019; [Woodworth et al.| [2020; [Azulay et al., 2021; |Chou et al., [2023)). All of these results
analyze GD with small or vanishing learning rate, i.e., the implicit biases identified therein
can be ascribed to the underlying GF dynamics.

Other types of implicit regularization of GD. It is worth noting that there are
other mechanisms inducing algorithmic regularization such as label noise
[2021} [Vivien et all 2022) or weight normalization (Chou et al., 2024b)), momentum gradient
descent (Papazov et al., 2024), smoothed sign descent (Wang & Klabjan, [2025)) and explicit
regularization into the mirror flow (Jacobs et al., [2025). In (Andriushchenko et al., [2023b}
[Even et al.,2023) an intriguing connection regarding implicit regularization induced by large
step sizes coupled with SGD noise has been discussed. In particular, for shallow diagonal
linear networks it has been shown that SGD with large learning rates implicitly regularizes
certain parameter norms (Wu & Su, [2023). For a broader overview on the topic including
further references we refer to the survey by [Vardi| (2023)).

Edge of Stability. Whereas most of the above works rely on vanishing learning rates,
results by (Cohen et al.| (2021)) on EoS suggest that GD under finite, realistic learning rates
behaves notably differently from its infinitesimal limit. In the past few years, subsequent
works have started to theoretically analyze the EoS regime. It is noted in [Ahn et al.| (2022
that GD with fixed learning rate n > 0 can only converge to stationary points 6, of a loss
Lif Sc(64) < 2/n. In|Chemnitz & Engel| (2024), this stability criterion of stationary points
has been generalized to SGD. Note that EoS was first observed for SGD (Wu et al., [2018]),
for which the analogous sharpness bounds also depend on the batch size (Wu et al., 2022]).

|Arora et al| (2022) relate normalized GD on a loss £ to GD on the modified loss v/£ and
show that EoS occurs O(n)-close to the manifold of interpolating solutions. Under various
restrictive assumptions, progressive sharpening and EoS have been analyzed by
(2022b)); |Chen & Bruna/(2023));|Zhu et al.|(2023)); Kreisler et al.| (2023). Recently, a thorough
analysis of EoS has been provided for training linear classifiers (Wu et al., 2024 and shallow
near-homogeneous networks on the logistic loss via GD. The authors show
that large learning rates allow a loss decay of O(1/k?) which exceeds the best known rates for
vanilla GD from classical optimization. (Cohen et al.| (2021) extended their empirical study
of EoS to adaptive GD-methods for which the stability criterion becomes more involved
(Cohen et al.|[2022). Finally, let us mention that applying early stopping to label noise SGD
with small learning rate can also induce sharpness minimization and structural simplicity
of the learned weights (Gatmiry et all [2024). As opposed to our definition of sharpness,
sometimes called worst-case sharpness, in the latter work sharpness is measured by the
trace of V2L also known as average-case sharpness. Additionally, |Ghosh et al.|(2025) show
that when deep linear networks are trained with very large learning rates, gradient descent
operates in a so-called beyond—FoS regime characterized by sustained oscillations around the
balanced minimum which is of minimum sharpness. In contrast, we only consider converged
trajectories, not ones which are in stable oscillations. Finally, we highlight that for models
with normalization layers, the sharpness scales inversely with the squared parameter norm
(Li et all, |2020; [Lyu et al| [2022). Although this corresponds to a different GD dynamics
due to the explicit regularization, the resulting trade-off aligns with our main observation.
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Sharpness and generalization. In the past, various notions of sharpness have been stud-
ied in connection to generalization. The idea that flat minima benefit generalization dates
back to Wolpert| (1993), who argued this from a minimal description length perspective.
Later, [Hochreiter & Schmidhuber| (1994} 1997)) proposed an algorithm designed to locate
flat minima, defining them as “large regions of connected acceptable minima,” where an
acceptable minimum is any point with empirical mean squared error below a certain thresh-
old. Notably, their formulation does not explicitly involve the Hessian. Following these
early works, many authors have conjectured that flatter solutions should generalize better
(Xing et al.| |2018; |Zhou et al., [2020; Park & Kiml|, 2022} [Lyu et al., [2022). The prevailing
intuition is that solutions lying in flatter regions of the loss landscape are more robust to
perturbations (Keskar et al.l |2017)), which may contribute to improved generalization.

Inspired by this idea, sharpness-aware minimization (SAM) has been proposed by [Foret et al.
(2020) as an explicit regularization method that penalizes sharpness, successfully applied
in improving model generalization on benchmark datasets such as CIFAR-10 and CIFAR-
100. In|Tahmasebi et al.[(2024), SAM was extended to sharpness measures that are general
functions of the (spectrum of the) Hessian of the loss. The general sharpness formulation
presented therein encompasses various common notions of sharpness such as worst-case and
average-case sharpness.

Despite these theoretical and empirical arguments, the relationship between flatness and
generalization remains disputed (Andriushchenko & Flammarion) |2022). Studies have found
little correlation between sharpness and generalization performance (Jiang et al.} 2019; [Kaur
et al.,2023). Furthermore, a re-parametrization argument by [Dinh et al.| (2017 shows that
sharpness measures such as Sz can be made arbitrarily large without affecting generalization,
challenging the notion that flatness is a necessary condition for good performance. Even
when using scaling invariant sharpness measures like adaptive sharpness (Kwon et al., [2021)),
the empirical studies performed by |[Andriushchenko et al| (2023al) show that there is no
notable correlation between low sharpness and good generalization. On the contrary, in
various cases the correlation is negative, i.e., sharper minima generalize better. What is
most interesting about the latter work from our perspective, is that it observes correlation
of generalization with parameters such as the learning rate, which agrees with the herein
presented idea of an implicit bias trade-off that is governed by hyperparameters of GD.

Generalization and /;-norm. A possible explanation for the occasionally observed cor-
relation between flatness and generalization can be deduced from Ding et al.| (2024). Therein
the authors show for (overparameterized) matrix factorization of X, € R%*%2 via

min [lovt - X, |3,
UERdl X k,VERd2 Xk

where k > rank(X,) is arbitrarily large, that sharpness and nuclear norm (¢;-norm on the
spectrum) minimizers coincide. For (overparameterized) matrix regression

. T )
UeR% ><I£171\1716]Rd2><k IAUVT) =yl (8)

where y = A(X,) +e, for A: R%*9 5 R™ and unknown noise e € R™, they relate the
distance between sharpness and nuclear norm minimizers to how close the measurement
operator A is to identity. Good generalization of a solution (ﬂ, \7) of , ie., UVT ~ Xy,
is then proved if A satisfies an appropriate restricted isometry property (RIP) for low-rank
matrices. However, it is not really clear which of the two types of regularization explains
the generalization. In view of the well-established theory of sparse resp. low-rank recovery
via £1- resp. nuclear norm minimization (Foucart & Rauhut, [2013), one may assume in this
specific setting that good generalization of flat minima is just a consequence of the fact that
flat minima lie close to nuclear norm minimizers, which provably generalize well in low-rank
recovery. The observation that a single bias causes generalization might only stem from
special situations in which several independent biases agree. This is also the case in scalar
factorization [Wang et al.| (2022a, Appendix F.2.), where the sharpness of a minimizer is
equal to squared norm and the biases thus coincide. This point of view is supported by [Wen
et al.| (2023]) and aligns with our observations.
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B IMPLICIT NORM AND SHARPNESS REGULARIZATION

In this section, we recall two established results on implicit bias of GF and GD. In the setting
of Section it is known that GF converges to an end-to-end model w®? that approximately
minimizes a weighted ¢;-norm among all interpolating solutions ¢ (x) = y if initialized close
to the origin (Chou et al.l [2023) where the weights of the ¢;-norm depend on the chosen
initialization. To avoid unnecessary technicalities, we formulate the result only for wy = a1
which induces a bias towards the unweighted ¢;-norm.

Theorem B.1 (Implicit ¢1-bias of GF (Chou et al,[2023))). Let £ be defined as in with
M as in . Assume that M N R%O is non-empty and GF is applied with wy = al, for

a > 0. Then, GF converges to Woo € R with
w2y < ( min  [[w®s) +<(a),
weMnN %0
where (o) > 0 satisfies (o) \ 0, for a — 0.

The implicit sharpness regularization of GD for large learning rates can be deduced from
the following result.

Theorem B.2 (Dynamic stability of GD (Ahn et al.,[2022))). Let n > 0 and X C RP. Let £
be twice continuously differentiable such that the operator F: RP — RP, F(w) = w—nVL(w)
satisfies that F~1(S) is a set of Lebesgue-measure zero, for any set S C RP of measure zero.
Assume furthermore that % is not an eigenvalue of V2L (w,) for every stationary point w,

of L. Let wy, be the iterates of GD with learning rate n. If |V2L(w)|l2 > 2/n for every
w € X, then there exists a zero Lebesgue measure set Ax such that

e cither wy € Ax

e or wy does not converge to any w € X.

C PRrOOF ofF LEMMA [3.1]

Lemma is a special case of the following result for training diagonal linear L-layer
networks with shared weights on a single data point. In this case, the loss £ is given by

£(w) = L (xwEh) — )" )

Lemma C.1. For L as in @D, define M as in . If x € Ry and y # 0, then M is a
Riemannian manifold with tangent space TyM = (x @ wOE=)L gt w € M.
Proof. Note that w € M is equivalent to

h(w) = (x,w") —y =0,

where h: R — R. Since Dh(w) = L(x ® w®2~1)T and w # 0 for any w € M due to
y # 0, we have that rank(Dh(w)) = 1 for all w € M. Hence, M is a (d — 1)-dimensional
submanifold in R? with tangent spaces

TwM = kel"(Dh(W)) = (X o VVL—l)L7

e.g., see [Boumal| (2023). Smoothness of the manifold follows by equipping T M with the
Euclidean metric of R<. O

D PROOF OF PROPOSITION [3.2]

Before we prove Proposition we note that the £;-norm of w®? can be written as

w2l = [[wl3 (10)
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and that the sharpness Sg(w) of £ at w satisfies
Sc(w) = 4]x o wlf3, (11)
for any w € M, where we used that
V2L(W) = Do((xwory—y)x + 4x 0 w)(x 0 w)".
The necessary conditions of Proposition [3.2] are proven in the following lemma.
Lemma D.1. Forx € Rio and L as in with M as in , the following hold:

(i) To have

w € arg min [}

it is necessary that X|supp(w) = 0 * Lsupp(w), for o = max; |z;].
(ii) To have
€ in S
w € arg min Sz(z),

it is necessary that X|suppw) = 20 * lsupp(w), for some xg € R. Furthermore, if
X € Rim it is additionally necessary that o = min; ;.

Proof. In the proof we compute the Riemannian gradient grad f and the Riemannian Hessian
Hessf of a function f on M. Note that
gradf(w) =P, mV f(w)
and
[Hess f(w)](u) = Pr, m([Veradf(w)](u)),

for any w € M and u € T\ M, where Py denotes the orthogonal projection onto the linear
subspace U C R? (Boumal, 2023)).

We begin with (i). Define f(w) = 2w’ w and note that f(w) = %||w®?||; by (10). Hence,

1
gradf(w) = Pr,mVfi(w)=w— ———D,ww’ D, - w.
Daewl[3

To have gradf(w) = 0, w has to be an eigenvector of Dyww? D, with eigenvalue ||D,w||3
which is equivalent to x|supp(w) =20 1|Supp(w), for some zy € R. This is the first necessary
condition.

Now define G(w) = grad f(w). Then,
[VG(w)lij = 0,G(w)i

2 22w s 2 W A
{lewu2 s - Tiwi (W, DocW) = 55 G- B0t i

1 — =t - (2(W, Dew) + 2220?) + =2 2?w; - 7w (w, Dyw) i = j,
[Dsewll3 (s [Dsewll3 ™
such that
2 2(w,Dyxw) Taas
VG(W) =D, (wbew . — ———=D,ww! D, + =27/ D ww! D2,
) =Dy Do D.cw
Consequently, we have that
[Hessf(w)](u) = Pr, m([VG(W)](u))
1 (w, Dxw)
=I- ———D,ww/D,) |[(1-Z2L . x)Ou|.
Dycw |3 Dy |3
For any w satisfying the first necessary condition, we thus have that
wwl X x
(u, [Hessf(w)](u)) =u” - I~ —m) (1 - ) Ou=[ulf - (u, —~ @ u),
HWHQ Zo X0
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where we used in the second equality that X|suppw) = Zo - 1lsupp(w) by which (1 —
7 )lsupp(w) = 0. Hence, (u,[Hessf(w)](u)) > 0 can only hold for all u € TwM if
X = arg max; |z;|.

To show (ii), we proceed analogously but consider f(w) = %DXWTWDX, and note that

f(w) = 35-(w) by (1I)). Then, one can easily check that

gradf(w) = D2w — —— —D,ww D3 - w,
W)= P g P P
which implies the same first necessary condition. Now assume x € R . Then,

2 2 D3
xWWTD3 4 <W7 xW>

V2G(w) =D Wiy — ———D 3
o5 x [Dxwlf3 I Dacwl|3

X

T2
Dyxww” Dy,

.
Dscwl3

such that

3 B 1 (w,D3w)
[Hessf(w)](u) = (I - mewaDx) . (XGQ Dl -x) O u.

For any w satisfying the first necessary condition, we thus have that
(u, [Hessf(w)](u)) = (u, D3u) — o(u, Dyu)

which implies for x € R that (u,[Hessf(w)](u)) > 0 can only hold for all u € Ty M if
Ty = argmin; x;. O]

The sufficient conditions are stated in the following lemma.
Lemma D.2. Forx € Rio and L as in with M as in , we have the following:

(i) To have
. @2
w € arg g 1271

it is sufficient for w € M that supp(w) C arg maxg, xy.
(ii) To have

w € arg min S, (z),
ngM E( )
it is sufficient for w € M that supp(w) C arg miny x.

Proof. First recall and (1I). We begin with (i). Let k, € argmaxy, z. Since ||w|3 <
y/zy, implies by our assumption on x that (x, w®?) <z ||w|j3 < y, i.e., w ¢ M, and

2
\/Tek* € M satisfies H el =L,
T, Tk, 2 Tk,

we know by that

min [|z9%|; = Y

zeM x "
For any w € M with supp(w) C arg maxy, x, we have that

y = (x,w?) = z; |[|w]2 = 2. ||w®?||1

and the claim in () follows.

To see (ii) we proceed analogously. Let k. € argminy zy. Since |Dxw||3 < yzy, implies by
our assumption on x that (x, w®?) < iHDxWH% <y, ie,w¢ M, and

y , Yo IIP =
——ep, € M satisfies Dy /—er | =yzg,,
T, T, 2
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we know by that
min S¢(z) = yxy, .

zeEM
For any w € M with supp(w) C arg ming xj, we have that
1
y = (6w = ap [lwllz = —Sc(w)

*

and the claim in (i7) follows. O

The specific shape of the minimizing sets @ and can easily be derived from the previous
two lemmas.

E AN ELEMENTARY STUDY OF HOW IMPLICIT BIASES INTERACT —
GENERALIZATION

Recalling the setting outlined in Section [3] let us assume that our data follows a simple
linear regression model with x ~ A(0,I) and y = (1,x) + ¢, for independent & ~ AN(0,1).
Then, the risk under £ can be computed explicitly and, given a single training data point
(%0, y0) with xg € R‘iw the best achievable generalization error of ¢y, trained via can

be computed as followsﬂ
Lemma E.1. Let L be as in and let x ~ N(0,14xq) and y = (1,x) +¢, for independent
e ~N(0,1). Then,
1 1
R(W) = E (x) L(W) = §||WH§1L — [Iwll3 + Z(d+1).

Let nown > 0 and (xq,y0) € R%o xR, and define the corresponding risk minimization under

sharpness constraints Sp(w) < % as

min R(w), st (x0,w®?) =1y, Sg(w)<

2
<2 (12)
weRd n

Fiz any support S,, C [d] with Sy, Nsupp(xg) # . Let w be any vector such that supp(w) =
Sy and
W|§f =(1- 2)\77)(832 —vX0)|s,
for (A, v) as defined below:
o IfSp(w) < % and
A=0
_ I%ols.. Il — vo
I%ols., 113
with v||xo|s, || <1, then w is a KKT point of (12).
e Ifxg# al, for all « #0, and

5+ IIxo 3

2

%* %o 1]%0

~ Yollxols., Su Su sul13 = 2 1%0ls, [13
- 2(|1%0ls., 13 /1%0ls., 17 — lI%0ls..1I3) (13)
L yollxols,, 1 + %ol s, 13 lIxols., 13 — lIxols., [I1%0]s., 11 — 25 lI%ols., II3
%05, 11§ = [I%ols.,[13]1%ols., |1
or xg = al, for some o # 0, and (\,v) satisfying
Ix0ls., [l — 27X [Ix0ls, I3 — IIxols., I3 = o, (14)

both with A > 0 and 2 n(xo); + v(xo); < 1, for alli € Sy, then w is a KKT point
of .

®Note that (xo,%0) takes in this section the role of the single data point (x,y) from before and
that we condition to non-negative data in order to apply Proposition [3.2}
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This characterizes all KKT points of .

Proof. First note that

1
R(W) =K (x,y) [’(W) = 5 E (x,y)(<W®2a X> - y)2
= % ((WGQ)T E (xxT)w®% - 2E (yxT)w®2 + E yz)

= LIwEE — (1, W) £ L (d+ 1)
1 , 1
— LIwll — Iwlg+ 2+ 1),
where we used in the penultimate line that E (yx”) = 17 and E (y*) = d + 1, and in the
ultimate line that (1, w®2) = [|w||3 and [|[w®2||3 = |[w]|;.

For the KKT analysis of Equation (12)), we will drop the additive constant 3(d + 1). We
first re-write Equation as

min f(w), st. h(w)=0, g(w)<O0.
weR

where

2

f(w)

h(w) = (xg, W

I
2L
2
Il
2

®2> — Yo
g(w) = 2n][xo © w3 — 1.
The point w satisfies the KKT conditions if there exists A, v € R such that

Vf(w)+vVh(w) + AVg(w) =0

h(w) =0
g(w) <0
Ag(w) =0
A>0.

Plugging in, we obtain
2w — 2w + 2uxg O W+ AAx5Z Ow =0
(x0,Ww??) =0 =0
211||x0 © wl3 =1 <0
A2nlxo © wlj3 1) =0
A>0.

,.\,.\/_\AA
—_
—_— N — —

By rewriting as
(W — 1+ vxp + 2x5%) O w = 0,
we see that, for any ¢ € [d], we have
w; =0 or w? =1—wv(xg); — 2 n(x0)?. (20)
Consider any w with supp(w) = S, satisfying the KKT conditions.

If A =0, we get that w|gj = (1 —vxo)|s, such that yields that

X S —
Iolsu - vlxols, B=g0 &  v= 1Xolsuli—g0
||X0 Swll2

which implies that a suitable v exists iff S, Nsupp(xo) # 0 and v < min;e g, Asupp(xo) ﬁ

The latter condition stems from the fact that non-zero entries of w®2 have to be positive.
Finally, to be a KKT point, w has to satisfy (17).
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If A # 0, we get that w|§f = (1 -2 \x§? — vxg)|s, such that and yield that

%05, 1l = 20A[1%0]s,, 113 — vlxols, I3 = %o

1

[1%o0ls., 113 — 20AlIxols,, I3 — vIxols,,II5 = %’

which is a solvable linear system iff Sy, Nsupp(xg) # 0. If x¢|s,, # al|s,, for all a # 0, the
unique solution is given by . Else, the system is underdetermined and only yields the
relation in ([4). Finally, if A > 0 and (2\x§” + vxg)|s, < 1|s, (positivity constraint for

w

non-zero entries of w®?), any resulting w yields the second type of KKT point. O

While it is cumbersome to analytically extract for general d which of the KKT points of
Lemma [E-J] corresponds to a global minimizer, we can easily evaluate this numerically in
our toy example from Figure [ see Section

E.1 A MORE GENERAL REGRESSION ANALYSIS

Since it is more natural to have unconditioned training data, let us now assume that our
data follows a general distribution (x,y) ~ D. Then, the risk for a parameter choice w
under the model in — is given by
1

R(W) =E () L(W) = 3 ((WGQ)TZJW®2 —2uTwO? 4 02), (21)
where we define ¥ = E (xxT), u = E (yx), and ¢ = E y?. Under mild technical assump-
tions on D and considering a single training data point (xo,y0) ~ (X,y), we can compare
the three (idealized) training algorithms A, , As,, and Agp from above which minimize
{1-norm, sharpness, and generalization error on M, respectively.

Proposition E.2. Assume that D is a distribution such that 3, ,0? are well-defined and
finite, that X is invertible, that x € R‘éo a.s., and that the entries of x are a.s. distinct.

Then, given a single training data point (Xg,yo) ~ (X,y) we have that

(i) Ag (X0,%0) = Y_gp ., where kmax @s the index of the mazimal entry of xo.

Tmax

The expected generalization error is given by

1 % 2 .
B g Rl (00) = & (2 B (Dbt g (M)

2 max xmax

(ii) As,(X0,Y0) = 1/ Ley,.., where kyin is the index of the minimal entry of xo. The

Lmin

expected generalization error is given by

1 S |
E(XO,yo) R(ASE (XOyyO)) = — (02 +E (M) +E (Mkmmyo)> )

2 Lin Lmin

N

©
(111) Aopt(X0,y0) = (E’%(Pxﬁ:uz + ”xyﬁxzw , where P, denotes the orthogonal
2

projection onto span{z}, xs = E_%xo, and py = E_%u. The expected generaliza-
tion error is given by

E (x0,%0) R(Aopt<XOa yo))
-3 (JQ e (yig?) ~2usE (&2"9 ~pzpE Pi;#ﬁ) '
2 e 13 Ix=3

Although it is not possible to analytically evaluate the expectations on this level of generality,
the expected generalization error of Ag, (X0, yo) will presumably be larger than the one of
Ay, (X0, y0) since Tmin < Tmax; just like in the specific setting in the beginning of Section
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Proof of Proposition[E.2 By our assumptions on the distribution of x¢, Points (i) and (i)
follow from applying Proposition and inserting the resulting minimizer into (21

To derive (iii), we abbreviate w = Siwo2, us = E’%u, and x5, = X~ 2xg, and consider
the linearly constrained optimization problem

: o - -
min Riw) = min (W3~ 206w + 0%, st xbw =y, 22

Since the objective is convex and the constraints are linear, the KKT-conditions of ([22)

{2‘7V_2“2+)‘X2 =0 {WZNE— 3Axs W = pix — 3AXs
- = 41 1
X W = Yo xghs — 3 AIxz (3 = vo A= m(xéuz —Yo)

are sufficient and necessary, and yield the unique minimizer

T
- XX Yo
W*:<1772;>/L2+H EH2 X5

[x=l13
with
1
R(Aopt(X07y0)) i(HW*”Z - QHEW* +o )
1 2 L 2
5 H SHs T+ XEH —QNE(P By + )+0
T2 [BS 2”2 2 [[x sz
1
S ( LPLips+ H XZJH — 25 Prp s — 25 HEXs + 0 >
2 [xsll3 || ||
1( Yo Yo Tl 2
= -2 pexs — pyPrg s + 07 ).
2\ [xsl3  “lxsl3T =

Consequently,
E (x0.40) R(Aopt (X0, %0))
L( Y3 T Yo T 1
:70+E( )—2u E( xz)—u E P ps ).
2 ( 13 =7 \xsl3 =
O
We can now use Proposition [E.2] to examine a regression task in which the feature distri-

bution is a folded Gaussian and thus restricted to the positive orthant. Let x ~ |N(0,1,)]
and y = (1,x). Then ¥, pu, and o2 are given by

1 ifi=j
2(n—1)
pi =E(yxi) = E(x}) + D E(xixj) =1+ =—
JijF#i
on(n — 1
= TG+ 3 B o 2=
[ 1,5:10F£] &

By Proposition we obtain the following results: For Ay, (x0,%0), the expected general-
ization error is given by

;(n(Qn—Q—&—W) L E ((1,2x0>2) N 2n—2+m o ((1,x0>)>.

s T2 x 7r ZTmax

Since (1,x0) < NTmax, the above expectation terms are bounded by

1 X0
> S n2’ ]E < ? >
Tmax Tmax

<n
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For Ags, (%0, Yyo), the expected generalization error is given by

1<n(2n2+7r) L E ((1,x0>2> N 2n—2+m o <<1,x0>)>.

2 2

However, in this case due to zni, the expectation blows up to infinity as shown below.

[0,1]x[1,2]»—1

Lmin

Tmin T min; x;
2\ /2 n—1 1,2 10,20 4.2
> (*) e 2%1dxq e~ 2@t At ) g0 o da,, = 00.
™ [0,1] <1 [1,2]—1
=00 >0

Consequently, as in the simpler setting above we see that the implicit GF-regularization
leads to smaller generalization error than the sharpness regularization.

F AN ELEMENTARY STUDY OF HOW IMPLICIT BIASES INTERACT Il —
CLASSIFICATION

In this section, we extend our insights from Section [3] to a simple classification set-up. To
this end, define for data D = {(x;, )}, € R4 x {0,1} the logistic loss

n

L(w) = % Z (yi log(g({w,x:))) + (1 — yi) log(1 — g((w, x:)))) ,
where
g:R—=R with g¢g(z)= . —i—le—z

is the logistic function. Here, we assume that w = (%,b)7 and that the data points are of

the form x = (%,1)7 such that the linear classifier hy, corresponding to parameters w is
given by
haw (%) = L{z=(z,1): (w2)>0}(X) = L{z: (w.z)+b>0} (X).

In the simplest possible case, we only have two data points with different labels. W.l.o.g.
we assume that one of the two data points is centered at the origin and that their distance
is normalized to one. Then we know the following.

Theorem F.1. Let D = {(x1,0), (x2,1)} C R4t x {0,1} where x; = (X;,1)T with %, =0
and ||Xz2||2 = 1. Then,

(i) the maz-margin classifier of D is parametrized by any positive scalar multiple of
w = (W,b)T with W = %o and b= —1/2.
(ii) the parameters minimizing the sharpness of L over
M={w=(W,0): hw(x1) =0, hw(x2) =1, and ||W|2 = 1}
are given by a min-margin classifier parametrized by w = (W,b) with w = X and
b=0.

Proof. To see (i), just note that the decision boundary of the max-margin classifier in R?
must be orthogonal to Xo — X1 with hy(x2) =1, i.e., W = a(X3 — X1) = aXg, for a > 0, and
that it must contain 1 (x; + x2) which implies that 0 = (W, 3(x1 +x2)) + b = Sal[%2||3 + b,
ie,b=—1a.

J 2

For (ii), we compute that
L(w) = 5 (log(1 = g((w,x1))) + log(g((W,%2))))

(log(1 — g(b)) + log(g((w, x2)))) -

N~ N~
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By using that ¢'(2) = g(z)(1 — g(z)), we then get that

VE(w) = 3 (=gl(w,x) 1 + (1= g({w,x2))) - x2)
and
V2L(w) = fé (9w x1) - xaxT g/ (w,x2)) - 30xE)

To deduce the sharpness S(w) = HV2£ H we will compute the eigenvalues of the Hessian.

First note, that any vector in the image of V2£(w) can be expressed as x = aegy1 + 8Xa.
Now assume x # 0 is an eigenvector with eigenvalue A # 0. Then, since x; = €441,

V2L(w)x = — 5 (o/0) (a+ B) ears + g/ (w,3)) (0 +28) x))

= Maegqt1 + fx2),

where we used that szedH = e§+lx2 =1, x%xz = 2, and edTHedH = 1. Matching
coefficients, we obtain the system

(e 0 (5) -0
39'((w,x2))  g'((w,x2)) + 1) \ B
Since (o, 8) # 0, this implies that the matrix has determinant zero and leads to the quadratic
equation

2 1 / / 1 / /

N+ (59/(0) + g/ (w.x2)) )M+ 79 (8) - (w,x2)) = 0.

Since ¢'(b), g (<w 2>) > 0, the maximal solution of the latter system, i.e., the leading
eigenvalue of V2L(w), i

Lo'(6) + ¢/ ((w,x2)) + /2 (D)2 + ¢ ((w, x2))?

S(w) = HV2£(W)|| =

2
1
=1 (5/0) 29 (5. %) +b) + Vo +1- g (W, %2) +7)
The parameter minimizing the sharpness is then
nin S (w)
1
= 7, dning'(b) + 29'((W, X2) + b)+
4 |w2=1
—= b= <W X1> S 0
"(b)2 + (2¢ b))? .t. ’
Vo O T 29 (W, %) 1 D)2, st {2
1
=1 I%nl]g(b)—FQg(z—i—b Y+ /9" (0)2 + (2¢'(z + b))2, st. —2<b<0
ze
~ 0.277
The minimum of the function is attained at (z,b) = (1,0) which means that w = %X,. O

Analogously to the regression case, we can now evaluate the max-margin and the sharpness
minimizing classifiers in terms of their expected generalization error in a toy set-up that
assumes only two samples. To satisfy the requirements of Theorem we propose the
following simple data generation process.

Let the samples be generated as (x1,y;1) with X3 = 0 and y; = 0, and, for k& > 2, as
(Xk,yk) ~ (x,1) which follows a joint distribution with x ~ ﬁ, where g ~ N(u, I) for
p # 0. The classification task is thus to separate a Gaussian cluster that is projected to the
unit sphere from the origin. Given two samples (x1,y1) and (x2,y2) one can use Theorem
and numerically evaluate that the expected generalization error (Mohri et al., [2018). To
get a feeling of it, let us consider the two cases where ||p|| < 1 and [[p]] > 1. Let gy and
g{, be independent and distributed as N(0, I).
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Suppose ||| < 1. The expected generalization error for the max-margin classifier wy,q. =
~ T .

Wma;v y Ymax 18

Eiz]P)X[hwmam(x)?ﬂ] = Bx,Pg [<)~(2’ ﬁ> = %}

80 2o 1
eera (i )<
S8 N\ lghll2” llgoll2/ ~ 2
d 1 1
,_i_, 2
z77(§ 21)/ (1—22)31dz
V(5 (3) S
— 1 (as d grows)

because (1 — xQ)%*l concentrates well around z = 0. On the other hand, the expected
generalization error for the sharpness minimizing classifier Wi = (Winin, bmin) 18

sy P [how, (021] = EsoPe Kig ﬁ> < 0}

g0 g
g5 N\ lghll2” llgoll2
1

5)
where we used symmetry of the distribution in the last step. We see that in contrast to Sec-
tion [E] here the sharpness minimizer leads to a significantly smaller expected generalization
error than the GF-induced regularization.

Now suppose that |[pe]] > 1. The expected generalization error for the max-margin classifier
is
!/

g g !
_ = ! < 9
By Poc [ s (1] = Eg PgK leg'll2’ ||g||2> -2

~Eg P [<g6+u go+u><1}
O lpllz 7 flellz /72
1

~ By Py (g + 80, 1) < — 3 Ial3]

1 —sllull2 1,2
= 7&(2#)% e 1" dx
1 1
N Y
= (- 550ml:)

where ® denotes the cumulative distribution function of the standard normal distribution.
Similarly, the expected generalization error for the sharpness minimizing classifier is
g

Es,Pulhw,,i(0)21] = Ex,Pg [<5<2, m> < 0]

~ Eg P, (86 + 80, 1) < —|1ll]

1 Nl 2
- 1T
V2(2m) /2 /_oo cn
1

=W-<I>(—¢1§||u2).

Here, both expected generalization errors are small.

G METHODOLOGY

To ensure reproducibility, we follow a standard procedure for each experimental configura-
tion, which is defined by a specific combination of dataset, architecture, activation function,
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and loss function. To isolate the effect of the learning rate, we fix the initialization across
all runs within a configuration. We initialize using the default PyTorch scheme, which is a
modified LeCun initialization (LeCun et all 2002): Fixing a random seed, initial entries of
each weight matrix are uniformly sampled from the interval (—1 /v/i—1,1/ \/m), where
ny_1 is the input dimension of the respective matrix.

We begin by computing the gradient flow solution using a fourth-order Runge-Kutta inte-
grator (Runge, |1895). At each iteration step, we record the sharpness of the training loss.
We also save model checkpoints whenever the training loss first drops below a power of ten
(i.e., 1071, 1072, etc.). From this gradient flow trajectory, we extract two key statistics: the
sharpness at initialization (sg) and the maximum sharpness observed during the trajectory
(sgr). The values 1/sg and 2/sqr are of particular interest. Taking the learning rate of
1/s¢ has been suggested as a heuristic for optimal step size selection for non-adaptive GD
Cohen et al [2021)), and for learning rates above 2/sgr, the well-known stability condition
is violated at some point of the gradient flow trajectory, suggesting that the loss decrease
is not guaranteed there.

We construct the learning rate schedule for each configuration using two regular grids: a
fine grid focused on the critical transition region, and a coarse grid which allows us to study
the trade-off of the regularization in the EoS regime.

The fine grid consists of 12 points uniformly spaced with step size ﬁ in the interval

[QSEF, SSF}. The coarse grid includes nine uniformly spaced learning rates interpolated

in the interval [SGGF, %], and additionally includes all learning rates sampled at the step

size & - (3 -5 ) which are strictly greater than zero, and above until divergence. If we
8 ED) SGF

6 %} interval, we manually refine the schedule by

SGF’ S

observe divergence already within the [
decreasing the step size.

For each learning rate in the schedule, we train the model using full-batch gradient descent
until the training loss falls below a fixed threshold (see table [1| for the exact configura-
tion). During training, we record the sharpness and ¢;-norm every 10 epochs, and similar
to the gradient flow experiments, we save the model checkpoints at every power-of-ten loss
threshold. To compute the Hessian, we approximate its leading eigenvalues using the Lanc-
zos algorithm applied to Hessian-vector products, which can be efficiently computed via
backpropagation (Pearlmutter, |1994)).

All experiments are fully reproducible, and the code is available in the supplementary ma-
terial. Our implementation builds upon the original code by |Cohen et al.| (2021)).

We ran the experiments on a heterogeneous computing infrastructure. Our hardware in-
cluded NVIDIA A100, RTX 2080 Ti, TITAN RTX, RTX 3090 Ti, and RTX A6000 GPUs.
Because GPU performance and availability varied across machines, we do not report a pre-
cise total runtime. However, the study required substantial computational effort: for each
of the more than a dozen model configurations, we evaluated at least 20 learning rates, with
individual runs ranging from a few minutes (for small models) to hundreds of hours (for
larger models).

H EFFECT OF TRAINING CONFIGURATION ON SHARPNESS—NORM
TRADE-OFF

As described in Section 2.1} we systematically investigate variants of our base configuration
(fully-connected ReLU feed-forward network (FCN) with three layers, 200 hidden neurons
each, trained on the first 5,000 examples of MNIST or CIFAR with mean squared error) to
demonstrate the relationship between sharpness and implicit regularization for varying step
size.

We vary the dataset size, architecture, activation functions, loss functions, initialization
and parameterization. While quantitative metrics such as the critical learning rate 7, and
absolute sharpness values differ, we consistently observe the norm-sharpness regularization
trade-off.
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(a) MNIST-5k, CNN-ReLU, (b) MNIST, CNN-ReLU, MSE (c¢) CIFAR-10-5k, CNN-ReLU
MSE with Batch Normalization, CE

Figure 5: Different configurations using the CNN architecture. We observe that the ¢;-norm
increase flattens out more towards larger 1 in comparison to the FCN.

In the following sections, we describe the findings on each variation and illustrate it with
few representative plots. In all cases, we observe the same overall qualitative behavior.
Additional supporting plots are included in the systematic overview of all experimental
runs across configurations, provided in Appendix [[]and summarized in Table[I} For each of
these configurations, we present both the coarse and fine-grained learning rate schedules to
emphasize the transition region around 7. as well as the behavior at larger learning rates.

H.1 DATASET SIZE

Most of our experiments use a subset of 5,000 training examples of MNIST and CIFAR-10
respectively, chosen to allow tractable estimation of sharpness across a wide range of learning
rates. To confirm that our findings are not specific to the small dataset sizes, we run a limited
number of configurations on the full MNIST and CIFAR-10 training sets. In Figure [5| we
show the comparison of the sharpness and ¢;-norm for a CNN with ReLLU activation for
MSE loss. The GF solution changes slightly, but the overall phenomena persists and the
values are relatively similar. We present additional figures on the full MNIST (see Appendix

and full CIFAR in Appendix

H.2 ARCHITECTURE

Our base model is a two-hidden-layer fully connected neural network (FCN), where each
hidden layer consists of 200 neurons, with input and output layer sizes depending on the
dataset.

To study the influence of the FCN architecture, we vary its widths and depths, namely
experiments with 2x, 3x, and 10x width, while keeping depth fixed, 2x and 3x depth,
keeping width fixed, and 2x and 3x both width and depth. In other words, the considered
FCN model shapes are: 200 x 2, 400 x 2, 600 x 2, 2000 x 2, 200 x 4, 200 x 6, 400 x 4, and
600 x 6 where the first number is the number of hidden neurons per hidden layer, and the
second corresponds to the number of hidden layers.

While across most of these experiments the sharpness-norm tradeoff is ever-present and
consistent with the behavior of the standard model, increasing width alone on the MNIST-
5k dataset leads to a dissolution of the trend of increasing norm. Here in the EoS regime
the norm first decreases and then stays near constant (Figures and [39). However,
we believe this to be the result of the limited range of learning rates, since for experiments
increasing both width and depth we can see a similar decrease in norm at first, but a robust
overall increase afterwards (Figures [42) and [43)).
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We further extend our analysis beyond the fully connected baseline by evaluating several
alternative architectures: Convolutional networks (CNNs) with ReLU activations (Figure
nd Appendix , ResNet (Appendix , and a Vision Transformer (Appendix . For
CNNs, the ¢1-norm flattens out more for increasing 1 in comparison to the FCN. For the
CNN with Batch Normalization, comparably higher learning rates still converge. We do not
observe a qualitative change of the phenomena for the ResNet and ViT architectures.

The CNNs (Lecun et al., [1998]) consist of two convolutional layers with 32 filters, each using
3 x 3 kernels, stride 1, and padding 1. Fach convolution is followed by an activation function
(ReLU or tanh) and a 2 x 2 maximum pooling operation. A fully connected layer after
flattening maps the features to class logits. We further include an alternative architecture
that applies batch normalization within the CNN.

The ResNet-20 model (He et al2016)) consists of three residual layers, with three blocks per
layer. Each block contains two 3 x 3 convolutions followed by batch normalization and ReLU
activation. Between stages, spatial down-sampling is performed using average pooling. To
match feature dimensions across residual connections, the skip paths are adjusted using
batch normalization and zero-padding along the channel dimension.

The Vision Transformer (ViT) (Dosovitskiy et al., [2021) splits the input image into non-
overlapping patches (7 x 7 for MNIST, 4 x 4 for CIFAR-10), embeds each patch into a latent
space (dimension 64 for MNIST, 128 for CIFAR-10), and processes the resulting sequences
with transformer encoder layers (4 for MNIST; 6 for CIFAR-10), using 4 attention heads
per layer. Each configuration includes a learnable class token and positional embeddings,
and ends with a linear classifier applied to the class token output.

H.3 ACTIVATION FUNCTION

We evaluate the effect of activation functions by comparing ReLLU and tanh in fully con-
nected networks on MNIST-5k (Appendix and on CIFAR-10-5k (Appendix
. Across all configurations, the sharpness—norm trade-off and the transition between
flow-aligned and EoS regimes are consistently observed.

H.4 LoOSS FUNCTION

We compare the behavior of cross-entropy (CE) and mean squared error (MSE) for both
the base configuration and additional architectures, see Figure [5| for a comparison of the
trade-off comparing both MSE and CE for MNIST-5k for a ReLU CNN and Appendix [[] for
all other setups.

Compared to MSE, the sharpness profile for varying n when training with CE differs. In
the flow-aligned phase, the final sharpness values for CE are still similar in magnitude but
consistently below the maximum sharpness of its corresponding GF. In contrast, for MSE
the final sharpness is at sgp. The transition to the EoS regime still occurs approximately at
n = 2/sgp. For large n, the sharpness values remain below the 2/7 curve but qualitatively
still decrease as 7 increases for the EoS regime.

We observe for the sharpness of the iterates during training that after an initial increase
(progressive sharpening) and an oscillatory phase around 2/7, the sharpness subsequently
decreases again significantly. This phenomenon, originally remarked in |Cohen et al.| (2021)),
appears more pronounced in our results, as they used a higher loss-threshold beyond which
the strong decrease starts occurring. Although the final sharpness values therefore do not
follow the 2/n relationship, the training iterates rise toward this value and oscillate around
it before the sharpness drops. In our plots, we visualize the smoothed sharpness around its
maximum to highlight this trend. The effect during the training is illustrated in Figure [I3]
for selected learning rates.

Training with CE often fails to converge at learning rates even below 1/sy (sg denoting
the sharpness at initialization), while training with MSE often converges at comparatively
higher values. This aligns with previous findings on the geometry of the log-loss landscape
(Soudry et all 2018)), which indicate that the loss surface becomes flatter as the parameter
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norm increases. Because of the exponential in the CE loss equation, the loss decreases with
growing parameter norm and, as a result, parameters only converge in direction. However,
when the learning rate is too high early in the training, the high curvature of the loss
landscape leads to instability or stagnation before this directional convergence effect.

H.5 LoOSS THRESHOLD

In Section [2] we show how the loss threshold e directly affects the critical learning rate
ne at which (approximately) the sharpness-norm phase transition occurs, given by 2/s&p.
This effect is illustrated in Figure 2] for an FCN with tanh activation on CIFAR-10-5k,
trained with MSE loss. Comparing identical models trained to different loss thresholds, we
observe that smaller € values yield higher s&p, resulting in a lower 7. and thus shifting the
transition point between the flow-aligned and EoS regimes. We confirm this trend across
multiple architectures in Appendix [.7.1}

This dependence on ¢ is naturally related to early stopping: A higher loss threshold corre-
sponds to a point before the model begins to overfit on the training set, where the test loss
is still decreasing. In contrast, very small loss thresholds reflect the late phase of training,
where the characteristic U-shaped test loss curve over time is evident. There, the training
loss continues to drop, but the test loss increases slowly. By varying e, we can thus study
the sharpness and norm trade-offs under different degrees of overfitting. However, note that
we do not link € to the validation loss, as it is commonly done when using early stopping as
a regularizer during training.

H.6 INITIALIZATION

We vary the initialization seed in fully connected networks trained on CIFAR-10-5k to test
the sensitivity of the transition to random initialization, see Figure [f] While the critical
learning rate 7). shifts with initialization, due to a different initial sharpness sy and maximum
of the flow trajectory sqr, the qualitative structure remains intact.

We also perform experiments with increased initialization scale, scaling all initial weights
x5 and x10. As a result, the maximal sharpness along the trajectory occurs already at
initialization, which drastically alters the optimization dynamics and sharpness evolution.
The sharpness decreases at first, and, if reaching the 2/n threshold, oscillates around this
value. In general, the training is highly unstable with leads to divergence of the training
at many small learning rates. Still, the x5-scaled initializations result in somewhat similar
qualitative behaviors in the observed values as our default scale. For 10x scaling, the
training diverges already at learning rates smaller than 7.. In addition, the final ¢;-norm
reaches very high values and decreases with increasing learning rate. These results suggest
that the mechanism of implicit regularization differs at such large scales. We note that
this aligns with previous works on EoS which often implicitly assume a sufficiently small
initialization to permit progressive sharpening.

We provide further figures with varying initialization seeds and scales in Appendix and
respectively.

H.7 PARAMETERIZATION

Different parameterizations of the forward pass are known to place training in qualitatively
different regimes with respect to feature learning (Noci et al., |2024)), which is why we test the
norm-sharpness tradeoff for this setup. We focus on the puP and kernel parameterizations
(Yang et al., 2022} |Jacot et al.l |2018). The kernel parameterization corresponds to NTK-
like scaling, where feature learning diminishes with width, while yP remains in the feature-
learning regime with width-independent gradient magnitudes and transferable learning-rates
for models of varying widths (Yang et al |2022). Recent work by |Noci et al.| (2024)) further
suggests that the Hessian spectrum also transfers for uP.
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Figure 7: Sharpness (top row) and ¢;-norm of final classifiers (bottom row) for uP
parametrization with widths 100, 200, and 400 on MNIST-5k with MSE and loss goal 0.1.

Both used parameterizations use fully connected feed-forward networks with ReLU activa-
tions. Each hidden layer of width n; computes
1
hl S ﬁo (Wlhlfl)

with weights initialized as (W;);; ~ N(0,1). In the kernel parametrization the final layer is
obtained as f(x) = Wphy, while in the puP parametrization the logits are rescaled by the
width of the last hidden layer f(z) = \/%TWLh 1. This differs from the normal parameteri-

zation in all other experiments where the 1/,/n;_1 factor in the forward pass is missing and
the weights are initialized uniformly with variance 1/(3n;—1). The hypothesis spaces are the
same in both settings, however the reparameterization changes the dynamics and is hence
of interest with respect to implicit regularization.

For the puP parameterization, the sharpness plots (top row of Figure@ show approximately
constant sharpness for small learning rates and a decrease along the 2/n curve for larger
learning rates, with similar values in the flow-aligned regime across widths. The ¢;-norm
plots (bottom row) reveal the usual pattern across widths of increasing final parameter ¢4
for increasing learning rate. The absolute norms differ due to model size, but the growth
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Figure 8: Sharpness (top row) and ¢;-norm of final classifiers (bottom row) for kernel
parametrization with widths 200, 400, and 600 on MNIST-5k with MSE and loss goal 0.1.

of the norm as 7 increases is approximately consistent (though divergence happens slightly
earlier for smaller models). This is expected for the uP parametrization, as the parameter
update magnitudes are independent of the model width. After rescaling the learning rate
proportionally to width, the results align across the models of different widths which matches
the results by [Noci et al.| (2024).

For the kernel parametrization we observe that the £;-norm of the parameters (bottom row
of Figure [§]) remains stable for small learning rates and starts to increase once 7 crosses the
critical threshold, with the transition occurring at learning rates of the same order across
Widthaﬂ The sharpness plots (top row) show that the maximum sharpness coincides with
the sharpness at initialization, similar to the large-initialization experiments in Section [H.6]
Because of the different parameterization, sharpness no longer tracks the 2/n curve, yet the
qualitative pattern is consistent across widths: sharpness stays flat below the threshold and
decreases gradually thereafter.

H.8 NUMBER OF ITERATIONS

A notable difference between the two regimes lies in the relationship between learning rate
and convergence speed. While the small learning rates of the flow-aligned regime lead to
slower convergence in absolute terms, increasing the step size within this regime significantly
accelerates optimization, with the number of iterations required to reach a fixed training
loss decreasing at an approximate rate of 1/n. As further shown in Section this rate of
convergence speed acceleration with respect to the learning rate is higher in the flow-aligned
regime than in the EoS regime.

H.9 ALTERNATIVE NORMS AND SHARPNESS MEASURES

In most of the paper, we focus on the ¢;-norm of the GD solution. In Figure [0 we compare
the ¢1-norm to the nuclear and /3-norms, which look qualitatively similar. We provide more
examples in Section [[.8.1]

Similarly, as our primary measure of sharpness we use throughout most of the paper the
top eigenvalue of the loss Hessian. This notion of sharpness, though commonly used, has
been shown to allow for being made arbitrarily large by means of reparametrization without
affecting generalization (Dinh et al] (2017)). This can can make it ill-suited for studying
connections to generalization performance. Therefore in Figure [I0] we compare different
notions of sharpness, including re-scaling invariant measures such as adaptive sharpness

SNote that the norm of the weight matrices (after adjusting for the different widths) differs
slightly due to the randomness. The change in randomness is comparable to the variance indicated
by experiments when changing the initialization seed, see Section [[1.6]
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Figure 9: Each row shows the £;-norm, the nuclear norm, and the ¢s-norm of the solution
for different models - both use FCN-ReLLU with MSE loss, in the top row on CIFAR-10-
5k, in the bottom row on MNIST-5k. As expected, the behavior of the different norms is
approximately equivalent

(Kwon et al.| (2021)), showing they share the overall decreasing behavior in the EoS regime
similar to the worst-case sharpness.

H.10 GRADIENT DESCENT SOLUTION DISTANCE

We measure the distance between the final solutions of GF and GD across different learn-
ing rates. This analysis provides insight into how closely GD tracks the continuous-time
dynamics and how this relationship evolves as we move through the flow-aligned and EoS
regimes.

In Figure we show this relationship for two of our standard models. Comparing this
figure with Figure [J] we can see that even though the qualitative behavior of the ¢;-norm
and ¢;-distance from the GF solution are nearly equal, the distance of solutions for n < 7,
is already relatively high. This suggests that while in the flow-aligned regime, GD reaches
solutions of similar sharpness and norm as GF, in absolute terms these solutions are non-
negligibly different. Furthermore, comparing the scales of the two figures shows, that the
increase in distance from the GF solution is much larger than the increase in absolute
{1-norm. Therefore, increasing the learning rate within the EoS regime likely results in
movement of the solution in a direction more misaligned with the GF solution than the
origin. Section shows this for further configurations.

Additionally, in Figure [I2] we compare the parameter ¢1-norm to the ¢;-distance from the
untrained model at initialization. When examining this quantity for the final learned models
plotted against the learning rate, the distance from initialization shows a similar qualitative
trend as the parameter norm. In the flow-aligned regime, the distance to initialization is still
approximately constant, before robustly increasing in the EoS regime. This is consistent
with what can be expected since the models are initialized small relative to the norm of the
final parameters.

H.11 EVOLUTION DURING TRAINING

In Figure[13] we illustrate how sharpness, ¢;-norm and loss evolve over the course of training
in intrinsic time, i.e n-# iterations. The sharpness increases initially (progressive sharpening)
until reaching 2/7, and then oscillates around this value. For very small learning rates, the
increase stops earlier (aligned with the maximum sharpness of the corresponding GF). The
norm rises without oscillation, suggesting that the oscillation occurs along a direction that
preserves the parameter norm. The norm grows faster for larger learning rates. The loss
decreases monotonically at first, then with oscillation after the sharpness has risen to 2/7.
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Figure 10: Each column represents a different setting: All display an FCN-ReLLU network
on CIFAR-10-5k, but in the first we show MSE loss with standard initialization, in the
second MSE loss with scaled initialization and in the last CE loss. Each row shows a
different measure of sharpness. Top to bottom these are: top eigenvalue of the loss Hessian
(used throughout the paper), trace of the loss Hessian, average-case and worst-case adaptive
sharpness (Kwon et al.|(2021))), and top eigenvalue and trace of the Fisher information matrix
(Liang et al|(2019)). Note that all measures display a general decreasing behavior with the
exception of the Fisher trace on standard MSE loss (bottom left), where there is a sharp
increase around the critical threshold 7., from which the decreasing behavior starts. The
scaled experiments show slightly more irregularity, but still preserve this general decrease.

In contrast to MSE loss, for training with CE loss, the sharpness decreases again after a
period of oscillation. These dynamics in sharpness and loss were first systematically studied
by |Cohen et al.| (2021). Our primary focus is on the dependence of final values on the
learning rate, which complements these observations.
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Figure 11: ¢;-distance of the GD solution from the GF solution. Not to be confused with
distance from the GF trajectory - here we measure only final values. On both examples we

can see an increasing behavior similar to that of solution ¢;-norm.
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Figure 12: The top row shows for each setting the ¢;-distance of the final models from their
initialization, while the bottom row shows the absolute norm. As expected, the qualitative
behavior remains almost identical.

Similar to Figure[I2] we compare the evolution of the parameter norm and the distance to the
initialization in the second and third row of Figure We observe that the distance follows
closely a translated and scaled version of the parameter norm’s trajectory. It naturally starts
at 0 and then grows significantly before entering the Edge of Stability. In comparison to
the parameter norm evolution, here the rate of growth slows down to a larger extent after
entering FoS, which supports the intuition that the chaotic EoS updates have a smaller
cumulative effect on the solution’s magnitude.

H.12 PER-LAYER NORMS

In Figure[14| we present the layer norms when training the standard ReLU FCN on MNIST-
5k and CIFAR-10-5k. As one can see, all layers show an increasing trend. As one might
expect, the increase is relative to the number of parameters of the respective layer.

H.13 THE DIAGONAL NETWORK

For the diagonal network discussed in Section [3] we present the sharpness, norm, and gen-
eralization values for different learning rates in Figure [I5] We can explicitly compute the
¢1-norm on the solution manifold under the sharpness constraint 2/1, yielding the predicted
line in Figure We emphasize that these curves look qualitatively similar to the more
realistic models on MNIST and CIFAR-10 described throughout the empirical experiments
section. Note that divergence occurs already for learning rates 7 below the theoretical
divergence threshold when the sharpness of all points on the solution manifold is above 2/7.
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Figure 13: For three different learning rates, we display the sharpness, f;-norm, norm
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MNIST-5k, FCN-ReLU, loss goal 0.01. We clearly observe the progressive sharpening and
oscillations once the sharpness reaches 2/7n. For CE loss, the sharpness at the iterates drop
after a oscillatory phase.
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Figure 14: Layer-wise norms of the final solution our ReLU-FCN on MNIST-5k and CIFAR-
10-5k for different learning rates. We individually normalize each group by subtracting the
value of the norm at the smallest learning rate. All layers show an increasing trend, which
is relative to the layer size.

We model generalization using a simple Gaussian data distribution (see Appendix, which
produces an (idealized) U-shaped curve, consistent with the behavior observed for many
other realistic setups.

In Figure [16] we provide all trajectories of the iterates (cf. Figure [4)).
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Figure 16: Iterates of weights of the two-dimensional diagonal linear network throughout
training, for increasing learning rate. There is a clear distinction between the flow-aligned
regime —, where GD closely tracks the GF trajectory, and the EoS regime —
, where at some point GD begins to oscillate away from GF, until converging to one
of the first solutions whose sharpness is less than 2/n (intersection of the yellow solution
manifold M and blue sharpness bound). This aligns with the intuition stemming from
Theorem [B.2] In purple, we mark the KKT points from Lemma [E.T]

H.14 OTHER DATA MODALITIES

While the systematic evaluation presented in this paper focuses on the image domain, we also
include examples suggesting that the observed trade-off is not limited to images. We consider
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Figure 17: We show the sharpness, ¢;-norm and test loss for two tabular and a sequence-
to-sequence data set. This indicates that our results extend beyond the image sector.

a synthetic sequence-reversal task and two tabular tasks, one for binary classification and
one for regression.

For the sequence domain, we use a synthetic sequence-reversal task with a fixed sequence
length 10 and vocabulary size 9. Each input is sequence of 10 tokens sampled uniformly
from {1,...,9}. The target is its exact reversal. We train using teacher forcing. The model
is a standard encoder-decoder transformer (Vaswani et al.l 2017) with two encoder and two
decoder layers, each using four attention heads, a model dimension of 64, and a feed-forward
width of 128. The inputs pass through learned token embeddings and fixed sinusoidal
positional encodings, and the decoder uses a causal mask for autoregressive prediction. A
linear layer maps decoder outputs to vocabulary logits.

For the tabular tasks, we use the california housing (regression) and breastcaster (classifica-
tion) dataset by scikit-learn (Pedregosa et al.,2011). The california housing dataset contains
aggregated demographic and housing features (e.g., average number of rooms) and to be
predicted is the median house value. The beast cancer Wisconsin dataset contains 30 cell
nuclei features such as radius or texture, and the goal is to identify whether a tumor sample
is malignant or benign. For both datasets, we standardize all input features by subtracting
the training-set mean and dividing by the training-set standard deviation for each feature
dimension, and we apply the same transformation to the targets. The model is our standard
feed-forward network with two-hidden layers and width 200.

For both data modalities, we observe the similar characteristic trade-off of sharpness and
norm which we show in Figure [I7] In contrast, the sharpness value is not constant but
increasing when decreasing the learning rate.

I SYSTEMATIC OVERVIEW OF EXPERIMENTS

All performed experiments are summarized in Table [l For most of these configurations,
we present both coarse and fine-grained learning rate schedules to emphasize the transi-
tion region between flow-aligned and EoS regime around 7., as well as the behavior at
larger learning rates, demonstrating the trade-off between increasing ¢;-norm and decreas-
ing sharpness for varying the learning rate. Table [I] specifies for each setting the following
attributes:

o Model. We state the model architecture (see Section|[H.2)) and activation used. For
the FCN models where we vary width and depth, we also indicate the size. When
we do not specify a size, we refer to the standard architecture of 200 x 2.

"We do not include the GF lines as we only run GD for this setup.
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o Dataset. MNIST or CIFAR-10, with the "-5k" suffix indicating that we train only
on the first 5000 data points of the train set, while still testing on the full test set.

o Loss. Mean square error (MSE) or cross-entropy (CE).

e Seed. The random seed used for generating weights at initialization. For experi-
ments using a scaled initialization, the scaling factor is given.

e Loss Goal. We stop training gradient flow and gradient descent for each learning
rate upon reaching this train loss value.

e U-Shape. For each setting we state whether optimal test loss aligns with either
learning rate extreme, indicating a generalization advantage of either low-norm or
low-sharpness bias. Settings where the optimum is attained for mid-range learning
rates are marked by v', settings with an alignment towards either extreme by x, and
somewhat inconclusive settings by either mark in brackets. In our experiments, in
all cases with a clear optimum extreme alignment, the alignment is always towards
high learning rates, that is, towards low sharpness solutions.

e Figures. List of figures throughout the paper where the respective setting appears.

In the main part of the systematic review, we present for each setting sharpness, ¢;-norm
and test loss plots, for both a fine-grained set of learning rate values focused around the
critical threshold and a coarse set showing large-scale behaviors. In the plots we show

 the final respective value attained for each learning rate represented by green dots;

e a horizontal dotted green line indicating the final value reached by the gradient
flow;

o a vertical dashed orange line showing the critical learning rate threshold of 2/ngF,
for the transition from the flow-aligned to the EoS regime;

o for coarse-grained plots, a vertical dashed purple line, indicating the inverse value
of sharpness at initialization, which has been proposed as a heuristic for learning
rate initialization, if the line is missing this means that the GD did not converge
for such learning rate;

o for sharpness plots, the 2/n curve, for n being the learning rate variable, shown in
blue with crosses at each used learning rate value;

o for sharpness plots, the maximum value reached throughout training, indicated by
black circles;

o for sharpness plots, a horizontal orange line showing the maximal GF sharpness.
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Table 1: Full list of experimental configurations.

Model Dataset Loss Seed Loss U- Figures
Goal Shape
FCN-ReLU MNIST-5k MSE 43 0.0001 v Bal[13][0l11D]
86472
FCN-ReLU MNIST-5k MSE 43 0.001 Vv 51
FCN-ReLU MNIST-5k MSE 43 0.01 v 5]
FCN-ReLU MNIST-5k MSE 43 0.1 v 5]
FCN-ReLU MNIST-5k CE 43 0.01 v [65][73]
FCN-ReLU MNIST-5k CE 43 0.1 v 57
FCN-ReLU CIFAR-10-5k  MSE 43 0.0001  x Tal 3c
201676
FCN-ReLU CIFAR-10-5k  MSE 43 0.001  x 55
FCN-ReLU CIFAR-10-5k  MSE 43 0.01 X Gall56
FCN-ReLU CIFAR-10-5k  MSE 43 0.1 (x) 57010
FCN-ReLU CIFAR-10-5k  MSE 44 0.01 X 6hl59
FCN-ReLU CIFAR-10-5k  MSE 45 0.01 X 60
FCN-ReLU CIFAR-10-5k  MSE 43,x5 0.1 X 61110
FCN-ReLU CIFAR-10-5k CE 43 0.01 v 7710
FCN-ReLU CIFAR-10-5k CE 43 0.1 v 53
FCN-ReLU CIFAR-10-5k CE  43,x5  0.01 X 62}
FCN-ReLU CIFAR-10-5k CE  43,x10 0.01 X G}
FCN-ReLU MNIST MSE 43 0.01 v Th22)[66(74
FCN-ReLU MNIST CE 43 0.01 (V) 2367175
FCN-ReLU CIFAR-10 CE 43 0.1 X 2]
FCN-ReLU 400 x 2 MNIST-5k MSE 43 0.01 X 37
FCN-ReLU 600 x 2 MNIST-5k MSE 43 0.01 (x) 3]
FCN-ReLU 2000 x 2 MNIST-5k MSE 43 0.01 X 3]
FCN-ReLU 200 x 4  MNIST-5k MSE 43 0.01 (x) 0]
FCN-ReLU 200 x 6~ MNIST-5k MSE 43 0.01 (V) 7]
FCN-ReLU 400 x 4  MNIST-5k MSE 43 0.01 X 1]
FCN-ReLU 600 x 6 ~ MNIST-5k MSE 43 0.01 (V) 13}
FCN-ReLU 400 x 2 CIFAR-10-5k  MSE 43 0.01 X 17}
FCN-ReLU 600 x 2 CIFAR-10-5k  MSE 43 0.01 X 5]
FCN-ReLU 2000 x 2 CIFAR-10-5k  MSE 43 0.01 X 10
FCN-ReLU 200 x 4 ~ CIFAR-10-5k  MSE 43 0.01 v 7]
FCN-ReLU 200 x 6 ~ CIFAR-10-5k  MSE 43 0.01 v 13}
FCN-ReLU 400 x 4  CIFAR-10-5k  MSE 43 0.01 v 9]
FCN-ReLU 600 x 6 ~ CIFAR-10-5k  MSE 43 0.01 v 50)
FCN-tanh MNIST-5k MSE 43 0.1 X 25]
FCN-tanh MNIST-5k CE 43 0.01 (V) 26}
FCN-tanh CIFAR-10-5k  MSE 43 0.001  x R7][701
FCN-tanh CIFAR-10-5k  MSE 43 0.01 X b
FCN-tanh CIFAR-10-5k  MSE 43 0.1 (x) 2al
FCN-tanh CIFAR-10-5k CE 43 0.01 v 71][79
CNN-ReLU MNIST-5k MSE 43 0.1 v 5ali29
CNN-ReLU MNIST-5k CE 43 0.01 v 30
CNN-ReLU MNIST MSE 43 0.1 (%) 31
CNN-ReLU MNIST CE 43 0.01 v [32
CNN-ReLU BN CIFAR-10-5k CE 43 0.01
ViT-ReLU MNIST-5k  CE 43 0.1 1di34]
ViT-ReLU CIFAR-10-5k  CE 43 1 (V) 35
ResNet20-ReL.U CIFAR-10-5k CE 43 0.1 (x) RI§
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I.1 FCNs witTH RELU ACTIVATION

I.1.1 ON MNIST-5K
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Figure 18: MSE loss. FCN-ReLU, MNIST-5k, train loss 0.0001. Both rows show the same
setting, but different ranges of learning rate 7 - the top row includes the fine grid, focused on
the transition from the flow-aligned to the EoS regime, while the coarse grid in the bottom

row displays more large-scale behavior, going typically up to diverging learning rates.
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Figure 19: CE loss. FCN-ReLU, MNIST-5k, train loss 0.01
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[.1.2 O~ CIFAR-10-5k

H H 0 068 {-g-ufo o L
e o0 1 o I e
! 0.67 !
600 1 7900 T g 1 °
2 1 1 2 1
g ! g ! . Z066 ! .
1 T 7850 ! z 1
£ 400 I . 1 . %065 i L|
i I ° i °
1 1 1
i 7800 . ° 064 I °
! o 1 (]
200 ! P P 3 N s 063 ! °
0002 0004 0006 0008 0002 0004 0.006 0.008 0602 0.004 0006 0.008
1 1 [
. - T T
800 T ” v v . o |® 7 R AT T TETY P AN O
I J 86007 1 e ® 0651 1 1
00 7+ final GF value | H o ® 651 | H
R I GFvalue atmax sharpness sa00 {1 . :o L] :' !
£ ool |1 | T Yser E 1 * goo01 g I
& I ] —— /5o T 82001 1 'Y i z 1 ° 1
L H ! final value S | H #0551 ol
2001y I value at max sharpness 800011 o 1 H LI
] i i i osol 1 1 ° o
1 78001 .ol 1 ] 1 ® e 60
of | t E EEERTRR e e G KD O o ! ! .
0000 00625 0050 0075 01000 01025 0.5 000 002 004 006 008 010 012 014 000 002 004 006 008 010 012 014
n n n
(a) Sharpness (b) ¢1-norm (c) Test loss
Figure 20: MSE loss. FCN-ReLU, CIFAR-10-5k, train loss 0.0001
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Figure 21: CE loss.

1.1.3 ON~N ruLL MNIST
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Figure 22: MSE loss. FCN-ReLU, MNIST,
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Figure 23: CE loss. FCN-ReLU, MNIST, train loss 0.01
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Figure 24: CE loss. FCN-ReLU, CIFAR-10, train loss 0.1
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1.3 CNNs wiTH RELU ACTIVATION

I1.3.1

sharpness

sharpness

ON MNIST-5K
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Figure 29: MSE loss. CNN-ReLU, MNIST-5k, train loss 0.1
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Figure 30: CE loss. CNN-ReLU, MNIST-5k, train loss 0.01
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1.3.2 ON~N ruLL MNIST
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Figure 31: MSE loss. CNN-ReLLU, MNIST, train loss 0.1
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Figure 32: CE loss. CNN-ReLU, MNIST, train loss 0.01

1.3.3 ON CIFAR-10-5kK
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Figure 33: CE loss. CNN-ReLU with Batch Normalization, CIFAR-10-5k, train loss 0.01
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1.4 VIisioN TRANSFORMER

I.4.1 ON MNIST-5K
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Figure 34: CE loss. ViT, MNIST-5k, train loss 0.1
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Figure 35: CE loss. ViT, CIFAR-10-5k, train loss 1
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Figure 36: CE loss. ResNet20, CIFAR-10-5k, train loss 0.1
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1.6 VARYING WIDTH AND DEPTH

I1.6.1

ON MNIST-5K

T T
& TTe T e g ]
30 oo 10214 1 e ! .
| | ° 0,056 | *
2 .
g% I E 102121 0 g @ Orirrrrioed e LT 2 !
g i g i E |
g» ! <0210 ! . 5009 ! .
1 1 1
15 ] ] o ] .
! 10208 1 !
o | | ° 0.054 1 .
1 1 L 1 L)
0.05 0.10 0.5 020 0025 0050 0075 0100 0.25 0.150 0.I75 0200 0025 0050 0075 0.100 0.125 050 0.175 0.200
" " [
: v T T T T T
o 10215 e H ® @ g LR EEEEEEEER EEEEEREE
3 4= i e H 0.056 —& I
3 “2-~ final GF value ST R L PR SRR | H
1 ~— GF value at max sharpness 10210 i . 1 1 1
4 1 R g ! ! 2 0,054 ! ° !
220 1 sor 5 ] e | ° o| 877 1 *
£ 1 == s Z 10205 1 l o o 7 1 ]
£ 1 ; < I ol g 1 o
! ; flnlalvalue . 1 | Py 0,052 1 re ®
10 1 value at max sharpness 1 1 1 1 Y
1 M o i i | | : :
1 1 I 1 1 1
i i | | ° 0,050 1 1 =
00 01 02 03 04 05 00 ol 02 03 04 05 00 o1 02 03 04 05
" i 0
(a) Sharpness (b) £1-norm (c) Test loss
. . .
Figure 37: FCN-ReLU, 2x width (400 x 2). Train loss 0.01, MNIST-5k, MSE loss
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Figure 38: FCN-ReLU, 3x width (600 x 2). Train loss 0.01, MNIST-5k, MSE loss
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Figure 39: FCN-ReLU, 10x width (2000 x 2). Train loss 0.01, MNIST-5k, MSE loss
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Figure 40: FCN-ReLU, 2x depth (200 x 4). Train loss 0.01, MNIST-5k, MSE loss
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Figure 41: FCN-ReLU, 3x depth (200 x 6). Train loss 0.01, MNIST-5k, MSE loss
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Figure 42: FCN-ReLU, 2x width and depth (400 x 4). Train loss 0.01, MNIST-5k,
MSE loss
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Figure 43: FCN-ReLU, 3x width and depth (600 x 6). Train loss 0.01, MNIST-5k,

MSE loss
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Figure 45: FCN-ReLU, 3x width (600 x 2). Train loss 0.01, CIFAR-10-5k, MSE loss
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Figure 46: FCN-ReLU, 10x
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Figure 48: FCN-ReLU, 3x
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Figure 49: FCN-ReLU, 2x width and depth (400 x 4). Train loss 0.01, CIFAR-10-5k,
MSE loss
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Figure 50: FCN-ReLU, 3x width and depth (600 x 6). Train loss 0.01, CIFAR-10-5k,
MSE loss
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1.7 FURTHER CONFIGURATIONS

I.7.1

DIFFERENT LOSS GOALS
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Figure 51: Train loss 0.001. FCN-ReLU, MNIST-5k, MSE loss
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Figure 52: Train loss 0.01. FCN-ReLU, MNIST-5k, MSE loss
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Figure 53: Train loss 0.1. FCN-ReLU, MNIST-5k, MSE loss
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Figure 54: Train loss 0.1. FCN-ReLU, MNIST-5k, CE loss
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Figure 55: Train loss 0.001. FCN-ReLLU, CIFAR-10-5k, MSE loss
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Figure 56: Train loss 0.01. FCN-ReL U, CIFAR-10-5k, MSE loss
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Figure 57: Train loss 0.1. FCN-ReLU, CIFAR-10-5k, MSE loss
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Figure 58: Train loss 0.1. FCN-ReLU, CIFAR-10-5k, CE loss
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1.7.2 OTHER INITIALIZATION SEEDS FOR FCN-RELU oN CIFAR-10-5K WITH THE
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Figure 59: Seed 44. FCN-ReLU, CIFAR-10-5k, MSE loss, train loss 0.01
- -
1 ° 060 B N N
g 00 7740 1 o I o
400 : i
. L7 ! . 05 e
zs_ g 1 3 1 °
T 7700 1 ° Z i
2300 < H H i
= o | ° 058 ! e
T 1
0 1 14 1 °
2 6601 g @ @ @ e 0.7 ! .
0002 0604 0006 0008 0010 0002 0004 0006 0008 0010 0002 0004 0006 00608 0010
n n
500 T T T 06001~
—— 2y 8400 : : o °® °
400 <-++ final GF sharpness | e © 0575
—— GF value at max sharpress 82001 o i
%3001 ! =k £ 1 ° 1 4 0.550
& : s 2 : i =
E —-= s % 8000 ° % 0525
5200 ! ® final value s ! ' 2
100d 11 O value at max sharpness 2800011 i 0500
1 1 le 1
1 1 1 0475
ol ! t ORI I R Y LR SR PR P
000 002 004 006 008 010 o012 o0l 000 002 004 006 008 010 012
1 1
(a) Sharpness (b) £1-norm (c) Test loss

Figure 60: Seed 45. FCN-ReLLU, CIFAR-10-5k, MSE loss, train loss 0.01

1.7.3 ScALED INITIALIZATION FOR FCN-RELU oN CIFAR-10-5K WITH THE MSE
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Figure 61: Initialization from seed 43 scaled x5. FCN-ReLU, CIFAR-10-5k, MSE loss,

train loss 0.1
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Figure 62: Initialization from seed 43 scaled x5. FCN-ReLU, CIFAR-10-5k, CE loss,
train loss 0.01
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Figure 63: Initialization from seed 43 scaled x10. FCN-ReL U, CIFAR-10-5k, CE loss,
train loss 0.01

1.8 FURTHER PROPERTIES

1.8.1 ALTERNATIVE NORMS AND DISTANCE FROM GF SOLUTION
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Figure 64: FCN-ReLU on MNIST-5k with the MSE loss. Train loss 0.0001
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Figure 65: FCN-ReLU on MNIST-5k with the CE loss. Train loss 0.01
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Figure 66: FCN-ReLU on full MNIST with the MSE loss. Train loss 0.01
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Figure 67: FCN-ReLU on full MNIST with the CE loss. Train loss 0.01

63



Under review as a conference paper at ICLR 2026

255 H . 1300 i °
1 ° 23.12 1 °
1 w 1 °
g > 1 ° 23.10 S 1200 1
g 1 £ ]
g 1 ° £ £ 1
§ 253 ¥ o F 2308 3 1 e ®
S : < £ 1100 :
2 ° =
5 : 23.06 z : ° o
23.04 1~ 1000 o o ® |' °
0.002 0.004 0.006 0.008
'l
T H . e ® 250 i H . o ®
2751 1 P s000)! 1 o ®
1 1 . T i
2707 1 i o ® L %3 5 1 1 o
£ 1 o! £ £ 1 o!®
£ 26511 ° 1 5 210 £30001 i
g 1 1 . & <A 3 1 (] ]
z S i - final GF value g H H
22601 | 1 -2 Z L@ 1
| H iy 235 £ 20007 \
2551+ @ 1 0 1 1
| 1 ® final value @ H
@ ereereeeedee bobedens 230t 10001 @ 1
000 002 004 006 008 010 012 014 000 002 004 006 008 010 012 014

H O 27.30 1 O 1600 H O
278 T ® 1 1 L4
- : 27.28 : . & 1400 :
g T °
: i ° E 2126 i E 1200 :
5 276 T 5 o o ! ° 3 1 °
3 ! ® Sy ® ¢ £ 1000 ! .
2275 1 o z !
1 ° I o . B 00 1 °
1 222 i 1 .
74 i o © ) | e
1 ° ® e
0.01 0.02 0.03 0.04 0.05 0.01 002 003 004 005 0.01 002 003 004 005
" " [
v - -
wl D 38 : ° : L
L]
1 ° 14 36 T ° . 6000 1 r
I i o5 H
fof 1 < I £l | .o
PR 2,00 . 540007 | .
] 1 . N 1 g 1 °
23001 ! + final GF value i E H
. 30 ] Z .
! ° —— 2sgr I . 2000 1
1 Y | ° L] 1 °
20{ i ® ® final value 28y . i
e B T P ST RTTIOR ST o olo
000 005 010 015 020 025 030 000 005 010 015 020 025 030 000 005 010 015 020 025 030
" i n
(a) Nuclear norm (b) £2-norm (c) £1-distance from GF solution
. . .
Figure 69: FCN-ReLU on CIFAR-10-5k with the CE loss. Train loss 0.01
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Figure 68: FCN-ReLU on CIFAR-10-5k with the MSE loss. Train loss 0.0001

n

(a) Nuclear norm

n

(b) £2-norm

n

(c) £1-distance from GF solution

Figure 70: FCN-tanh on CIFAR-10-5k with the MSE loss. Train loss 0.001
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1.8.2 (CONVERGENCE SPEED

Figure 71: FCN-tanh on CIFAR-10-5k with the CE loss. Train loss 0.01

AND TEST ACCURACY
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Figure 72: FCN-ReLU on MNIST-5k with the MSE loss. Train loss 0.0001
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Figure 73: FCN-ReLU on MNIST-5k with the CE loss. Train loss 0.01
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Figure 74: FCN-ReLU on full MNIST with the MSE loss. Train loss 0.01
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Figure 75: FCN-ReLU on full MNIST with the CE loss. Train loss 0.01
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Figure 76: FCN-ReLU on CIFAR-10-5k with the MSE loss. Train loss 0.0001
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Figure 77: FCN-ReLU on CIFAR-10-5k with the CE loss. Train loss 0.01
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Figure 78: FCN-tanh on CIFAR-10-5k with the MSE loss. Train loss 0.001
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Figure 79: FCN-tanh on CIFAR-10-5k with the CE loss. Train loss 0.01
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