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Abstract
While visually presented objects (e.g. a picture of a rat)
and words (e.g. the word rat) appear perceptually differ-
ent, they evoke a similar semantic activation in the hu-
man brain. A key question in understanding human read-
ing acquisition is how semantic representations emerge
such that visual object representations and written words
are meaningfully linked. We used a convolutional neu-
ral network (CNN), trained such that both object images
and written word stimuli activate the same output unit.
Our findings indicate that cross-modal semantic repre-
sentations emerge gradually across layers. Using repre-
sentational similarity analysis of the layer activations, we
further were able to show that incongruent information
affects the network’s performance via interfering projec-
tions to a high-dimensional space. This suggests that the
acquisition of literacy can be modelled as the projection
of object and word features, processed via the same neu-
ronal substrate - the visual cortex - into a shared semantic
space. Our approach offers a new avenue to uncover the
neuronal substrate of human literacy acquisition by us-
ing representational similarity analysis to link represen-
tations in the CNN to brain imaging data.
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Introduction
Understanding how humans acquire and process written lan-
guage is a fundamental question in cognitive neuroscience.
A key element of this process is the ability to process both
objects and written or printed words, using shared neural
structures in the visual cortex (Dehaene et al., 2005), and
assign a joint meaning to both representations. The ”visual
word form area” (VWFA), located in the left occipitotemporal
lobe, has been proposed as a specialised region involved
in recognising written words (Cohen et al., 2000; Dehaene
& Cohen, 2011). Other specialised ”processor”-areas like
the fusiform face area (FFA) for human face processing
(Kanwisher & Yovel, 2006) have been suggested to reflect a
similar purpose on a different visual modality. Those findings
promote a functionally and anatomically modular view of the
human brain, where semantic representations are formed via
a coordinating hub region (Patterson et al., 2007). However,
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more recent theories argue that information is rather repre-
sented in a high-dimensional shared representation space,
into which patterns of information - or features - are projected,
rejecting the idea of canonical, anatomically defined subsys-
tems (Haxby et al., 2020). We hypothesise that if this is the
case, a single convolutional neural network (CNN) should
be able to represent multiple visual categories - objects and
written words - simultaneously. Those representations are
hypothesised to manifest as separate feature projections from
the convolutional layers to shared representations in the fully
connected layers.

A more recent model that explicitly links words and images
on the basis of meaning is the CLIP model. It consists of
a vision and a language encoder that are jointly trained via a
shared representation matrix into which both encoders project
(Radford et al., 2021). This model was utilised to explain first
word acquisition in a single infant to which a camera was
attached and in which the parent’s interactions (i.e. nam-
ing objects) and the visual scene were related (Vong et al.,
2024). However, the joint training was performed by abstract-
ing the auditory information into ”digital” words that are biolog-
ically implausible. In addition, since vision and word encoders
were entirely separate, one could argue that this procedure
merely emulates self-supervised labelling, which implies that
the words themselves are not linked to the visual represen-
tation of the named objects. In the domain of reading, the
human brain utilises only one encoder (the visual cortex) for
object and written word recognition. Recent studies, employ-
ing CNNs, demonstrated that a structure akin to the VWFA
can emerge within a CNN’s structure, simply by joint multi-
modal training (Hannagan et al., 2021; Agrawal & Dehaene,
2024). However, again, investigating the acquisition of se-
mantic knowledge (i.e. the link between object and written
word features) remains to be investigated. Since the acqui-
sition of reading cannot be explained on the basis of evolu-
tion but rather relies on utilising evolutionary older structures
(Dehaene & Cohen, 2007), semantics as ”the literal meaning
of words” (Kearns, 2017), are likely to be found embedded
within other neuronal subsystems. Providing a compelling ex-
planation on how ”neuronal recycling” (Dehaene, 2005) can
lead to the formation of semantic representations in a high-
dimensional projection space could help to form a deeper un-
derstanding of human reading acquisition.
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In the present paper, we demonstrate that semantic rep-
resentations emerge even in very simple CNNs by the joint
learning of visual representations of objects and their respec-
tive written word forms. We trace their respective relationship
throughout the model and demonstrate how the abstractions
of visual features, processed using a single encoder, are pro-
jected into a shared semantic representation space.

Methods

Network Architecture

Previously, it has been argued that CNNs can be used as
models for the human visual cortex (Kriegeskorte, 2015).
Here, we used VGG 11 (Simonyan, 2014), which was mo-
tivated threefold: Firstly, compared to widely considered
more biologically plausible CORnet-Z (Kubilius et al., 2018),
VGG 11 performs better on image recognition tasks when si-
multaneously trained on image and word data. Agrawal &
Dehaene (2024) reported 36.8% accuracy using CORnet-Z
for ImageNet data in an otherwise highly similar experimen-
tal setup. Second, VGG style networks still remain compa-
rable to the hierarchical processing of the human visual sys-
tem, with brain likeliness scores similar to, or exceeding the
CORnet family (Nonaka et al., 2021). Although the most re-
cent version, CORnet-S (Kubilius, Schrimpf, Kar, et al., 2019),
outperforms VGG style networks on the ”Brain-Score” metric
with comparable ImageNet classification results (Schrimpf et
al., 2018), it performs less well on the ”brain hierarchy score”
(Nonaka et al., 2021). Third, the recurrent connections in e.g.
CORnet-S require time-resolved training and analysis of layer
activations, which adds computational cost and complexity.
VGG 11 in turn is still simple enough to gain meaningful insight
from a straight forward analysis of individual layer representa-
tions. The network was implemented as provided by PyTorch
(Paszke et al., 2019) with one key modification: the number
of units in the output layer was reduced from 1000 to 533 to
match the number of classes in our dataset (see Figure 1 b).

Model Training

Our primary objective was to approximate infant reading
acquisition at the stage of first word learning. Before learning
to read, infants are already capable of naming objects, which
we approximated by a model pre-trained on ImageNet 1k
(Deng et al., 2009). Afterwards, the model was further trained
on the same dataset alongside a set of newly created word
stimuli. We opted for supervised learning (as opposed to e.g.
contrastive learning), again to approximate human literacy
acquisition at an infant stage. Word stimuli were created
from the human-readable ImageNet labels. Each word image
was created by randomly choosing one of 143 different
fonts, with a font size between 12 and 48 pt. Afterwards,
each word was rotated by up to ±30◦ and sheared by an
up to ±45◦ offset. Finally, random noise with an intensity
between 0 and 50% was added. This procedure is similar
to what was done previously (van Vliet et al., 2022). The
noise background reflects noisy conditions (e.g. changes in

lighting) mirroring the robustness of human word recognition.
In addition, noise increases background complexity to better
match the mixed modality testing stimuli (see below). See
Figure 1 for an example. The data were split into 80%
training data, 10% validation data and 10% test data. Since
the word stimuli provide a much smaller set of features, all
labels that contained white spaces, dashes or other non-letter
characters were excluded to standardise the word images
as much as possible. Furthermore, labels with more than
ten characters were excluded to ensure that the respective
word stimuli do not exceed the image dimensions too much,
while still ensuring high variability in font style and size. This
resulted in a final set of 533 classes, which we considered
sufficiently many to not trivialise the problem. Each training
batch consisted of a mix of object and word images. Thereby,
the cross-entropy loss was computed identically, irrespective
of whether the example stemmed from the ImageNet dataset
or the word images.

The model’s parameters were optimised using stochastic
gradient descent (SGD) with a learning rate of lr = 0.001, a
weight decay of wd = 0.0005 and a momentum of m = 0.9. A
training scheduler was used to reduce the learning rate by a
factor of 0.1 on two consecutive plateauing epochs of valida-
tion loss. Training was stopped after nine epochs, reaching a
final validation accuracy of 88.3%.

Model Testing

We investigated semantic representations at the behavioural
level, by exposing the network to conflicting stimuli it was not
trained on. Furthermore, we tracked the formation of semantic
information across different layers using representational
similarity analyses (Kriegeskorte et al., 2008). To probe the
model’s semantic representations, two additional datasets
were created: congruent and incongruent images. Congruent
stimuli were created by overlaying the object images with the
corresponding words, whereas incongruent stimuli were cre-
ated by overlaying the object images with non-corresponding
words. This is similar to the picture-word interference task
(Rosinski et al., 1975). Each word was created similarly
as the pure word stimuli, but without additional rotation or
shearing to reduce the amount of variation in this test-only
data. An on average 12 pt larger font size was chosen to
boost the word size over the training set, to avoid that only
tiny fractions of the combined stimuli were covered due to
small font sizes in combination with small words.

After applying a softmax operation to the output layer, an
example was classified as ”correct” if the target unit had the
highest probability (top 1), was among the five highest proba-
bility values (top 5), the 27 highest probability values (top 5%)
or the highest 53 probability values (top 10%). In the case
of incongruent stimuli, accuracy values were computed sep-
arately for the class corresponding to the object part or the
word part.
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Figure 1: Overview of the methodology. (a) Training Data: The model was trained on 533 classes of ImageNet and corresponding
written word images. (b) The VGG 11 architecture, consisting of eight convolutional layers (Conv) followed by two fully connected
layers (FC). The final (third) FC layer was modified to have 533 output units to match the number of classes. (c) Testing Data:
The testing phase involved ImageNet and written words, as well as congruent and incongruent mixed modality stimuli. (d)
Experimental Procedure: During testing, activations fl(X) for each layer l for stimulus X were recorded. The cosine similarity,

cos(θl) =
fl(A)· fl(B)

∥ fl(A)∥∥ fl(B)∥ was computed, between the activations of congruent or incongruent images (A) and the activation of
object-only or word-only testing stimuli (B). Object or word parts of congruent or incongruent stimuli could either match the
respective object-only or word-only image categories or not (baseline). This means that for congruent stimuli, four separate
cosine similarity values are computed, whereas for incongruent stimuli, six separate cosine similarity values are computed.

Representational Similarity Analysis

Representational similarity analysis (RSA) is a widely used
method in neuroimaging, to assess the similarity of brain
response patterns across different conditions (Kriegeskorte et
al., 2008). Here, we applied RSA to investigate the similarity
of layer activations of the network with respect to different
input stimuli. During testing, the activation of the fourth con-
volutional layer (mid conv), the last convolutional layer (last
conv) and both fully connected hidden layers were recorded
for each individual testing image. We focused our analysis
on middle and deeper layers, since early convolutional layers
are known to primarily encode simple features like edges
and textures, while deeper layers capture more complex
structures or concepts (Zeiler & Fergus, 2014; Yosinski et al.,
2015). Semantic representations were expected to be found
in the fully connected layers (Qin et al., 2018).

The representational similarity (RS) was computed as the
cosine similarity between the activation f of two stimuli A and
B in a given layer l: cos( fl(A), fl(B)). Since it is highly un-
likely that each single image is represented exactly orthogo-
nal throughout the network, we also expected some RS with
any image (e.g. because of shared features across classes).
For this reason, the RS was computed relative to a baseline.

The baseline similarity applied to the RS between A and B
RS

BL(A,B)
l was computed as the average cosine similarity be-

tween the activations for A and N = 1000 randomly selected
examples C:

RS
BL(A,B)
l =

N
∑

C∈Γ

f (A)· f (C)
∥ f (A)∥∥ f (C)∥

N
(1)

, where Γ is the set of all possible classes and C a randomly
drawn example. The final RS between the activations of A
and B was then computed as the difference to the respective
baseline:

RS(A,B)
l =

fl(A) · fl(B)
∥ fl(A)∥∥ fl(B)∥

−RS
BL(A,B)
l (2)

This measure reflects the RS in a given layer that can solely
be attributed to activation similarity between two classes over
all other classes.

We conducted an RSA for the following combinations:
object-only and word-only stimuli (and vice versa), congruent
and object-only or word-only stimuli, as well as incongruent
and object-only or word-only stimuli. In case of an incongru-



ent stimulus, RS analyses have been performed for the ob-
ject and word part separately. See Figure 1 d) for example
comparisons for congruent and incongruent stimuli, and the
illustrations in Figure 3 for visual representation of the com-
parisons performed.

Activation Similarity Maximisation

While RSA is a suitable method to estimate where and to
which degree semantic representations are formed, it does
not reveal how semantic representations are formed. A
common approach to reveal how CNNs represent visual
features is to apply activation maximisation (Erhan et al.,
2009; Qin et al., 2018). In its simplest form, the pixel of an
initially random stimulus are iteratively changed via gradient
ascend, such that the output of a certain unit is maximised.
This generates an image that leads to a very high activation
at the desired output unit. Thereby, it can be revealed what
the network considers a very prototypical representation of
the respective target class.

Here, we would like to gain insight into how semantic rep-
resentations are formed and thus the link between the visual
representation of a word and the respective target class. For
this reason, we introduced a multiplicand to regularise the
growth of the activation a at the output unit i. The loss func-
tion to generate this new stimulus has been reformulated as a
minimisation problem becomes:

loss =− fl(Y) · fl(B)
∥ fl(Y)∥∥ fl(B)∥

∗a(i) (3)

, with fl(Y) being the activation of the optimised stimulus Y
in layer l, fl(B) the activation of the reference word stimulus
in layer l and a(i) the activation a of unit i in the output
layer. Using this procedure, a stimulus was created using
500 optimisation steps that produced a high activation in
the target unit, where activation patterns in layer l similar to
the activation of the reference stimulus are rewarded, and
dissimilar representations are penalised. By using a word
stimulus as the reference stimulus we obtain a new stimulus
Y that is represented word-like within a given layer, but at
the same time maximises the output for a certain class.
Afterwards, we computed the RS between fl(Y) and fl(B)
as a proxy for how well the word stimulus represents the
target class in each layer.

To probe semantic processing, the class of the reference
stimulus was either chosen corresponding to the output unit i
(within-class) or not (between-class). Since we expect that the
visual features of the word stimulus play a crucial role, we also
varied the degree of visual similarity of the reference stimulus
to the target class. This was done by computing the cosine
similarity between all word stimuli and selecting those that had
the highest or lowest similarity respectively in the middle con-
volutional layer (excluding self-matches). See Figure 4 a) for
a simplified visual representation of the procedure, and Fig-

ure 4 c) for example results for within and between-class ASM
for each layer.

Results

Accuracy

After training the model on object and word stimuli only, the
model was also tested on congruent and incongruent images.
We expected a significant performance decrease for incon-
gruent stimuli, because incongruent image and word features
were expected to cause conflicting activations in the shared
representations space (FC layers). Overall, the accuracy of
the word recognition exceeded the accuracy of image recog-
nition (see Figure 2), which was expected given previous liter-
ature (Rangari et al., 2023; Agrawal & Dehaene, 2024). Fur-
thermore, the difference between congruent and incongruent
stimuli points towards the predicted semantic interference ef-
fect. See Table 1 for exact accuracy values and Figure 2 for a
visual representation of the results. In a simple feed-forward
network, like the VGG 11, this difference should be explain-
able by the layer activations and hence we should observe
a representational similarity (RS) between a) the object de-
picted on the incongruent image and the corresponding word-
only image and b) the word depicted on the incongruent image
and the corresponding object-only image, which interfere with
each other.

Table 1: Testing accuracy across various conditions.

Top Img. Wrd. Con. Inc. Img. Inc. Wrd.

1 75.0 94.7 71.7 53.8 4.1

5 90.2 96.0 87.8 74.9 9.2

5% 95.2 96.8 94.5 87.7 21.3

10% 96.3 97.2 95.9 91.3 30.9

An example was classified as correct if its output probability was
among the top 1, 5, 5% or 10% highest probabilities after applying a
softmax operation to the output layer.

Representational Similarity Analysis

We computed the representational similarity (RS) between dif-
ferent conditions across multiple layers of the network model
(see Figure 3). Each of those comparisons was baseline cor-
rected, by computing the RS relative to the average of 1000
randomly selected stimuli (see Equation 2). Because object
and word stimuli are visually very different, the absolute differ-
ence in RS is only little informative, for which reason we will
mainly focus on the change profiles in RS across layers. This
allows us to reveal the relative contribution of each layer to the
overall formation of semantic representations throughout the
network.
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Figure 2: Testing accuracy across various conditions. object :
ImageNet examples; word : word images; congruent : images
overlaid with a word of the same class; incongruent object : im-
ages overlaid with a word from a different class, tested accord-
ing to the object class; incongruent word : similar, but tested
according to the word class. The dashed line represents the

1
533 chance level. See Table 1 for an overview of accuracy val-
ues. An example was classified as correct if its output proba-
bility was among the top 1, 5, 5% or 10% highest probabilities
after applying a softmax operation to the output layer.

Objects and Words Figure 3 a) compares the RS of object
with word stimuli, whereas Figure 3 b) compares word to
object stimuli (both relative to baseline). Those are expectedly
almost identically and only differ in the baseline (due to the
random selection), which acts as a sanity check. Objects
and words of the same class do not expose a significantly
higher RS when compared to any other class (baseline) in
the middle and last convolutional layers. Within the FC layers,
the same class object-to-word RS is elevated for the first
and even more for the second FC layer. This suggests that
common representations for objects and words emerge in
deeper, fully connected layers of the network.

Congruent overlays compared to Objects and Words
Figure 3 c) compares the RS of objects with congruent
stimuli, whereas Figure 3 d) compares the RS of words with
congruent stimuli (both relative to baseline). A slight increase
in RS was observed in the last convolutional layer for the
object-only to congruent stimulus comparison, with otherwise
a somewhat flat profile. This indicates that the intra-class
similarity of object features is lowest for the last convolutional
layer (Yang et al., 2023). In turn, for the comparison between
word-only and congruent stimuli, the RS increased steadily
for the last convolutional and both FC layers. This can be
explained by the fact that more visual features are shared
between the congruent and object-only stimuli as compared

to the comparison between congruent and word-only stimuli
in terms of number of pixels. Similar to the object-only to
word-only comparison, the highest RS values have been
found in the FC layers, which again indicates that object
and word features are linked there. Since it is unclear,
whether the object or word parts of congruent stimuli drive
the effect, conclusive evidence that object and word features
are indeed linked in the FC layers, can only be provided by
the incongruent stimulus analysis.

Incongruent overlays compared to Objects and Words
Figure 3 e) compares the RS of objects with incongruent stim-
uli, whereas Figure 3 f) compares the RS of words with in-
congruent stimuli (both relative to baseline). For the compar-
ison with object-only stimuli (Figure 3 e), we observed a sim-
ilar pattern as for the congruent condition, with an increased
RS in the last convolutional layer and an otherwise flat pro-
file. Again, this indicates elevated intra-class separability for
visual object features (Yang et al., 2023). The comparison
between the word-part of the incongruent stimuli with corre-
sponding object-only images, in turn, revealed a similar pat-
tern as for the object-to-word comparison (see Figure 3 a).
This indicates that the word-part of the incongruent stimuli
is processed independently of the object part at the feature
level. Comparing incongruent to word-only stimuli (Figure 3 f)
reveals a similar pattern as for the comparison between con-
gruent stimuli and words (Figure 3 d). In turn, comparing the
object part of incongruent stimuli to their corresponding words
yields a similar activation profile as for the comparison be-
tween object and word-only stimuli (Figure 3 b). Especially the
comparison between the word part of the incongruent stim-
uli to the corresponding object-only images (see Figure 3 e
magenta line)and the comparison between the object part of
the incongruent stimuli to the corresponding word-only stim-
uli (see Figure 3 f black line), point towards an independent
object and word processing of both stimulus components at
feature level. The highest RS was observed in the FC layers,
which indicates that indeed the link between object and word
representations are formed there. This potentially explains the
semantic interference, which causes the decrease in accuracy
for incongruent stimuli. To reveal how this link is formed, we
conducted an analysis of activation similarity maximisation.

Activation Similarity Maximisation

To verify that the FC layers perform the translation of visual
representations into joint semantic representations, we
introduced activation similarity maximisation (ASM). This
procedure is very similar to a regular activation maximisation
(Erhan et al., 2009), which aims to generate a stimulus from
random noise that maximises the activation of a target unit.
Thereby, it is revealed what the network considers to be a
prototypical example of a specific class. Here, we added a
regularisation term, which aims to simultaneously maximise
the RS in a given layer to a reference stimulus (a written word
image). This means that the final generated stimulus is both
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Figure 3: Representational Similarity (RS) relative to a baseline across different layers for various stimulus types: (a) objects and
words; (b) words and objects; (c) objects and congruent stimuli; (d) words and congruent stimuli; (e) objects and incongruent
stimuli; (f) words and incongruent stimuli. See also the illustrations. The x-axis denotes the network layers middle convolutional
(mid conv.), last convolutional (last conv.) and fully connected layers (1st FC, 2nd FC), while the y-axis indicates the RS values.
Shaded areas represent the 95% confidence interval.

prototypical for the respective output class, but also activates
a given layer similarly to a word-only stimulus (see Equation 3
and Figure 4 a). Then, the RS between the generated
stimulus and the reference word stimulus were computed
to reveal how close the word representation resembles the
prototypical class representation in each layer. In addition,
we varied the reference word stimulus in two stages. It could
either be of the same class as the output unit (within-class)
or a randomly selected different class (between-class). The
between-class comparison was further varied such that the
representation in the middle convolutional layer is either very
similar to the representation of the word-only stimulus of the
target class or very dissimilar (e.g. ”goldfish” vs. ”goldfinch”
or ”fly”).

Within and Between-Class ASM We found that the RS in
the middle convolutional layer between the generated and ref-
erence stimuli are very similar (see Figure 4 b left) for within
and between-class comparisons. This indicates that no link
between object and word features was established here. The
examples depicted in Figure 4 c) show that word and object
features are both visible simultaneously in the middle convo-
lutional layers. In addition, the visual features are preserved
such that they can be understood by humans. In other words,
the features of the object and the visual word form co-exist in
the middle convolutional areas (e.g. the target ”goldfish” and
the reference ”fly”). The slight decrease in similarity in the
middle convolutional layers for the five most dissimilar classes
(see dark magenta line in Figure 4 b) left), most likely results
from the fact that those examples were specifically selected to
be most dissimilar in this layer.

Irrespective of the within or between-class comparison,
we found an increase in RS between the generated and
reference stimulus for the last convolutional layer relative to
the middle convolutional layer (see Figure 4 b left). A similar
increase in RS has been observed for the activations of
word-to-word or object-to-object (see Figure 3), which most
likely reflects the network’s ability to differentiate between
classes in general (Yang et al., 2023). However, since the
increase in RS is different for the within and between-class
comparison, we conclude that semantic information already
interferes to some degree with the discriminative power of the
network at this stage.

The RS between the generated stimuli and the reference
words clearly separates the within and between-class compar-
isons in the fully connected layers (see Figure 4 b left). Re-
markably, the final cosine similarity for the within-class com-
parison approaches 0.9 in the 2nd FC layer, which indicates
that the regularisation term (see Equation 3) only moderately
impacted the final generated result. Because the activation
evoked by the word-only stimulus in the 2nd FC layer is very
similar to the activation evoked by the generated stimulus, the
word stimulus activation serves as a good approximation for
the prototypical activation in that layer, which indicates that the
word features themselves have resolved in general semantic
class features. In turn, the RS for the between-class compar-
ison is substantially lower within the FC layers. This indicates
that the visual word form does not serve as a good approxi-
mation for the prototypical activation if the classes of the tar-
get unit and the reference word mismatch. Again, this points
towards competing activations in the FC layers, indicating a
semantic conflict.
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Figure 4: Activation Similarity Maximisation (ASM) framework and results. (a) Schematic of the ASM process: The model aims
to generate a stimulus from white noise by optimising this stimulus such that the activation of a given output unit is maximised,
and simultaneously the activation is as similar as possible to the activation of a reference word stimulus. This procedure was
performed using a reference stimulus that is either the same or a different class as the maximised output unit. (b) Representa-
tional Similarity (RS) between the final result of the optimisation process and reference word stimulus: The left plot shows RS
within and between classes across different layers. Thereby, the magenta lines differentiate between highly similar or dissimilar
”between” classes. The right plot shows the percent change of RS relative to the ”between” class comparison from the left panel
for the top five visually similar or the bottom five visually dissimilar classes (percent change between dashed black line and
magenta lines). (c) Examples of Activation Similarity Maximisation: Visualisations of the target class (”goldfish” and ”fly”) and
reference stimuli across different layers (mid conv, last conv, 1st FC, and 2nd FC). The visualisations illustrate the result of the
ASM procedure, depending on the layer at which the activation was compared for the similarity metric.

Feature Similarity Lastly, we investigated, whether the
word features themselves contribute to the final RS in the FC
layers, by varying the visual similarity of the between-class
comparison, relative to the word representation corresponding
to the target unit. Figure 4 b) right compares the RS for sim-
ilar and dissimilar classes to the RS of all ”between classes”
(dashed black line in left panel) as the relative change in per-
cent. For example, a class similar to the word ”goldfish” would
be ”goldfinch”, whereas a class dissimilar to the word ”gold-
fish” would be ”fly”. Especially for the FC layers, an increase
of RS of almost 20% could be observed for those reference
words that are visually similar to the target class, while a sig-
nificant decrease could be observed for reference words that
are visually dissimilar to the target class. This indicates that
the visual features of the reference word stimulus contribute
to the final semantic representation in the FC layer. In other
words, the semantic representations that are formed by the

network in the FC layers, are most likely projections of visual
features into a high-dimensional representation space, as has
been proposed previously (Haxby et al., 2020).

Discussion
We demonstrated how semantic knowledge in a CNN
emerges from the joint training of object and written word im-
ages. In a first step, we used a pre-trained VGG 11 CNN
(Simonyan, 2014), which we then continued to train on Ima-
geNet 1k visual objects (Deng et al., 2009) and written word
stimuli created from the human-readable ImageNet labels.
Pre-training thereby served as a proxy for a pre-literate in-
fant that is already capable of naming different objects, and
the joint training that followed thereafter, mimics the acquisi-
tion of reading. Using a picture-word interference task (Rosin-
ski et al., 1975), we demonstrated that semantic interference
caused a significant reduction of the network’s accuracy, when



tested on object images, overlaid with incongruent words. A
representational similarity analysis revealed that semantic in-
terference occurs in the fully connected layers. Via activation
similarity maximisation, we could further show that visual fea-
ture projections from the convolutional layers into the fully con-
nected layers crucially impact the final semantic representa-
tions. We conclude that semantic representations are formed
by projecting stimulus features into a shared space, similar
to what has been proposed by theoretical frameworks (Haxby
et al., 2020). In contrast to newer contrastive learning strate-
gies such as SimCLR (Chen et al., 2020) or CLIP (Radford
et al., 2021), traditional supervised learning methods might
intuitively correspond better to human written language acqui-
sition. Contrasting both (potentially against brain data) how-
ever, might reveal insight about the nature of representations
that emerge given each strategy.

Reduced Accuracy for Conflicting Information
Reduced behavioural accuracy in humans for conflicting infor-
mation has been observed for the Stroop effect (Stroop, 1935)
(see also: Laurienti et al. 2004), where colour words printed in
incongruent font colours lead to increased error rates. Similar
effects have been reported from the picture-word interference
task (Rosinski et al., 1975), which has been proposed to be
a variation of the Stroop effect sharing the same underlying
computational principles (Starreveld & La Heij, 2017). More-
over, other multi-modal tasks involving high level conflicting
stimuli, such as faces and names (Egner & Hirsch, 2005) or
conflicting auditory and visual stimuli (Thomas et al., 2017),
yield similar results. Since, our model was specifically chosen
to only include feed-forward connections, this decrease in ac-
curacy must stem from the visual features and their high level
projections throughout the model. We hence assume that low
level features had been projected into a shared representation
space (Haxby et al., 2020), where conflicting concepts com-
pete for the network’s resources. Recent theoretical frame-
works promote the idea of distributed semantic representa-
tions (Haxby et al., 2020), which is in line with our findings.
However, due to methodological limitations, capturing these
distributed patterns in neuroimaging data remains challenging
(Frisby et al., 2023).

Semantic Knowledge via Conjoint Feature
Projections
We could demonstrate that semantic knowledge forms in the
FC layers, which appear akin to the function of the left an-
terior temporal lobe (Mesulam et al., 2013; Li & Pylkkänen,
2021; Farahibozorg et al., 2022). Previous research showed
that semantic interference is less pronounced if the interfer-
ing stimulus is similarly shaped as a target word (Rayner &
Springer, 1986). This is in line with our finding that the se-
mantic representation of a certain class is more similar to the
representation of similar words. Agrawal & Dehaene (2024)
demonstrated that CNNs trained on object and written word
recognition develop activation patterns similar to the VWFA in
the convolutional layers. This is most likely the result of the

network recognising reoccurring lexical patterns (e.g. ”sh”)
which are similarly processed as reoccurring visual object fea-
tures (e.g. eyes). The combination of visual word form fea-
tures are then projected into the high-dimensional represen-
tation space. It has been shown that humans trained on new
words that are similar to already existing representations (e.g.
”BANARA” vs. ”BANANA”) suffer from decreased word iden-
tification performance (Bowers et al., 2005). Furthermore, it
has been shown that word identification error rates increase
when a centrally presented target word is flanked with visu-
ally similar distractor words (Vandendaele & Grainger, 2023).
In line with our results, we interpret those findings such that
the set of activated visual word form features, biases the final
decision in the high-dimensional representation space.

Limitations and Future Perspectives
The main limitation of our approach is the simplified architec-
ture of the model. Residual and recurrent connections (He et
al., 2016; Hochreiter, 1997) as well as overall more biologically
plausible architectures such as CORnet-S (Kubilius, Schrimpf,
Hong, et al., 2019) should be considered in the future. This re-
quires analyses to be extended to the time domain as well. In
addition, increasing structural plausibility can come at the cost
of decreased performance for certain tasks (e.g. CORnet-Z
Agrawal & Dehaene 2024), which needs to be taken into con-
sideration and assessed for each model. Using a dataset like
Ecoset (Mehrer et al., 2021), specifically designed to include
the most common classes that humans encounter, might con-
tribute to more realistic representations as well. In addition, it
could be shown that introducing brain-like temporal dynamics
can further improve the overall explanatory power of DNNs as
a model for certain brain functions (Duecker et al., 2024). Fu-
ture research should also incorporate the comparison to brain
imaging data. A similar task as employed here could be used
in an fMRI or MEG study. We predict that object and written
word feature patterns can be distinguished using RSA in ear-
lier visual cortex areas (e.g. V1 to V4), but not - or to a lesser
extent - in more downstream regions like left anterior temporal
lobe, where in turn the distinction between same and different
class activation patterns become more prominent. Further-
more, lexical parafoveal processing in early visual cortex (Pan
et al., 2021, 2024) as well as pre-saccadic feature processing
in general (Fakche et al., 2024), might be the result of pre-
activating visual word feature projections. Investigating the
similarity between neural network activations of multi-modal
models and human brain data could thus help to shed light on
the overall computational principles of written language pro-
cessing, which potentially extends to human multi-modal per-
ception in general.

Conclusion
The results presented here, indicate that semantic represen-
tations can be viewed as an emergent property of CNNs jointly
trained on object and written word images. This can be ob-
served on the behavioural level and the level of network rep-
resentations. Since abstract semantic representations were



found to be limited to the FC layers, we conclude the acquisi-
tion of reading can be modelled as the process of projecting
combinations of object and written word features into a shared
high-dimensional space.
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