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Abstract

Measures of dissimilarity between a pair of objects can play a pivotal role in many1

machine learning objectives such as clustering, outlier detection, or data visualiza-2

tion. We focus on data in the form of binary vectors and analyze several methods3

of measuring dissimilarity between them. We introduce several properties, axioms,4

that a measure of dissimilarity can satisfy and characterize the Hamming and Jac-5

card distances as the only measures satisfying particular subsets of our axioms.6

Based on our analysis, we identify shortcomings of both distances, and propose7

novel approaches that are better suited for certain applications. We complement8

our theoretical findings by extensive empirical study. Our primary motivation is9

the analysis of election data, in which the votes have the form of binary approval10

of alternatives, but the applicability of our results reaches far beyond that.11

1 Introduction12

The Hamming and Jaccard distances find various applications throughout and beyond machine13

learning. For example, they can play a key role in clustering [16, 15], keywords similarity analy-14

sis [22], and recommendation systems [5]. Jaccard distance also serves as a loss function for object15

detection in computer vision [12, 25, 30], while Hamming is often used in multi-label classification16

problems [28, 27]. However, in many applications, it is unclear why this particular metric should17

be used out of many possible measures of dissimilarity between binary vectors. This question18

is of dire importance as the choice of the metric can lead to drastic differences in the produced19

results [9, 25, 15].20

To provide a deeper understanding of the nature of each measure and to offer guidance in selecting21

an appropriate one for a given application, we adopt the axiomatic method. This approach involves22

introducing simple and intuitive properties, called axioms, which characterize particular measures,23

showcasing the distinctive behavior of each measure and highlighting the similarities and differences24

between them. Axioms have been already employed in the theoretical analysis of machine learning25

tools such as clustering [1, 3, 18], or classification [11]. Furthermore, they are cornerstones of the26

related fields of computational social choice [7] and game theory [26].27

Specifically, we introduce five invariance axioms (namely, Anonymity, Independent Symmetry, Add28

Zero, Zero-One Symmetry, and Scaling) each requiring that a particular simple operation applied to29

a pair of binary vectors does not affect the dissimilarity between them. Additionally, we consider30

Triangle Inequality—a standard distance axiom; Convergence which asserts that the distance between31

the vectors decreases as we introduce agreement between them; and Normalization that fixes the32

dissimilarity value in a certain corner case.33

We prove that the Hamming distance is the unique dissimilarity measure that satisfies Anonymity,34

Independent Symmetry, Zero-One Symmetry, Scaling, Triangle Inequality, Convergence, and Nor-35

malization axioms. Moreover, if in this characterization we exchange Zero-One Symmetry for Add36
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Table 1: Which dissimilarity measure satisfies which axiom.
Anonym. Scaling Indep. Sym. 0-1 Sym. Conv. Tri. Ineq. Norm. Add 0

Hamming ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
Jaccard ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Zero axiom, then such set of axioms uniquely characterize the Jaccard distance. This axiomatic37

approach thus offers a comprehensive comparison of both measures highlighting the key difference38

between them. Satisfaction of our axioms by the rules we consider is summarized in Table 1.39

Furthermore, based on our analysis, we identify a common feature of the Hamming and Jaccard40

distances that may be undesirable in many scenarios. Indeed, both distances satisfy Independent41

Symmetry, which in practice implies that the vectors of different saturation will always be far from42

each other. We propose the modifications of both measures that escape this problem and show that43

they can be more suited for certain applications.44

We complement our theoretical findings with extensive experiments on approval election data, in45

which a set of voters express binary preferences over a set of alternatives. Such data is one of the46

primary objects of study in the computational social choice (for more details see the work of Boehmer47

et al. [6]) and shows a high level of asymmetry: A voters’ approval for an alternative is a much48

stronger signal than the lack thereof. We compare the behavior of the studied dissimilarity measures49

in several canonical classes of such elections and finish with the case study on real-world election50

instances from participatory budgeting. Our analysis confirms that the newly proposed measures can51

indeed be more efficient in certain settings. All missing proofs are available in Appendix A.52

2 Preliminaries53

For every n ∈ N, we denote [n] = {1, . . . , n}. For two sets A,B, we denote their symmetric54

difference by A△B = (A ∪B) \ (A ∩B).55

2.1 Binary Vectors56

We consider a space of binary vectors of arbitrary (but finite) length. Each such vector, x ∈ {0, 1}n,57

can equivalently be viewed as a subset of coordinates on which there are ones in the vector, which58

we denote by Ax = {i ∈ [n] : xi = 1}. For a permutation π : [n] → [n], by π(x) we denote the59

vector x with changed order of coordinates, i.e., π(x)i = xπ(i) for every i ∈ [n]. Drawing from game60

theory notation, for vector x ∈ {0, 1}n, coordinate i ∈ [n], and b ∈ {0, 1} we write y = (x−i, b) to61

denote a vector such that yi = b and yj = xj for every j ∈ [n] \ {i}. For vector x ∈ {0, 1}n by x̄62

we denote its bitwise negation, i.e., x̄ = (1 − x1, . . . , 1 − xn). By ◦ we denote concatenation of63

vectors, i.e., for x ∈ {0, 1}n and y ∈ {0, 1}m, if z = x ◦ y, then zi = xi for i ∈ [n] and zi = yi for64

every i ∈ [m+ n] \ [n]. Finally, by xk we denote the result of concatenating k copies of x one after65

another. For convenience, we will allow for x0 to be the empty vector, which concatenated with any66

other vector y, results in y.67

2.2 Dissimilarity Measures68

A dissimilarity measure is a function that takes a pair of binary vectors of the same size as arguments69

and outputs some real nonnegative values, i.e., f :
(
{0, 1}n × {0, 1}n

)
n∈N → R≥.70

Examples include the (normalized) Hamming distance, also known as the ℓ1 distance, which outputs
the fraction of positions at which the corresponding elements in two vectors differ, i.e.,

H(x, y) = |Ax△Ay|/n.
Jaccard distance is defined similarly, but instead of normalizing by the vector length, it divides the
symmetric difference by the number of positions in which at least one vector has a positive entry, i.e.,

J(x, y) = |Ax△Ay|/|Ax ∪Ay|.
Other examples include the Euclidean distance (or ℓ2), which is just a square root of the Hamming71

distance, or the discrete distance (or ℓ∞) that returns 0 if the vectors are identical and 1 otherwise.72
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3 Axiomatic Characterization of the Hamming Distance73

We begin by introducing seven axioms that uniquely characterize the Hamming distance, arguably74

the most popular notion of dissimilarity between binary vectors.75

The first four axioms are so-called invariance axioms, which describe certain operations on a pair of76

vectors and assert that this operation should not affect the dissimilarity value. This first such axiom is77

called Anonymity and intuitively states that the order of coordinates does not matter. It is natural in78

settings where there is no spatial or temporal relation between the bits of information that the vectors79

represent. Rather, they come from independent sources, as, for example, when the vectors represent80

support for a given candidate by various voters (indeed, the version of this axiom often appears in the81

social choice literature [21]).82

Definition 3.1 (Anonymity). A dissimilarity measure, f , satisfies Anonymity if for every vectors83

x, y ∈ {0, 1}n and permutation π : [n] → [n] it holds that84

f(π(x), π(y)) = f(x, y).

For example, Anonymity would imply that f((1, 0, 1, 1), (1, 1, 0, 0)) = f((0, 1, 1, 1), (1, 0, 1, 0)).85

The second axiom, Scaling, captures the intuition that the scale of the input should not be relevant86

for the dissimilarity. Hence, we can copy the entries of the vectors several times and this will not87

affect the value. This property was noted as crucial for some objectives such as measuring accuracy88

in object detection tasks in computer vision [25].89

Definition 3.2 (Scaling). A dissimilarity measure, f , satisfies Scaling if for every vectors x, y ∈90

{0, 1}n and k ∈ N it holds that91

f(xk, yk) = f(x, y).

For example, Scaling would imply that f((1, 0), (1, 1)) = f((1, 0, 1, 0), (1, 1, 1, 1)).92

Our next axiom is a strengthening of a standard distance axiom of Symmetry. Independent Symmetry93

states that on every coordinate we can switch the values between the two vectors, and this operation94

should preserve the dissimilarity value.95

Definition 3.3 (Independent Symmetry). A dissimilarity measure, f , satisfies Independent Symmetry96

if for every vectors x, y ∈ {0, 1}n and index i ∈ [n] it holds that97

f((x−i, yi), (y−i, xi)) = f(x, y).

For example, Independent Symmetry would imply that f((1, 0, 1), (1, 1, 0)) = f((1, 1, 1), (1, 0, 0)).98

Our final invariance axiom, Zero-One Symmetry, states that the roles of 0 and 1 in the vectors are99

symmetric, hence if we exchange all 0s for 1s in both vectors and vice-versa, we should get the same100

dissimilarity. Indeed, in some applications the roles of zeros and ones are arbitrary.101

Definition 3.4 (Zero-One Symmetry). A dissimilarity measure, f , satisfies Zero-one Symmetry if for102

every vectors x, y ∈ {0, 1}n it holds that103

f(x̄, ȳ) = f(x, y).

For example, Zero-One Symmetry would imply that f((1, 0, 1), (1, 1, 0)) = f((0, 1, 0), (0, 0, 1)).104

Our next axiom is Convergence. It captures the intuition that as we add new information to the input105

on which both vectors agree, then the dissimilarity between them should move towards zero, and that106

this convergence to zero should be quick enough. Formally, we say that if we double the size of the107

vectors and in the new entries there are only 1s in both of them, then the distance should decrease by108

at least half.109

Definition 3.5 (Convergence). A dissimilarity measure, f , satisfies Convergence if for every vectors110

x, y ∈ {0, 1}n it holds that111

f(x ◦ (1)n, y ◦ (1)n) ≤ 1

2
f(x, y).

For example, Convergence would imply that f((1, 0, 1, 1), (1, 1, 1, 1)) ≤ f((1, 0), (1, 1))/2.112

Next, we include a standard distance metric axiom of Triangle Inequality.113
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Definition 3.6 (Triangle Inequality). A dissimilarity measure, f , satisfies Triangle Inequality if for114

every vectors x, y, z ∈ {0, 1}n it holds that115

f(x, y) + f(y, z) ≥ f(x, z).

Finally, Normalization specifies the dissimilarity in a basic case of length-1 vectors.116

Definition 3.7 (Normalization). A dissimilarity measure, f , satisfies Normalization if117

f((0), (1)) = 1.

The above seven axioms uniquely characterize the Hamming distance.118

Theorem 3.8. A dissimilarity measure, f , satisfies Anonymity, Scaling, Independent Symmetry,119

Zero-One Symmetry, Convergence, Triangle Inequality, and Normalization if and only if f is the120

Hamming distance.121

Proof sketch. The proofs that Hamming satisfies each of the axioms are relatively straightforward.122

Thus, in this sketch we focus on showing that if a dissimilarity measure f satisfies all of the axioms,123

then it is the Hamming distance (the full proof can be found in Appendix A). The proof proceeds by124

considering growing subsets of axioms and characterizing the classes of dissimilarity measures that125

satisfy these axioms (in Appendix A, we present each such characterization as a separate lemma).126

We begin by observing that dissimilarity measure satisfying Anonymity must be in fact a function127

of four arguments, which are the sizes of the intersection, both differences, and the intersection128

of complements of sets Ax and Ay for each pair of vectors x, y. Then, if we add Independent129

Symmetry, this function must depend on only three arguments, as instead of looking at |Ax \ Ay|130

and |Ay \ Ax|, we can simply look at the size of their symmetric difference. Adding Zero-One131

symmetry prevents distinguishing the intersection form the intersection of complements, so we end132

up with two arguments: |Ax△Ay| and n − |Ax△Ay|, or, equivalently, |Ax△Ay| and n. Then,133

Scaling implies that f(x, y) is actually a function of a single argument, i.e., there exists g such that134

f(x, y) = g(|Ax△Ay|/n) = g(H(x, y)).135

We use the remaining axioms to establish properties of g. Triangle Inequality means that g is136

subadditive. Next, we prove that with the addition of Convergence, g has to be a linear homogeneous137

function. In other words, there is a ∈ R such that f(x, y) = a ·H(x, y). Then, adding Normalization138

concludes the proof.139

We note that the set of axioms used for our characterization of the Hamming distance is minimal. In140

other words, the axioms are independent, as no subset of our axioms implies the remaining ones.141

Theorem 3.9. For every axiom in the set Anonymity, Scaling, Independent Symmetry, Zero-One142

Symmetry, Convergence, Triangle Inequality, and Normalization there is a dissimilarity measure that143

satisfies all other axioms in this set except for this one.144

4 Axiomatic Characterization of the Jaccard Distance145

As mentioned in the previous section, Zero-One Symmetry, an axiom characterizing Hamming,146

requires that 0s and 1s have symmetric roles in all vectors. This is the case in some scenarios,147

however in many applications this is clearly not the case. For example, if the vectors represent the148

support for a candidate from different voters, then the support seems much more meaningful than the149

lack of it (as the lack of support may be a result of actual disapproval, but at the same time it can150

come from neutrality, or lack of knowledge about a candidate). Then, the fact that two candidates are151

supported by the same voters can be much more important for their perceived similarity than the fact152

that they agree on more entries.153

Consider the following four vectors:154

x = (1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0), a = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

y = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), b = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

Under the Hamming distance, the vectors a and b are more similar than the other two. While, if we155

treat ones as approvals and zeros as disapprovals, the sets of approved items by a and b are disjoint.156
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In many types of data there is a significant disproportion between the number of 1s and 0s, which157

suggests that they play very different roles. In such cases, the following Add Zero axiom might be158

desired, which basically says that coordinates in which both vectors have 0s might be disregarded.159

Definition 4.1 (Add Zero). A dissimilarity measure, f , satisfies Add Zero if for every vectors160

x, y ∈ {0, 1}n it holds that161

f(x ◦ (0), y ◦ (0)) = f(x, y).

For example, Add Zero would imply that f((1, 0, 1), (1, 1, 0)) = f((1, 0, 1, 0), (1, 1, 0, 0)).162

It turns out that if in the characterization of the Hamming distance we exchange Zero-One Symmetry163

for Add Zero axiom, then we obtain a unique characterization of the Jaccard distance.164

Theorem 4.2. A dissimilarity measure, f , satisfies Anonymity, Independent Symmetry, Add Zero,165

Scaling, Convergence, Triangle Inequality, and Normalization if and only if f is the Jaccard distance.166

Proof Sketch. The structure of the proof of the characterization of Jaccard resembles the one from167

the proof of the characterization of Hamming. Again, verifying that Jaccard satisfies all axioms is168

relatively straightforward, thus we focus on showing that a dissimilarity measure f satisfying the169

axioms is equal to the Jaccard distance.170

From the proof of Theorem 3.8 we know that f satisfying Anonymity and Independent symmetry for171

each pair of vectors x, y is a function of three arguments, |Ax ∩Ay|, |Ax△Ay|, and n− |Ax ∪Ay|.172

Add Zero allows us to disregard the last argument, thus we end up with a function of two arguments173

|Ax∩Ay| and |Ax△Ay|, or, equivalently, |Ax△Ay| and |Ax∪Ay|. Then, Scaling implies that f(x, y)174

is actually a function of a single argument, i.e., there exists g such that f(x, y) = g(|Ax△Ay|/|Ax ∪175

Ay|) = g(J(x, y)). Finally, using Triangle Inequality, Convergence, and Normalization, we prove176

that g has to be an identity.177

Again, our axioms characterizing Jaccard are independent.178

Theorem 4.3. For every axiom in the set Triangle Inequality, Anonymity, Independent Symmetry,179

Add Zero, Scaling, and Convergence, there is a dissimilarity measure that satisfies all other axioms in180

this set except for this one.181

Finally, in Appendix B, we offer an additional axiomatic characterization of the discrete distance.182

5 Rejecting Independent Symmetry183

In this section, we argue that Independent Symmetry, which is used in characterization of both184

Hamming and Jaccard, might be actually not desirable in many situations. To see this, consider the185

following four vectors:186

x = (0, 0, 1, 1, 0, 0, 0, 0), a = (1, 1, 1, 1, 0, 0, 0, 0),

y = (1, 1, 1, 1, 1, 1, 0, 0), b = (0, 0, 1, 1, 1, 1, 0, 0).

Every dissimilarity measure f that satisfies Independent Symmetry must give f(x, y) = f(a, b) by187

the definition of the axiom. However, observe that Ax ⊆ Ay, which is not true for a and b. If the188

vectors correspond to candidates and their coordinates to voters that can support them, this means189

that every supporter of candidate x also voted for y. This is a very strong signal that projects x and y190

are related. On the other hand, only 50% of supporters of a also voted for b and vice versa. Therefore,191

we might want to consider x and y as more similar than a and b. Alternatively, it is possible that in192

some settings actually a and b can be considered more similar, as they are of similar size. Either way,193

Independent Symmetry prevents distinguishing these two cases.194

What could be a sensible dissimilarity metric that does not satisfy Independent Symmetry? Let us195

observe that the Hamming distance can be written as196

H(x, y) = 2 · |Ax \Ay|+ |Ay \Ax|
2

· 1
n
.

I.e., it is proportional to the arithmetic mean of |Ax \Ay| and |Ay \Ax|. Similarly, we can write197

J(x, y) = 2 · |Ax \Ay|+ |Ay \Ax|
2

· 1

|Ax ∪Ay|
.
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The arithmetic mean is invariant to subtracting a value from one argument and adding it to the other,198

which is why both distances satisfy Independent Symmetry. However, other means, like quadratic or199

geometric mean, lack this property. For p ∈ R≥0, we define a generalized mean of two numbers as200

Mp(k, ℓ) =

{
p
√
(kp + ℓp)/2, for p ∈ (0,∞),√
k · ℓ, for p = 0.

Then, let us define p-Hamming and p-Jaccard as follows201

Hp(x, y) =
2Mp(|Ax \Ay|, |Ay \Ax|))

n
, Jp(x, y) =

2Mp(|Ax \Ay|, |Ay \Ax|))
2Mp(|Ax \Ay|, |Ay \Ax|) + |Ax ∩Ay|

.

Clearly H1(x, y) = H(x, y) and J1(x, y) = J(x, y). Observe that whenever |Ax \Ay| = |Ay \Ax|,202

we have that Hp(x, y) = Hq(x, y), for every p, q ∈ [0,∞]. However, if |Ax \ Ay| ̸= |Ay \ Ax|,203

then Hp(x, y) > Hq(x, y) for all p > q (and similar properties hold for p-Jaccard). Therefore,204

assuming constant |Ax△Ay|, whenever there is an imbalance in the sizes of the sets Ax and Ay,205

Hp(x, y) will give higher distances than the Hamming distance, when p > 1, or lower distance when206

p < 1. In particular, in the extreme, H0(x, y) and J0(x, y), which we call geometric Hamming and207

geometric Jaccard, returns dissimilarity 0, whenever Ax ⊆ Ay or Ay ⊆ Ax (but observe that this is208

incompatible with Triangle Inequality).209

Example 5.1. Assume that we have three projects a, b, and c, where |Aa| = |Ab| = 20, |Ac| = 6,210

and where |Aa ∩ Ab| = 10, |Aa ∩ Ac| = 0, |Ab ∩ Ac| = 5. And the question is whether b is more211

similar to a or c. On the one hand, the size of the intersection between Aa and Ab is twice as large as212

the intersection between Ab and Ac. On the other hand, almost all voters who approve c also approve213

b. Under the J1 distance b is more similar to a, while under the J0 the b is more similar to c.214

6 Experiments215

In this section, we illustrate the intuitive difference between the six following dissimilarity measures:216

H0 (geometric Hamming), H1 (standard Hamming), H2 (quadratic Hamming), J0 (geometric217

Jaccard), J1 (standard Jaccard), and J2 (quadratic Jaccard). Since one of the important potential218

applications of dissimilarity measures is the field of computational social choice, we use statistical219

models and real-life data from that field. In particular, we focus on approval elections, which consist220

of a set of candidates and a set of voters, where each voter approves a subset of the candidates [20].221

This structure can naturally be represented as a binary matrix, where rows correspond to voters and222

columns to candidates. Occasionally, we refer to such a matrix as a profile.223

We begin by evaluating the measures on synthetic data and later we move to the real-life one. To224

generate synthetic data we use the Euclidean statistical cultures [6] (i.e., popular statistical models225

used in social choice). To sample d-Euclidean profile, we proceed as follows: first, sample ideal226

points for each voter and each candidate from d-dimensional Euclidean metric space; second, for227

each candidate, sample a radius (i.e., strength) from R+; third, a voter approves a given candidate if228

the Euclidean distance between their ideal points is less than or equal to the candidate’s radius.229

6.1 Ordering Accuracy230

In the following experiment, we analyze how different metrics behave on 1D-Euclidean profiles.231

We consider two variants of the experiment, each variant involving 100 sampled profiles, with 100232

candidates and 100 voters sampled uniformly at random from [0, 1] interval. In the first variant, the233

radius of each candidate is the same r1 = r2 = 0.1, while in the second variant, we sample radii234

uniformly at random from the [0.015, 0.15] interval.235

Let pa denote the position of a candidate a on the interval. Given three candidates a, b and c such that236

pa < pb < pc, we expect a well-behaved distance measure to satisfy the following two inequalities:237

d(a, b) ≤ d(a, c) and d(b, c) ≤ d(a, c). However, this is not necessarily the case. Therefore, for each238

of the studied distance measures, we compute the proportion of such inequalities that are satisfied.239

We refer to this proportion as the ordering accuracy.240

The results are presented in Table 2. The Jaccard distance variants significantly outperform the241

Hamming distance variants in both cases. Notably, when all the candidates have equal radii, the242

Jaccard distance always satisfies the ordering inequalities.243

Proposition 6.1. Under Jaccard distance, if r is constant, then the ordering accuracy is equal to 1.244
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Table 2: Average ordering accuracy.
Metric r = 0.1 r ∈ [0.015, 0.15]

H0 0.690± 0.067 0.719± 0.063
H1 0.692± 0.066 0.724± 0.061
H2 0.690± 0.066 0.719± 0.061

J0 1.000± 0.000 0.997± 0.001
J1 1.000± 0.000 0.997± 0.001
J2 1.000± 0.000 0.997± 0.001

Table 3: Quality of clustering.
Metric 1D 2D

H0 0.0013± 0.0014 0.0028± 0.0091
H1 0.1178± 0.0875 0.0901± 0.0372
H2 0.1888± 0.0903 0.0998± 0.0301

J0 0.0015± 0.0019 0.0003± 0.0010
J1 0.0028± 0.0033 0.0009± 0.0025
J2 0.0042± 0.0070 0.0009± 0.0020

6.2 Clustering245

Given a dissimilarity measure f , and two clusters C = {c1, . . . , ck} and D = {d1, . . . , dℓ}, we246

define the distance between them as dist(C,D) = 1/(|C| · |D|)
∑

ci∈C

∑
di∈D f(ci, dj).247

Using this definition, we perform clustering on candidates in a Euclidean profile via the hierarchical248

method. It works as follows. Initially, each candidate forms its own cluster. Then, iteratively, at249

each step, we merge the two most similar clusters, i.e., such that the average distance between their250

members is minimal. We continue the procedure until exactly five clusters remain.251

We begin with 1D-Euclidean space. We consider profiles with 1000 voters, and 100 candidates,252

sampled uniformly at random from [0, 1] interval with radii sampled uniformly at random from253

[0.015, 0.15] interval. The results are shown in Figure 1. Each candidate is depicted as a dot and a254

vertical line, which is proportional to its radius. The geometric variants (i.e., H0 and J0) successfully255

divide the space into five separate clusters. In contrast, for H1 and H2, the green cluster overlaps256

significantly with other clusters, which is an undesirable outcome in this context. Finally, J1 and257

J2 are outperforming their Hamming counterparts, but still yield less interpretable clusters than the258

geometric variants.259

Next, we consider a 2D-Euclidean space, with a similar setup: 1000 voters, and 100 candidates260

sampled uniformly at random from [0, 1]2 square, but with candidate radii drawn from [0.1, 0.33]261

interval. The results are shown in Figure 2. The grey circles denote the voters’ positions. The colorful262

circles denote the candidates’ positions, with the size being proportional to the radius. Each color263

marks a different cluster.264

Overall, the results in the 2D case are similar to those in the 1D case. As expected, the Hamming265

distance performs poorly. It typically produces one dominant cluster that spans much of the space,266

grouping together a large number of disparate candidates. In contrast, the Jaccard variants (with the267

exception of the quadratic one) yield significantly better clustering quality. However, the standard268

Jaccard tends to produce one or two extremely small clusters, typically composed of candidates with269

very limited voter support.270

We can verify the intuitive observations from the plots, by quantifying the number of incorrectly271

embedded points. For the 1D profiles, let A3 denote the set of all triplets of candidates such that the272

first two belong to the same cluster and the third one does not. A triplet is considered invalid if the273

third candidate lies between the other two. Similarly, for the 2D profiles, let A4 denote the set of all274

quadruplets of candidates, such that the first three of them belong to the same cluster and the fourth275

one does not. A quadruplet is considered invalid if the fourth candidate lies inside the triangle formed276

by the other three. In Table 3 we present averaged results over 100 profiles. As previously shown in277

the plots, for 1D profiles, geometric variants outperform the other methods. In the case of 2D profiles,278

the best performance is achieved by the geometric Jaccard, which results in three times fewer invalid279

quadruplets than the standard Jaccard.280

6.3 Real-Life Data281

Finally, we examine real-life data, which comes from Participatory Budgeting (PB) elections. PB elec-282

tions are democratic processes in which some municipalities distribute a portion of their budget [24].283

They usually involve citizens expressing approval preferences over potential projects, a selection of284

which is later implemented in practice.285
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(a) H0 (geometric Hamming) (b) H1 (standard Hamming) (c) H2 (quadratic Hamming)

(d) J0 (geometric Jaccard) (e) J1 (standard Jaccard) (f) J2 (quadratic Jaccard)

Figure 1: Clustering of 1D-Euclidean profiles.

(a) H0 (geometric Hamming) (b) H1 (standard Hamming) (c) H2 (quadratic Hamming)

(d) J0 (geometric Jaccard) (e) J1 (standard Jaccard) (f) J2 (quadratic Jaccard)

Figure 2: Clustering of 2D-Euclidean profiles.

We use participatory budgeting instances from Pabulib [13], focusing on district elections held in286

2023 and 2024 in three major Polish cities: Warsaw, Kraków, and Łódź. (Detailed parameters of287

these instances are available in Table 5 in Appendix C). In these cities, projects are labeled with288

categories. In Kraków and Łódź, each project belongs to exactly one category, while in Warsaw,289

projects can have multiple categories. Although these categories are assigned manually and may not290

always be accurate, we nonetheless expect that projects within the same category tend to be more291

similar to each other on average.292

For each category, we compute two values: the intra distance dintra, defined as the average pairwise293

distance between all projects within the same category, and the inter distance dinter, defined as the294

average pairwise distance between projects in the category and those outside of it. For each instance,295

we compute the proportion of categories for which it holds that dinter/dintra > 1.01 (i.e., the inter296

distances are nontrivially larger than the intra ones). We then average these proportions across all297

districts (i.e., instances) for a given year and city. The results are presented in Table 4. Interestingly,298

geometric Jaccard consistently outperforms all other distance measures.299

Besides categories, several of the Pabulib instances include geographic coordinates of some of the300

projects. We focus on district elections held between 2019 and 2024 in Warsaw. We conjectured that301

there might be a correlation between the Euclidean distance between two projects (based on location)302

and their distance under our measures.303

Averaging across all 108 district elections held in Warsaw during that period (18 per year), the average304

Pearson correlation coefficient between the standard Jaccard distance and the Euclidean one is 0.219,305
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Table 4: Averaged share of categories with higher inter- than intra-category distance.
Warsaw Kraków Łódź

Metric 2023 2024 2023 2024 2023 2024

H0 (geometric Hamming) 63.8% 47.2% 45.5% 40.9% 66.4% 69.6%
H1 (standard Hamming) 68.6% 56.9% 49.7% 37.4% 65.7% 62.8%
H2 (quadratic Hamming) 68.5% 62.5% 52.1% 41.9% 63.8% 63.8%

J0 (geometric Jaccard) 82.6% 88.2% 79.4% 85.9% 82.8% 91.6%
J1 (standard Jaccard) 67.3% 65.3% 56.9% 58.1% 75.4% 73.3%
J2 (quadratic Jaccard) 70.2% 79.2% 66.3% 67.8% 78.4% 76.3%

and for geometric Jaccard it is slightly higher at 0.233. Interestingly, in 90% of the instances, the306

correlation was stronger for geometric Jaccard (detailed results, including comparison with other307

distance measures, are provided in Table 6 in Appendix C).308

Beyond Warsaw, we also analyze a unique election, the green participatory budgeting held in 2023 in309

Wieliczka (a small Polish city). This case is particularly interesting as it was the first city to use in310

practice the recently developed method of equal shares [23]. Here, the average Pearson correlation311

between Jaccard and Euclidean distances is 0.369, while for geometric Jaccard it is 0.441. Wieliczka312

municipality consists of the central city and several small villages. It appears that voters in the villages313

tend to vote for their local projects, which may explain the higher correlation between geographic314

proximity and our distance measures in this case.315

7 Related Work316

As mentioned introduction, axiomatic approach has been already successfully employed to enhance317

understanding of various machine learning concepts. For example, a large body of work has con-318

centrated on axioms for clustering. In particular, Kleinberg [18] proved that there is no clustering319

function that satisfies certain three desired properties. However, this impossibility could be avoided if320

we focus on functions that produce a specific, exogenously given number of clusters [1] or slightly321

modify the axioms [10, 19]. Furthermore, several works propose axiomatic characterizations of322

particular clustering rules [8, 29] or families of rules [2, 4].323

Several distances between objects have also been studied axiomatically. A good example is an324

axiomatization of Kendall Tau distance by Kemeny [17]. The closest to our work, is an axiomatic325

characterization of Jaccard distance by Gerasimou [14]. However, this characterization considers326

only three axioms. Two of them are standard distance metric axioms, namely Identity and Triangle327

Inequality, and one axiom which specifies the marginal contribution of an additional bit of information328

on which two vectors do not agree. This last axiom is very specific to Jaccard, and there are no other329

widely known dissimilarity measures that satisfy it. As a result, this characterization does not really330

offer a view of the Jaccard distance as a consequence of several, not directly related assumptions. In331

contrast, we propose a larger family of simple axioms, each one of which is satisfied by many natural332

and popular dissimilarity measures. The Hamming distance was not considered in this paper.333

8 Conclusions334

We have developed an axiomatic characterization of the Hamming and Jaccard distances, which335

enables us to clearly capture the key properties of each measure. In particular, the two characteriza-336

tions differ by a single axiom: Zero-One Symmetry for Hamming vs Add Zero for Jaccard, which337

highlights the most important difference between them.338

Moreover, our axiomatic analysis allowed us to identify a potential shared shortcoming of the339

Hamming and Jaccard distances, as both satisfy Independent Symmetry, which may be undesirable in340

certain applications. To address this limitation, we introduced a family of novel measures based on341

generalized means. Empirical evaluation on both synthetic and real-life data showed that one of the342

new measures, i.e., geometric Jaccard, consistently outperforms other measures on various tasks, and343

is better at capturing some nuances. Future work may analyze the new measures in more detail.344
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NeurIPS Paper Checklist414

The checklist is designed to encourage best practices for responsible machine learning research,415

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove416

the checklist: The papers not including the checklist will be desk rejected. The checklist should417

follow the references and follow the (optional) supplemental material. The checklist does NOT count418

towards the page limit.419

Please read the checklist guidelines carefully for information on how to answer these questions. For420

each question in the checklist:421

• You should answer [Yes] , [No] , or [NA] .422

• [NA] means either that the question is Not Applicable for that particular paper or the423

relevant information is Not Available.424

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).425

The checklist answers are an integral part of your paper submission. They are visible to the426

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it427

(after eventual revisions) with the final version of your paper, and its final version will be published428

with the paper.429

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.430

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a431

proper justification is given (e.g., "error bars are not reported because it would be too computationally432

expensive" or "we were unable to find the license for the dataset we used"). In general, answering433

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we434

acknowledge that the true answer is often more nuanced, so please just use your best judgment and435

write a justification to elaborate. All supporting evidence can appear either in the main paper or the436

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification437

please point to the section(s) where related material for the question can be found.438

IMPORTANT, please:439

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",440

• Keep the checklist subsection headings, questions/answers and guidelines below.441

• Do not modify the questions and only use the provided macros for your answers.442

1. Claims443

Question: Do the main claims made in the abstract and introduction accurately reflect the444

paper’s contributions and scope?445

Answer: [Yes]446

Justification: The main claims in Abstract & Introduction are about the axiomatic charac-447

terization of Hamming and Jaccard distance measures. And, indeed, in the paper, we first448

provide a set of axioms and then we provide the axiomatic characterization of Hamming449

and Jaccard distance measures, using these axioms.450

Guidelines:451

• The answer NA means that the abstract and introduction do not include the claims452

made in the paper.453

• The abstract and/or introduction should clearly state the claims made, including the454

contributions made in the paper and important assumptions and limitations. A No or455

NA answer to this question will not be perceived well by the reviewers.456

• The claims made should match theoretical and experimental results, and reflect how457

much the results can be expected to generalize to other settings.458

• It is fine to include aspirational goals as motivation as long as it is clear that these goals459

are not attained by the paper.460

2. Limitations461

Question: Does the paper discuss the limitations of the work performed by the authors?462
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Answer: [Yes]463

Justification: We have shown in the paper the limitations of the discussed distance measures.464

For instance, the Hamming distance is not the best choice for sparse vectors. On the other465

hand, geometric Jaccard is failing the triangle inequality.466

Guidelines:467

• The answer NA means that the paper has no limitation while the answer No means that468

the paper has limitations, but those are not discussed in the paper.469

• The authors are encouraged to create a separate "Limitations" section in their paper.470

• The paper should point out any strong assumptions and how robust the results are to471

violations of these assumptions (e.g., independence assumptions, noiseless settings,472

model well-specification, asymptotic approximations only holding locally). The authors473

should reflect on how these assumptions might be violated in practice and what the474

implications would be.475

• The authors should reflect on the scope of the claims made, e.g., if the approach was476

only tested on a few datasets or with a few runs. In general, empirical results often477

depend on implicit assumptions, which should be articulated.478

• The authors should reflect on the factors that influence the performance of the approach.479

For example, a facial recognition algorithm may perform poorly when image resolution480

is low or images are taken in low lighting. Or a speech-to-text system might not be481

used reliably to provide closed captions for online lectures because it fails to handle482

technical jargon.483

• The authors should discuss the computational efficiency of the proposed algorithms484

and how they scale with dataset size.485

• If applicable, the authors should discuss possible limitations of their approach to486

address problems of privacy and fairness.487

• While the authors might fear that complete honesty about limitations might be used by488

reviewers as grounds for rejection, a worse outcome might be that reviewers discover489

limitations that aren’t acknowledged in the paper. The authors should use their best490

judgment and recognize that individual actions in favor of transparency play an impor-491

tant role in developing norms that preserve the integrity of the community. Reviewers492

will be specifically instructed to not penalize honesty concerning limitations.493

3. Theory assumptions and proofs494

Question: For each theoretical result, does the paper provide the full set of assumptions and495

a complete (and correct) proof?496

Answer: [Yes]497

Justification: All the lemmas, propositions, and theorems stated in the paper are proved498

either in the main body or in the appendix.499

Guidelines:500

• The answer NA means that the paper does not include theoretical results.501

• All the theorems, formulas, and proofs in the paper should be numbered and cross-502

referenced.503

• All assumptions should be clearly stated or referenced in the statement of any theorems.504

• The proofs can either appear in the main paper or the supplemental material, but if505

they appear in the supplemental material, the authors are encouraged to provide a short506

proof sketch to provide intuition.507

• Inversely, any informal proof provided in the core of the paper should be complemented508

by formal proofs provided in appendix or supplemental material.509

• Theorems and Lemmas that the proof relies upon should be properly referenced.510

4. Experimental result reproducibility511

Question: Does the paper fully disclose all the information needed to reproduce the main ex-512

perimental results of the paper to the extent that it affects the main claims and/or conclusions513

of the paper (regardless of whether the code and data are provided or not)?514

Answer: [Yes]515
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Justification: The details needed for reproducing the main results of the paper are provided.516

Guidelines:517

• The answer NA means that the paper does not include experiments.518

• If the paper includes experiments, a No answer to this question will not be perceived519

well by the reviewers: Making the paper reproducible is important, regardless of520

whether the code and data are provided or not.521

• If the contribution is a dataset and/or model, the authors should describe the steps taken522

to make their results reproducible or verifiable.523

• Depending on the contribution, reproducibility can be accomplished in various ways.524

For example, if the contribution is a novel architecture, describing the architecture fully525

might suffice, or if the contribution is a specific model and empirical evaluation, it may526

be necessary to either make it possible for others to replicate the model with the same527

dataset, or provide access to the model. In general. releasing code and data is often528

one good way to accomplish this, but reproducibility can also be provided via detailed529

instructions for how to replicate the results, access to a hosted model (e.g., in the case530

of a large language model), releasing of a model checkpoint, or other means that are531

appropriate to the research performed.532

• While NeurIPS does not require releasing code, the conference does require all submis-533

sions to provide some reasonable avenue for reproducibility, which may depend on the534

nature of the contribution. For example535

(a) If the contribution is primarily a new algorithm, the paper should make it clear how536

to reproduce that algorithm.537

(b) If the contribution is primarily a new model architecture, the paper should describe538

the architecture clearly and fully.539

(c) If the contribution is a new model (e.g., a large language model), then there should540

either be a way to access this model for reproducing the results or a way to reproduce541

the model (e.g., with an open-source dataset or instructions for how to construct542

the dataset).543

(d) We recognize that reproducibility may be tricky in some cases, in which case544

authors are welcome to describe the particular way they provide for reproducibility.545

In the case of closed-source models, it may be that access to the model is limited in546

some way (e.g., to registered users), but it should be possible for other researchers547

to have some path to reproducing or verifying the results.548

5. Open access to data and code549

Question: Does the paper provide open access to the data and code, with sufficient instruc-550

tions to faithfully reproduce the main experimental results, as described in supplemental551

material?552

Answer: [Yes]553

Justification: The real-life data used in the experiments is publicly available, while the554

synthetic data is described with enough detail for reproducibility. The code will be publicly555

available upon acceptance.556

Guidelines:557

• The answer NA means that paper does not include experiments requiring code.558

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/559

public/guides/CodeSubmissionPolicy) for more details.560

• While we encourage the release of code and data, we understand that this might not be561

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not562

including code, unless this is central to the contribution (e.g., for a new open-source563

benchmark).564

• The instructions should contain the exact command and environment needed to run to565

reproduce the results. See the NeurIPS code and data submission guidelines (https:566

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.567

• The authors should provide instructions on data access and preparation, including how568

to access the raw data, preprocessed data, intermediate data, and generated data, etc.569
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• The authors should provide scripts to reproduce all experimental results for the new570

proposed method and baselines. If only a subset of experiments are reproducible, they571

should state which ones are omitted from the script and why.572

• At submission time, to preserve anonymity, the authors should release anonymized573

versions (if applicable).574

• Providing as much information as possible in supplemental material (appended to the575

paper) is recommended, but including URLs to data and code is permitted.576

6. Experimental setting/details577

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-578

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the579

results?580

Answer: [NA]581

Justification: No training has been conducted in this paper.582

Guidelines:583

• The answer NA means that the paper does not include experiments.584

• The experimental setting should be presented in the core of the paper to a level of detail585

that is necessary to appreciate the results and make sense of them.586

• The full details can be provided either with the code, in appendix, or as supplemental587

material.588

7. Experiment statistical significance589

Question: Does the paper report error bars suitably and correctly defined or other appropriate590

information about the statistical significance of the experiments?591

Answer: [Yes]592

Justification: Yes, for experiments where it is relevant we provide the standard deviation.593

Guidelines:594

• The answer NA means that the paper does not include experiments.595

• The authors should answer "Yes" if the results are accompanied by error bars, confi-596

dence intervals, or statistical significance tests, at least for the experiments that support597

the main claims of the paper.598

• The factors of variability that the error bars are capturing should be clearly stated (for599

example, train/test split, initialization, random drawing of some parameter, or overall600

run with given experimental conditions).601

• The method for calculating the error bars should be explained (closed form formula,602

call to a library function, bootstrap, etc.)603

• The assumptions made should be given (e.g., Normally distributed errors).604

• It should be clear whether the error bar is the standard deviation or the standard error605

of the mean.606

• It is OK to report 1-sigma error bars, but one should state it. The authors should607

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis608

of Normality of errors is not verified.609

• For asymmetric distributions, the authors should be careful not to show in tables or610

figures symmetric error bars that would yield results that are out of range (e.g. negative611

error rates).612

• If error bars are reported in tables or plots, The authors should explain in the text how613

they were calculated and reference the corresponding figures or tables in the text.614

8. Experiments compute resources615

Question: For each experiment, does the paper provide sufficient information on the com-616

puter resources (type of compute workers, memory, time of execution) needed to reproduce617

the experiments?618

Answer: [No]619

Justification: None of the experiments required extensive computational resources. All the620

experiments were computed on a standard MacBook Air with M1 chip.621
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Guidelines:622

• The answer NA means that the paper does not include experiments.623

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,624

or cloud provider, including relevant memory and storage.625

• The paper should provide the amount of compute required for each of the individual626

experimental runs as well as estimate the total compute.627

• The paper should disclose whether the full research project required more compute628

than the experiments reported in the paper (e.g., preliminary or failed experiments that629

didn’t make it into the paper).630

9. Code of ethics631

Question: Does the research conducted in the paper conform, in every respect, with the632

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?633

Answer: [Yes]634

Justification: Yes, we fulfill the anonymity requirement as well as other parts of the NeurIPS635

Code of Ethics.636

Guidelines:637

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.638

• If the authors answer No, they should explain the special circumstances that require a639

deviation from the Code of Ethics.640

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-641

eration due to laws or regulations in their jurisdiction).642

10. Broader impacts643

Question: Does the paper discuss both potential positive societal impacts and negative644

societal impacts of the work performed?645

Answer: [NA]646

Justification: This work analyzes the properties of fundamental mathematical objects (dis-647

similarity measures), and us such it does not have direct societal impact.648

Guidelines:649

• The answer NA means that there is no societal impact of the work performed.650

• If the authors answer NA or No, they should explain why their work has no societal651

impact or why the paper does not address societal impact.652

• Examples of negative societal impacts include potential malicious or unintended uses653

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations654

(e.g., deployment of technologies that could make decisions that unfairly impact specific655

groups), privacy considerations, and security considerations.656

• The conference expects that many papers will be foundational research and not tied657

to particular applications, let alone deployments. However, if there is a direct path to658

any negative applications, the authors should point it out. For example, it is legitimate659

to point out that an improvement in the quality of generative models could be used to660

generate deepfakes for disinformation. On the other hand, it is not needed to point out661

that a generic algorithm for optimizing neural networks could enable people to train662

models that generate Deepfakes faster.663

• The authors should consider possible harms that could arise when the technology is664

being used as intended and functioning correctly, harms that could arise when the665

technology is being used as intended but gives incorrect results, and harms following666

from (intentional or unintentional) misuse of the technology.667

• If there are negative societal impacts, the authors could also discuss possible mitigation668

strategies (e.g., gated release of models, providing defenses in addition to attacks,669

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from670

feedback over time, improving the efficiency and accessibility of ML).671

11. Safeguards672
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Question: Does the paper describe safeguards that have been put in place for responsible673

release of data or models that have a high risk for misuse (e.g., pretrained language models,674

image generators, or scraped datasets)?675

Answer: [NA]676

Justification: There is no high risk of misuse of the proposed data.677

Guidelines:678

• The answer NA means that the paper poses no such risks.679

• Released models that have a high risk for misuse or dual-use should be released with680

necessary safeguards to allow for controlled use of the model, for example by requiring681

that users adhere to usage guidelines or restrictions to access the model or implementing682

safety filters.683

• Datasets that have been scraped from the Internet could pose safety risks. The authors684

should describe how they avoided releasing unsafe images.685

• We recognize that providing effective safeguards is challenging, and many papers do686

not require this, but we encourage authors to take this into account and make a best687

faith effort.688

12. Licenses for existing assets689

Question: Are the creators or original owners of assets (e.g., code, data, models), used in690

the paper, properly credited and are the license and terms of use explicitly mentioned and691

properly respected?692

Answer: [Yes]693

Justification: The only external data comes from Pabulib, and it is properly credited in the694

references.695

Guidelines:696

• The answer NA means that the paper does not use existing assets.697

• The authors should cite the original paper that produced the code package or dataset.698

• The authors should state which version of the asset is used and, if possible, include a699

URL.700

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.701

• For scraped data from a particular source (e.g., website), the copyright and terms of702

service of that source should be provided.703

• If assets are released, the license, copyright information, and terms of use in the704

package should be provided. For popular datasets, paperswithcode.com/datasets705

has curated licenses for some datasets. Their licensing guide can help determine the706

license of a dataset.707

• For existing datasets that are re-packaged, both the original license and the license of708

the derived asset (if it has changed) should be provided.709

• If this information is not available online, the authors are encouraged to reach out to710

the asset’s creators.711

13. New assets712

Question: Are new assets introduced in the paper well documented and is the documentation713

provided alongside the assets?714

Answer: [NA]715

Justification: The paper does not introduce any new assets.716

Guidelines:717

• The answer NA means that the paper does not release new assets.718

• Researchers should communicate the details of the dataset/code/model as part of their719

submissions via structured templates. This includes details about training, license,720

limitations, etc.721

• The paper should discuss whether and how consent was obtained from people whose722

asset is used.723
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• At submission time, remember to anonymize your assets (if applicable). You can either724

create an anonymized URL or include an anonymized zip file.725

14. Crowdsourcing and research with human subjects726

Question: For crowdsourcing experiments and research with human subjects, does the paper727

include the full text of instructions given to participants and screenshots, if applicable, as728

well as details about compensation (if any)?729

Answer: [NA]730

Justification: The paper does not involve crowdsourcing nor research with human subjects.731

Guidelines:732

• The answer NA means that the paper does not involve crowdsourcing nor research with733

human subjects.734

• Including this information in the supplemental material is fine, but if the main contribu-735

tion of the paper involves human subjects, then as much detail as possible should be736

included in the main paper.737

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,738

or other labor should be paid at least the minimum wage in the country of the data739

collector.740

15. Institutional review board (IRB) approvals or equivalent for research with human741

subjects742

Question: Does the paper describe potential risks incurred by study participants, whether743

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)744

approvals (or an equivalent approval/review based on the requirements of your country or745

institution) were obtained?746

Answer: [NA]747

Justification: The paper does not involve crowdsourcing nor research with human subjects.748

Guidelines:749

• The answer NA means that the paper does not involve crowdsourcing nor research with750

human subjects.751

• Depending on the country in which research is conducted, IRB approval (or equivalent)752

may be required for any human subjects research. If you obtained IRB approval, you753

should clearly state this in the paper.754

• We recognize that the procedures for this may vary significantly between institutions755

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the756

guidelines for their institution.757

• For initial submissions, do not include any information that would break anonymity (if758

applicable), such as the institution conducting the review.759

16. Declaration of LLM usage760

Question: Does the paper describe the usage of LLMs if it is an important, original, or761

non-standard component of the core methods in this research? Note that if the LLM is used762

only for writing, editing, or formatting purposes and does not impact the core methodology,763

scientific rigorousness, or originality of the research, declaration is not required.764

Answer: [NA]765

Justification: LLMs were not involved in the core method development.766

Guidelines:767

• The answer NA means that the core method development in this research does not768

involve LLMs as any important, original, or non-standard components.769

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)770

for what should or should not be described.771
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