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ABSTRACT

Hierarchical coarse-to-fine policy, where a coarse branch predicts a region of inter-
est to guide a fine-grained action predictor, has demonstrated significant potential
in robotic 3D manipulation tasks by especially enhancing sample efficiency and
enabling more precise manipulation. However, even augmented with pre-trained
models, these hierarchical policies still suffer from generalization issues. To en-
hance generalization to novel instructions and environment variations, we propose
Coarse-to-fine Language-Aligned manipulation Policy (CLAP), a framework that
integrates three key components: 1) task decomposition, 2) VLM fine-tuning for
3D keypoint prediction, and 3) 3D-aware representation. Through comprehen-
sive experiments in simulation and on a real robot, we demonstrate its superior
generalization capability. Specifically, on GemBench, a benchmark designed for
evaluating generalization, our approach achieves a 12% higher average success
rate than the SOTA method while using only 1/5 of the training trajectories. In
real-world experiments, our policy, trained on only 10 demonstrations, success-
fully generalizes to novel instructions and environments.

1 INTRODUCTION

Robot learning, especially via imitation learning, has demonstrated promising success in enabling
robots to solve complex 3D manipulation tasks (Intelligence et al., 2025; Liu et al., 2024). However,
scaling these methods to a broader range of real-world applications (e.g., industrial, service, or
home robotics) requires enhancing both (G1) their generalization to environment variations, and
(G2) their skill compositional generalization. Indeed, G1 is necessary, because deployed robots
need to be able to operate in new settings (e.g., object or background variation), while G2 is highly
desirable, so that trained robots can tackled new tasks by composing previously-learned skills. To
achieve G1 and G2, the robot needs to be endowed with a combination of capabilities, such as
scene understanding, reasoning or planning, and high-precision manipulation, exploiting preferably
sample efficient techniques, since robotics data is costly to collect.

In this paper, we focus on one type of 3D manipulation policies, called coarse-to-fine policies
(Gualtieri & Platt, 2020; James et al., 2022; Ling et al., 2024; Goyal et al., 2024; Gervet et al.,
2023; Liu et al., 2025), because they achieve superior precision in manipulation tasks while enjoy-
ing strong sample efficiency. These policies process 3D observations (or 3D scene representations)
using a hierarchical architecture whose higher-level coarse branch identifies a region of interest for
the lower-level fine-grained branch to focus on and predict a final action. Typically, the coarse
branch is trained to predict a 3D keypoint, which serves as the center for cropping and zooming
into the original 3D observations. To help with visual understanding and to some extent spatial
reasoning, recent work (Li et al., 2025b; Fang et al., 2025) has extended this approach to exploit
pre-trained models—Vision-Language Models (VLMs) (Beyer et al., 2024) or visual foundation
models (Ravi et al., 2024). However, the performance of these obtained methods is still limited in
terms of generalization capability (G1 and especially G2), indicating that their scene understanding
and reasoning capabilities are actually still rudimentary. Our experimental study suggests that this
is primarily due to a combination of various issues (depending on the method), such as domain shift
between pre-training and robotic images, inadequacy of pre-trained models to predict 3D keypoint,
poor adaptation to object variations, or under-exploitation of the planning ability of VLMs.
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Figure 1: Intuition of CLAP. Our method achieves strong generalization ability by decomposing
tasks into step-wise language instructions, each aligned with a 3D keypoint.

To address these limitations and issues, we propose Coarse-to-fine Language-Aligned manipulation
Policy (CLAP), a novel coarse-to-fine 3D manipulation policy. In contrast to previous coarse-to-fine
policies, CLAP includes a novel architecture for the higher-level branch, which we name coarse task
planner, and a novel implementation of the lower-level fine-grained action predictor, both leveraging
pre-trained models.

The coarse task planner, implemented as a VLM, is introduced to play the additional role of task
planning. Before the usual 3D keypoint prediction, it decomposes a task into step-wise language
instructions, representing basic skills. This change allows both 3D keypoint and action predictions
to depend on step-wise instructions instead of the whole task description, which promotes skill
compositional generalization (G2). The training of this coarse task planner consists of three parts
to reinforce its scene understanding and reasoning capabilities. First, the pre-trained VLM fine-
tuned on language plans of different tasks to directly improve compositional reasoning. Second, it
is specialized for 3D keypoint prediction by fine-tuning it to perform a sequential reasoning process:
first localizing task-related objects, then generating the step instruction, and finally predicting a
corresponding 3D keypoint. Finally, to further boost its scene understanding capability, the VLM is
further fine-tuned with an auxiliary task of 3D object detection, using an additional dataset of object
positions. Together, these components form a comprehensive pipeline that significantly enhances
the generalization ability of the coarse-to-fine policy to object variations (G1) and novel tasks (G2).

The fine-grained action predictor takes as input both the step instruction and the multi-view RGB-D
images and outputs an action. It is implemented with specialized pre-trained models to improve sam-
ple efficiency and increase its precision during manipulation. More specifically, step instruction and
RGB images are processed using a pre-trained visual-language encoder, ensuring the two modalities
are well-aligned. The depth information is processed by a dedicated encoder and augmented with
3D position embeddings to help better align 3D and 2D image information. All the obtained em-
beddings, which we call 3D-aware representation, are fused via a Multi-View Transformer (Goyal
et al., 2023) to predict the final actions.

To evaluate the performance of our method, we run experiments in both simulation and real-world.
For simulation, we use GemBench (Garcia et al., 2025), a benchmark specifically designed to assess
the generalization ability of multi-task language-conditioned policies across varying difficulty levels.
Our approach outperforms the state-of-the-art method, achieving a 12% higher average success rate
with only 1/5 of the training trajectories. In real-world experiments, our method demonstrate strong
generalization ability to novel tasks and object variations with only 10 demonstrations per task.

Contributions

1. We introduce a novel coarse-to-fine 3D manipulation policy, as shown in Figure 1, with
two main innovations: (1) tasks are decomposed into step-wise language instructions to
promote compositional generalization ability; (2) action inference is performed via a rea-
soning step to improve generalization to object variations.

2. We design a finetuning pipeline that effectively adapts a pre-trained VLM to 3D keypoint
prediction and incorporate a 3D-aware representation in the fine-grained action predictor,
overcoming the issues observed in previous methods.

3. Empirical evaluations in simulation and on a real robot demonstrate state-of-the-art perfor-
mance in both robustness to visual and object changes and generalization to unseen tasks.
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2 RELATED WORK

In this section, we discuss the related works in the field, including vision-language-action models,
3D manipulation policies, and coarse-to-fine policies.

Vision-Language-Action (VLA) models Training VLMs (OpenAl, 2024; Beyer et al., 2024; Bai
et al., 2025; Al 2024) on vast internet-scale image-text corpora has led to remarkable capabilities
in image understanding, excelling at tasks like image classification, object detection, and visual
question answering tasks. However, applying a similar training strategy directly to robotics presents
a challenge due to the relatively scarce robot trajectory data. A prominent solution is to transfer
the knowledge from pre-trained VLMs by fine-tuning them on robot data. This approach is the
foundation for recent VLA models (Driess et al., 2023; Brohan et al., 2023; Kim et al., 2024; Octo
Model Team et al., 2024; Intelligence et al., 2025; Wen et al., 2025a; Shukor et al., 2025; Liu et al.,
2024; Wen et al., 2025b; Li et al., 2024; Cheang et al., 2025; Team et al., 2025; NVIDIA et al.,
2025), which are fine-tuned on large diverse datasets of robot trajectories. Such extensive training
strengthens generalization to novel objects, environments, and tasks. However, since they commonly
use multi-view 2D images as visual input, learning to reason in 3D space from 2D images alone is
data-intensive. This leads to sample inefficiency and low success rates on some tasks. Recent
work has sought to more explicitly incorporate 3D information (Li et al., 2025a; Qu et al., 2025;
Zhen et al., 2024) or introduce Chain of Thought (Mu et al., 2023; Zawalski et al., 2024; Zhao et al.,
2025) to enhance the 3D reasoning ability. However these directions remain relatively underexplored
within the VLA paradigm. Our method, which fine-tunes a pretrained VLM as a coarse task planner
and predicts the final action with a fine-grained action predictor, can also be viewed as a VLA
model. In contrast to other VLA approaches, we propose specific training and inference techniques
to better align pre-trained VLMs to 3D manipulation, further enhancing generalization (G1-G2)
while retaining the sample efficiency inherent to hierarchical coarse-to-fine policies.

3D Manipulation Policy 3D manipulation policies (Shridhar et al., 2022; Gervet et al., 2023;
Jia et al., 2025; Zhu et al., 2025; Wang et al., 2024b; Ze et al., 2024; Wang et al., 2024a; Goyal
et al., 2024; Ke et al., 2024; Fang et al., 2025; Li et al., 2025b; Garcia et al., 2025) directly work
with 3D inputs and outputs. They generally include structured architectures that construct a 3D
representation of the scene, leading to higher sample efficiency and better generalization to new
camera viewpoints. For example, PerAct (Shridhar et al., 2022) explicitly represents the scene
with a voxel representation. Gervet et al. (2023) and Ke et al. (2024) process RGB images with
pre-trained image encoder and lift 2D features to 3D by aggregating with depth information. An
alternative approach (Jia et al., 2025; Goyal et al., 2024) is to project point clouds into canonical
virtual views and use the resulting multi-view images as input. Explicitly exploiting 3D information
allows these models to achieve high success rates with much less training data, which can be further
reduced by enforcing a hierarchical structure like in coarse-to-fine policies.

Coarse-to-fine Policies Gualtieri & Platt (2018; 2020) first propose this coarse-to-fine scheme
for pick-and-place tasks. Subsequent work has considered more general tasks and explored various
3D representations, such as voxel observations (James et al., 2022; Liu et al., 2025), 3D feature
fields (Gervet et al., 2023), and multi-view images (Goyal et al., 2024). Ling et al. (2024) apply the
coarse-to-fine architecture to handle noisy point clouds. Among these, Robotic View Transformer
2 (RVT2) (Goyal et al., 2024) is an effective language-conditioned multi-task policy, demonstrating
strong performance in both training and inference efficiency by using multi-view images projected
from canonical views. However, RVT2 is trained from scratch, which limits its generalization ability
to visual perturbations and task variations. Subsequent efforts built upon this work have sought to
overcome these limitations. Existing works (Li et al., 2025b; Fang et al., 2025) have attempted to
enhance generalization through strategies such as: pre-training on object detection datasets (Yuan
et al., 2024) or integrating encoders from powerful visual foundation models like Segment Anything
Model 2 (Ravi et al., 2024). In contrast, we achieve this by introducing a novel architecture, where
tasks are decomposed into step-wise language instructions for skill compositional generalization and
design a specific training and inference pipeline to leverage pre-trained models in both coarse and
fine-grained branches.
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3 BACKGROUND

In this section, we first briefly recall the multi-task imitation learning set-up, introduce coarse-to-fine
policy, and then present Robotic-View-Transformer 2 (RVT2) (Goyal et al., 2024), a state-of-the-art
coarse-to-fine policy that serves as the foundation for our method.

In multi-task imitation learning, a dataset D = {(7;,L;) | ¢ = 1,..., N} is available for pairs of
robot demonstrations 7; and task description L;. Index ¢ may be dropped if not needed. A robot
demonstration is a trajectory 7; = (0g, ag, 01, a1, ...) containing a sequence of observations o; and
corresponding expert actions a;. Observations include multi-view RGB-D images and gripper status
indicating whether it is close or open. Actions denote the state of the end-effector, which contains
the 3D position p; = (x4, Y, 2¢) of the gripper, the orientation of the gripper and a gripper status.

A coarse-to-fine policy contains a coarse branch and a fine-grained branch, where the coarse branch
predicts a 3D keypoint as the center to zoom in the 3D observation and the fine-grained branch
uses the refined observation to predict the target action. Such policy is trained according to the
key-frame based imitation learning framework (Johns, 2021; Shridhar et al., 2022; Goyal et al.,
2024). Specifically, key-frames identifies timesteps in a trajectory when an important action, like
grasping or placing, occurs. In practice, they are usually heuristically defined for each trajectory.
With these key-frames, a trajectory is segmented into K subsequences of observations and actions
(00, A0y oy Oty 5 @, )y ooy (0t g 1415 Qg 415 o Ot » Gty )» Where the k" key-frame occurs at time
step tx, from which we can extract a sequence of key-frame actions (ay, , ..., at, ). In this framework,
the goal is to train a policy 7 to predict the key-frame action a., at the closest next key-frame of
timestep tj, given an observation o; and a task description L;:

m(ot, Li) = ay, fortp_1 <t <ty. (1)

The predicted actions are executed by a motion planner, which moves the robot to the desired state,
generating thus the intermediate actions in a trajectories. In coarse-to-fine policies, the 3D position
D+, output by the coarse branch for the next key-frame is typically used as the 3D keypoint to zoom
into the observation for the action predictor.

In RVT2, multi-view RGB-D images are first aggregated into a point cloud, which is then projected
into three canonical views: front, left and top. These three views are orthogonal to each other,
which allows a mapping between pixel positions in these views and a 3D position in the scene.
Each pixel in the projected images contains 3-channel RGB values, 1-channel depth value and its
corresponding 3D position in the global coordinate. In the coarse branch, the projected images are
tokenized using convolutional layers while the task description and robot states (e.g., gripper status)
are encoded by a pre-trained language encoder and a trainable Multi-Layer-Perceptron respectively.
All these tokenized features are fused via Multi-View Transformer (Goyal et al., 2023). The image
tokens in the output of the transformer are then processed by upsampling layers to predict heatmaps,
from which a 3D keypoint is extracted. The keypoint from the coarse branch is used to zoom in
and crop the point cloud while the cropped region is again projected into the canonical views. The
refined observations along with the same task description are processed by the fine-grained branch,
implemented as another multi-view transformer with different weights, to predict the final actions.
While RVT2 achieves strong sample efficiency and enables precise manipulation via projections to
canonical views and its coarse-to-fine architecture, it is trained from scratch and therefore does not
leverage recent pretrained large models. In addition, its architecture design does not fully exploit
common skills among tasks. As a result, it suffers from deficient generalization to visual changes,
object variations, and novel tasks.

4 METHOD

Our hierarchical policy consists of a coarse task planner and a fine-grained action predictor, as
shown in Figure 2. To promote compositional generalization, we first decompose tasks into step-
wise language instructions, each describing the motion of the robot between two consecutive key-
frames. This enables the coarse task planner to perform language-guided planning while allowing
the fine-grained action predictor to learn and reuse common skills across tasks. Moreover, we adapt
a pre-trained VLM to 3D keypoint prediction in the coarse task planner, by finetuning it with a
sequential reasoning procedure. The pretrained VLM is trained to first reason about the positions
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Figure 2: Overview of CLAP. We propose a novel coarse-to-fine 3D manipulation policy, compris-
ing of a coarse task planner and a fine-grained action predictor. The coarse task planner reasons
about the task plans and the positions of task-related objects to generate language-aligned 3D key-
points. The fine-grained action predictor fuses the corresponding step instruction with a 3D-aware
visual representation from refined observations to predict the final action.
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of task-related objects, then generate a step instruction and finally predict the corresponding 3D
keypoints. To enable zero-shot generalization ability to novel objects, we add an auxiliary task
of 3D object detection by augmenting the training data with additional object positions dataset.
Finally, in contrast to RVT2, the coarse and fined-grained branches are implemented with a different
architecture, since they play different roles. Thus, for the latter, we utilize specialized pre-trained
visual foundation models to construct a 3D-aware representation. The design choices of both the
coarse task planner and the fine-grained action predictor are detailed in the following sections.

4.1 COARSE TASK PLANNER

Prior coarse-to-fine policies condition all actions within a trajectory on a single high-level task de-
scription, limiting compositional generalization. To address this, we leverage a pre-trained VLM,
denoted fy, to decompose a high-level task description L into step-wise language instructions
L= (b1,.... 0, ..., k), which naturally align with the key-frame based trajectory segmentation.
Each trajectory segment (0, ,+1,@¢, 141, .-, Ot,, at, ) and key-frame action a;, have a corre-
sponding step instruction £j, describing the motion of the robot within the segment. For example,
the task “open the top drawer” is decomposed into following step instructions: ¢1: “The robot arm
lowers itself to align with the handle of the top drawer”, £2: The robot arm grasps the top drawer’s
handle firmly”, and /5: ”The robot pulls the handle back, smoothly opening the top drawer”.

In addition to task decomposition done at the beginning, at every execution timestep, the VLM fjy is
also exploited to predict both the step instruction ¢;, (used as a novel input of the action predictor)
and its language-aligned 3D keypoint p;, (for cropping a region of interest, as usually done in
coarse-to-fine policies). We discuss next how this prediction can be realized effectively.

Task decomposition enables reasoning about task plans before predicting actions. However, directly
training the model fy to simultaneously generate a task plan £ and predict step instruction ¢,
and 3D keypoint p;, , given as inputs multi-view images obtained from observation o, , and a
high-level task description L, (i.e., fo(os,_,,L) — (L, 4, ,pt,)), does not ensure generalization
to novel instructions. Previous studies (Kim et al., 2024; Intelligence et al., 2025; Zhao et al.,
2025; Gao et al., 2025) indicate that VLAs exhibit a strong bias towards visual inputs, due to the
richer information embedded in the visual inputs. This reliance often causes failures to follow novel
language instructions. Under our data-scarce training setting, this issue is intensified by the limited
diversity of language instructions. To address this issue, we propose decoupling task planning from
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keypoint prediction via a two-round inference protocol. First, a purely textual query generates a
language plan, the sequence of all step instructions £. Second, the visual inputs augmented with
this plan are used to predict the corresponding step instruction and keypoint:

fG(Lz) — £a f@(otk—uE) — (étkiptk)' (2)

This approach not only mitigates visual bias but also enables training with an auxiliary dataset of
language plans, which serves as a manual to enhance compositional task reasoning.

For a plan £ corresponding to a task description L, directly fine-tuning a VLM to predict both the
step instruction ¢;, and its language-aligned 3D keypoint p;, reveals to be insufficient due to the
inadequate alignment of the visual-textual embeddings of the VLM for this 3D keypoint predic-
tion. Instead, inspired by Chain-of-Thought reasoning (Mu et al., 2023; Zawalski et al., 2024; Zhao
et al., 2025) for robotics, we design a reasoning process by training our model to first reason about
the pixel positions of task-related objects, then generate a step instruction and finally predict the
corresponding keypoint, changing the second step of Equation (2) to:

f@(otkfpﬁ) — (pobjagt;mptk)a (3)
where p.y; are the 3D positions of the task-related objects.

We further observe that for long-horizon, especially repetitive tasks (e.g., “’stack several blocks”),
only providing the entire task plan whether as input or output can degrade the performance. This
often causes the model to generate repetitive sequences until reaching the output length limit or to
struggle in determining the next step from an excessively long plan. To mitigate this, we introduce
two ideas. First, we provide to the VLM an additional input: the step instruction predicted in the last
timestep, which serves as a short-term memory cue to contextualize the current situation. Moreover,

we decompose the plan into sub-tasks, i.e., £ = (L'l = (01,02, ... 0n), Lo = (bnt1,lnia, -, )

For instance, stack the blue and yellow cup on the red cup” is decomposed into two sequential
sub-tasks: £ ”stack the blue on the red cup” followed by £, ”stack the yellow cup on the red cup”.
The model is trained to generate only the task plan of current sub-task, preventing repetition and
improving focus:

f@([ﬁg) — ‘C’HL) f{)(otk,17£7yz,é\) — (pobj7etk7ptk)7 (4)

where / is the step instruction predicted in the last timestep and £, is the language plan of the m*"

sub-task. At the beginning of a trajectory, where no previous timestep exists, 7 is defined as "the
robot is currently at the initial state” to indicate the initial state.

To further enhance the generalization ability of the coarse task planner to object variations, we
include an auxiliary task of predicting the object positions. We randomly initialize diverse envi-
ronments and record the RGB-D images of the scene along with the 3D positions of the objects.
Following the same pre-processing, both the RGB-D images and the 3D positions of the objects are
projected into canonical views. The projected multi-view images and pixel coordinates of the object
positions in each view are used to construct an object position dataset. This dataset is then utilized
to co-train the VLM, reinforcing its spatial understanding and improving zero-shot generalization to
object variations.

4.2 FINE-GRAINED ACTION PREDICTOR

The fine-grained action predictor uses a predicted step instruction ¢;, , instead of the original high-
level task description L, enabling more precise and generalizable skill learning. Considering the
significant domain shift between the images focused around predicted p, from those used to pre-
train standard VLMs, we decide to employ instead pre-trained specialized encoders to process these
inputs. Our feature encoding pipeline consists of three stages to construct a unified 3D-aware and
language-aligned representation. First, RGB images and step instructions are processed through
vision-language encoders to establish semantic alignment between visual and textual inputs. Second,
depth images are encoded separately to extract explicit geometric structure. Finally, we generate a
3D position embedding from pixel-wise 3D coordinates to incorporate spatial awareness. These
components are combined to form a 3D-aware, language-aligned representation for downstream
fine-grained action prediction, following the architecture of prior work (Goyal et al., 2024).
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Models Avg. Success T L1 L2 L3 L4

HiveFormer (Guhur et al., 2023) 30.4 60.3 1.5 26.1 1.4 35.1+17 0.0£0.0
PolarNet (Chen et al., 2023) 38.4 77709 37.1+1.4 385+1.7 0.1+02
3D Diffuser Actor (Ke et al., 2024) 44.0 91.9+08 43.4+28 37.0+22 0.0+0.0
RVT2 (Goyal et al., 2024) 44.0 89.1 +0.8 51.0+2.3 36.0+22 0.0=0.0
3D-LOTUS (Garcia et al., 2025) 45.7 943 :14 49922 38.1<1.1 03+03
3D-LOTUS++ (Garcia et al., 2025) 48.0 68.7 0.6 64.5+09 41.5<18 17.4+04
BridgeVLA (Li et al., 2025b) 50.0 91.1+1.1 65.0=13 43812 0.0+0.0
CLAP (Proposed) 62.0 83.9+03 83.2+19 49.6 2.1 31.4+06

Table 1: Multi-Task Performance on GemBench. Here are the average success rates of 4 levels of
evaluation tasks from Gembench. Except CLAP, we use the results reported in BridgeVLA.

5 EXPERIMENTS
We now present the experimental settings and results in simulation and real-world experiments.

5.1 SIMULATION RESULTS

Experimental Set-up Our method is evaluated on GemBench (Garcia et al., 2025), a benchmark
specifically designed for evaluating the generalization ability of a policy. A dataset containing 100
demonstrations per task along with a task description per trajectory is prepared for training. This
training set contains 16 tasks with 31 variations. Within a trajectory, 4 cameras are placed at the
front, left shoulder, right shoulder and wrist to collect RGB-D images as the observations. The
resolution of the original RGB-D images is 256x256 while the resolution of the projected images
is 224x224. Instead of evaluating on in-distribution tasks and variations, GemBench designs an
evaluation set containing 4 levels of tasks, where different elements are varied:

- Placements (L.1: same 16 tasks (31 variations) as in training set, but with novel object placements.
- Rigid Objects (L2): 15 novel tasks (28 variations) with newly-colored or -shaped rigid objects.
- Articulated Objects (L3): 18 novel tasks (21 variations) with appearance or object variation.

- Long-horizon Tasks (L.4): 6 novel long-horizon tasks (12 variations).

The specific configuration for tasks used for training and evaluation in GemBench are listed in
Appendix A.l. Following the evaluation setting in GemBench (Garcia et al., 2025), all trained
models are evaluated with 20 episodes per task variation per seed, and 5 different seeds are used.

In our method, we finetune Qwen 2.5 VL-3B (Bai et al., 2025) as the coarse task planner. It is LoORA
fine-tuned (Hu et al., 2022) with the object keypoint dataset, language plans, and robot trajectories.
We use SigLIP (Zhai et al., 2023) to extract features from the RGB images and step instructions,
leveraging its language-aligned representations. For depth images, we use DINOv2 (Oquab et al.,
2023), which excels at capturing geometric structures like edges and contours. We further enhance
these features by using the 3D coordinate of each pixel to construct a 3D position embedding. The
hyperparameters, such as batch size and learning rate used in training are listed in Appendix A.2.

To construct the fine-tuning dataset from robot trajectories, we design a sampling strategy to choose
samples from the trajectories. Apart from key-frame pairs of observation and action (oy, , ay, ., ).
RVT?2 augments the training data by sampling observations every n frames (e.g., every 10 frames).
However, this results in an uneven number of samples per trajectory segment, due to the vary-
ing length of each segment. We initially attempted to sample observations within a window
(Oty—my ey Oty s ---Ot, +m) around the time step 5 of the Eth key-frame. However, observations
at time steps before a key-frame and after a key-frame are visually similar while corresponding to
distinct actions. For example, o, —1 and oy, 41 are similar while their corresponding keypoints are
the gripper positions at ¢; and 1 respectively. Using all observations around the key-frames to
fine-tune the VLM risks confusing it. Finally, we choose to use observations (o4, , ...0¢, +m ) at the
time steps immediately following each key-frame. We empirically choose m as 5 in all experiments.

Main Results The evaluation results on GemBench are summarized in Table 1, reporting the av-
erage success rate for tasks at each generalization level. The detailed success rate for each task are
recorded in Appendix A.3. The experimental results demonstrate the strong generalization ability
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Exp Language Plan Object Keypoints Last Reason Reason Pretrained Level Level Level Level Avg.
ID Data Data Step Plan Objects Encoder 1 2 3 4  Succ.

869 682 364 04 48.0
81.8 748 390 0 489
834 66.1 419 20 483
84.8 814 438 304 60.1
824 79.1 445 25 578
83.8 832 496 314 62.0

AN DN B W=
AN N N
NN X X% X X
AN N
AN N N
AN N N
AN NN NN

Table 2: Ablation study of CLAP on GemBench. Here are the average success rates of 4 levels of
evaluation tasks from Gembench under different training settings.

of our method to novel tasks and object variations, as indicated by the performance gain on Level-
2, Level-3, and Level-4 tasks. Our method achieves an overall success rate 12% higher than prior
state-of-the-art method (Li et al., 2025b). Notably, this improvement is obtained using only 20 tra-
jectories per task variation for training, significantly fewer than the 100 trajectories used by other
baselines. Furthermore, our design leads to substantial performance gain on the most challenging
Level-4 tasks, where several baselines methods fail consistently.

Ablation We further experimentally validate the design choice for both coarse task planner and
fine-grained action predictor on GemBench. The configurations are detailed below and correspond-
ing results are presented in Table 2.

1) Base In the base version (corresponding to Exp ID 1), the coarse task planner is trained with
only the robot trajectories to predict step instruction and the corresponding keypoints. We use this
version as a baseline to ablate our method.

2) Object Reasoning To adapt the pre-trained VLM for 3D keypoint prediction, we introduce a
structured reasoning procedure where the model first localizes task-relevant objects before predict-
ing the step instruction and its corresponding keypoint. We evaluate the efficacy of this object po-
sition reasoning in Exp ID 2. A comparison with the base model (Exp ID 1) reveals a performance
improvement on Level-2 and Level-3 tasks, indicating enhanced generalization to object variations.

3) Language Plan Reasoning The proposed task decomposition enables a two-round conversation,
where a language plan is first generated through textual reasoning, followed by keypoint prediction.
This approach also permits the inclusion of additional language plans during training to enhance
compositional generalization. Compared to the base model (Exp ID 1), this version shows improve-
ments on Level 3 and Level 4 tasks, demonstrating stronger generalization to novel task variations.

4) Include Previous Step Instruction Previous step instruction is included in the input as a short-
term memory to help contextualize the current status. This design yields performance gains across
Levels 2, 3, and 4, with particularly notable improvements on long-horizon tasks in Level 4.

5) CLAP w/o Pre-trained Encoder An ablation study (comparing Exp ID 5 and Exp ID 6) on the
coarse planner confirms that incorporating the 3D-aware representation contributes to performance
gains at all generalization levels.

6) CLAP Our method integrates all components mentioned above. A comparison between Exp ID
4 and ours can further validate the performance gain from adding the object position dataset.

5.2 REAL-WORLD EXPERIMENTS

Experimental Setting We keep the training settings the same as in the simulation and list key
modifications here. In the real-world experiments, we use a single camera (Intel RealSense D4351) to
collect RGB-D images of size 640x360. 10 trajectories are collected per task to cover all variations
of each task. The hyperparameters used for training the models are listed in Appendix A.2. The
training tasks, illustrated in Figure 3, are listed below. 1) Place shape in shape sorter: insert objects
into a box with 3 variations on the object shape. 2) Put block in cup: put a colored block in a same-
colored cup with 3 variations on colors. 3) Open drawer: open a drawer with 3 variations on the
handles. 4) Put a block in drawer: put a colored block in an open drawer with 3 variations on colors.

We assess the generalization ability of CLAP along two key dimensions (see Appendix A.4 for an
overview of these evaluation tasks):
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Training Setups Evaluation Setups

Place shape in sorter Put block in cup

Open drawer Put block in drawer Table Color Variation Relighting Novel Object Category

Figure 3: Overview of the tasks in real-world experiments. There are four training tasks: put
shape in shape sorter, put block in cup, open drawer, put block in drawer. We evaluate the same
tasks under different visual perturbations and novel tasks designed based on the training tasks.

No Variation Table Color Distracted Objects Light Strength Average Succ.
RVT2 CLAP RVT2 CLAP RVT2 CLAP RVT2 CLAP RVT2 CLAP

place shape in shape sorter 60% 60% 35% 50% 30% 40% 20% 50% 36.2% 50%
put block in cup with same color 40% 100% 20% 70% 20% 80% 20% 80% 25% 82.5%
open drawer 100% 100% 85% 95% 100% 100% 0% 100% 71.2% 98.7%
put block in open drawer 40% 90% 25% 90% 20% 70% 0% 90% 212% 85%
put block in cup with different color 20% 100% 15% 70% 0% 70% 10% 80% 11.2% 80%
put shape in open drawer 30% 80% 20% 65% 10% 70% 0% 80% 15% 73.7%
put shape in cup 0% 80% 0% 70% 0% 60% 0% 70% 0% 70%
put block in close drawer 0% 90% 0% 75% 0% 70% 0% 80% 0% 78.7%
average success rate 36.2% 87.5% 25% 731% 22.5%  70% 6.2% 78.7% 22.5% 71.3%

Table 3: Real-world Performance. Here are the average success rate under different generalization
settings for real-world experiments.

1) Visual Perturbations: The model is tested on the tasks same as the training tasks but with the
following conditions: different table colors, introducing distracting objects and altered backgrounds.
2) Task/Object Variations: Generalization is evaluated through: i) Object substitution (e.g., plac-
ing a ’shape” object into a cup), and ii) Skill composition (e.g., combining “open drawer” and place
block” into a single, sequential task).

Results The results of evaluating the trained models in real-world experiments are summarized in
Table 3. Our method achieves a strong generalization ability to novel tasks and object variations,
trained with only 10 demonstrations per task. CLAP achieves 54.8% higher average success rates
compared to RVT2 on the evaluation tasks.

6 CONCLUSIONS

We propose a novel coarse-to-fine 3D manipulation policy, where tasks are decomposed and pre-
trained models are leveraged in the hierarchical architecture. Our method demonstrates strong gener-
alization capabilities while maintaining the sample efficiency inherent to coarse-to-fine approaches.
Although leveraging pre-trained models for robotics tasks is common, their effective adaptation for
generalizable and precise is still under-explored. We hope this work inspires further research into
building highly generalizable and sample-efficient 3D manipulation policies. Our method has two
key limitations. First, key-frame based imitation learning is suitable for structured tasks that can
be easily decomposed into discrete steps. Unstructured tasks, such as wiping a desk, where key-
frames are difficult to define, present a significant challenge. Moreover, the current framework lacks
a robust error-correction mechanism. An incorrect action prediction at any step might lead to task
failure. A promising future direction is to integrate a self-correction module to enhance robustness.
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LLM Usage We used Deepseek (Al, 2024) and ChatGPT (OpenAl, 2024) for grammar check and
related work retrieval. The authors have reviewed the content generated by the LLM.

Ethics Statement We adhere to the ICLR Code of Ethics and take full responsibility for the final
content.

Reproducibility Statement To ensure reproducibility, we provide a comprehensive description of
our method and experimental setup in the Section 4 and the Section 5, document all hyperparameters
in the appendix Appendix A.2, and will release our code publicly upon acceptance.

REFERENCES

DeepSeek Al. Deepseek-v3. https://deepseek.com, 2024. Model and technical details
available at https://github.com/deepseek-ai.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, Thomas
Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey Gritsenko,
Neil Houlsby, Manoj Kumar, Keran Rong, Julian Eisenschlos, Rishabh Kabra, Matthias Bauer,
Matko Bosnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender, Ioana Bica, Ivana Balazevic,
Joan Puigcerver, Pinelopi Papalampidi, Olivier Henaff, Xi Xiong, Radu Soricut, Jeremiah Harm-
sen, and Xiaohua Zhai. Paligemma: A versatile 3b vlm for transfer, 2024. URL https:
//arxiv.org/abs/2407.07726.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Her-
zog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control. In arXiv preprint
arXiv:2307.15818, 2023.

Chilam Cheang, Sijin Chen, Zhongren Cui, Yingdong Hu, Liqun Huang, Tao Kong, Hang Li, Yifeng
Li, Yuxiao Liu, Xiao Ma, Hao Niu, Wenxuan Ou, Wanli Peng, Zeyu Ren, Haixin Shi, Jiawen Tian,
Hongtao Wu, Xin Xiao, Yuyang Xiao, Jiafeng Xu, and Yichu Yang. Gr-3 technical report, 2025.
URL https://arxiv.org/abs/2507.15493.

Shizhe Chen, Ricardo Garcia Pinel, Cordelia Schmid, and Ivan Laptev. Polarnet: 3d point
clouds for language-guided robotic manipulation. In Jie Tan, Marc Toussaint, and Kourosh
Darvish (eds.), Proceedings of The 7th Conference on Robot Learning, volume 229 of Pro-
ceedings of Machine Learning Research, pp. 1761-1781. PMLR, 06-09 Nov 2023. URL
https://proceedings.mlr.press/v229/chen23b.html.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. PaLM-e: An embodied
multimodal language model. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.

10


https://deepseek.com
https://github.com/deepseek-ai
https://arxiv.org/abs/2407.07726
https://arxiv.org/abs/2407.07726
https://arxiv.org/abs/2507.15493
https://proceedings.mlr.press/v229/chen23b.html

Under review as a conference paper at ICLR 2026

8469-8488. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/v202/
driess23a.html.

Haoquan Fang, Markus Grotz, Wilbert Pumacay, Yi Ru Wang, Dieter Fox, Ranjay Krishna, and
Jiafei Duan. Sam2act: Integrating visual foundation model with a memory architecture for robotic
manipulation. In Proceedings of the 42nd International Conference on Machine Learning, 2025.

Chongkai Gao, Zixuan Liu, Zhenghao Chi, Junshan Huang, Xin Fei, Yiwen Hou, Yuxuan Zhang,
Yudi Lin, Zhirui Fang, Zeyu Jiang, and Lin Shao. Vla-os: Structuring and dissecting planning rep-
resentations and paradigms in vision-language-action models. arXiv preprint arXiv:2506.17561,
2025. URL https://arxiv.org/abs/2506.17561.

Ricardo Garcia, Shizhe Chen, and Cordelia Schmid. Towards generalizable vision-language robotic
manipulation: A benchmark and llm-guided 3d policy. In International Conference on Robotics
and Automation (ICRA), 2025.

Theophile Gervet, Zhou Xian, Nikolaos Gkanatsios, and Katerina Fragkiadaki. Act3d: 3d fea-
ture field transformers for multi-task robotic manipulation. In Jie Tan, Marc Toussaint, and
Kourosh Darvish (eds.), Proceedings of The 7th Conference on Robot Learning, volume 229
of Proceedings of Machine Learning Research, pp. 3949-3965. PMLR, 06-09 Nov 2023. URL
https://proceedings.mlr.press/v229/gervet23a.html.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. In Jie Tan, Marc Toussaint, and Kourosh Darvish (eds.),
Proceedings of The 7th Conference on Robot Learning, volume 229 of Proceedings of Machine
Learning Research, pp. 694-710. PMLR, 06-09 Nov 2023. URL https://proceedings.
mlr.press/v229/goyal23a.html.

Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao, and Dieter Fox. Rvt2: Learning precise
manipulation from few demonstrations. RSS, 2024.

Marcus Gualtieri and Robert Platt. Learning 6-dof grasping and pick-place using attention fo-
cus. In Aude Billard, Anca Dragan, Jan Peters, and Jun Morimoto (eds.), Proceedings of The
2nd Conference on Robot Learning, volume 87 of Proceedings of Machine Learning Research,
pp. 477-486. PMLR, 29-31 Oct 2018. URL https://proceedings.mlr.press/v87/
gualtieril8a.html.

Marcus Gualtieri and Robert Platt. Learning manipulation skills via hierarchical spatial attention.
IEEE Transactions on Robotics, 36(4):1067-1078, August 2020. ISSN 1941-0468. doi: 10.1109/
tr0.2020.2974093. URL http://dx.doi.org/10.1109/TR0O.2020.2974093.

Pierre-Louis Guhur, Shizhe Chen, Ricardo Garcia Pinel, Makarand Tapaswi, Ivan Laptev, and
Cordelia Schmid. Instruction-driven history-aware policies for robotic manipulations. In Karen
Liu, Dana Kulic, and Jeff Ichnowski (eds.), Proceedings of The 6th Conference on Robot Learn-
ing, volume 205 of Proceedings of Machine Learning Research, pp. 175-187. PMLR, 14-18 Dec
2023. URL https://proceedings.mlr.press/v205/guhur23a.html.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYILO.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. 7 5: a
vision-language-action model with open-world generalization, 2025. URL https://arxiv.
org/abs/2504.16054.

11


https://proceedings.mlr.press/v202/driess23a.html
https://proceedings.mlr.press/v202/driess23a.html
https://arxiv.org/abs/2506.17561
https://proceedings.mlr.press/v229/gervet23a.html
https://proceedings.mlr.press/v229/goyal23a.html
https://proceedings.mlr.press/v229/goyal23a.html
https://proceedings.mlr.press/v87/gualtieri18a.html
https://proceedings.mlr.press/v87/gualtieri18a.html
http://dx.doi.org/10.1109/TRO.2020.2974093
https://proceedings.mlr.press/v205/guhur23a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054

Under review as a conference paper at ICLR 2026

Stephen James, Kentaro Wada, Tristan Laidlow, and Andrew J. Davison. Coarse-to-fine g-attention:
Efficient learning for visual robotic manipulation via discretisation. In 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 13729-13738, 2022. doi:
10.1109/CVPR52688.2022.01337.

Yueru Jia, Jiaming Liu, Sixiang Chen, Chenyang Gu, Zhilve Wang, Longzan Luo, Xiaoqi Li, Peng-
wei Wang, Zhongyuan Wang, Renrui Zhang, and Shanghang Zhang. Lift3d policy: Lifting 2d
foundation models for robust 3d robotic manipulation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 17347-17358, June 2025.

Edward Johns. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration.
In IEEE International Conference on Robotics and Automation (ICRA), 2021.

Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
with 3d scene representations, 2024. URL https://arxiv.org/abs/2402.10885.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
Openvla: An open-source vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Chengmeng Li, Junjie Wen, Yan Peng, Yaxin Peng, Feifei Feng, and Yichen Zhu. Pointvla: Injecting
the 3d world into vision-language-action models, 2025a. URL https://arxiv.org/abs/
2503.07511.

Peiyan Li, Yixiang Chen, Hongtao Wu, Xiao Ma, Xiangnan Wu, Yan Huang, Liang Wang, Tao
Kong, and Tieniu Tan. Bridgevla: Input-output alignment for efficient 3d manipulation learning
with vision-language models, 2025b. URL https://arxiv.org/abs/2506.07961.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
synergizing cognition and action in robotic manipulation. arXiv preprint arXiv:2411.19650, 2024.

Suhan Ling, Yian Wang, Ruihai Wu, Shiguang Wu, Yuzheng Zhuang, Tianyi Xu, Yu Li, Chang Liu,
and Hao Dong. Articulated object manipulation with coarse-to-fine affordance for mitigating the
effect of point cloud noise. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 10895-10901, 2024. doi: 10.1109/ICRA57147.2024.10610593.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. International
Conference on Learning Representations (ICLR), 2024.

Yangjun Liu, Sheng Liu, Binghan Chen, Zhi-Xin Yang, and Sheng Xu. Fusion-perception-to-action
transformer: Enhancing robotic manipulation with 3-d visual fusion attention and proprioception.
IEEE Transactions on Robotics, 41:1553—-1567, 2025. doi: 10.1109/TR0O.2025.3539193.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. EmbodiedGPT: Vision-language pre-training via embodied chain
of thought. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=IL5zJgfxAa.

NVIDIA, Johan Bjorck, Fernando Castafieda, Nikita Cherniadev, Xingye Da, Runyu Ding,
Linxi ”Jim” Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyu Jiang,
Jan Kautz, Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu,
Edith Llontop, Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed,
You Liang Tan, Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie, Yinzhen
Xu, Zhenjia Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao, Ruijie Zheng,
and Yuke Zhu. GrOOt nl: An open foundation model for generalist humanoid robots, 2025. URL
https://arxiv.org/abs/2503.14734.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.

12


https://arxiv.org/abs/2402.10885
https://arxiv.org/abs/2503.07511
https://arxiv.org/abs/2503.07511
https://arxiv.org/abs/2506.07961
https://openreview.net/forum?id=IL5zJqfxAa
https://arxiv.org/abs/2503.14734

Under review as a conference paper at ICLR 2026

Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

OpenAl. Chatgpt-4o (may 13, 2024 version) [large language model]. https://chat .openai.
com, 2024.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Q. Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Ass-
ran, Nicolas Ballas, Wojciech Galuba, Russ Howes, Po-Yao (Bernie) Huang, Shang-Wen Li,
Ishan Misra, Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Huijiao Xu, Hervé Jégou,
Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning ro-
bust visual features without supervision. ArXiv, abs/2304.07193, 2023. URL https://api.
semanticscholar.org/CorpusID:258170077.

Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
Gu, Bin Zhao, Dong Wang, and Xuelong Li. Spatialvla: Exploring spatial representations for
visual-language-action model, 2025. URL https://arxiv.org/abs/2501.15830.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Ridle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollér, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos, 2024. URL https://arxiv.
org/abs/2408.00714.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.

Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma, Adil
Zouitine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, Simon Alibert,
Matthieu Cord, Thomas Wolf, and Remi Cadene. Smolvla: A vision-language-action model for
affordable and efficient robotics, 2025. URL https://arxiv.org/abs/2506.01844.

Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
Michiel Blokzijl, Steven Bohez, Konstantinos Bousmalis, Anthony Brohan, Thomas Buschmann,
Arunkumar Byravan, Serkan Cabi, Ken Caluwaerts, Federico Casarini, Oscar Chang, Jose En-
rique Chen, Xi Chen, Hao-Tien Lewis Chiang, Krzysztof Choromanski, David D’ Ambrosio,
Sudeep Dasari, Todor Davchev, Coline Devin, Norman Di Palo, Tianli Ding, Adil Dostmohamed,
Danny Driess, Yilun Du, Debidatta Dwibedi, Michael Elabd, Claudio Fantacci, Cody Fong, Erik
Frey, Chuyuan Fu, Marissa Giustina, Keerthana Gopalakrishnan, Laura Graesser, Leonard Hasen-
clever, Nicolas Heess, Brandon Hernaez, Alexander Herzog, R. Alex Hofer, Jan Humplik, Atil
Iscen, Mithun George Jacob, Deepali Jain, Ryan Julian, Dmitry Kalashnikov, M. Emre Karago-
zler, Stefani Karp, Chase Kew, Jerad Kirkland, Sean Kirmani, Yuheng Kuang, Thomas Lampe,
Antoine Laurens, Isabel Leal, Alex X. Lee, Tsang-Wei Edward Lee, Jacky Liang, Yixin Lin,
Sharath Maddineni, Anirudha Majumdar, Assaf Hurwitz Michaely, Robert Moreno, Michael Ne-
unert, Francesco Nori, Carolina Parada, Emilio Parisotto, Peter Pastor, Acorn Pooley, Kanishka
Rao, Krista Reymann, Dorsa Sadigh, Stefano Saliceti, Pannag Sanketi, Pierre Sermanet, Dhruv
Shah, Mohit Sharma, Kathryn Shea, Charles Shu, Vikas Sindhwani, Sumeet Singh, Radu Soricut,
Jost Tobias Springenberg, Rachel Sterneck, Razvan Surdulescu, Jie Tan, Jonathan Tompson, Vin-
cent Vanhoucke, Jake Varley, Grace Vesom, Giulia Vezzani, Oriol Vinyals, Ayzaan Wahid, Stefan
Welker, Paul Wohlhart, Fei Xia, Ted Xiao, Annie Xie, Jinyu Xie, Peng Xu, Sichun Xu, Ying
Xu, Zhuo Xu, Yuxiang Yang, Rui Yao, Sergey Yaroshenko, Wenhao Yu, Wentao Yuan, Jingwei
Zhang, Tingnan Zhang, Allan Zhou, and Yuxiang Zhou. Gemini robotics: Bringing ai into the
physical world, 2025. URL https://arxiv.org/abs/2503.20020.

Chenxi Wang, Hongjie Fang, Haoshu Fang, and Cewu Lu. Rise: 3d perception makes
real-world robot imitation simple and effective. 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 2870-2877, 2024a. URL https://api.
semanticscholar.org/CorpusID:269214333.

Yixuan Wang, Guang Yin, Binghao Huang, Tarik Kelestemur, Jiuguang Wang, and Yunzhu Li.
Gendp: 3d semantic fields for category-level generalizable diffusion policy. In 8th Annual Con-
ference on Robot Learning, 2024b.

13


https://chat.openai.com
https://chat.openai.com
https://api.semanticscholar.org/CorpusID:258170077
https://api.semanticscholar.org/CorpusID:258170077
https://arxiv.org/abs/2501.15830
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2506.01844
https://arxiv.org/abs/2503.20020
https://api.semanticscholar.org/CorpusID:269214333
https://api.semanticscholar.org/CorpusID:269214333

Under review as a conference paper at ICLR 2026

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,
Chaomin Shen, Yaxin Peng, et al. Tinyvla: Towards fast, data-efficient vision-language-action
models for robotic manipulation. In IEEE Robotics and Automation Letters (RA-L), 2025a.

Junjie Wen, Yichen Zhu, Zhibing Tang, Jinming Li, Yaxin Peng, Chaomin Shen, and Feifei Feng.
Dexvla: Vision-language model with plug-in diffusion expert for visuomotor policy learning.
Conference on Robot Learning (CoRL), 2025b.

Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
prediction in robotics. In 8th Annual Conference on Robot Learning, 2024. URL https:
//openreview.net/forum?id=GVX6jpZOhU.

Michat Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning. In 8th Annual Conference on Robot Learning,
2024. URL https://openreview.net/forum?id=S70MgnIAQv.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. In Proceedings
of Robotics: Science and Systems (RSS), 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. 2023 IEEE/CVF International Conference on Computer Vision (ICCV),
pp.- 11941-11952, 2023. URL https://api.semanticscholar.org/CorpusID:
257767223.

Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo
Li, Qianli Ma, Song Han, Chelsea Finn, Ankur Handa, Ming-Yu Liu, Donglai Xiang, Gor-
don Wetzstein, and Tsung-Yi Lin. Cot-vla: Visual chain-of-thought reasoning for vision-
language-action models. 2025 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1702-1713, 2025. URL https://api.semanticscholar.org/
CorpusID:277435005.

Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong, and
Chuang Gan. 3d-vla: a 3d vision-language-action generative world model. In Proceedings of the
41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Haoyi Zhu, Honghui Yang, Yating Wang, Jiange Yang, Limin Wang, and Tong He. Spa: 3d spatial-
awareness enables effective embodied representation. In Y. Yue, A. Garg, N. Peng, F. Sha, and
R. Yu (eds.), International Conference on Representation Learning, volume 2025, pp. 26361—
26391, 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/
file/421fcf51a0e243f15f977553a6f482cb-Paper—Conference.pdf.

14


https://openreview.net/forum?id=GVX6jpZOhU
https://openreview.net/forum?id=GVX6jpZOhU
https://openreview.net/forum?id=S70MgnIA0v
https://api.semanticscholar.org/CorpusID:257767223
https://api.semanticscholar.org/CorpusID:257767223
https://api.semanticscholar.org/CorpusID:277435005
https://api.semanticscholar.org/CorpusID:277435005
https://proceedings.iclr.cc/paper_files/paper/2025/file/421fcf51a0e243f15f977553a6f482cb-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/421fcf51a0e243f15f977553a6f482cb-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Table 4: Training and evaluation tasks & variations in GemBench. The evaluation tasks contain
four levels of generalization, where Level 1 evaluates the generalization to novel placements, Level
2 novel rigid objects, Level 3 novel articulated objects, and Level 4 novel long-horizon tasks.

Train / Level 1 Level 2 Level 3 Level 4
Task Variation Color Shape Instance Category  Action-Part  Long-horizon
maroon button azure button 2 buttons
Press  Push button navy button rose button Lamp on 3 buttons
yellow button white button 4 buttons
red block teal block red cylinder
Pick and lift lime block violet block red star
5 cyan block black block red moon
Pick
magenta cup gray cup
Pick up cup silver cup olive cup red toy
orange cup purple cup
. green target pink target
Push Slide block blue target yellow target
Reach and dra teal target cyan target
2 black target navy target
e o azure jar blue jar
Scre violet jar green jar
W Screw bulb rose bulb lime bulb
white bulb maroon bulb
Close fridge fridge fridge2 door
Close  Close laptop lid laptop lid laptop lid2 grill box
Close microwave microwave microwave?2 drawer
Open door door door2 fridge Take shoes
Open Open box box box2 toilet laptop lid out of box
P Open drawer bottom drawer drawer2, drawer3 microwave Put 3 items
P top drawer long drawer w/ 4 levels middle drawer in drawer
2 gray blocks 2 orange blocks Stack 3-4
Stack blocks 2 olive blocks 2 silver blocks blocks
2 purple blocks 2 magenta blocks Stack 2 cups
Put/ P . crackers box mustard bottle Put all
. ut groceries 3 § ) N
Stack soup can sugar box groceries
bottom shelf Put cube in
Put money middle shelf bottom shelf top shelf

Table 5: Training time and hyperparameters used in different experiments. Here we list the
training time and hyperparameters used for training the model with GemBench and real-world data.

GemBench Real-world
Coarse task planner  Fine-grained Action Predictor ~ Coarse task planner ~ Fine-grained Action Predictor

Training time 6 hours 3 hours 1 hour 1 hour
Learning rata 3e-4 0.0024 le-4 0.0024
Batch Size 64 192 64 192
Epochs 1 5 1 3
Lora Rank 8 / 8 /
Lora Alpha 32 / 32 /
Freeze Vit False / False /
Freeze Aligner True / True /
Freeze LLM False / False /

A APPENDIX

A.1 GEMBENCH TASK SPECIFICATION

The detailed tasks and variations in GemBench (Garcia et al., 2025) used for training and evaluation
are listed in Table 4.

A.2 EXPERIMENTAL DETAILS

All experiments are conducted on 4 NVIDIA RTX 4090 GPU. The hyperparameters and training
time are listed in Appendix A.2.

A.3 GEMBENCH SUCCESS RATE PER TASK

The results for each task across different generalization levels in Gembench are listed in Table 6,
Table 7, Table 8, Table 9.
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Method 155 (;lose Close Close Clost‘zLaplcp X Close LightBulb  LightBulb Open Open Open
. Fridge+0 Jar+15 Jar+16 Lid+0 Microwave+0 In+17 In+19 Box+0 Door+0 Drawer+0
HiveFormer (Guhur et al., 2023) 603115 96442 641139 92497 90435 88476 12445 13467 4140 534152 154122
PolarNet (Chen et al., 2023) 77.6+0.9 99122 99122 99122 95135 98127 21125 165 321115 69159 611124
3D Diffuser Actor (Ke et al., 2024) 919108 10000 10000 10000 9940 10000 8545.0 88107 11492 96442 82191
RVT2 (Goyal et al., 2024) 89.0+0.5 77110 97445 8107 TT+13.0 10000 93157 s T4 98145 93157
3D-LOTUS (Garcia et al., 2025) 94335 96437 10000 10000 98405 98140 84474 85495 99120 71125 83ig7
3D-LOTUS++ (Garcia et al., 2025) 68.710.6 95+0.0 10000 99420 28425 87151 5541105 45489 55489 79497 681125
BridgeVLA (Li et al., 2025b) L 99190 98140 10000 97425 85455 90455 87175 764102 70412.3 86458
CLAP 83.940.3 88145 98427 100400 88101 99422 84165 76.49.1 17457 82445 874130
Method Open Pi_ck& Pi_ck& Pi_ck& PickUp PickUp PickUp Push Push Push Putln
Drawer+2 Lift+0 Lift+2 Lift+7 Cup+8 Cup+9 Cup+11 Button+0  Button+3  Button+4  Cupboard+0
HiveFormer (Guhur et al., 2023) 59474 86440 92,467 93497 83176 691129 6141198 841119 68.16.7 87176 34450
PolarNet (Chen et al., 2023) 90471 92191 84174 8845.7 82176 79442 724104 100,00 1000 99122 52476
3D Diffuser Actor (Ke et al., 2024) 97445 9919 99499 99490 96,492 97445 98107 98407 96442 98197 85450
RVT2 (Goyal et al., 2024) 94142 9912 98407 1000 99125 9910 99122 100,40 10000 10000 88154
3D-LOTUS (Garcia et al., 2025) 9316.0 9.0 10000 99120 97140 96137 94149 99120 99120 10000 89155
3D-LOTUS++ (Garcia et al., 2025) 75445 97+6.0 9437 93451 86+5.0 88168 9li49 100400 100400 10000 1120
BridgeVLA (Li et al., 2025b 9990 9990 10000 98405 96100 94137 99,90 100400 98140 98140 74166
CLAP 98127 98127 99422 99422 5.5 99122 DBire 10000 10000 9427 581104
Method Putln PutMoney PutMoney Reach& Reach& Slide Slide Stack Stack Stack
Cupboard+3  InSafe+0  InSafe+l Drag+14 Drag+18 Block+0 Block+1  Blocks+30 Blocks+36 Blocks+39
HiveFormer (Guhur et al., 2023) T4i6.5 85135 88407 37457 32476 99499 914124 6455 Tias 6442
PolarNet (Chen et al., 2023) 8845 93445 9545.0 99402 99402 10000 010.0 341108 30494 3641129
3D Diffuser Actor (Ke et al., 2024) 821115 95450 98107 10000 99492 10000 89442 88176 8546.1 89455
RVT2 (Goyal et al., 2024) 80461 93484 96155 85410.0 920 10040 37167 88157 93127 884115
3D-LOTUS (Garcia et al., 2025) 124112 9437 99100 99490 10000 10000 10000 94458 6.6 9045
3D-LOTUS++ (Garcia et al., 2025) 2405 22168 94437 62457 10009 65455 8645.8 20445 281136
BridgeVLA (Li et al., 2025b) 84166 79497 96458 97440 100,00 90455 77481 87140 85475
CLAP 691124 80161 90435 904345 5545.0 S5+5.0 964142 85135 9061
Table 6: Per-task Success Rate on GemBench Level 1.
Method N Push Push Push Pick& Pick& Pick& PickUp PickUp PickUp
g Button+13  Button+15  Button+17 Lift+14 Lift+16 Lift+18 Cup+10 Cup+12 Cup+13
HiveFormer (Guhur et al., 2023) 261414 97407 854100 88407 21465 9t42 816.7 30471 2241135 26+10.6
PolarNet (Chen et al., 2023) 37041a  100s00 100400 85470 3i1s lios 0200 481110 46250 16265
3D Diffuser Actor (Ke et al., 2024) 434405 871130 81165 60194 9442 18491 0+0.0 84155 60+11.7 621130
RVT2 (Goyal et al., 2024) 510423 100,00 100,00 10000 4176 29496 8145 8lig2 59196 72197
3D-LOTUS (Garcia et al., 2025) 499155  99:00 10000  100.00 3i0s 18157 33104 8957 7857 $7irs
3D-LOTUS++ (Garcia et al., 2025)  64.51¢.9 99120 10000 99420 94437 96.+3.7 95432 79449 8949.7 841102
BridgeVLA (Li et al., 2025b) 650415 100000 10000  100i00  7die7  89is9 020.0 917 9052 9064
CLAP 832419 10000 10000 10000 9912 100-0.0 98107 93145 97107 98107
Method Stack Stack Stack Slide Slide Close Close LightBulb LightBulb Lamp
Blocks+24  Blocks+27  Blocks+33 Block+2 Block+3 Jar+3 Jar+4 In+1 In+2 On+0
HiveFormer (Guhur et al., 2023) 00,0 4142 0+0.0 0O+0.0 0+0.0 0+0.0 0+0.0 4142 00,0 Ti45
PolarNet (Chen et al., 2023) Lig 2197 6152 0O+0.0 0+0.0 20+10.6 82457 224115 17184 141108
3D Diffuser Actor (Ke et al., 2024) 661139 82497 504146 0100 0+0.0 2341168 82457 Slirrs 60+10.0 Ti76
RVT2 (Goyal et al., 2024) 18445 56+16.7 451137 0O+0.0 Ligo Ti+16 Tis7 684144 665 0+0.0
3D-LOTUS (Garcia et al., 2025) 13451 40195 69455 O+0.0 0+0.0 Tiss 9N+4.5 24449 4lise 0+0.0
3D-LOTUS++ (Garcia et al., 2025) 22493 59437 27498 5432 98125 96437 5649.7 43475 2420
BridgeVLA (Li et al., 2025b) 611107 5li132 79+5.6 12493 3140 6646.6 88140 66+5.6 74158 7140
CLAP 95135 86122 942 1845.7 68157 95435 98145 6645.5 8li65 20461
Method Reach& Reach& PutCube Pick&Lift  Pick&Lift Pick&Lift Pick&Lift Putln PutIn
Drag+5 Drag+7 InSafe+0  Cylinder+0  Star+0 Moon+0 Toy+0  Cupboard+7 Cupboard+8
HiveFormer (Guhur et al., 2023) lioo 0+0.0 4190 8157 73176 88407 87145 O+0.0 0+0.0
PolarNet (Chen et al., 2023) 61152 1046.1 404141 93.46.7 88154 93467 90435 0100 00,0
3D Diffuser Actor (Ke et al., 2024) 0+0.0 64165 3107 99120 431179 9lig6 3019.4 0+0.0 3445
RVT2 (Goyal et al., 2024) 9liz2 89465 6155 98427 9Bias 94142 7848.4 O+0.0 0+0.0
3D-LOTUS (Garcia et al., 2025) 95,45 18410.8 25455 88457 69.46.6 80484 96,37 0.10.0 0400
3D-LOTUS++ (Garcia et al., 2025) 94190 641124 3715 9li20 94137 29166 Tli20 I420 0+0.0
BridgeVLA (Li et al., 2025b) 94437 96,57 3125 98425 99420 95432 9451 0O+0.0 0+0.0
CLAP 95135 9046.1 61147 97427 100,90 9827 84152 504112 53125

Table 7: Per-task Success Rate on GemBench Level 2.

A.4 REAL-WORLD EXPERIMENTS

An overview of the tasks used in real-world experiments are shown in Figure 4.
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Method Av Close Close Close CloseLaptop Close Open Open
& Door+0 Box+0 Fridge2+0 Lid2+0 Microwave2+0  Door2+0  Box2+0
HiveFormer (Guhur et al., 2023) 351417 0+0.0 1129 34196 52191 15471 324115 5435
PolarNet (Chen et al., 2023) 38.511.7 010.0 0+0.0 78457 26482 744165 33.6.7 23484
3D Diffuser Actor (Ke et al., 2024) 37.042.2 0+0.0 0100 97197 2346.7 884176 8674 67198
RVT2 (Goyal et al., 2024) 36.042.2 1o 2427 72167 424140 Tliso 79165 546.1
3D-LOTUS (Garcia et al., 2025) 381411 0+0.0 58151 3649.7 544107 85471 42468 1466
3D-LOTUS++ (Garcia et al., 2025) 415418 li2o 29456 93105 50495 99,50 524103 16450
BridgeVLA (Li et al., 2025b) 438, > 040.0 1100 95455 77140 541102 681108 74149
CLAP 49.6.2.1 3427 9455 92445 35494 9455 5646.5 Lizo
Method Open Open OpenDrawer ~ OpenDrawer OpenDrawer  OpenDrawer Toilet Open
Drawer2+0 Drawer3+0 Long+0 Long+1 Long+2 Long+3 SeatUp+0  Fridge+0

HiveFormer (Guhur et al., 2023) 591110 391119 T84+8.4 82145 49149 574115 6140 0100
PolarNet (Chen et al., 2023) L) P 29482 841119 88457 63154 37176 2407 4159
3D Diffuser Actor (Ke et al., 2024) 19450 lioo 15450 351137 26496 T9+12.9 0+0.0 Tis.7
RVT2 (Goyal et al., 2024) 8li119 0+0.0 84.5o 394108 1lig9 75+6.1 Tis5.7 0100
3D-LOTUS (Garcia et al., 2025) 9032 22481 561139 331112 174581 7546.3 0+0.0 4is8
3D-LOTUS++ (Garcia et al., 2025) 70455 4li49 72140 524108 23481 78451 8151 0+0.0
BridgeVLA (Li et al., 2025b) 65163 87160 59186 344150 18110.3 85154 6158 7125
CLAP 68454 87176 44i108 94455 455 764134 Tias 3445
Method OpenLaptop Open PutMoney Open Close Close

Lid+0 Microwave+0 InSafe+2 Drawer+1 Drawer+0 Grill+0
HiveFormer (Guhur et al., 2023) 100400 0+0.0 0+0.0 0+0.0 83457 444108
PolarNet (Chen et al., 2023) 10000 0100 119 4iyo 294119 421915
3D Diffuser Actor (Ke et al., 2024) 10000 0+0.0 2445 0+0.0 66174 65113.7
RVT2 (Goyal et al., 2024) 93457 0+0.0 0400 6192 78454 9142
3D-LOTUS (Garcia et al., 2025) 10000 0+0.0 0400 0+0.0 87151 2946.6
3D-LOTUS++ (Garcia et al., 2025) 86.46.6 0+0.0 13451 0100 69158 194139
BridgeVLA (Li et al., 2025b) 95+0.0 0+0.0 2425 0+0.0 58412.9 354123
CLAP 78491 0+0.0 76155 9665 84150 40171

Table 8: Per-task Success Rate on GemBench Level 3.

Examples of Real-world Tasks

Sort shape Place block in cup Open drawer

Place shape incup ~ Place block incup  Place block in drawer Place shape in drawer

Put block in drawer

Original

Table Color

Distractors

Light Strength

Figure 4: Overview of the evaluation tasks in real-world experiments. We evaluate the all these
eight tasks acroos different variations and record the success rate.
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Method Avg Push Push Push TakeShoes Putltems Putltems
. Buttons4+1 Buttons4+2 Buttons4+3  OutOfBox+0 InDrawer+0 InDrawer+2

HiveFormer (Guhur et al., 2023) 0+0.0 O+0.0 0+0.0 0+0.0 0100 0+0.0 0+0.0

PolarNet (Chen et al., 2023) 0.140.2 li22 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0

3D Diffuser Actor (Ke et al., 2024) O+0.0 O+0.0 O+0.0 O+0.0 0100 0+x0.0 0+0.0

RVT2 (Goyal et al., 2024) 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0

3D-LOTUS (Garcia et al., 2025) 0.340.3 3440 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0

3D-LOTUS++ (Garcia et al., 2025) 174404 76474 49,56 37481 040.0 0+0.0 0+0.0

BridgeVLA (Li et al., 2025b) 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0

CLAP 314.06 98127 87145 92157 0+0.0 0+0.0 0+0.0
Putltems Stack Stack PutAllGroceries

Wilstied InDrawer+4 o] e Cups+0 Cups+3 InCupboard+0

HiveFormer (Guhur et al., 2023) 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0 010.0

PolarNet (Chen et al., 2023) 010.0 010.0 010.0 0+0.0 0100 040.0

3D Diffuser Actor (Ke et al., 2024) 0+0.0 0100 0+0.0 0+0.0 0100 040.0

RVT2 (Goyal et al., 2024) 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0

3D-LOTUS (Garcia et al., 2025) 040.0 040.0 040.0 040.0 0+0.0 040.0

3D-LOTUS++ (Garcia et al., 2025) 040.0 174108 30413.4 040.0 010.0 010.0

BridgeVLA (Li et al., 2025b) 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0 0+0.0

CLAP 0+0.0 30174 70161 0+0.0 0+0.0 0+0.0

Table 9: Per-task Success Rate on GemBench Level 4.
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