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ABSTRACT

Hierarchical coarse-to-fine policy, where a coarse branch predicts a region of inter-
est to guide a fine-grained action predictor, has demonstrated significant potential
in robotic 3D manipulation tasks by especially enhancing sample efficiency and
enabling more precise manipulation. However, even augmented with pre-trained
models, these hierarchical policies still suffer from generalization issues. To en-
hance generalization to novel instructions and environment variations, we propose
Coarse-to-fine Language-Aligned manipulation Policy (CLAP), a framework that
integrates three key components: 1) task decomposition, 2) VLM fine-tuning for
3D keypoint prediction, and 3) 3D-aware representation. Through comprehen-
sive experiments in simulation and on a real robot, we demonstrate its superior
generalization capability. Specifically, on GemBench, a benchmark designed for
evaluating generalization, our approach achieves a 12% higher average success
rate than the SOTA method while using only 1/5 of the training trajectories. In
real-world experiments, our policy, trained on only 10 demonstrations, success-
fully generalizes to novel instructions and environments.

1 INTRODUCTION

Robot learning, especially via imitation learning, has demonstrated promising success in enabling
robots to solve complex 3D manipulation tasks (Intelligence et al., 2025; Liu et al., 2024). However,
scaling these methods to a broader range of real-world applications (e.g., industrial, service, or
home robotics) requires enhancing both (G1) their generalization to environment variations, and
(G2) their skill compositional generalization. Indeed, G1 is necessary, because deployed robots
need to be able to operate in new settings (e.g., object or background variation), while G2 is highly
desirable, so that trained robots can tackled new tasks by composing previously-learned skills. To
achieve G1 and G2, the robot needs to be endowed with a combination of capabilities, such as
scene understanding, reasoning or planning, and high-precision manipulation, exploiting preferably
sample efficient techniques, since robotics data is costly to collect.

In this paper, we focus on one type of 3D manipulation policies, called coarse-to-fine policies
(Gualtieri & Platt, 2020; James et al., 2022; Ling et al., 2024; Goyal et al., 2024; Gervet et al.,
2023; Liu et al., 2025), because they achieve superior precision in manipulation tasks while enjoy-
ing strong sample efficiency. These policies process 3D observations (or 3D scene representations)
using a hierarchical architecture whose higher-level coarse branch identifies a region of interest for
the lower-level fine-grained branch to focus on and predict a final action. Typically, the coarse
branch is trained to predict a 3D keypoint, which serves as the center for cropping and zooming
into the original 3D observations. To help with visual understanding and to some extent spatial
reasoning, recent work (Li et al., 2025b; Fang et al., 2025) has extended this approach to exploit
pre-trained models—Vision-Language Models (VLMs) (Beyer et al., 2024) or visual foundation
models (Ravi et al., 2024). However, the performance of these obtained methods is still limited in
terms of generalization capability (G1 and especially G2), indicating that their scene understanding
and reasoning capabilities are actually still rudimentary. Our experimental study suggests that this
is primarily due to a combination of various issues (depending on the method), such as domain shift
between pre-training and robotic images, inadequacy of pre-trained models to predict 3D keypoint,
poor adaptation to object variations, or under-exploitation of the planning ability of VLMs.
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Prompt: Take the cube 
from the drawer

Step1: Open the drawer 

Step2: Pick the cube

Step3: Put the cube on 
the table

DecomposeAlign Novel Objects

Novel Tasks
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Generalize

Reason

Figure 1: Intuition of CLAP. Our method achieves strong generalization ability by decomposing
tasks into step-wise language instructions, each aligned with a 3D keypoint.

To address these limitations and issues, we propose Coarse-to-fine Language-Aligned manipulation
Policy (CLAP), a novel coarse-to-fine 3D manipulation policy. In contrast to previous coarse-to-fine
policies, CLAP includes a novel architecture for the higher-level branch, which we name coarse task
planner, and a novel implementation of the lower-level fine-grained action predictor, both leveraging
pre-trained models.

The coarse task planner, implemented as a VLM, is introduced to play the additional role of task
planning. Before the usual 3D keypoint prediction, it decomposes a task into step-wise language
instructions, representing basic skills. This change allows both 3D keypoint and action predictions
to depend on step-wise instructions instead of the whole task description, which promotes skill
compositional generalization (G2). The training of this coarse task planner consists of three parts
to reinforce its scene understanding and reasoning capabilities. First, the pre-trained VLM fine-
tuned on language plans of different tasks to directly improve compositional reasoning. Second, it
is specialized for 3D keypoint prediction by fine-tuning it to perform a sequential reasoning process:
first localizing task-related objects, then generating the step instruction, and finally predicting a
corresponding 3D keypoint. Finally, to further boost its scene understanding capability, the VLM is
further fine-tuned with an auxiliary task of 3D object detection, using an additional dataset of object
positions. Together, these components form a comprehensive pipeline that significantly enhances
the generalization ability of the coarse-to-fine policy to object variations (G1) and novel tasks (G2).

The fine-grained action predictor takes as input both the step instruction and the multi-view RGB-D
images and outputs an action. It is implemented with specialized pre-trained models to improve sam-
ple efficiency and increase its precision during manipulation. More specifically, step instruction and
RGB images are processed using a pre-trained visual-language encoder, ensuring the two modalities
are well-aligned. The depth information is processed by a dedicated encoder and augmented with
3D position embeddings to help better align 3D and 2D image information. All the obtained em-
beddings, which we call 3D-aware representation, are fused via a Multi-View Transformer (Goyal
et al., 2023) to predict the final actions.

To evaluate the performance of our method, we run experiments in both simulation and real-world.
For simulation, we use GemBench (Garcia et al., 2025), a benchmark specifically designed to assess
the generalization ability of multi-task language-conditioned policies across varying difficulty levels.
Our approach outperforms the state-of-the-art method, achieving a 12% higher average success rate
with only 1/5 of the training trajectories. In real-world experiments, our method demonstrate strong
generalization ability to novel tasks and object variations with only 10 demonstrations per task.

Contributions

1. We introduce a novel coarse-to-fine 3D manipulation policy, as shown in Figure 1, with
two main innovations: (1) tasks are decomposed into step-wise language instructions to
promote compositional generalization ability; (2) action inference is performed via a rea-
soning step to improve generalization to object variations.

2. We design a finetuning pipeline that effectively adapts a pre-trained VLM to 3D keypoint
prediction and incorporate a 3D-aware representation in the fine-grained action predictor,
overcoming the issues observed in previous methods.

3. Empirical evaluations in simulation and on a real robot demonstrate state-of-the-art perfor-
mance in both robustness to visual and object changes and generalization to unseen tasks.
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2 RELATED WORK

In this section, we discuss the related works in the field, including vision-language-action models,
3D manipulation policies, and coarse-to-fine policies.

Vision-Language-Action (VLA) models Training VLMs (OpenAI, 2024; Beyer et al., 2024; Bai
et al., 2025; AI, 2024) on vast internet-scale image-text corpora has led to remarkable capabilities
in image understanding, excelling at tasks like image classification, object detection, and visual
question answering tasks. However, applying a similar training strategy directly to robotics presents
a challenge due to the relatively scarce robot trajectory data. A prominent solution is to transfer
the knowledge from pre-trained VLMs by fine-tuning them on robot data. This approach is the
foundation for recent VLA models (Driess et al., 2023; Brohan et al., 2023; Kim et al., 2024; Octo
Model Team et al., 2024; Intelligence et al., 2025; Wen et al., 2025a; Shukor et al., 2025; Liu et al.,
2024; Wen et al., 2025b; Li et al., 2024; Cheang et al., 2025; Team et al., 2025; NVIDIA et al.,
2025), which are fine-tuned on large diverse datasets of robot trajectories. Such extensive training
strengthens generalization to novel objects, environments, and tasks. However, since they commonly
use multi-view 2D images as visual input, learning to reason in 3D space from 2D images alone is
data-intensive. This leads to sample inefficiency and low success rates on some tasks. Recent
work has sought to more explicitly incorporate 3D information (Li et al., 2025a; Qu et al., 2025;
Zhen et al., 2024) or introduce Chain of Thought (Mu et al., 2023; Zawalski et al., 2024; Zhao et al.,
2025) to enhance the 3D reasoning ability. However these directions remain relatively underexplored
within the VLA paradigm. Our method, which fine-tunes a pretrained VLM as a coarse task planner
and predicts the final action with a fine-grained action predictor, can also be viewed as a VLA
model. In contrast to other VLA approaches, we propose specific training and inference techniques
to better align pre-trained VLMs to 3D manipulation, further enhancing generalization (G1-G2)
while retaining the sample efficiency inherent to hierarchical coarse-to-fine policies.

3D Manipulation Policy 3D manipulation policies (Shridhar et al., 2022; Gervet et al., 2023;
Jia et al., 2025; Zhu et al., 2025; Wang et al., 2024b; Ze et al., 2024; Wang et al., 2024a; Goyal
et al., 2024; Ke et al., 2024; Fang et al., 2025; Li et al., 2025b; Garcia et al., 2025) directly work
with 3D inputs and outputs. They generally include structured architectures that construct a 3D
representation of the scene, leading to higher sample efficiency and better generalization to new
camera viewpoints. For example, PerAct (Shridhar et al., 2022) explicitly represents the scene
with a voxel representation. Gervet et al. (2023) and Ke et al. (2024) process RGB images with
pre-trained image encoder and lift 2D features to 3D by aggregating with depth information. An
alternative approach (Jia et al., 2025; Goyal et al., 2024) is to project point clouds into canonical
virtual views and use the resulting multi-view images as input. Explicitly exploiting 3D information
allows these models to achieve high success rates with much less training data, which can be further
reduced by enforcing a hierarchical structure like in coarse-to-fine policies.

Coarse-to-fine Policies Gualtieri & Platt (2018; 2020) first propose this coarse-to-fine scheme
for pick-and-place tasks. Subsequent work has considered more general tasks and explored various
3D representations, such as voxel observations (James et al., 2022; Liu et al., 2025), 3D feature
fields (Gervet et al., 2023), and multi-view images (Goyal et al., 2024). Ling et al. (2024) apply the
coarse-to-fine architecture to handle noisy point clouds. Among these, Robotic View Transformer
2 (RVT2) (Goyal et al., 2024) is an effective language-conditioned multi-task policy, demonstrating
strong performance in both training and inference efficiency by using multi-view images projected
from canonical views. However, RVT2 is trained from scratch, which limits its generalization ability
to visual perturbations and task variations. Subsequent efforts built upon this work have sought to
overcome these limitations. Existing works (Li et al., 2025b; Fang et al., 2025) have attempted to
enhance generalization through strategies such as: pre-training on object detection datasets (Yuan
et al., 2024) or integrating encoders from powerful visual foundation models like Segment Anything
Model 2 (Ravi et al., 2024). In contrast, we achieve this by introducing a novel architecture, where
tasks are decomposed into step-wise language instructions for skill compositional generalization and
design a specific training and inference pipeline to leverage pre-trained models in both coarse and
fine-grained branches.
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3 BACKGROUND

In this section, we first briefly recall the multi-task imitation learning set-up, introduce coarse-to-fine
policy, and then present Robotic-View-Transformer 2 (RVT2) (Goyal et al., 2024), a state-of-the-art
coarse-to-fine policy that serves as the foundation for our method.

In multi-task imitation learning, a dataset D = {(τi, Li) | i = 1, ..., N} is available for pairs of
robot demonstrations τi and task description Li. Index i may be dropped if not needed. A robot
demonstration is a trajectory τi = (o0, a0, o1, a1, ...) containing a sequence of observations ot and
corresponding expert actions at. Observations include multi-view RGB-D images and gripper status
indicating whether it is close or open. Actions denote the state of the end-effector, which contains
the 3D position pt = (xt, yt, zt) of the gripper, the orientation of the gripper and a gripper status.

A coarse-to-fine policy contains a coarse branch and a fine-grained branch, where the coarse branch
predicts a 3D keypoint as the center to zoom in the 3D observation and the fine-grained branch
uses the refined observation to predict the target action. Such policy is trained according to the
key-frame based imitation learning framework (Johns, 2021; Shridhar et al., 2022; Goyal et al.,
2024). Specifically, key-frames identifies timesteps in a trajectory when an important action, like
grasping or placing, occurs. In practice, they are usually heuristically defined for each trajectory.
With these key-frames, a trajectory is segmented into K subsequences of observations and actions
(o0, a0, ..., ot1 , at1), ..., (otK−1+1, atK−1+1, ..., otK , atK ), where the kth key-frame occurs at time
step tk, from which we can extract a sequence of key-frame actions (at1 , ..., atK ). In this framework,
the goal is to train a policy π to predict the key-frame action atk at the closest next key-frame of
timestep tk given an observation ot and a task description Li:

π(ot, Li) → atk for tk−1 ≤ t < tk . (1)

The predicted actions are executed by a motion planner, which moves the robot to the desired state,
generating thus the intermediate actions in a trajectories. In coarse-to-fine policies, the 3D position
ptk output by the coarse branch for the next key-frame is typically used as the 3D keypoint to zoom
into the observation for the action predictor.

In RVT2, multi-view RGB-D images are first aggregated into a point cloud, which is then projected
into three canonical views: front, left and top. These three views are orthogonal to each other,
which allows a mapping between pixel positions in these views and a 3D position in the scene.
Each pixel in the projected images contains 3-channel RGB values, 1-channel depth value and its
corresponding 3D position in the global coordinate. In the coarse branch, the projected images are
tokenized using convolutional layers while the task description and robot states (e.g., gripper status)
are encoded by a pre-trained language encoder and a trainable Multi-Layer-Perceptron respectively.
All these tokenized features are fused via Multi-View Transformer (Goyal et al., 2023). The image
tokens in the output of the transformer are then processed by upsampling layers to predict heatmaps,
from which a 3D keypoint is extracted. The keypoint from the coarse branch is used to zoom in
and crop the point cloud while the cropped region is again projected into the canonical views. The
refined observations along with the same task description are processed by the fine-grained branch,
implemented as another multi-view transformer with different weights, to predict the final actions.
While RVT2 achieves strong sample efficiency and enables precise manipulation via projections to
canonical views and its coarse-to-fine architecture, it is trained from scratch and therefore does not
leverage recent pretrained large models. In addition, its architecture design does not fully exploit
common skills among tasks. As a result, it suffers from deficient generalization to visual changes,
object variations, and novel tasks.

4 METHOD

Our hierarchical policy consists of a coarse task planner and a fine-grained action predictor, as
shown in Figure 2. To promote compositional generalization, we first decompose tasks into step-
wise language instructions, each describing the motion of the robot between two consecutive key-
frames. This enables the coarse task planner to perform language-guided planning while allowing
the fine-grained action predictor to learn and reuse common skills across tasks. Moreover, we adapt
a pre-trained VLM to 3D keypoint prediction in the coarse task planner, by finetuning it with a
sequential reasoning procedure. The pretrained VLM is trained to first reason about the positions
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Figure 2: Overview of CLAP. We propose a novel coarse-to-fine 3D manipulation policy, compris-
ing of a coarse task planner and a fine-grained action predictor. The coarse task planner reasons
about the task plans and the positions of task-related objects to generate language-aligned 3D key-
points. The fine-grained action predictor fuses the corresponding step instruction with a 3D-aware
visual representation from refined observations to predict the final action.

of task-related objects, then generate a step instruction and finally predict the corresponding 3D
keypoints. To enable zero-shot generalization ability to novel objects, we add an auxiliary task
of 3D object detection by augmenting the training data with additional object positions dataset.
Finally, in contrast to RVT2, the coarse and fined-grained branches are implemented with a different
architecture, since they play different roles. Thus, for the latter, we utilize specialized pre-trained
visual foundation models to construct a 3D-aware representation. The design choices of both the
coarse task planner and the fine-grained action predictor are detailed in the following sections.

4.1 COARSE TASK PLANNER

Prior coarse-to-fine policies condition all actions within a trajectory on a single high-level task de-
scription, limiting compositional generalization. To address this, we leverage a pre-trained VLM,
denoted fθ, to decompose a high-level task description L into step-wise language instructions
L = (ℓ1, ..., ℓk, ..., ℓK), which naturally align with the key-frame based trajectory segmentation.
Each trajectory segment (otk−1+1, atk−1+1, ..., otk , atk) and key-frame action atk have a corre-
sponding step instruction ℓk describing the motion of the robot within the segment. For example,
the task ”open the top drawer” is decomposed into following step instructions: ℓ1: ”The robot arm
lowers itself to align with the handle of the top drawer”, ℓ2: ”The robot arm grasps the top drawer’s
handle firmly”, and ℓ3: ”The robot pulls the handle back, smoothly opening the top drawer”.

In addition to task decomposition done at the beginning, at every execution timestep, the VLM fθ is
also exploited to predict both the step instruction ℓtk (used as a novel input of the action predictor)
and its language-aligned 3D keypoint ptk (for cropping a region of interest, as usually done in
coarse-to-fine policies). We discuss next how this prediction can be realized effectively.

Task decomposition enables reasoning about task plans before predicting actions. However, directly
training the model fθ to simultaneously generate a task plan L and predict step instruction ℓtk
and 3D keypoint ptk , given as inputs multi-view images obtained from observation otk−1

and a
high-level task description L, (i.e., fθ(otk−1

, L) → (L, ℓtk , ptk)), does not ensure generalization
to novel instructions. Previous studies (Kim et al., 2024; Intelligence et al., 2025; Zhao et al.,
2025; Gao et al., 2025) indicate that VLAs exhibit a strong bias towards visual inputs, due to the
richer information embedded in the visual inputs. This reliance often causes failures to follow novel
language instructions. Under our data-scarce training setting, this issue is intensified by the limited
diversity of language instructions. To address this issue, we propose decoupling task planning from
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keypoint prediction via a two-round inference protocol. First, a purely textual query generates a
language plan, the sequence of all step instructions L. Second, the visual inputs augmented with
this plan are used to predict the corresponding step instruction and keypoint:

fθ(Li) → L, fθ(otk−1
,L) → (ℓtk , ptk). (2)

This approach not only mitigates visual bias but also enables training with an auxiliary dataset of
language plans, which serves as a manual to enhance compositional task reasoning.

For a plan L corresponding to a task description L, directly fine-tuning a VLM to predict both the
step instruction ℓtk and its language-aligned 3D keypoint ptk reveals to be insufficient due to the
inadequate alignment of the visual-textual embeddings of the VLM for this 3D keypoint predic-
tion. Instead, inspired by Chain-of-Thought reasoning (Mu et al., 2023; Zawalski et al., 2024; Zhao
et al., 2025) for robotics, we design a reasoning process by training our model to first reason about
the pixel positions of task-related objects, then generate a step instruction and finally predict the
corresponding keypoint, changing the second step of Equation (2) to:

fθ(otk−1
,L) → (pobj , ℓtk , ptk), (3)

where pobj are the 3D positions of the task-related objects.

We further observe that for long-horizon, especially repetitive tasks (e.g., ”stack several blocks”),
only providing the entire task plan whether as input or output can degrade the performance. This
often causes the model to generate repetitive sequences until reaching the output length limit or to
struggle in determining the next step from an excessively long plan. To mitigate this, we introduce
two ideas. First, we provide to the VLM an additional input: the step instruction predicted in the last
timestep, which serves as a short-term memory cue to contextualize the current situation. Moreover,
we decompose the plan into sub-tasks, i.e., L =

(
L1 = (ℓ1, ℓ2, ..., ℓn),L2 = (ℓn+1, ℓn+2, ...), ...

)
.

For instance, ”stack the blue and yellow cup on the red cup” is decomposed into two sequential
sub-tasks: L1 ”stack the blue on the red cup” followed by L2 ”stack the yellow cup on the red cup”.
The model is trained to generate only the task plan of current sub-task, preventing repetition and
improving focus:

fθ(L, ℓ̂) → Lm, fθ(otk−1
,Lm, ℓ̂) → (pobj , ℓtk , ptk), (4)

where ℓ̂ is the step instruction predicted in the last timestep and Lm is the language plan of the mth

sub-task. At the beginning of a trajectory, where no previous timestep exists, ℓ̂ is defined as ”the
robot is currently at the initial state” to indicate the initial state.

To further enhance the generalization ability of the coarse task planner to object variations, we
include an auxiliary task of predicting the object positions. We randomly initialize diverse envi-
ronments and record the RGB-D images of the scene along with the 3D positions of the objects.
Following the same pre-processing, both the RGB-D images and the 3D positions of the objects are
projected into canonical views. The projected multi-view images and pixel coordinates of the object
positions in each view are used to construct an object position dataset. This dataset is then utilized
to co-train the VLM, reinforcing its spatial understanding and improving zero-shot generalization to
object variations.

4.2 FINE-GRAINED ACTION PREDICTOR

The fine-grained action predictor uses a predicted step instruction ℓtk , instead of the original high-
level task description L, enabling more precise and generalizable skill learning. Considering the
significant domain shift between the images focused around predicted ptk from those used to pre-
train standard VLMs, we decide to employ instead pre-trained specialized encoders to process these
inputs. Our feature encoding pipeline consists of three stages to construct a unified 3D-aware and
language-aligned representation. First, RGB images and step instructions are processed through
vision-language encoders to establish semantic alignment between visual and textual inputs. Second,
depth images are encoded separately to extract explicit geometric structure. Finally, we generate a
3D position embedding from pixel-wise 3D coordinates to incorporate spatial awareness. These
components are combined to form a 3D-aware, language-aligned representation for downstream
fine-grained action prediction, following the architecture of prior work (Goyal et al., 2024).
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Models Avg. Success ↑ L1 L2 L3 L4
HiveFormer (Guhur et al., 2023) 30.4 60.3 ± 1.5 26.1 ± 1.4 35.1 ± 1.7 0.0 ± 0.0
PolarNet (Chen et al., 2023) 38.4 77.7± 0.9 37.1 ± 1.4 38.5 ± 1.7 0.1 ± 0.2
3D Diffuser Actor (Ke et al., 2024) 44.0 91.9± 0.8 43.4 ± 2.8 37.0 ± 2.2 0.0 ± 0.0
RVT2 (Goyal et al., 2024) 44.0 89.1 ± 0.8 51.0 ± 2.3 36.0 ± 2.2 0.0 ± 0.0
3D-LOTUS (Garcia et al., 2025) 45.7 94.3 ± 1.4 49.9 ± 2.2 38.1 ± 1.1 0.3 ± 0.3
3D-LOTUS++ (Garcia et al., 2025) 48.0 68.7 ± 0.6 64.5 ± 0.9 41.5 ± 1.8 17.4 ± 0.4
BridgeVLA (Li et al., 2025b) 50.0 91.1 ± 1.1 65.0 ± 1.3 43.8 ± 1.2 0.0 ± 0.0
CLAP (Proposed) 62.0 83.9 ± 0.3 83.2 ± 1.9 49.6 ± 2.1 31.4 ± 0.6

Table 1: Multi-Task Performance on GemBench. Here are the average success rates of 4 levels of
evaluation tasks from Gembench. Except CLAP, we use the results reported in BridgeVLA.

5 EXPERIMENTS

We now present the experimental settings and results in simulation and real-world experiments.

5.1 SIMULATION RESULTS

Experimental Set-up Our method is evaluated on GemBench (Garcia et al., 2025), a benchmark
specifically designed for evaluating the generalization ability of a policy. A dataset containing 100
demonstrations per task along with a task description per trajectory is prepared for training. This
training set contains 16 tasks with 31 variations. Within a trajectory, 4 cameras are placed at the
front, left shoulder, right shoulder and wrist to collect RGB-D images as the observations. The
resolution of the original RGB-D images is 256x256 while the resolution of the projected images
is 224x224. Instead of evaluating on in-distribution tasks and variations, GemBench designs an
evaluation set containing 4 levels of tasks, where different elements are varied:

- Placements (L1: same 16 tasks (31 variations) as in training set, but with novel object placements.
- Rigid Objects (L2): 15 novel tasks (28 variations) with newly-colored or -shaped rigid objects.
- Articulated Objects (L3): 18 novel tasks (21 variations) with appearance or object variation.
- Long-horizon Tasks (L4): 6 novel long-horizon tasks (12 variations).

The specific configuration for tasks used for training and evaluation in GemBench are listed in
Appendix A.1. Following the evaluation setting in GemBench (Garcia et al., 2025), all trained
models are evaluated with 20 episodes per task variation per seed, and 5 different seeds are used.

In our method, we finetune Qwen 2.5 VL-3B (Bai et al., 2025) as the coarse task planner. It is LoRA
fine-tuned (Hu et al., 2022) with the object keypoint dataset, language plans, and robot trajectories.
We use SigLIP (Zhai et al., 2023) to extract features from the RGB images and step instructions,
leveraging its language-aligned representations. For depth images, we use DINOv2 (Oquab et al.,
2023), which excels at capturing geometric structures like edges and contours. We further enhance
these features by using the 3D coordinate of each pixel to construct a 3D position embedding. The
hyperparameters, such as batch size and learning rate used in training are listed in Appendix A.2.

To construct the fine-tuning dataset from robot trajectories, we design a sampling strategy to choose
samples from the trajectories. Apart from key-frame pairs of observation and action (otk , atk+1

),
RVT2 augments the training data by sampling observations every n frames (e.g., every 10 frames).
However, this results in an uneven number of samples per trajectory segment, due to the vary-
ing length of each segment. We initially attempted to sample observations within a window
(otk−m, ..., otk , ...otk+m) around the time step tk of the kth key-frame. However, observations
at time steps before a key-frame and after a key-frame are visually similar while corresponding to
distinct actions. For example, otk−1 and otk+1 are similar while their corresponding keypoints are
the gripper positions at tk and tk+1 respectively. Using all observations around the key-frames to
fine-tune the VLM risks confusing it. Finally, we choose to use observations (otk , ...otk+m) at the
time steps immediately following each key-frame. We empirically choose m as 5 in all experiments.

Main Results The evaluation results on GemBench are summarized in Table 1, reporting the av-
erage success rate for tasks at each generalization level. The detailed success rate for each task are
recorded in Appendix A.3. The experimental results demonstrate the strong generalization ability
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Exp Language Plan Object Keypoints Last Reason Reason Pretrained Level Level Level Level Avg.
ID Data Data Step Plan Objects Encoder 1 2 3 4 Succ.
1 ✗ ✗ ✗ ✗ ✗ ✓ 86.9 68.2 36.4 0.4 48.0
2 ✗ ✗ ✗ ✗ ✓ ✓ 81.8 74.8 39.0 0 48.9
3 ✓ ✗ ✗ ✓ ✗ ✓ 83.4 66.1 41.9 2.0 48.3
4 ✓ ✗ ✓ ✓ ✓ ✓ 84.8 81.4 43.8 30.4 60.1
5 ✓ ✓ ✓ ✓ ✓ ✗ 82.4 79.1 44.5 25 57.8
6 ✓ ✓ ✓ ✓ ✓ ✓ 83.8 83.2 49.6 31.4 62.0

Table 2: Ablation study of CLAP on GemBench. Here are the average success rates of 4 levels of
evaluation tasks from Gembench under different training settings.

of our method to novel tasks and object variations, as indicated by the performance gain on Level-
2, Level-3, and Level-4 tasks. Our method achieves an overall success rate 12% higher than prior
state-of-the-art method (Li et al., 2025b). Notably, this improvement is obtained using only 20 tra-
jectories per task variation for training, significantly fewer than the 100 trajectories used by other
baselines. Furthermore, our design leads to substantial performance gain on the most challenging
Level-4 tasks, where several baselines methods fail consistently.

Ablation We further experimentally validate the design choice for both coarse task planner and
fine-grained action predictor on GemBench. The configurations are detailed below and correspond-
ing results are presented in Table 2.

1) Base In the base version (corresponding to Exp ID 1), the coarse task planner is trained with
only the robot trajectories to predict step instruction and the corresponding keypoints. We use this
version as a baseline to ablate our method.
2) Object Reasoning To adapt the pre-trained VLM for 3D keypoint prediction, we introduce a
structured reasoning procedure where the model first localizes task-relevant objects before predict-
ing the step instruction and its corresponding keypoint. We evaluate the efficacy of this object po-
sition reasoning in Exp ID 2. A comparison with the base model (Exp ID 1) reveals a performance
improvement on Level-2 and Level-3 tasks, indicating enhanced generalization to object variations.
3) Language Plan Reasoning The proposed task decomposition enables a two-round conversation,
where a language plan is first generated through textual reasoning, followed by keypoint prediction.
This approach also permits the inclusion of additional language plans during training to enhance
compositional generalization. Compared to the base model (Exp ID 1), this version shows improve-
ments on Level 3 and Level 4 tasks, demonstrating stronger generalization to novel task variations.
4) Include Previous Step Instruction Previous step instruction is included in the input as a short-
term memory to help contextualize the current status. This design yields performance gains across
Levels 2, 3, and 4, with particularly notable improvements on long-horizon tasks in Level 4.
5) CLAP w/o Pre-trained Encoder An ablation study (comparing Exp ID 5 and Exp ID 6) on the
coarse planner confirms that incorporating the 3D-aware representation contributes to performance
gains at all generalization levels.
6) CLAP Our method integrates all components mentioned above. A comparison between Exp ID
4 and ours can further validate the performance gain from adding the object position dataset.

5.2 REAL-WORLD EXPERIMENTS

Experimental Setting We keep the training settings the same as in the simulation and list key
modifications here. In the real-world experiments, we use a single camera (Intel RealSense D435i) to
collect RGB-D images of size 640x360. 10 trajectories are collected per task to cover all variations
of each task. The hyperparameters used for training the models are listed in Appendix A.2. The
training tasks, illustrated in Figure 3, are listed below. 1) Place shape in shape sorter: insert objects
into a box with 3 variations on the object shape. 2) Put block in cup: put a colored block in a same-
colored cup with 3 variations on colors. 3) Open drawer: open a drawer with 3 variations on the
handles. 4) Put a block in drawer: put a colored block in an open drawer with 3 variations on colors.

We assess the generalization ability of CLAP along two key dimensions (see Appendix A.4 for an
overview of these evaluation tasks):
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Figure 3: Overview of the tasks in real-world experiments. There are four training tasks: put
shape in shape sorter, put block in cup, open drawer, put block in drawer. We evaluate the same
tasks under different visual perturbations and novel tasks designed based on the training tasks.

No Variation Table Color Distracted Objects Light Strength Average Succ.
RVT2 CLAP RVT2 CLAP RVT2 CLAP RVT2 CLAP RVT2 CLAP

place shape in shape sorter 60% 60% 35% 50% 30% 40% 20% 50% 36.2% 50%
put block in cup with same color 40% 100% 20% 70% 20% 80% 20% 80% 25% 82.5%
open drawer 100% 100% 85% 95% 100% 100% 0% 100% 71.2% 98.7%
put block in open drawer 40% 90% 25% 90% 20% 70% 0% 90% 21.2% 85%
put block in cup with different color 20% 100% 15% 70% 0% 70% 10% 80% 11.2% 80%
put shape in open drawer 30% 80% 20% 65% 10% 70% 0% 80% 15% 73.7%
put shape in cup 0% 80% 0% 70% 0% 60% 0% 70% 0% 70%
put block in close drawer 0% 90% 0% 75% 0% 70% 0% 80% 0% 78.7%
average success rate 36.2% 87.5% 25% 73.1% 22.5% 70% 6.2% 78.7% 22.5% 77.3%

Table 3: Real-world Performance. Here are the average success rate under different generalization
settings for real-world experiments.

1) Visual Perturbations: The model is tested on the tasks same as the training tasks but with the
following conditions: different table colors, introducing distracting objects and altered backgrounds.
2) Task/Object Variations: Generalization is evaluated through: i) Object substitution (e.g., plac-
ing a ”shape” object into a cup), and ii) Skill composition (e.g., combining ”open drawer” and ”place
block” into a single, sequential task).

Results The results of evaluating the trained models in real-world experiments are summarized in
Table 3. Our method achieves a strong generalization ability to novel tasks and object variations,
trained with only 10 demonstrations per task. CLAP achieves 54.8% higher average success rates
compared to RVT2 on the evaluation tasks.

6 CONCLUSIONS

We propose a novel coarse-to-fine 3D manipulation policy, where tasks are decomposed and pre-
trained models are leveraged in the hierarchical architecture. Our method demonstrates strong gener-
alization capabilities while maintaining the sample efficiency inherent to coarse-to-fine approaches.
Although leveraging pre-trained models for robotics tasks is common, their effective adaptation for
generalizable and precise is still under-explored. We hope this work inspires further research into
building highly generalizable and sample-efficient 3D manipulation policies. Our method has two
key limitations. First, key-frame based imitation learning is suitable for structured tasks that can
be easily decomposed into discrete steps. Unstructured tasks, such as wiping a desk, where key-
frames are difficult to define, present a significant challenge. Moreover, the current framework lacks
a robust error-correction mechanism. An incorrect action prediction at any step might lead to task
failure. A promising future direction is to integrate a self-correction module to enhance robustness.
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LLM Usage We used Deepseek (AI, 2024) and ChatGPT (OpenAI, 2024) for grammar check and
related work retrieval. The authors have reviewed the content generated by the LLM.

Ethics Statement We adhere to the ICLR Code of Ethics and take full responsibility for the final
content.

Reproducibility Statement To ensure reproducibility, we provide a comprehensive description of
our method and experimental setup in the Section 4 and the Section 5, document all hyperparameters
in the appendix Appendix A.2, and will release our code publicly upon acceptance.
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Table 4: Training and evaluation tasks & variations in GemBench. The evaluation tasks contain
four levels of generalization, where Level 1 evaluates the generalization to novel placements, Level
2 novel rigid objects, Level 3 novel articulated objects, and Level 4 novel long-horizon tasks.

Train / Level 1 Level 2 Level 3 Level 4
Task Variation Color Shape Instance Category Action-Part Long-horizon

maroon button azure button 2 buttons
navy button rose button 3 buttonsPress Push button

yellow button white button
Lamp on

4 buttons

red block teal block red cylinder
lime block violet block red starPick and lift
cyan block black block red moon

magenta cup gray cup
silver cup olive cup

Pick

Pick up cup
orange cup purple cup

red toy

green target pink targetSlide block blue target yellow target
teal target cyan targetPush

Reach and drag black target navy target

azure jar blue jarClose jar violet jar green jar
rose bulb lime bulbScrew

Screw bulb white bulb maroon bulb

Close fridge fridge fridge2 door
Close laptop lid laptop lid laptop lid2 boxClose
Close microwave microwave microwave2

grill
drawer

Open door door door2 fridge
Open box box box2 toilet laptop lid

Take shoes
out of box

bottom drawer drawer2, drawer3 microwaveOpen
Open drawer top drawer long drawer w/ 4 levels middle drawer

Put 3 items
in drawer

2 gray blocks 2 orange blocks
2 olive blocks 2 silver blocks

Stack 3-4
blocksStack blocks

2 purple blocks 2 magenta blocks Stack 2 cups

crackers box mustard bottlePut groceries soup can sugar box
Put all

groceries

bottom shelf

Put/
Stack

Put money middle shelf
Put cube in

bottom shelf top shelf

Table 5: Training time and hyperparameters used in different experiments. Here we list the
training time and hyperparameters used for training the model with GemBench and real-world data.

GemBench Real-world
Coarse task planner Fine-grained Action Predictor Coarse task planner Fine-grained Action Predictor

Training time 6 hours 3 hours 1 hour 1 hour
Learning rata 3e-4 0.0024 1e-4 0.0024
Batch Size 64 192 64 192
Epochs 1 5 1 3
Lora Rank 8 / 8 /
Lora Alpha 32 / 32 /
Freeze Vit False / False /
Freeze Aligner True / True /
Freeze LLM False / False /

A APPENDIX

A.1 GEMBENCH TASK SPECIFICATION

The detailed tasks and variations in GemBench (Garcia et al., 2025) used for training and evaluation
are listed in Table 4.

A.2 EXPERIMENTAL DETAILS

All experiments are conducted on 4 NVIDIA RTX 4090 GPU. The hyperparameters and training
time are listed in Appendix A.2.

A.3 GEMBENCH SUCCESS RATE PER TASK

The results for each task across different generalization levels in Gembench are listed in Table 6,
Table 7, Table 8, Table 9.
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Method Avg. Close
Fridge+0

Close
Jar+15

Close
Jar+16

CloseLaptop
Lid+0

Close
Microwave+0

LightBulb
In+17

LightBulb
In+19

Open
Box+0

Open
Door+0

Open
Drawer+0

HiveFormer (Guhur et al., 2023) 60.3±1.5 96±4.2 64±13.9 92±2.7 90±3.5 88±7.6 12±4.5 13±6.7 4±4.2 53±15.2 15±12.2

PolarNet (Chen et al., 2023) 77.6±0.9 99±2.2 99±2.2 99±2.2 95±3.5 98±2.7 72±12.5 71±6.5 32±11.5 69±8.9 61±12.4

3D Diffuser Actor (Ke et al., 2024) 91.9±0.8 100±0.0 100±0.0 100±0.0 99±2.2 100±0.0 85±5.0 88±2.7 11±2.2 96±4.2 82±9.1

RVT2 (Goyal et al., 2024) 89.0±0.8 77±11.0 97±4.5 98±2.7 77±13.0 100±0.0 93±5.7 91±8.2 7±4.5 98±4.5 93±5.7

3D-LOTUS (Garcia et al., 2025) 94.3±3.5 96±3.7 100±0.0 100±0.0 98±2.5 98±4.0 84±7.4 85±9.5 99±2.0 77±2.5 83±8.7

3D-LOTUS++ (Garcia et al., 2025) 68.7±0.6 95±0.0 100±0.0 99±2.0 28±2.5 87±5.1 55±10.5 45±8.9 55±8.9 79±9.7 68±12.5

BridgeVLA (Li et al., 2025b) 91.1±1.1 99±2.0 98±4.0 100±0.0 97±2.5 85±5.5 90±5.5 87±7.5 76±10.2 70±12.3 86±5.8

CLAP 83.9±0.3 88±4.5 98±2.7 100±0.0 88±9.1 99±2.2 84±6.5 76±9.1 17±5.7 82±4.5 87±13.0

Method Open
Drawer+2

Pick&
Lift+0

Pick&
Lift+2

Pick&
Lift+7

PickUp
Cup+8

PickUp
Cup+9

PickUp
Cup+11

Push
Button+0

Push
Button+3

Push
Button+4

PutIn
Cupboard+0

HiveFormer (Guhur et al., 2023) 59±7.4 86±4.2 92±6.7 93±2.7 83±7.6 69±12.9 61±19.8 84±11.9 68±6.7 87±7.6 34±8.2

PolarNet (Chen et al., 2023) 90±7.1 92±9.1 84±7.4 88±5.7 82±7.6 79±4.2 72±10.4 100±0.0 100±0.0 99±2.2 52±7.6

3D Diffuser Actor (Ke et al., 2024) 97±4.5 99±2.2 99±2.2 99±2.2 96±2.2 97±4.5 98±2.7 98±2.7 96±4.2 98±2.7 85±5.0

RVT2 (Goyal et al., 2024) 94±4.2 99±2.2 98±2.7 100±0.0 99±2.2 99±2.2 99±2.2 100±0.0 100±0.0 100±0.0 88±8.4

3D-LOTUS (Garcia et al., 2025) 93±6.0 99±2.0 100±0.0 99±2.0 97±4.0 96±3.7 94±4.9 99±2.0 99±2.0 100±0.0 89±5.8

3D-LOTUS++ (Garcia et al., 2025) 75±4.5 97±6.0 94±3.7 93±5.1 86±8.0 88±6.8 91±4.9 100±0.0 100±0.0 100±0.0 1±2.0

BridgeVLA (Li et al., 2025b) 99±2.0 99±2.0 100±0.0 98±2.5 96±2.0 94±3.7 99±2.0 100±0.0 98±4.0 98±4.0 74±6.6

CLAP 98±2.7 98±2.7 99±2.2 99±2.2 94±5.5 99±2.2 93±7.6 100±0.0 100±0.0 97±2.7 58±10.4

Method PutIn
Cupboard+3

PutMoney
InSafe+0

PutMoney
InSafe+1

Reach&
Drag+14

Reach&
Drag+18

Slide
Block+0

Slide
Block+1

Stack
Blocks+30

Stack
Blocks+36

Stack
Blocks+39

HiveFormer (Guhur et al., 2023) 74±6.5 85±3.5 88±2.7 37±5.7 32±7.6 99±2.2 91±12.4 6±5.5 7±4.5 6±4.2

PolarNet (Chen et al., 2023) 88±4.5 93±4.5 95±5.0 99±2.2 99±2.2 100±0.0 0±0.0 34±10.8 30±9.4 36±12.9

3D Diffuser Actor (Ke et al., 2024) 82±11.5 95±5.0 98±2.7 100±0.0 99±2.2 100±0.0 89±4.2 88±7.6 85±6.1 89±5.5

RVT2 (Goyal et al., 2024) 80±6.1 93±8.4 96±8.5 85±10.0 94±2.2 100±0.0 37±6.7 88±5.7 93±2.7 88±11.5

3D-LOTUS (Garcia et al., 2025) 72±11.2 94±3.7 99±2.0 99±2.0 100±0.0 100±0.0 100±0.0 94±5.8 91±6.6 90±4.5

3D-LOTUS++ (Garcia et al., 2025) 2±2.5 22±6.8 16±4.9 94±3.7 62±8.7 100±0.0 65±5.5 86±5.8 20±4.5 28±13.6

BridgeVLA (Li et al., 2025b) 84±6.6 79±9.7 86±3.7 96±5.8 97±4.0 100±0.0 90±5.5 77±8.1 87±4.0 85±7.8

CLAP 69±12.4 80±6.1 82±7.6 90±3.5 90±34.5 55±5.0 5±5.0 96±4.2 85±3.5 90±6.1

Table 6: Per-task Success Rate on GemBench Level 1.

Method Avg. Push
Button+13

Push
Button+15

Push
Button+17

Pick&
Lift+14

Pick&
Lift+16

Pick&
Lift+18

PickUp
Cup+10

PickUp
Cup+12

PickUp
Cup+13

HiveFormer (Guhur et al., 2023) 26.1±1.4 97±2.7 85±10.0 88±2.7 21±6.5 9±4.2 8±6.7 30±7.1 22±13.5 26±10.6

PolarNet (Chen et al., 2023) 37.1±1.4 100±0.0 100±0.0 85±7.9 3±4.5 1±2.2 0±0.0 48±11.0 46±8.9 16±6.5

3D Diffuser Actor (Ke et al., 2024) 43.4±2.8 87±13.0 81±6.5 60±9.4 9±4.2 18±9.1 0±0.0 84±5.5 60±11.7 62±13.0

RVT2 (Goyal et al., 2024) 51.0±2.3 100±0.0 100±0.0 100±0.0 47±7.6 29±9.6 8±4.5 81±8.2 59±9.6 72±9.7

3D-LOTUS (Garcia et al., 2025) 49.9±2.2 99±2.0 100±0.0 100±0.0 3±2.5 18±8.7 33±9.3 89±3.7 78±8.7 57±7.5

3D-LOTUS++ (Garcia et al., 2025) 64.5±0.9 99±2.0 100±0.0 99±2.0 94±3.7 96±3.7 95±3.2 79±4.9 89±9.7 84±10.2

BridgeVLA (Li et al., 2025b) 65.0±1.3 100±0.0 100±0.0 100±0.0 74±9.7 89±4.9 0±0.0 91±3.7 90±3.2 90±6.3

CLAP 83.2±1.9 100±0.0 100±0.0 100±0.0 99±2.2 100±0.0 98±2.7 93±4.5 97±2.7 98±2.7

Method Stack
Blocks+24

Stack
Blocks+27

Stack
Blocks+33

Slide
Block+2

Slide
Block+3

Close
Jar+3

Close
Jar+4

LightBulb
In+1

LightBulb
In+2

Lamp
On+0

HiveFormer (Guhur et al., 2023) 0±0.0 4±4.2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 4±4.2 0±0.0 7±4.5

PolarNet (Chen et al., 2023) 1±2.2 2±2.7 6±8.2 0±0.0 0±0.0 20±10.6 82±5.7 22±11.5 17±8.4 14±10.8

3D Diffuser Actor (Ke et al., 2024) 66±13.9 82±2.7 50±14.6 0±0.0 0±0.0 23±16.8 82±5.7 51±17.8 60±10.0 7±7.6

RVT2 (Goyal et al., 2024) 18±4.5 56±16.7 45±13.7 0±0.0 1±2.2 7±7.6 77±5.7 68±14.4 6±6.5 0±0.0

3D-LOTUS (Garcia et al., 2025) 13±8.1 40±9.5 69±5.8 0±0.0 0±0.0 71±5.8 90±4.5 24±4.9 41±8.6 0±0.0

3D-LOTUS++ (Garcia et al., 2025) 22±9.3 83±7.5 59±3.7 27±9.8 5±3.2 98±2.5 96±3.7 56±9.7 43±7.5 2±2.0

BridgeVLA (Li et al., 2025b) 61±10.7 51±13.2 79±8.6 12±9.3 3±4.0 66±6.6 88±4.0 66±8.6 74±5.8 7±4.0

CLAP 95±3.5 86±2.2 91±4.2 18±5.7 68±5.7 95±3.5 98±4.5 66±5.5 81±6.5 20±6.1

Method Reach&
Drag+5

Reach&
Drag+7

PutCube
InSafe+0

Pick&Lift
Cylinder+0

Pick&Lift
Star+0

Pick&Lift
Moon+0

Pick&Lift
Toy+0

PutIn
Cupboard+7

PutIn
Cupboard+8

HiveFormer (Guhur et al., 2023) 1±2.2 0±0.0 4±2.2 78±5.7 73±7.6 88±2.7 87±4.5 0±0.0 0±0.0

PolarNet (Chen et al., 2023) 61±8.2 10±6.1 40±14.1 93±6.7 88±8.4 93±6.7 90±3.5 0±0.0 0±0.0

3D Diffuser Actor (Ke et al., 2024) 0±0.0 64±6.5 3±2.7 99±2.2 43±17.9 91±9.6 30±9.4 0±0.0 3±4.5

RVT2 (Goyal et al., 2024) 91±2.2 89±6.5 6±5.5 98±2.7 98±4.5 94±4.2 78±8.4 0±0.0 0±0.0

3D-LOTUS (Garcia et al., 2025) 95±4.5 18±10.8 25±5.5 88±8.7 69±6.6 80±8.4 96±3.7 0±0.0 0±0.0

3D-LOTUS++ (Garcia et al., 2025) 94±2.0 64±12.4 37±5.1 91±2.0 94±3.7 29±6.6 71±2.0 1±2.0 0±0.0

BridgeVLA (Li et al., 2025b) 94±3.7 96±3.7 3±2.5 98±2.5 99±2.0 95±3.2 93±5.1 0±0.0 0±0.0

CLAP 95±3.5 90±6.1 61±14.7 97±2.7 100±0.0 98±2.7 84±8.2 50±11.2 53±12.5

Table 7: Per-task Success Rate on GemBench Level 2.

A.4 REAL-WORLD EXPERIMENTS

An overview of the tasks used in real-world experiments are shown in Figure 4.
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Method Avg. Close
Door+0

Close
Box+0

Close
Fridge2+0

CloseLaptop
Lid2+0

Close
Microwave2+0

Open
Door2+0

Open
Box2+0

HiveFormer (Guhur et al., 2023) 35.1±1.7 0±0.0 1±2.2 34±9.6 52±9.1 15±7.1 32±11.5 5±3.5

PolarNet (Chen et al., 2023) 38.5±1.7 0±0.0 0±0.0 78±5.7 26±8.2 74±6.5 33±6.7 23±8.4

3D Diffuser Actor (Ke et al., 2024) 37.0±2.2 0±0.0 0±0.0 97±2.7 23±6.7 88±7.6 86±7.4 67±9.8

RVT2 (Goyal et al., 2024) 36.0±2.2 1±2.2 2±2.7 72±6.7 42±14.0 71±8.9 79±6.5 5±6.1

3D-LOTUS (Garcia et al., 2025) 38.1±1.1 0±0.0 58±8.1 36±9.7 54±10.7 85±7.1 42±6.8 11±6.6

3D-LOTUS++ (Garcia et al., 2025) 41.5±1.8 1±2.0 29±8.6 93±2.5 50±9.5 99±2.0 52±10.3 16±8.0

BridgeVLA (Li et al., 2025b) 43.8±1.2 0±0.0 1±2.0 95±5.5 77±4.0 54±10.2 68±10.8 74±4.9

CLAP 49.6±2.1 3±2.7 9±5.5 92±4.5 35±9.4 79±5.5 56±6.5 1±2.2

Method Open
Drawer2+0

Open
Drawer3+0

OpenDrawer
Long+0

OpenDrawer
Long+1

OpenDrawer
Long+2

OpenDrawer
Long+3

Toilet
SeatUp+0

Open
Fridge+0

HiveFormer (Guhur et al., 2023) 59±11.9 39±11.9 78±8.4 82±4.5 49±4.2 57±11.5 6±4.2 0±0.0

PolarNet (Chen et al., 2023) 91±4.2 29±8.2 84±11.9 88±5.7 63±8.4 37±7.6 2±2.7 4±2.2

3D Diffuser Actor (Ke et al., 2024) 19±8.2 1±2.2 15±5.0 35±13.7 26±9.6 79±12.9 0±0.0 7±5.7

RVT2 (Goyal et al., 2024) 81±11.9 0±0.0 84±8.2 39±10.8 11±8.9 75±6.1 7±5.7 0±0.0

3D-LOTUS (Garcia et al., 2025) 90±3.2 22±8.1 56±13.9 33±11.2 17±8.1 75±6.3 0±0.0 4±5.8

3D-LOTUS++ (Garcia et al., 2025) 70±5.5 41±4.9 72±4.0 52±10.8 23±8.1 78±5.1 8±5.1 0±0.0

BridgeVLA (Li et al., 2025b) 65±6.3 87±6.0 59±8.6 34±8.0 18±10.3 85±8.4 6±5.8 7±2.5

CLAP 68±8.4 87±7.6 44±10.8 94±5.5 14±5.5 76±13.4 7±4.5 3±4.5

Method OpenLaptop
Lid+0

Open
Microwave+0

PutMoney
InSafe+2

Open
Drawer+1

Close
Drawer+0

Close
Grill+0

HiveFormer (Guhur et al., 2023) 100±0.0 0±0.0 0±0.0 0±0.0 83±5.7 44±10.8

PolarNet (Chen et al., 2023) 100±0.0 0±0.0 1±2.2 4±4.2 29±11.9 42±11.5

3D Diffuser Actor (Ke et al., 2024) 100±0.0 0±0.0 2±4.5 0±0.0 66±7.4 65±13.7

RVT2 (Goyal et al., 2024) 93±5.7 0±0.0 0±0.0 6±2.2 78±8.4 9±4.2

3D-LOTUS (Garcia et al., 2025) 100±0.0 0±0.0 0±0.0 0±0.0 87±8.1 29±6.6

3D-LOTUS++ (Garcia et al., 2025) 86±6.6 0±0.0 13±8.1 0±0.0 69±5.8 19±13.9

BridgeVLA (Li et al., 2025b) 95±0.0 0±0.0 2±2.5 0±0.0 58±12.9 35±12.3

CLAP 78±9.1 0±0.0 76±5.5 96±6.5 84±8.2 40±7.1

Table 8: Per-task Success Rate on GemBench Level 3.

Figure 4: Overview of the evaluation tasks in real-world experiments. We evaluate the all these
eight tasks acroos different variations and record the success rate.
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Method Avg. Push
Buttons4+1

Push
Buttons4+2

Push
Buttons4+3

TakeShoes
OutOfBox+0

PutItems
InDrawer+0

PutItems
InDrawer+2

HiveFormer (Guhur et al., 2023) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

PolarNet (Chen et al., 2023) 0.1±0.2 1±2.2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D Diffuser Actor (Ke et al., 2024) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

RVT2 (Goyal et al., 2024) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS (Garcia et al., 2025) 0.3±0.3 3±4.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS++ (Garcia et al., 2025) 17.4±0.4 76±7.4 49±8.6 37±8.1 0±0.0 0±0.0 0±0.0

BridgeVLA (Li et al., 2025b) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

CLAP 31.4±0.6 98±2.7 87±4.5 92±5.7 0±0.0 0±0.0 0±0.0

Method PutItems
InDrawer+4 Tower4+1 Tower4+3 Stack

Cups+0
Stack

Cups+3
PutAllGroceries
InCupboard+0

HiveFormer (Guhur et al., 2023) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

PolarNet (Chen et al., 2023) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D Diffuser Actor (Ke et al., 2024) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

RVT2 (Goyal et al., 2024) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS (Garcia et al., 2025) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS++ (Garcia et al., 2025) 0±0.0 17±10.8 30±13.4 0±0.0 0±0.0 0±0.0

BridgeVLA (Li et al., 2025b) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

CLAP 0±0.0 30±7.1 70±6.1 0±0.0 0±0.0 0±0.0

Table 9: Per-task Success Rate on GemBench Level 4.
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