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ABSTRACT

Many medical MLLMs post strong scores on curated VQA-style benchmarks
yet still struggle on real clinical questions because their training/supervision ex-
pose them to too little clinically grounded knowledge and prevailing benchmarks
contain too few diagnostic-reasoning Q&A items. We introduce SemiH Vision,
a semi-human—validated multimodal instruction dataset built with a multimodal
retriever; to our knowledge, this is the first dataset to leverage a unified image—
text retriever to integrate real-world clinical information into data construction,
thereby strengthening models’ clinical diagnostic reasoning. Our pipeline retrieves
image- and context-relevant evidence and performs retrieval-augmented synthe-
sis to produce clinically grounded instruction Q&A and captions across major
modalities (X-ray, CT, MRI, ultrasound, histopathology), while standardizing het-
erogeneous annotations into a training-ready schema. For model fine-tuning, we
train SemiHVision-8B-AN, surpassing public medical models like HuatuoGPT-
Vision-34B (79.0% vs. 66.7%) and private general models like Claude3-Opus
(55.7%) on standard benchmarks (SLAKE, VQA-RAD). On the JAMA Clinical
Challenge—a benchmark that directly probes diagnostic reasoning aligned with
clinical practice—we evaluate SemiH Vision-AN and it achieves a GPT-4 rubric
score of 1.29, exceeding HuatuoGPT-Vision-34B (1.13) and Claude3-Opus (1.17),
indicating the effectiveness of SemihVision datasets|]

1 INTRODUCTION

Large Multimodal Models (LMM:s) show strong potential for general medical Al (Yan et al.| 2023}
Liu et al.| 2024b; Jin et al., [2024; [Li et al., [2024; |Chen et al., | 2024b), and recent works adapt general
models to medicine by fine-tuning on PMC image—text corpora (e.g., LLaVA-Med, HuatuoGPT-
Vision, MedTrinity) (Li et al.l 2024} |Chen et al.| 2024bj} | Xie et al.| 2024)). Despite this promise, datasets
remain the bottleneck: current collections diverge from real diagnostic workflows and multi-view
evidence, preventing medical MLLMs from acquiring robust, clinically grounded reasoning.

Prevailing medical-MLLM datasets drive the core limitations: (L.1) lack of end-to-end, real diag-
nostic workflows—PubMed/PMC image—caption pairs or synthetic captions dominate, and datasets
rarely couple complete imaging studies with patient history and expert-authored reports (Four Stages:
evidence — findings — discussion — diagnosis); datasets seldom link region-level evidence across
views/series or longitudinally, so supervision does not cover the full diagnostic workflow (see
Fig. E[) (Bustos et al.| 2020; Irvin et al.|[2019; |Johnson et al.l 2019; Tkezogwo et al., 2024). (L.2) lack
of multi-view evidence—datasets typically compress a clinical case into a single global caption
of an isolated image—often model-generated—while omitting non-imaging clinical evidence (e.g.,
laboratory tests, vital signs, medications, prior history) and provide no structured linkage between
imaging findings and these signals; thus, supervision skews toward caption-/QA-style associations
rather than integrated diagnostic synthesis grounded jointly in imaging and clinical data (Xie et al.,
2024; Pal et al.| 2023} |[Dorfner et al., [ 2024). Consequently, such datasets yield models that struggle

'We will share our code and datasets: https://anonymous.4open.science/r/PMC-Cambrian-
CBC2/README.md
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Typical central necrosis
evident as low attenuation
areas (arrows) is seen C -
Contrast enhanced CT scan
of brain showing ring
enhancing lesions in the
basal ganglia bilaterally
(arrows). Serology was
positive for toxoplasma
infection D -
Ophthalmoscopic image of a
patient with
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location and

the cystic lesion
observed?

characteristics of

HuatuoGPT Output

The cystic lesion is located
within the head of the
pancreas, as evidenced by the
image. It appears to be a well-
defined, unilocular cystic
structure with a density of
approximately 2.4 Hounsfield
Units, indicating a fluidfilled
lesion. The hypodense nature
of the lesion, relative to the
surrounding pancreatic tissue,
is consistent with a cystic

SemiHVision

Clinical History: An 85-
year-old female was
initially diagnosed with a
solid liver lesion on an
ultrasound performed for
_persistent...
Lab Test: Laboratory
tests revealed elevated
transaminases AST, ALT,
.~ ..66GT, and ALP. Bilirubin
was also elevated.
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Image Finding: Unenhanced CT revealed a frontal
subarachnoid haemorrhage and occipital fracture extending
into the left jugular foramen. Remarkably, the bone window
of the skull base revealed the absence of the left carotid
canal (Figure 1)...(Figures 2a, 2b, 2c, 2d and 2e). The left

pathology within the vertebral artery originates on...

cytomegalovirus retinitis E -
pancreatic head region.

Non-Hodgkin's lymphoma in
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maxillary swelling F -
Contrast enhanced CT scan
of abdomen reveals an
oedematous and enlarged ...

Discussion: Hepatocellular carcinoma (HCC) is a primary
malignancy of hepatocytes that makes up approximately
907% of liver malignancies. B-catenin activation and
inhibition of p53 play a significant role in the development
of hepatocellular carcinoma...

Hepatocellular carcinoma
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\[LZJ Multi-View Evidence: v
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Figure 1: Left PMC-0A). Items are isolated images with generic, list—style captions and no task
prompt. There is no diagnostic workflow (evidence — findings — differential — impression/plan)
and no multi-view linkage across images from the same case; models learn caption recall rather than
case reasoning. Middle (PubMed Vision). Adds single-image Q&A, but supervision still centers on
one view at a time with no study structure, ROI provenance, or cross-view/multi-modal alignment;
the diagnostic pipeline remains unsupervised. Right (SemiHVision). Each case is organized by
staged diagnostic workflow: Stage 1 analyzes multi-view/multi-modal evidence from the same
study; Stage 2 produces structured image findings with ROI grounding; Stage 3 writes the discussion
(linking evidence to differentials); Stage 4 states the diagnosis/next step. Clinical history and labs
are integrated and claims are attributed to specific views/ROlIs, enabling end-to-end, evidence-based
supervision.

with real-world clinical diagnosis, and the deficiency remains largely undetected—highlighting the
urgent need for data and benchmark improvement (Liu et al., 2021; He et al., [2020; |Lau et al., 2018).

To address these limitations, we curate SemiH Vision—a semi-human—validated instruction corpus
that integrates real, de-identified clinical datasets rather than synthetic caption pairs. Concretely,
we link complete imaging studies to authentic clinical context (expert reports, laboratory tests,
vitals, medications, and relevant history), harmonize modalities and series structure (X-ray, CT, MRI,
ultrasound, histopathology), and normalize report fields into process-centric supervision. The resulting
instruction Q&A and evidence-linked captions are produced with targeted automatic augmentation
and expert verification, yielding an evidence-grounded, training-ready schema centered on diagnostic
reasoning; when helpful, a multimodality lightweight retriever adds guideline/textbook references.
The pipeline is shown in the Figure 2] To valid our pipeline could work, we train LLM on our datasets.
Then we validate our model on widely used benchmarks such as SLAKE and VQA-RAD, where it
achieves state-of-the-art performance, outperforming both public medical MLLMs (e.g., HuatuoGPT-
Vision-34B) and strong general models. To address the lack of evaluation targeting fine-grained
diagnostic reasoning limitation—we further introduce the JAMA Clinical Challenge, a benchmark
curated from real clinical case vignettes designed to test problem framing, differential diagnosis,
evidence-based reasoning, and final judgment. We complement these evaluations with rubric-based
metrics (e.g., GPT-4 grading and human evaluation) to enable fair and nuanced comparisons between
medical and general MLLMs.

2 RELATED WORK

2.1 EXISTING MULTIMODAL MEDICAL DATASETS

Medical multimodal datasets have evolved from report—paired corpora such as MIMIC-CXR-
JPG (Johnson et al., 2019) to large image—caption collections like PMC-OA (Lin et al., |2023)),
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case/VQA resources (PMC-CaseReport, PMC-VQA) (Wu et al.| 2023} Zhang et al.|, [2023), instruc-
tion—style sets from PubMed imagery (LLaVA-Med VQA, PubMedVision) (Li et al., 2024} |Chen
et al.,[2024b), structured annotation efforts (RadGenome-Chest CT) (Zhang et al.,[2024), and multi-
granular pipelines (MedTrinity) (Xie et al., 2024). Despite progress, prior corpora commonly lack
of end-to-end, real diagnostic workflows. Most corpora reduce supervision to single captions or
short Q&A and omit the stepwise pipeline (history — findings — differential — impression/plan)
and provenance, so models practice recall rather than executing the clinical workflow; and lack
of multi-view evidence—images from the same case are treated independently, with little linkage
across views/series/modalities (e.g., AP/LAT, CT slices, MRI sequences), preventing synthesis of
corroborating/contradictory evidence. In contrast, SemiH Vision is an expert-in-the-loop, multimodal-
retriever—grounded corpus that restores L1 by supervising staged reports and decision targets and
addresses L2 by aligning views/slices/modalities within each case and context-linked attributions,
yielding instruction signals centered on evidence-based diagnostic reasoning across major modalities.

Human Annotated Construct Medical Multimodality Retriever Compare With Other MLLM

Query Text SemiHVisio:
Text Open Guidelines = A go.year-old man presented with " C- 1204-related discase. This case illustrates the
a 1-week history of progressive = diagnostic considerations of apatient with enlarged
painiess diplopia. Ho had a history . SXiraocular muscles. Although this most commonly

[ of hypothyroidism and
Pub¥Qed dyslipidemia, for which he took
levothyroxine and rosuvastatin.

He reported no changes in visual
Wiki Doc acuity or color vision; no ocular
1 | pain, erythema, or abnormal
discharge; ..

A. Idiopathic inflammatory orbital
myositis

B. Lymphoma
C, IgG4-related disease GPT4V
D. Thyroid orbitopathy

Multimdoality Cases

opposite direction of the enlarged muscle is
impaired.1 Thyroid orbitopathy classically affects a

combination of the inferior rectus, medial rectus,
and/or levator palpebrae superioris.2 Isolated
involvement of the lateral rectus, superior rectus,

Ultrasound showing a well-defined,
ieterogeneous, hypoechoic mass posterior 1o the.
cervical column.

The diagnosis is likely A. Idiopathic inflammatory
orbital myositis.

Reason:

Clinical Presentation: The patient has a history of
painless diplopia with no other systemic symptoms

Multimodality Retriever

g Train

An accessory segment VI hepatic vein
was noted draining into the IVC with a
membranous ostial narrowing.
Angioplasty and stenting was
planned. ..

@ Refer

Anincidental identification of an accessory right inferior
hepatic vein, a common anatomical variant of the hepatic

I:> veins, is noted. This vein primarily drains the posterior
portion of the right hepatic lobe, specifically segments VI
and VII, directly into the inferior vena cava.

Inference

&=

| Compare

HuatuoGPT-Vision

The patient's symptoms and MRI findings are
consistent with a diagnosis of
thyroid-associated ophthalmopathy (TAO),
also known as Graves' orbitopathy. The key
features supporting this diagnosis include the
progressive painless diplopia, isolated
Query Image limitation of right eye abduction, abnormal

N thickening and enhancement of the right
lateral rectus muscle on MRI, and negative
results for infection and autoimmune discase
tests...

Figure 2: SemiH Vision curation pipeline. We target two data gaps—(i) lack of end-to-end, clinical
diagnosis supervision and (ii) neglect of non-imaging clinical evidence. Human-annotated branch:
clinicians annotate image findings and link them to clinical history and labs/vitals/medications,
aligning report structure (findings — differentials — impression/plan). GPT-40 then reformats
these into instruction-style Q&A and evidence-linked captions without altering the expert content.
Unannotated branch: for studies without labels, a lightweight retriever surfaces openguidelines
snippets (Chen et al.|[2023)) and similar cases; GPT-40 drafts instructions/captions conditioned on this
context, followed by expert screening and edits. Both branches are standardized into a training-ready
schema that preserves (a) study-level clinical context, (b) region-level imaging evidence, and (c)
stepwise diagnostic reasoning targets, yielding supervision aligned with real clinical diagnosis rather
than caption-style recall.

2.2 MEDICAL MULTIMODAL MODEL

In recent years, several efforts have fine-tuned general-purpose multimodal models on medical data,
yielding promising results. For example, Med-Flamingo (Moor et al.|[2023) adapted OpenFlamingo-
9B (Chen et al.}[2024a) with a small-scale medical corpus, and Med-PaLLM (Tu et al., 2024) extended
PaLM-E (Driess et al., 2023) using one million medical image—text pairs. Similarly, models like
LLaVA-Med, Med-Gemini (Saab et al.l 2024), and HuatuoGPT Vision have utilized instruction
tuning over curated PubMed-derived datasets for medical QA. However, these efforts primarily rely
on image—caption pairs or short-form Q&A extracted from biomedical literature (e.g., PubMed),
and therefore lack exposure to the complex, multi-step reasoning required in real-world clinical
scenarios. In contrast, we train SemiHVision-8B-AN model on our SemiH Vision corpus, which is
explicitly grounded in clinical guidelines and case-based supervision. As a result, our model demon-
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strates stronger capabilities in end-to-end clinical reasoning, including patient history interpretation,
differential diagnosis, evidence justification, and final decision-making.

3 SEMIHVISION

SemiH Vision explicitly tackles (L.1) the lack of end-to-end, real diagnostic workflows and (L2) the
lack of multi-view/multi-modal evidence by designing multi-stage instruction fine-tuning data directly
from clinical cases. Each case is organized along the diagnosis workflow and yields supervision
for detection/localization — evidence attribution — diagnosis/next step, while evidence from the
same case is linked across views and modalities with ROI grounding and clinical context. This
case-centric, study-level construction both supervises the full diagnostic workflow (resolving L1) and
aligns cross-view/cross-modal signals needed for accurate synthesis (resolving L2).

3.1 DATA COLLECTION

Data Source and Image Selection Strategy To endow the model with the missing L2 capability, we
curate complete, multi-view/multi-modal datasets, preserve series/view structure, and deliberately
balance coverage across CT/X-ray/MRI/US/histopathology so the model can learn cross-view corre-
spondences and case-level synthesis. For pretraining, we filter PubMed-derived items (25M — 14M
after removing corrupted/short texts) and purge non-medical PMC items using a lightweight classi-
fier, then rebalance toward underrepresented, clinically critical modalities (MRI, X-ray) and retain
series/view structure (AP/LAT, CT slices, MRI sequences). For 3D studies, we use provided slice
IDs and evenly sample additional slices, capping each study at <20 2D slices to preserve intra-study
continuity without overwhelming redundancy. This case/study-centric sampling preserves cross-view
correspondences and ROI continuity needed to learn multi-view fusion (details in Appendix [A.8]
Table ).

Human Annotated Workflow To supervise the end-to-end diagnostic workflow (LL1), we prior-
itize expert—labeled sources (e.g., Eurorad, Radiopaedia) that mirror real workflows (history —
findings — differential — impression/plan). Because raw annotations vary in length and style, we
standardize them into consistent workflow fields and align sentences to views/ROIs. For lengthy
reports (e.g., Eurorad), we decompose into (i) per-image findings, (ii) study-level synthesis, and
(iii) discussion/decision text, regenerating only format (not content) to ensure consistency while
preserving expert intent. The result is study-level supervision that simultaneously (i) teaches stepwise
reasoning and decisions (addresses L.1) and (ii) ties claims to specific views/slices and clinical context
(supports L2). Further details appear in Appendix [A.9]

3.2 DATA CONSTRUCTION PIPELINE

Guided by the above limitations, we construct a clinically grounded multimodal corpus from two
sources—human-annotated clinical cases and unannotated medical images—so that training targets
preserve study structure and fuse imaging with non-imaging clinical evidence.

Stage I: Clinical curation and indexing. We curate complete imaging studies with accompanying
clinical context from Eurorad and Radiopaedia (reports, case descriptions, and region-of-interest (ROI)
hints when available), and build a guideline repository from OpenGuidelines (Chen et al.,2023)). Each
study retains its series/view organization (e.g., multi-view radiographs, CT/MRI slices) and is linked,
when available, to patient-level variables (history, labs, vitals, medications). We normalize report
sections into a consistent template (findings, differentials, impression/plan), harmonize modality/view
tags, and de-duplicate near-identical cases. A lightweight image+text retriever (UnilR with fusion
scoring) indexes both the guideline corpus and the image—report collection, enabling retrieval of
authoritative guidance and closely related cases for studies lacking annotations. This preserves
end-to-end diagnostic context rather than reducing supervision to single-image captions.

Stage II: Multi-View Evidence Linked. For human-annotated cases, we restructure existing
reports into a process-centric template (evidence — Image Findings — Diagnosis) and align sentence
spans to ROIs; clinical signals (history, labs, vitals, medications) are propagated and explicitly
referenced where they inform the differential. For unannotated images, the retriever surfaces a small
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set of supportive items (typically k=4; at least one guideline plus similar cases), which serve as
context for GPT-4o to draft evidence-linked captions and provisional reports conditioned on study
structure and ROI cues. Drafts undergo expert screening/edits to remove unsupported statements,
enforce explicit ties between textual claims and image evidence (with ROI references), standardize
terminology (e.g., laterality, anatomy), and ensure that non-imaging clinical signals are correctly
integrated. This converts both branches into supervision that teaches how localized visual evidence
and clinical context jointly shape the differential and impression.

Stage III: Diagnosis Workflow Construction. From the curated reports and captions, we pro-
grammatically form instruction—response pairs that supervise the diagnostic workflow end-to-end: (i)
Detection/Localization—identify and localize salient findings with explicit slice/view/ROI references;
(i1) Evidence Attribution—explain differentials by citing the supporting image regions and pertinent
clinical signals; (iii) Diagnosis & Next Step—state a working diagnosis and propose an appropriate
next diagnostic action. To reduce shortcut learning, we introduce normal and negative constructions
with clear purpose and provenance: normal controls (studies without acute findings, requiring a
justified “no acute finding” answer), absent-lesion distractors (plausible pathologies drawn from
guidelines/similar cases but not present in the current study, used to test evidence checking), and
near-miss distractors (findings that occur in anatomically adjacent regions or on alternate views/slices
to test precise localization). For each negative, responses must state why the distractor is not supported
(e.g., incorrect region, contradictory clinical labs), which trains the model to verify rather than recall.
We balance positive/negative instances per study (e.g., 1:1-1:2 depending on modality) and label
each item with machine-readable fields (study id, modality, series/view, ROI refs, clinical signals,
findings, differentials, diagnosis, next step, evidence citations) to produce a training-ready schema
consistent across views/series and modalities. The overall process is illustrated in Figure [2] Finally,
we conducted a human evaluation of data quality. Finally, we conducted a human evaluation of data
quality. Three physicians (each with 10+ years of clinical experience) independently reviewed 100
randomly sampled cases, checking whether the synthesized constructions matched the original cases;
95% were fully consistent, with an inter-rater agreement score of 0.90.

3.3 DATA FEATURE ANALYSIS

MRI(1.80%) M(2.12

Xeray(0.77%) Pathology (8.44%) — ey X-ray(15.61%)
MRI(

()

210,
CT(9.09%) 1.31%)

Camera(1.63

Non-Medical (6.69%)
Simulated
illustration (12.31%)

Original SemiHVision
PMC

Non-Medical(58.03%) CT(31.15%) Histopathology
(20.79%)

Figure 3: A comparative distribution of image modalities between the original PMC dataset and the
SemiH Vision dataset. The original PMC dataset contains a significant portion of non-medical content
(58.03%), with a relatively lower representation of key medical imaging modalities like MRI (1.80%)
and X-ray (0.77%). In contrast, the SemiHVision dataset demonstrates a more balanced distribution,
with a substantial increase in clinically relevant modalities such as CT (31.15%), MRI (21.31%), and
X-ray (15.61%), while minimizing the presence of non-medical images (6.69%).

Unlike traditional methods for generating instruction datasets, we collected a broader range of human-
annotated data across multiple modalities. We conducted a distribution analysis on randomly sampled
200k entries from both the original PMC and SemiH Vision datasets. Expert annotators classified
the images into categories such as X-ray, DSA, CT, MR, PET/SPECT, Ultrasound, Histopathology,
and others. Additionally, we employed GPT-40 for image classification, and to ensure accuracy, a
random sample of 100 images was reviewed by human experts, yielding a classification accuracy of
73%. We focused on analyzing higher-frequency modalities, as depicted in Figure [3] The analysis
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Reality A=0.56 Exactness A=0.18 Reasoning A=0.28

MedTrinity 0.25 PubMedVision 0.67 PubMedVision 0.55
PubMedVision 0.21 PMC-OA 0.45 Med-LLaVa 0.39
Med-LLaVa 0.18 MedTrinity 0.41 MedTrinity 0.36

PMC-OA 0.16 Med-LLaVa 0.36 PMC-OA 0.32

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure 4: Compared with legacy medical QA datasets, which mainly provide image captions or
caption-derived Q&A without full case context (e.g., PMC-OA and MedTrinity list images with
descriptive text but no question; PubMedVision offers PubMed-style Q&A), SemiHVision pairs
images with clinical history, imaging findings, differential cues, and diagnosis prompts that mirror real
workflows. We quantify clinical-scene fidelity using a five-level rubric (1-5; poor—excellent). First,
automatic screening: Qwen2.5-VL scores up to 1M samples per dataset by assigning log-probabilities
to labels 1-5 and converting them into expected rubric scores; we rank items and keep the top 1k per
dataset. Second, three physicians independently rate the retained datasets along Reality, Exactness,
and Reasoning; scores are mapped to five grades and then normalized to [0, 1], after which we
report per-dataset means. The figure shows three panels (one per axis) as A-lollipop plots: each
marker’s horizontal position encodes the normalized mean; A annotates the gap between the best and
second-best. Result: current medical-QA datasets remain far from real clinical scenarios on all three
axes, while SemiH Vision achieves the highest clinical-scene fidelity.

revealed that non-medical images constitute a significant portion of the original PMC dataset, with
simulated illustrations like statistical charts being the second largest category. In contrast, clinically
critical modalities like CT, MRI, and X-ray were significantly underrepresented, highlighting the
scarcity of these essential medical images in the PMC dataset. Despite prior filtering efforts, the
low representation of modalities like MRI and X-ray means the final dataset still lacks sufficient
numbers of these images. For the SemiHVision dataset, we performed a similar sampling and
distribution analysis. Unlike the PMC dataset, not all entries were classified using GPT-40, as some,
such as those from Quilt-1M, were already pre-labeled. The resulting distribution demonstrates that
SemiH Vision contains a more balanced representation of clinically relevant modalities. Notably,
modalities underrepresented in the PMC dataset, such as MRI and X-ray, have a much higher
proportion in SemiH Vision, ensuring more comprehensive coverage of medical knowledge essential
for model training and expanding the scope of medical expertise.

4 EXPERIMENT SETTINGS

We adopt a two-step protocol. Step 1 (LL1): train SemiH Vision-8B with workflow-supervised SFT
to teach the full clinical pipeline (history — findings — differential — impression/plan). We then
evaluate both traditional medical VQA (SLAKE, VQA-RAD, PathVQA, PMC-VQA) and JAMA
to verify that learning the workflow yields broad gains across standard tasks and improves diag-
nosis structure on case problems. Step 2 (L2): after annealing on study-level, multi-view/multi-
modal cases to teach cross-view synthesis. We re-evaluate, with emphasis on JAMA'’s rubric (Key
Points/Inference/Evidence) and cross-view consistency checks, to test whether the model now uses
multi-view evidence to handle real-world clinical diagnosis.

4.1 TRAINING EXPERIMENT SETUP

During the training of SemiHVision-8B, we employed a two-stage process. First, we filtered the
original PMC dataset by removing captions with fewer than 20 words, yielding a final dataset of
14 million samples. We then pre-trained the model on this refined dataset using a learning rate of
le-4 and an image token length of 512. DeepSpeed Stage 2 was utilized, with a batch size of 8 and a
gradient accumulation step of 6. During this stage, we focused solely on training the adapter while
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Model VQA-RAD SLAKE PathVQA PMC-VQA Avg.
GPT-40-mini 45.9 59.0 37.9 33.3 44.0
Claude3-Opus 52.5 55.2 54.3 60.7 55.7
Med-Flamingo 454 43.5 54.7 233 41.7
RadFM 50.6 34.6 38.7 25.9 37.5
LLaVA-Med-7B 514 48.6 56.8 24.7 45.4
Qwen-VL-Chat 47.0 56.0 55.1 36.6 48.9
Yi-VL-34B 53.0 58.9 473 39.5 49.7
LLaVA-7B 52.6 57.9 479 35.5 48.5
LLaVA-13B 55.8 58.9 51.9 36.6 50.8
LLaVA-34B 58.6 67.3 59.1 44 4 57.4
LLaVA-8B 54.2 59.4 54.1 36.4 51.0
+ LLaVA_Med 60.2 61.2 54.5 46.6 55.6
+ PubMedVision 63.8 74.5 59.9 52.7 62.7
HuatuoGPT-Vision-34B 68.1 76.9 63.5 58.2 66.7
Our Model

SemiHVision-8B-20M 67.8 76.1 57.8 53.6 63.8
SemiHVision-8B 69.2 77.2 63.6 58.4 67.1
SemiH Vision-8B-Mix 74.2 81.3 76.3 59.1 72.2
SemiHVision-8B-AN 86.1 87.7 80.4 61.9 79.0

Table 1: Performance comparison of various models on medical VQA benchmarks (VQA-RAD,
SLAKE, PathVQA, PMC-VQA) with average scores is presented. SemiH Vision-8B-20M refers to the
model trained using all slices from the 3D dataset. SemiH Vision-8B prioritizes human-annotated slices
and selectively sampled portions for training, using GPT-4o0-generated synthetic data. SemiH Vision-
8B-Mix is trained by combining both the human-annotated datasets and the GPT-4o0-generated
synthetic datasets. SemiH Vision-8B-AN is the result after annealing on human-annotated datasets
based on SemiH Vision-8B.

freezing the other model components. The pre-training phase ran on four H100 GPUs for 420 hours.
This stage provides generic vision—language grounding prior to task-specific supervision.

In the fine-tuning phase, we used the SemiH Vision dataset with a learning rate of 2e-5, while keeping
the DeepSpeed Stage 2 configuration, with a batch size of 6 and a gradient accumulation step of 6.
Unlike the pre-training phase, the full model parameters were trained. This fine-tuning process was
conducted on 8 H100 GPUs for 90 hours. For instruction tuning, we divided the process into two
phases: standard instruction tuning and the Annealing phase which is the same as Llama3 (Dubey
et al.l2024). The learning rate in Annealing phase is 1e-5. During the instruction tuning phase, we
used non-human-annotated data, primarily GPT-40-generated synthetic data. In the Annealing phase,
we focused on human-annotated data, where GPT-40 applied further augmentation to enhance the
dataset (The details are shown in Appendix [A.3).

4.2 AUTOMATIC EVALUATION PIPELINE

We evaluate on both traditional medical VQA benchmarks and a case-based JAMA benchmark
(Appendix [A.4). Because surface-similarity metrics (e.g., FI/ROUGE) are ill-suited to clinical
reasoning, our pipeline uses two stricter measures: UMLS-F1 (concept overlap via SciSpacy/UMLS;
Appendix[A.7) and a blinded GPT-40 rubric score. The rubric assesses fine-grained diagnostic ability
along three doctor-designed axes—Key Points (coverage of critical clinical elements in the reference),
Inference (correctness and completeness of the stepwise diagnostic path), and Evidence (whether
claims are grounded in specific findings, imaging views/ROlIs, or clinical signals). To reduce stylistic
bias, model outputs are style-normalized before judging, and the judge sees only extracted gold
summaries of Key Points/Inference/Evidence, not the full reference text. Concretely, on Medical
VQA (SLAKE, VQA-RAD, PathVQA, PMC-VQA) we report accuracy to test whether learning the
end-to-end workflow (L1) yields broad gains on standard tasks; on JAMA we report (i) close-ended
accuracy where applicable, (ii)) UMLS-F1, and (iii) the blinded rubric score, which explicitly stresses
multi-view evidence use and attribution, thereby probing L2.
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5 RESULTS

5.1 ADDRESSING L1 RAISES PERFORMANCE ON TRADITIONAL BENCHMARK

Results on Traditional Benchmark. Table[llshows that SemiH Vision models fine-tuned on GPT-40
synthetic data significantly outperform both general-purpose and medical-specific models on standard
medical VQA benchmarks: SemiHVision-8B reaches an average 67.1%, surpassing the much larger
HuatuoGPT-Vision-34B (66.7 %) and exceeding a similar-sized LLaVA-8B trained on PubMedVision
by +4.4% . Further, when we anneal by continuing training on human-annotated diagnostic data,
SemiH Vision-8B-AN achieves an outstanding 79.0%, outperforming SemiH Vision-8B-Mix (72.2%)
and beating HuatuoGPT-Vision-34B by 18.4%. It also exceeds private models Claude3-Opus (55.7%)
and GPT-40-mini (44.0%). These results indicate that—notwithstanding parameter count—our study-
aware, clinically grounded supervision delivers larger gains on recall-heavy VQA metrics than
caption-centric pretraining alone, and annealing on human-annotated cases further amplifies these
gains.

Why fixing L1 helps on traditional VQA. L1 targets the lack of end-to-end, clinically workflow
supervision. By preserving study structure (views/series), tying text to report fields (findings, differ-
entials, impression), and injecting clinically grounded targets via annealing, supervision shifts from
single-image captions to case-level, evidence-aware signals. Although traditional VQA benchmarks
primarily reward knowledge recall rather than full diagnostic workflow, this end-to-end, study-aware
supervision increases structured fact density and reduces spurious shortcuts, which directly maps
to higher answer accuracy on recall-style questions. Hence, addressing L1—first through curated,
report-anchored pretraining (yielding 67.1%; +4.4% over PubMedVision and even above the 66.7 %
larger model) and then through annealing with human-annotated diagnostic data (up to 79.0%,
+18.4% over Huatuo-34B)—systematically raises traditional benchmark performance without relying
on parameter scale.

Annealing and overall lift. To demonstrate the importance of annealing, we trained two mod-
els: SemiH Vision-8B-Mix, which mixes GPT-40 synthetic data and human-annotated data, and
SemiH Vision-8B-AN, which is first trained on GPT-40 synthetic data and then annealed on human-
annotated data. SemiH Vision-8B-AN achieves an outstanding 79.0% average accuracy, surpassing
SemiH Vision-8B-Mix (72.2%) and outperforming HuatuoGPT-Vision-34B by 18.4%. Compared to
private models like Claude3-Opus (55.7%) and GPT-40-mini (44.0% ), SemiH Vision-8B-AN consis-
tently excels across benchmarks, underscoring that addressing L1 (end-to-end, clinically grounded
supervision of studies rather than single captions) systematically raises traditional recall-style scores.

5.2 ADDRESSING L1 & L2 IMPROVES DIAGNOSTIC REASONING ON REAL-WORLD CASES

Claude3-Opus GPT-40-mini Huatuo-7B Huatuo-34B SemiHVision SemiHVision-AN

Accuracy 58.4 46.2 34.5 44.7 41.2 58.5
UMLS Factuality 0.18 0.16 0.13 0.16 0.11 0.23
GPT-4 Overall 1.17+0.04 0.91+0.06 1.08+0.03 1.134+0.05 0.78 £0.04 1.29+0.02
GPT-4 Key-Points 1.27 0.99 1.11 1.01 0.82 1.28
GPT-4 Inference 1.56 1.13 1.06 1.06 0.63 1.32
GPT-4 Evidence 0.67 0.60 1.08 1.31 0.89 1.27

Table 2: UMLS-F and GPT-4 score on JAMA Clinical Challenge across 6 different models :Claude3-
Opus, GPT-40-mini, Huatuo-GPT-Vision 7B, Huatuo-GPT-Vision 34B, SemiH Vision, SemiH Vision-
AN. We also change Deepseek model to evaluate them to eliminate the bias as shown in Table E]

While public medical MLLMs often look strong on traditional benchmarks—occasionally even
surpassing advanced general models like Claude3-Opus—a critical question remains: Do medi-
cal MLLMs actually outperform general MLLMs on clinical tasks? To answer this, we evaluate
six models—Claude3-Opus, GPT-40-mini, Huatuo-7B, Huatuo-34B, SemiH Vision, SemiH Vision-
AN—on the JAMA Clinical Challenge using our evaluation pipeline (Table [2). We report both
accuracy (standard close-ended QA) and diagnostic reasoning via the automatic scoring pipeline in
Sec. 4.4, decomposed into Key Points, Inference, and Evidence. Despite strong traditional-benchmark
results (e.g., SemiHVision-AN accuracy 58.5%), models struggle on JAMA: Huatuo-34B excels
on Evidence (1.31, higher than Claude’s 0.67) yet shows weaker Inference (1.06); in contrast, the
general models Claude3-Opus and GPT-4o0-mini achieve Inference 1.56 and 1.13, respectively. These
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findings indicate that larger medical-specific models can memorize domain facts without translating
them into superior diagnostic reasoning—i.e., medical MLLMs do not necessarily outperform general
MLLMs on clinical tasks requiring inference.

Human study and reliability. To corroborate the automatic pipeline, three medical professionals
reviewed a 100-question sample and expressed preferences between rationales from Claude3-Opus
and SemiH Vision given the gold rationale. Results align with automation:SemiHVision-AN attains a
0.57 win rate over Claude3-Opus, supporting the reliability of our automatic evaluation.

Training for robust diagnostic capability (annealing). Addressing How can we train a medical
MLLM with robust diagnostic capabilities?, we instruction-tune SemiH Vision. Initially, it can answer
medical QA but scores lower across metrics, particularly Inference (0.63), due to the absence of
human-annotated diagnostic supervision. After applying annealing—pretraining on GPT-40 synthetic
data then fine-tuning on human-annotated diagnostic data—the enhanced SemiH Vision-AN achieves
the top GPT-4 Overall score 1.29 and competitive accuracy 58.5%. This demonstrates that integrating
high-quality, human-annotated diagnostic data substantially improves diagnostic reasoning and can
surpass models trained solely on synthetic or unannotated data (e.g., PubMedVision).

Why fixing L2 helps—and why traditional
metrics can mislead. Traditional VQA sets are
dominated by knowledge items (SLAKE 78.1%,
VQA-RAD 76.4%, PathVQA 69.2%), so mod-
els can score well by recalling single-view facts
or template associations; JAMA contains far
fewer knowledge items (44.9%) and instead re-
quires inference from multiple views/modalities
(Fig.[5). This mismatch explains why surface ac-
curacy on VQA can overstate clinical readiness:
those tests rarely force cross-view corroboration,
ROI grounding, or contradiction checks. Ad-
dressing L2 changes the mechanics of reasoning:
(i) triangulation—the model must align findings SLAKE ~ VQA-RAD Path-VQA  JAMA
across AP/LAT, sequences/slices, and modalities

to confirm or refute a hypothesis (e.g., pneumo- Figure 5: This figure illustrates the proportion of
nia vs. atelectasis); (ii) disambiguation—look- questions assessing knowledge and inference in the
alikes are separated by view-dependent cues Slake, VQA-RAD, Path-VQA, and JAMA Clincial
(projection, windowing, phase) and linked to Challenge datasets.

clinical signals (labs, history); (iii) attribution

and counterfactuals—claims must cite specific ROIs/views and remain consistent if a view is re-
moved or replaced, reducing shortcut heuristics; and (iv) temporal/study coherence—evidence must
agree across related images from the same case. Once these constraints are learned, JAMA’s rubric
dimensions improve because they directly reward multi-evidence synthesis: Inference rises from 0.63
to 1.32, Overall from 0.78 £ 0.04 to 1.29 &£ 0.02, and UMLS-F1 from 0.11 to 0.23. As a judge-bias
check, re-scoring with DeepSeek yields consistent conclusions (Table [7)).

80
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40
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6 CONCLUSION

In summary, we diagnose two root causes of current medical MLLM underperformance—L1 the
absence of end-to-end diagnostic workflow supervision and L2 the lack of multi-view/multi-modal
evidence alignment—and address both with SemiH Vision, a case-centric, study-level, multi-stage
instruction corpus. Trained first for workflow competence and then annealed on expert, study-level
data to learn cross-view synthesis, SemiHVision-AN attains SOTA on traditional medical VQA while
also delivering large gains on the JAMA Clinical Challenge, where evidence-linked reasoning is
required. Our evaluation pipeline—combining accuracy, UMLS-F1, and a blinded rubric on Key
Points, Inference, Evidence—confirms that improvements are not merely stylistic: models trained
on SemiHVision generalize better across standard tasks after fixing L1 and, after fixing L2, more
reliably integrate corroborating findings across views/ROIs and clinical signals to support real clinical
diagnosis. SemiHVision thus provides both the data recipe and training protocol needed to convert
caption-style knowledge into clinically grounded diagnostic reasoning.
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7 LIMITATIONS AND ETHICAL CONSIDERATIONS

Despite the promising results demonstrated by SemiHVision-AN, several limitations warrant con-
sideration. Firstly, the coverage of anatomical regions in our dataset is limited due to the scarcity of
high-quality, human-annotated medical data. While we have incorporated multiple imaging modalities
such as X-ray, CT, and MRI, the representation across different body parts remains uneven. This
imbalance may affect the generalizability of our model in diverse clinical scenarios, potentially
limiting its performance on underrepresented regions. Additionally, the model size is constrained
to 8 billion parameters, which, while efficient for training and deployment, may restrict the ability
to handle more complex reasoning tasks that require deeper understanding and broader context.
Exploring larger model architectures could enhance diagnostic performance in future work.

Moreover, the broader societal impacts of deploying SemiH Vision-AN necessitate careful consid-
eration. Automated medical systems hold significant potential for improving healthcare efficiency
and accuracy but could also influence the roles of medical professionals and patient care practices.
It is crucial to approach the implementation of such technological solutions with caution, ensuring
they serve as a complement rather than a replacement to the expertise of healthcare professionals.
Balancing technological advancement with ethical considerations is essential to maximize benefits
while mitigating potential risks in clinical practice.

8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All models and algorithms
are described in detail in the main text (Sections 3), with theoretical formulations of the motivation
provided in section 3. The description of datasets and preprocessing steps is given in Section 4.
Hyperparameters and training configurations are reported in Section 4.
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A APPENDIX

A.1 LLM USAGE

In accordance with the ICLR 2026 policies on LLM usage, we disclose how LLMs were used in
this work. LLLMs were employed to assist with grammar polishing, wording improvements, and
drafting text during paper preparation. All technical content, proofs, experiments, and analyses were
conceived, implemented, and validated by the authors. Authors remain fully responsible for the
correctness of the claims and results.

No LLMs were used to generate research ideas or produce results. No confidential information was
shared with LLMs, and no prompt injections or other inappropriate uses were involved.

This disclosure aligns with the ICLR Code of Ethics: contributions of tools are acknowledged, while
accountability and verification rest entirely with the human authors.

A.2 TEMPLATE PROMPT

Generate Instruction Data In constructing our instruction dataset, we utilize both closed-ended
and open-ended question formats. For closed-ended data, such as PMC-VQA, Amboss VQA, JAMA
train VQA, Slake train VQA, VQA-RAD train, and Path VQA, we generate answer options only. For
open-ended tasks, particularly from JAMA datasets, we also require the model to provide reasoning
along with the answers. Additionally, GPT-40 is employed to generate question-answer pairs (QAPs)
based on the images and their corresponding augmented captions, with each caption paired with 3 to
10 QAPs depending on its length and complexity. The questions generated are carefully designed
to be directly related to the images, ensuring that answers can either be explicitly found or inferred
from the caption content. The template prompt deatils are shown in Table[d This approach minimizes
dataset’s hallucinations by grounding GPT-40’s output in the information provided in the captions
and image data. Furthermore, we utilize a multigranular informtaion, such as specific ROI, and the
broader medical context that connects local and global abnormalities to improve model’s fine grained
ability. By following this structured methodology, we ensure the generation of high-quality, clinically
relevant instruction data that improves the accuracy and interpretability of the models.

Evaluation Pipeline Prompt: When evaluating close QA, we only need to calculate accuracy.
However, many open QA tasks, such as diagnostic reasoning questions in the JAMA Clinical
Challenge, present additional challenges. Although several methods exist for measuring textual
similarity, such as F1 or ROUGE, both approaches have significant limitations in the medical domain.
Therefore, we propose a very strict evaluation pipeine by using two evaluation metrics: the USMLE-
Factuality score and the GPT-40 score. For the GPT-40 score, directly allowing GPT-40 to grade the

12



Under review as a conference paper at ICLR 2026

answers is often ineffective, as GPT-4o tends to favor answers that align with its preferred linguistic
style, which may not match our intended criteria. Thus, we introduce a scoring framework to evaluate
model’s fine grained diagnostic ability based on three aspects: Key Points, Inference, and Evidence
which is designed by doctors(The details are shown in Appendix [A.2):

» Key Points assess whether the model’s answer includes the critical elements present in the
ground truth.

* Inference evaluates whether the diagnostic reasoning in the model’s answer is correct,
follows the same steps as the ground truth, and whether any key steps are omitted.

* Evidence examines whether the model’s answer provides the crucial evidence to support its
conclusions or diagnostic reasoning.

Finally, an average score will be calculated to represent the overall quality of the answer. To further
reduce the influence of linguistic style on GPT-4’s scoring, we propose revising all model-generated
answers through GPT-4, ensuring that all outputs align with GPT-4’s own style distribution. During
this revision, GPT-4 will only see the model’s answer, without access to any other information.

When scoring, GPT-4 will generate its own summaries of Key Points, Inference, and Evidence
based on the ground truth. When assigning scores to these aspects, GPT-4 will no longer see the
original answer but will only reference its summarized Key Points, Inference, and Evidence. For
further details, please refer to Table 5] [6]

Model VQA-RAD (Finetuned) SLAKE (Finetuned) PathVQA (Finetuned) PMC-VQA (Finetuned) Avg.
Fine-tuning on the training set.

LLAVA-v1.5-LLAMA3-8B 63.3 68.9 85.2 50.3 66.9
LLAVA_Med-8B 66.3 69.5 90.7 52.7 69.8
HuatuoGPTVision-8B 68.9 84.1 93.0 57.3 75.8
SemiH Vision 88.3 91.1 92.7 88.6 90.2

Table 3: Finetuning results on VQA-RAD, SLAKE, PathVQA, and PMC-VQA datasets.

A.3 INSTRUCTION TUNNING

Real-World Medical Task

. . i - 3> | Stage 2: Finetune On GPT-40 Stage 3: Annealing On Human - Medical VQA
Stage 1: Pretrain On PMC Data % Synthesis Data Annotated Dataset - Radiology Report Generation
o - - Diagnosis
14M Data (1600 H100 Hours) ® | l4M Data (640 H100 Hours) 1M Data (160 H100 Hours) Trl-;lditi\(;?;l/chnthmark
- Path
- SLAKE VQA

Figure 6: We apply three stages to train SemiH Vision.

We employed an annealing strategy in training SemiH Vision-AN to enhance its diagnostic capabilities.
Empirically, annealing on small amounts of high-quality, human-annotated data significantly boosts
performance on key benchmarks. Similar to Llama3, we performed annealing with a data mix
that prioritizes high-quality data in select domains, excluding any training sets from commonly
used benchmarks. This approach allowed us to assess the true few-shot learning capabilities and
out-of-domain generalization of SemiH Vision-AN.

We evaluated the efficacy of annealing on the JAMA Clinical Challenge and other diagnostic reasoning
benchmarks. The annealing process substantially improved the performance of the pre-trained
SemiH Vision-8B model, demonstrating enhanced reasoning abilities and clinical applicability. These
improvements suggest that, even with a model size constrained to 8 billion parameters, strategic
annealing with high-quality data can compensate for limitations in model scale, enabling the model to
handle complex reasoning tasks requiring deeper understanding. The whole training phase is shown
in figure[6]
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Table 4: Generate Instruction Data Prompt Example Template.

System Prompt

Medical Guideline

Instruction Prompt

Clinical Case

Format Prompt

Title: Accessory
right inferior
hepatic vein

Analyze the provided MRI image and generate a detailed and professional medical re-
port that describes only the abnormalities, significant features, or relevant observations
directly seen in the image. Use precise medical terminology and maintain a formal
tone. Do not include any introductory phrases, such as "The provided image reveals,"
or any concluding remarks. Here are some relevant medical guidelines and Clinical
cases for you to generate.

Angioplasty (PTBA) of the hepatic vein is a safe and effective treatment for Budd-
Chiari syndrome (BCS) caused by hepatic venous outflow obstruction. This study,
conducted between September 1996 and October 2008, included 101 patients (52
males, 49 females) with a mean age of 31.3 years, all presenting with symptomatic
portal hypertension. Of these, 92 patients underwent successful PTBA, targeting the
right, left, or accessory hepatic veins, with a technical success rate of 91%. PTBA
significantly reduced hepatic venous pressure. ..

Your second task is to generate 1-2 valuable questions and their corresponding answers
that are relevant to the image’s content and it would be better that the answers could be
explicitly found within the discussion.

Axial sections shows flip-flop enhancement
pattern suggestive of congested liver with
non-opacification of hepatic veins. Ostial narrowing of the accessory hepatic vein.

U2 )

Image Findings: The patient underwent contrast-enhanced computed tomography
which showed features of a congested liver with flip-flop pattern of enhancement.
Hepatic veins show hypoattenuation on delayed phase. An accessory hepatic vein is
also noted in segment VI. A diagnosis of Budd Chiari syndrome (BCS) was made on the
basis of the clinical and imaging features. The patient was referred to the interventional
radiology team for an endovascular rescue. On conventional venogram, the diagnosis
of BCS was confirmed as the hepatic veins were thrombosed. An accessory segment
VI hepatic vein was noted draining into the IVC...

Return the results in the following format: Report: report content Question:Question
content Answer:Answer content. Don’t generate any other information Here is the
image and discussion:

(€]

Discussion:Marked dilatation of the pulmonary trunk (6.7 cm) with the right (5.4
cm) and left (4 cm) main branches. Lung window shows mild bilateral diffuse faint
groundglass centrilobular lung nodules that may reflect an underlying infection. Scans
through the upper abdomen revealed average size cirrhotic liver and reflux of contrast
into the IVC and hepatic veins with Incidental opacification of accessory right inferior
hepatic vein...
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Table 5: Evaluation Pipeline Prompt Example Template.

Extract Key Points

Key Points

Extract Diagnostic
Reasoning

Diagnostic
Reasoning

Extract Evidence

Evidence

Key Points Score

Based on the question and answer, summarize ten key points that you consider to be
the most crucial from the standard answer. Return the response in the following format:
{1.2.3....} Here is the question:{question} Here is the answer:{answer} Please do not
provide any additional information.

1. Multifocal electroretinogram (ERG) showed reduced signal in the right eye through-
out the macula, confirming the diagnosis of AZOOR.2. Acute zonal occult outer
retinopathy (AZOOR) was first described by Gass in 1993...

Based on the question and answer, please provide a detailed summary of the diagnostic
reasoning from the standard answer. Return the response in the following format:
{1.2.3....} Here is the question:{question} Here is the answer:{answer} Please do not
provide any additional information.

1. The patient is a 7-year-old boy with a slowly growing, asymptomatic lump on the left
lower neck since birth.2. Physical examination showed a yellowish, hump-like mass
with a hairy surface and cartilage-like consistency near the left sternocleidomastoid
muscle...

Based on the question and answer, please provide a detailed evidence list which is
proposed by correct answer. Return the response in the following format: {1.2.3....}
Here is the question:{question} Here is the answer:{answer} Please do not provide any
additional information.

1. Slowly growing, asymptomatic lump on left lower neck since birth.2. Physical
examination revealed a yellowish, hump-like mass with hairy surface and cartilage-like
consistency.3. Ultrasonography indicated a hypoechoic, avascular, bulging nodule with
an anechoic tubular structure.4. MRI demonstrated a protuberant nodule with diffuse...
Act as a USMLE evaluator, your role involves assessing and comparing a medical
student’s explanation to the provided target answer. Begin the assessment by carefully
reviewing the provided target answer. Then, based on following specific criteria, de-
termine the score for the student’s answer. Please judge whether medical student’s
answer include these key points(or some other relevant points. But the amount of points
must be complete). For example, ground truth have 10 key points, if student answer
include one key he will get 0.5 point(if the answer include 5 points so should be 2.5).
Medical student’s answer: {answer} Key Points: {Key Point} Please only return a float
number(from O to 5). You should check each point one by one(shouldn’t judge based
on language style such as fluence and so on. Only judge based on whether the student’s
answer include correct or relevant and complete key points). Don’t generate any other
information.

A.4 BASELINE & BENCHMARK

Medical MLLMs: We evaluated three medical multimodal large language models (MLLMs): Med-
Flamingo Moor et al.| (2023), RadFM Wu et al.| (2023), LLaVA-Med-7B [Li et al. (2024) and
HuatuoGPT Vision-34B [Chen et al.|(2024b).

General MLLMs: We assessed the latest models from the LLaVA series, including LLaVA-v1.6-7B,
LLaVA-v1.6-13B, and LLaVA-v1.6-34B [Liu et al.| (2024a). Additionally, we compared these models
with Yi-VL-34B [Young et al|(2024)) and Qwen-VL-Chat Bai et al.| (2023)). Additionally, we also
evaluated several closed-source models: GPT-4-O-Mini and Claude3-Opus.

To evaluate the medical multimodal capabilities of the MLLMs, we employed two types of bench-
marks:

Medical VQA Benchmark: We used the test sets from VQA-RAD |Lau et al.[(2018)), SLAKE |Liu
et al.|(2021), PathVQA He et al.| (2020), and PMC-VQA Zhang et al.[(2023)) to assess the models’
medical question-answering abilities. The experiment settings are the same as HuatuoGPT Vision.

New Diagnosis Reason Benchmark Task: To test the model’s inference and medical knowledge
capabilities, we will evaluate several medical multimodal models on the JAMA Clinical Challenge
datasets. The JAMA Clinical Challenge dataset presents complex real-world cases from the Journal of
the American Medical Association, challenging models with diagnostic and management tasks based
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Inference Score

Evidence Score

Table 6: Evaluation Pipeline Prompt Example Template.

Act as a USMLE evaluator, your role involves assessing and comparing a medical
student’s explanation to the provided target answer. Begin the assessment by carefully
reviewing the provided target answer. Then, based on following specific criteria, de-
termine the score for the student’s answer. Please judge whether medical student’s
answer’s diagnostic reasoning is correct based on ground truth. For example, ground
truth have 10 steps, if student answer include one correct step he will get 0.5 point(if
student have other correct diagnostic reasoning path it should also be correct. But the
amount of evidence must be complete. It means that each step is about 0.5 point if
there are 10 steps). Medical student’s answer: {answer} Ground Truth: {diagnostic
reasoning} Please only return a float number(from O to 5). You should check each
step one by one(shouldn’t judge based on language style such as fluence and so on.
Only judge based on whether student’s diagnostic reason is correct or relevant). Don’t
generate any other information.

Act as a USMLE evaluator, your role involves assessing and comparing a medical
student’s explanation to the provided target answer. Begin the assessment by carefully
reviewing the provided target answer. Then, based on following specific criteria, deter-
mine the score for the student’s answer. Please judge whether medical student’s answer
provide detail evidence such as ground truth. For example, ground truth have 10 evi-
dence, if student answer include one evidence he will get 0.5 point(if student give other
correct detail evidence, it is also correct. But the amount of evidence must be complete.)
Medical student’s answer: {answer} Detail Evidence: {evidence} Please only return
a float number(from O to 5). You should check each evidence one by one(shouldn’t
judge based on language style such as fluence and so on. Only judge based on whether
student propose correct and complete diagnostic evidence). Don’t generate any other
information.

on clinical data and imaging. Together, these datasets provide rigorous benchmarks for assessing the
diagnostic and decision-making performance of MLLMs in real-world clinical settings.

A.5 FINE-TUNED RESULTS

To assess the impact of SemiHVision on downstream tasks, we applied fine-tuning using the bench-
mark training sets. As illustrated in Table [3] SemiHVision substantially enhances performance in
downstream medical tasks, providing notable improvements across all four VQA tasks.

A.6 LANGUAGE STYLE INFLUENCE

While our method still utilizes GPT-4o, it effectively eliminates the influence of language style. This
is because our scoring is based primarily on whether key points are covered and whether there are
any hallucinated key points. Each key point corresponds to a separate score, so variations in language
style do not affect the outcome—Ilanguage style won’t cause the model to include more or fewer
key points. It’s true that switching to a different evaluation model may lead to slight differences
in the extracted key points, which could influence the absolute score. However, keep in mind that
these key points are derived from the ground-truth answer, and LLMs generally perform very well in
summarization tasks. So while there may be changes(for example some model will summarize the
most five key points but GPT4o0 will summarize 10 points), they do not affect the relative ranking of
the scores. For fairness, we also evaluated the subset of data using DeepSeek as the scoring model. As
shown in the Table[7] although the absolute values differ slightly, the relative scores remain consistent.

A.7 FACTUALITY METRICS: UMLS-F1

To evaluate the factual accuracy of LLM outputs, we leverage the UMLS concept overlap metric. The
Unified Medical Language System (UMLS) Bodenreider| (2004) enhances biomedical interoperability
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Table 7: Performance comparison across different models. Bold indicates best performance.

Model Claude3-Opus GPT-40-mini Huatuo-7B  Huatuo-34B  SemiHVision SemiHVision-AN
Accuracy 58.4 46.2 345 447 41.2 58.5
UMLS Factuality 0.18 0.16 0.13 0.16 0.11 0.23
GPT-4 Overall 1.17 0.91 1.08 1.13 0.78 1.29
DeepSeek Overall 2.31 1.95 2.06 2.24 1.86 2.55

by unifying a comprehensive collection of biomedical terminologies, classification systems, and
coding standards. By reconciling semantic variances and representational disparities across different
biomedical repositories, UMLS facilitates standardized understanding.

We employ the Scispacy libraryE] to identify and align medical named entities in texts with their
corresponding UMLS concepts. Scispacy excels in entity recognition, enabling accurate association
of named entities in LLM outputs with relevant UMLS concepts, a critical capability for assessing
factual accuracy.

Our analytical process utilizes precision and recall metrics. Precision measures the proportion of
shared concepts between the LLM output and the ground truth, indicating factual correctness. Recall
assesses how well the LLM output covers the concepts present in the ground truth, reflecting the
relevance of the information. Formally, given the concept sets from the ground truth (C'e) and the
LLM output (Cgey), precision and recall are calculated as:

Precision = 7‘ Crer 0 Cgen| , (1)
| Cen
Recall — |Crer O Ceenl )
|Cref|

The F1 score, derived from these precision and recall values, provides a balanced measure of the
LLM output’s accuracy and relevance.

A.8 DATA SOURCE

The fine-tuning datasets include DeepLesion, MIMIC-CXR-JPG, PadChest, Quilt, LLD-MMRI, and
MAMA-MIA, along with benchmark training QA datasets such as VQA-RAD, Path VQA, PMC
VQA, and Slake VQA, covering multiple modalities like CT, MRI, X-ray and so on. Additionally, we
expanded the dataset with data from Eurorad and Radiopaedia to include more diverse modalities as
shown in table[8] Additionally, to enable the model to support multiple languages, such as Chinese,
we randomly selected 300k datasets and translated them into Chinese for training.

A.9 HUMAN EVALUATION AND CASE STUDY

Case Study for Evaluation We selected a case from the JAMA Clinical Challenge to evaluate the
diagnostic reasoning capabilities of different models, as shown in Table In the case we apply three
different colors: red, blue, brown to ask GPT-40 to annotated key points, inference points and evidence
points. Our analysis revealed that Claude3-Opus performed accurate inference but lacked detailed
evidential support. SemiHVision was able to generate diagnostic reasoning with comprehensive
evidence, incorporating most of the important key points. In contrast, HuatuoGPT Vision-34B and
HuatuoGPT Vision-7B failed to capture the essential key points and were unable to effectively utilize
medical knowledge for detailed inference, despite having access to extensive medical information
that could provide evidence.

Human Annotated Sample Training Data We sampled a case from EURORA]ﬂ For EURORAD
Dataset, there are serveral sections: Image Caption, Clinical History, Image Findings and Discussion
as shown in Table [I2] The Image Caption provides a concise description of each image presented.

2Using the Scispacy en_core_sci_lg model
3The case is sourced from https://jamanetwork.com/journals/ jamaophthalmology/fullarticle/2681464.
*The case is sourced from https://www.eurorad.org/case/16705.

17



Under review as a conference paper at ICLR 2026

Dataset Data Size Modality ROI Human Annotation Slice ID
Deeplesion 24,821 CT X X X
PadChest 150,730 CT X v -
Eurorad 691,370  CT,X-Ray,MRI...(Multi) v v v
MIMIC-CXR-JPG 620,113 X-Ray X v -
LLD 30,390 MRI v X v
MAMA-MIA 76,381 MRI v X v
PMC-VQA 152,603  CT,X-Ray,MRI...(Multi) X v -
Path-VQA 19,654 Pathology X v -
PMC-Instruct 619,606  CT,X-Ray,MRI...(Multi) X v -
Quilt 1,017,416 Histopathology X v -
Radiopaedia 1,131,614 CT,X-Ray,MRI...(Multi) v v v
SLAKE 9,835 CT,X-Ray,MRI X v -
VQA-RAD 1,798 X-Ray,MRI X v -
AMBOSS & JAMA 45,820 Multi & Only Text v v -
Chinese Data 300,000 Multi - - -

Table 8: Data Source.

Table 9: Distribution of Articles Across JAMA Specialty Journals

Journal Count
JAMA Otolaryngology—Head & Neck Surgery 513
JAMA Ophthalmology 466
JAMA Dermatology 368
JAMA (General) 328
JN Learning 299
JAMA Surgery 133
JAMA Oncology 105
JAMA Cardiology 92
JAMA Neurology 61
JAMA Pediatrics 60
JAMA Psychiatry 6

The Clinical History records the patient’s medical background and presenting symptoms. In the
Imaging Findings section, experts analyze the images to arrive at a diagnostic conclusion, combining
observations from all available imaging modalities. The Discussion elaborates on the inference steps
and presents the evidence supporting the diagnosis, along with relevant background information to aid
in understanding how the conclusion was reached. We also present one sample for our SemiH Vision
dataset.

Case Study for Multimodality Retriever We did a case study to prove the important of multi-
modality retriever in our pipeline as shown in Table[I3] The inclusion of a retriever in the image
description task introduces a marked improvement in the specificity and accuracy of the generated
descriptions. Without the retriever, the model (GPT-40) provides a generalized description of the
image, identifying broad anatomical landmarks (heart, aorta, and vertebral column) and speculating
on potential abnormalities, such as a mass or vascular anomaly. While the description is coherent, it
lacks precision, as the model does not have access to clinical guidelines or related cases, resulting in
a speculative rather than a diagnostic interpretation.

In contrast, when the retriever is introduced, the model is supplemented with relevant clinical
guidelines and case data, significantly enhancing its diagnostic accuracy. For example, in the case with
the retriever, GPT-40 correctly identifies the subaortic ventricular septal defect (VSD) and provides a
detailed explanation of its location, dimensions (2.7 cm), and potential clinical implications, such
as abnormal blood flow and symptoms like shortness of breath. The addition of retriever-assisted
information allows the model to go beyond general observations and offer more specific, clinically
relevant insights, directly aligning the image interpretation with known medical cases.
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Dataset Caption Available License

DeepLesion Yes CCBY 4.0

PadChest Yes PADCHEST Dataset Research Use Agreement
Eurorad Yes Creative Commons Attribution 4.0 International License
MIMIC-CXR-JPG No PhysioNet Credentialed Health Data License 1.5.0
LLD Yes LLD-MMRI Agreement

MAMA-MIA Yes CC BY-NC-SA 4.0

PMC-VQA Yes CCBY-SA

PMC-Instruct Yes OpenRAIL

Quilt Yes -

Radiopaedia No Radiopaedia Agreement

JAMA Clinical Challenge No JAMA Agreement

LLaVA-Med Yes CCBY-NC 4.0

Table 10: Overview of caption availability and dataset licenses.

Human Annotator Information We worked with six annotators, all of whom are experts. By experts,
we mean either individuals with an MD degree or radiologists with over 10 years of clinical experience.
For the image classification task, the three annotators hold MD degrees or work on radiology more
than 10 years. For the subsequent human evaluation tasks, such as the one conducted on the JMLR
dataset, we engaged three senior radiologists who assessed the model outputs with reference to the
ground truth. Each of these doctors has more than ten years of professional experience.

19



Under review as a conference paper at ICLR 2026

Table 11: Sample Case in JAMA Clinical Challenge.

[ righteye [B Lefteye

Question: A woman in her mid-20s presented with subacute bilateral vision loss that was worse in the left
eye. Her medical history was remarkable for type 1 diabetes diagnosed at 16 years of age and proliferative
diabetic retinopathy in both eyes that had been treated with panretinal photocoagulation 7 years earlier. She
had undergone pars plana vitrectomy with endolaser to treat a tractional retinal detachment in her right eye
2 years before this presentation. She also had a history of hypertension and chronic kidney disease, and
she was 15 weeks into pregnancy. Visual acuity was 20/50 OD and 20/100 OS. Intraocular pressure was
normal bilaterally, and no relative afferent pupillary defect was detected. Findings of an anterior segment
examination were normal. The patient was in no apparent distress and denied any headache, chest pain, or
focal weakness. Ophthalmoscopic examination (Figure) revealed mild optic nerve head edema that was
greater in the left eye than the right eye with associated nerve fiber layer hemorrhage in the left eye. Nerve
fiber layer infarctions, dot and blot hemorrhages, and lesions caused by panretinal photocoagulation also
were seen bilaterally. Optical coherence tomography showed macular edema that involved the center of the
macula in both eyes (Figure, inset). A. Obtain a fluorescein angiogram B. Determine blood glucose level and
perform glycated hemoglobin test C. Measure heart rate, respiratory rate, and blood pressure D. Perform
immediate computed tomography of the head Answer with the option’s letter from the given choices directly
and give me the reason. Answer with the option’s letter from the given choices directly and give me the
reason

Diagnostic Reason: Malignant hypertension with papillopathy C. Measure heart rate, respiratory rate, and
blood pressure The patient was found to have hypertension, with a blood pressure of 195/110 mm Hg. Heart
and respiratory rates were normal. Measurement of the arterial blood pressure may be performed rapidly
in the clinic with a sphygmomanometer and is essential to rule out malignant hypertension, which is a
potentially life-threatening cause of vision loss. Although the differential diagnosis for bilateral optic nerve
edema is broad, workup should always include assessment of blood pressure when appropriate, because
a hypertensive emergency (also known as malignant hypertension) may cause substantial morbidity or
mortality if not diagnosed and treated promptly. Findings may include macular star, macular edema, serous
retinal detachment, intraretinal hemorrhage, and optic disc edema with or without associated hemorrhage.'-?
Optic nerve head edema may occur with systolic blood pressures as low as 160 mm Hg, with the median onset
occurring at 188 mm Hg.? The macular edema associated with hypertensive retinopathy may be distributed
more nasally, as was seen in this patient.* This patient had mild optic nerve edema despite high systemic blood
pressure and substantial macular edema. This less-pronounced optic nerve edema likely was attributable to
optic nerve atrophy at baseline. Proliferative diabetic retinopathy and panretinal photocoagulation can be
associated with optic atrophy, and atrophic optic nerves tend to become less edematous than healthy optic
nerves.>”’ Regarding the other choices above, a fluorescein angiogram (choice A) would be expected to show
leakage from the optic nerve and macula, but such findings are already available from the optical coherence
tomography, which showed intraretinal and subretinal fluid. Although assessment of serologic levels of
glucose and glycated hemoglobin (choice B) is important in the management of diabetic retinopathy, results
from such tests are not immediately available and have less bearing on the immediate management of the
case (this patient’s glycated hemoglobin level was 10.5% [to convert to a proportion of total hemoglobin,
multiply by 0.01]).
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Performing computed tomography (choice D) would be a reasonable later step, especially if the patient’s
blood pressure was found to be normal, to rule out an intracranial mass. In addition to hypertension, other
causes of optic nerve head edema exist. Papilledema (when optic nerve head edema is secondary to increased
intracranial pressure) is often bilateral and may be caused by intracranial mass lesions, meningitis, cerebral
venous thrombosis, or intracranial hypertension, or it may be idiopathic. Bilateral optic nerve head edema
also may be caused by diabetic papillopathy (which is a rare cause of optic disc edema, but which is bilateral
in up to 50% of cases®®) and toxic optic neuropathies. Optic disc drusen are frequently bilateral and may
cause so-called pseudopapilledema.'? Severe hypertension resulting in acute retinopathy and optic nerve
head edema is considered a hypertensive emergency because of its association with end-organ damage,
namely, damage to the retina and optic nerve. This case serves as a reminder that, although the differential
diagnosis for optic nerve head edema is broad, immediately assessing the patient’s blood pressure to evaluate
for hypertensive emergency in the eye clinic may be critical, because this treatable condition could lead to
substantial morbidity or mortality if diagnosis is delayed. The patient was admitted to the medicine service
for management of hypertension. At an ophthalmology follow-up examination 3 months later, her blood
pressure was 128/73 mm Hg and her visual acuity was 20/40 OD and 20/60 OS, close to her visual acuity
before this acute event. On examination, the optic nerve head edema had resolved, and optical coherence
tomography showed resolution of macular edema.

SemiH Vision: Malignant hypertension with papillopathy C. Measure heart rate, respiratory rate, and blood
pressure The key to the correct diagnosis is the presence of bilateral optic neuropathy in a pregnant woman.
The patient’s history of hypertension and chronic kidney disease, along with the findings of bilateral optic
neuropathies, suggested a systemic etiology. A fluorescein angiogram (choice A) would not be the next step
because the patient was asymptomatic and had no signs of retinal ischemia. A glycated hemoglobin test
(choice B) would not be indicated because the patient had no signs of diabetic retinopathy. A computed
tomography scan of the head (choice D) would not be appropriate because the patient had a normal
examination and no signs of intracranial hemorrhage. Besides hypertension, other causes of optic nerve head
edema exist. Papilledema, which is optic nerve head edema secondary to increased intracranial pressure,
is often bilateral and may result from intracranial mass lesions, meningitis, cerebral venous thrombosis,
intracranial hypertension, or it may be idiopathic. Bilateral optic nerve head edema can also be caused by
diabetic papillopathy—a rare cause of optic disc edema that is bilateral in up to 50% of cases'—and toxic optic
neuropathies. Optic disc drusen, which are frequently bilateral, may lead to so-called pseudopapilledema.
Severe hypertension causing acute retinopathy and optic nerve head edema is considered a hypertensive
emergency due to its association with end-organ damage, specifically affecting the retina and optic nerve.
This case emphasizes that, although the differential diagnosis for optic nerve head edema is extensive,
promptly assessing the patient’s blood pressure in the eye clinic to evaluate for a hypertensive emergency is
critical. Immediate evaluation is crucial because this treatable condition could lead to significant morbidity
or mortality if diagnosis is delayed. The patient was admitted to the medical service for hypertension
management. At an ophthalmology follow-up examination three months later, her blood pressure was 128/73
mm Hg, and her visual acuity improved to 20/40 in the right eye (OD) and 20/60 in the left eye (OS), nearing
her visual acuity before this acute event. Upon examination, the optic nerve head edema had resolved, and
optical coherence tomography showed a resolution of the macular edema.

Claude3-Opus: This case presents several concerning features that make measuring vital signs the most
urgent next step: Bilateral optic nerve edema (worse in left eye) in a young pregnant woman with:

* Type 1 diabetes
» Hypertension
* Chronic kidney disease

* Active pregnancy (15 weeks)
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The key concern here is POSTERIOR REVERSIBLE ENCEPHALOPATHY SYNDROME (PRES), which
is:

* A neurological condition characterized by vasogenic edema
* Commonly associated with severe hypertension
* More common in pregnant women
* Can present with visual symptoms and optic nerve edema
* Can be life-threatening if not treated promptly
Why other options are less appropriate:
* A (Fluorescein angiogram): Contraindicated in pregnancy

* B (Blood glucose/HbAlc): While important for diabetic management, not the most urgent concern
given the presentation

* D (Head CT): While eventually needed if PRES is suspected, vital signs should be checked first as
they’ll guide immediate management

The vital signs are crucial because:
* They will help determine if this is a hypertensive emergency requiring immediate intervention.
* They’re non-invasive and provide immediate critical information

The findings will guide the urgency and direction of further workup

* If severely elevated blood pressure is found, immediate treatment could prevent serious complica-
tions for both mother and fetus

 This represents a potential medical emergency where checking vital signs is the most appropriate
first step to guide immediate management decisions.

Huatuo-GPT-Vision-34B: The patient, who has a history of type 1 diabetes and is currently 15 weeks
pregnant, presents with optic nerve head edema, macular edema, and hemorrhages in both eyes; therefore, it
is crucial to assess her blood glucose levels and perform a glycated hemoglobin (HbAlc) test to evaluate
and manage her glycemic control status, as this evaluation is essential to identify any acute changes or
complications related to her pregnancy and existing diabetes, since poor glycemic control can lead to rapid
progression of diabetic retinopathy, exacerbate ocular conditions, and pose significant risks to both maternal
and fetal health—including the potential for congenital anomalies, preeclampsia, and worsening of chronic
kidney disease—thus, timely assessment and adjustment of her diabetes management plan are vital to prevent
further vision loss and ensure the well-being of both the mother and the developing fetus.

Huatuo-GPT-Vision-7B:B. Determine blood glucose level and perform glycated hemoglobin test Reasoning:
The patient has a history of type | diabetes, which is known to cause diabetic retinopathy leading to vision
loss as seen in the images provided (optic nerve head edema with hemorrhage). The presence of macular
edema also suggests ongoing or poorly controlled diabetes affecting her eyes. A fluorescein angiogram
would be useful for assessing vascular abnormalities but may not directly address the underlying issue related
to poor glycemic control. Measuring heart rate, respiratory rate, and blood pressure are important general
assessments but do not specifically relate to the ophthalmic findings presented here. Immediate computed
tomography of the head might be considered if there was suspicion of other complications like intracranial
pathology; however, it’s less relevant given the current clinical context focused on eye examination results
linked to diabetes management issues.

GPT-o0-mini:Correct Answer: C. Measure heart rate, respiratory rate, and blood pressure. Reason: Measuring
blood pressure is critical in this scenario to identify malignant hypertension, a potentially life-threatening
condition that can lead to vision loss through optic nerve and retinal damage. Immediate assessment of blood
pressure helps rule out hypertensive emergencies, allowing for timely intervention.

Expert Comment:SemiH Vision and Claude3-Opus accurately recognized the urgency of measuring vital
signs to assess for malignant hypertension in this patient, who presents with bilateral optic nerve edema
and a history of hypertension and chronic kidney disease during pregnancy. Their reasoning reflects a
proper understanding of the need for immediate intervention to prevent serious complications. On the
other hand, Huatuo-GPT-Vision-34B and Huatuo-GPT-Vision-7B focused on assessing glycemic control
by selecting to determine blood glucose levels and perform a glycated hemoglobin test. While managing
diabetes is important, they failed to prioritize the immediate life-threatening condition suggested by the
patient’s symptoms, thus overlooking the critical need to rule out a hypertensive emergency. GPT-40-mini
could get the correct answer and some key points but lack lots of detail evidence to prove it.
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Table 12: Human Annotated Sample Case.

Image Caption: 1. Sagittal T2-weighted image shows a large high signal intensity cystic mass (red arrow)
with a nodular, low signal intensity component (yellow arrow). Normal left ovary with follicles (white arrow)
is seen posteriorly — negative beak sign. 2. Sagittal T2-weighted image shows a large high signal intensity
cystic mass (red arrow) arising from right ovary (white arrow) — positive beak sign. There is another small,
nodular, low signal intensity component (yellow arrow). 3. Axial T1-weighted image shows a large cystic
mass (red arrow). The lesion has parts of low signal intensity (yellow arrow) and its content is slightly
hyperintense (asterisk). 4. Axial fat-suppressed post-contrast T1-weighted image shows wall enhancement
(red arrow) and solid component enhancement (yellow arrow) and its content is hypointense (asterisk). 5.
Diffusion-weighted MR image (b1000) shows hyperintensity of the solid component (yellow arrow). 6. Axial
ADC map from diffusion-weighted MR image (Fig. 1e) demonstrates marked hypointensity of the solid
component (yellow arrow), in keeping with dense cellularity of the lesion.

Clinical History: A 21-year-old GOPO woman with no medical history was referred to our institution for
a sonographically detected cystic right adnexal mass. She has a history of pelvic discomfort without other
complaints. Physical examination was normal. Laboratory findings were also normal except for an elevated
CA 125 65.2 U/mL (normal <35.0).

Image Findings: MRI examination revealed a cystic tumour arising from the right ovary with 7.5 cm. On
T2-weighted images, the signal intensity of the cyst content was high and two small nodular peripheral
solid components were detected, adhering to its internal wall, with low signal (Fig. 1a, b). The normal left
ovary was present with follicles (Fig. 1a). On pre-contrast T1-weighted images, the mass exhibited slightly
high signal intensity (Fig. 1c). On contrast-enhanced fat-suppressed T1-weighted images, wall enhancement
and solid component enhancement were detected (Fig. 1d). Finally, the ADC map (Fig. 1f) from diffusion-
weighted image (Fig. 1e) demonstrates marked hypointensity of the solid component, in keeping with
its dense cellularity. Surgical excision was proposed and accepted by the patient. The histopathological
investigation revealed a typical ovarian serous borderline tumour.
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Discussion: Borderline ovarian tumours are uncommon ovarian neoplasms, intermediate between benign
and malignant types, corresponding to 5% of all epithelial ovarian tumours. [1, 2] Serous borderline tumour
represents the most common type of borderline tumours arising in the ovary, and typically, it is confined
to the adnexa and presents an indolent course. [3] However, up to 6.8% of these tumours can progress to
low grade serous carcinoma. [3] Serous borderline tumours are divided into typical (90%) and borderline
tumours with micro-papillary patterns (5%—10%). [4] These neoplasms usually present as bilateral adnexal
masses with more proliferation of papillary projections than do benign cystadenomas, they are often seen in
younger patients, and laboratory findings show the serum CA-125 level mildly elevated. [2, 3, 5, 6] The peak
age of presentation is 45 years. [5] Small tumours usually do not cause symptoms and are often detected as
an incidental finding on sonography. [7] Larger or more advanced neoplasms might cause pain or pelvic
discomfort. The diagnosis of this type of tumour is based on histopathological examination. As they are
staged using the same ovarian cancer staging of malignant ovarian neoplasms [5], MRI plays a crucial rule
in this evaluation. There are no pathognomonic imaging features of borderline ovarian tumours and they
frequently resemble a benign lesion. Nevertheless, some pathologic and MR imaging studies suggested
that large papillary projections are highly suggestive of borderline or malignant neoplasms. [1, 8] The
preferred treatment is bilateral oophorectomy. Fertility sparing procedures such as unilateral oophorectomy
or cystectomy are related with a higher incidence of recurrence when compared with bilateral oophorectomy
(10-20% vs. approximately 5% for radical surgery). [3, 4] Young age (<30 years) has also been found to
be a risk factor for recurrent disease in patients treated conservatively. As in this case, patients should be
instructed to complete child-bearing within a short time frame following initial diagnosis, due to the high risk
of recurrence. [3] The most important feature in predicting an adverse outcome in serous borderline tumours
is the presence of serous lesions involving the peritoneum (so-called invasive implants). [3, 4] Tumours
without invasive implants, as in this case, have been considered to be nonaggressive tumours, associated with
a good prognosis and high survival rate. Follow-up using ultrasound imaging is mandatory, with particular
attention paid to the remaining ovary in conservatively treated young patients. [4] Written informed patient
consent for publication has been obtained.

SemiH Vision(only a sample for one image):

User:What type of imaging technique is shown in Fig. 1a of the provided image?

GPT:The image shows a T2-weighted MRI scan.

User:Where is the cystic tumour located according to the image?

GPT:The cystic tumour is arising from the right ovary

User:What is the size of the cystic tumour?

GPT:The cystic tumour is 7.5 cm in size.

User:What does the red arrow in the image indicate?

GPT:The red arrow indicates the normal left ovary with follicles.

User:What does the yellow arrow in the image point to?

User:The yellow arrow points to one of the small nodular peripheral solid components adhering to the
internal wall of the cystic tumour.

User:What characteristic of the cyst content is shown by the high signal intensity in the T2-weighted image?
User:The high signal intensity indicates that the cyst content is fluid-filled.

User:What is shown by the asterisk (*) in the image?

User:The asterisk (*) indicates the cystic tumour arising from the right ovary.
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Table 13: Human Annotated Sample Case.

N

Prompt(without retriever): Generate the Image description based on the image.

GPT-4o: The image is a sagittal CT scan, likely of the thoracic or abdominal region. The scan shows various
soft tissue structures, including major organs. The blue arrow points toward a specific structure, possibly a
blood vessel or part of an organ. This could indicate an abnormality such as a mass, an aortic aneurysm, or
an area of vessel narrowing or dissection. In the background, major anatomical landmarks like the heart,
aorta, and vertebral column are visible, as well as some portions of the liver or spleen. The areas of high
contrast indicate dense structures, such as bones, while softer tissues are seen in varying shades of gray,
highlighting different densities. This scan could be used to evaluate conditions like vascular abnormalities,
tumors, or other pathologies in the chest or upper abdominal region. Further clinical information would be
necessary to confirm the exact diagnosis.

Prompt(with retriever): Generate the Image description based on the image. Here are some medical
guidelines and Clinical cases for you.

Case Discussion: A case of asymmetric hypertrophic cardiomyopathy with mild subaortic stenosis and
partial systolic anterior motion of the mitral valve. Since the pressure gradient obtained by phase contrast
imaging was rather low, echocardiographic reevaluation and/or follow-up was recommended. The case also
demonstrates a typical pattern of myocardial fibrosis in the basal and midventricular septal segments at the
anterior and posterior right ventricular insertion points.

GPT-40: The image is a coronal oblique CT scan of the thoracic region, focused on the heart and its
surrounding structures. The blue arrow indicates a subaortic ventricular septal defect (VSD), measuring
approximately 2.7 cm. This congenital heart defect refers to an abnormal opening in the interventricular
septum (the wall separating the left and right ventricles of the heart), located just below the aortic valve. The
surrounding anatomy includes parts of the heart chambers, likely showing the left and right ventricles, as
well as nearby vascular structures such as the aorta. The defect appears to allow abnormal communication
between the ventricles, which could lead to altered blood flow dynamics, potentially causing symptoms such
as shortness of breath, fatigue, or heart failure if left untreated.
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