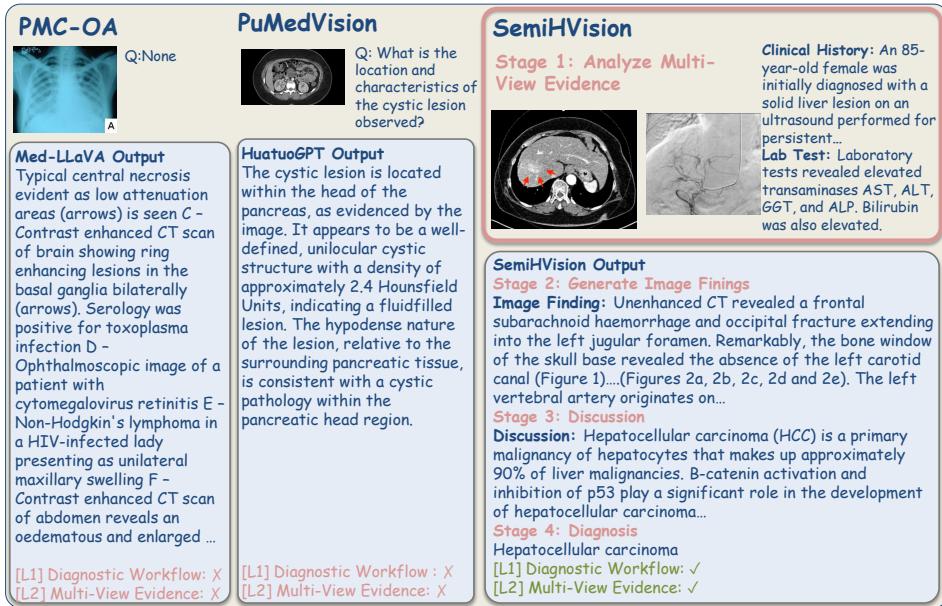


000 SEMIHSVISON: ENHANCING MEDICAL MULTIMODAL 001 MODELS WITH A SEMI-HUMAN ANNOTATED DATASET 002 AND FINE-TUNED INSTRUCTION GENERATION 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT


013 Many medical MLLMs post strong scores on curated VQA-style benchmarks
014 yet still struggle on real clinical questions because their training/supervision ex-
015 pose them to too little clinically grounded knowledge and prevailing benchmarks
016 contain too few diagnostic-reasoning Q&A items. We introduce **SemiHSVison**,
017 a semi-human-validated multimodal instruction dataset built with a multimodal
018 retriever; to our knowledge, this is the first dataset to leverage a unified image-
019 text retriever to integrate real-world clinical information into data construction,
020 thereby strengthening models’ clinical diagnostic reasoning. Our pipeline retrieves
021 image- and context-relevant evidence and performs retrieval-augmented synthe-
022 sis to produce clinically grounded instruction Q&A and captions across major
023 modalities (X-ray, CT, MRI, ultrasound, histopathology), while standardizing het-
024 erogeneous annotations into a training-ready schema. For model fine-tuning, we
025 train **SemiHSVison-8B-AN**, surpassing public medical models like HuatuoGPT-
026 Vision-34B (79.0% vs. 66.7%) and private general models like Claude3-Opus
027 (55.7%) on standard benchmarks (SLAKE, VQA-RAD). On the JAMA Clinical
028 Challenge—a benchmark that directly probes diagnostic reasoning aligned with
029 clinical practice—we evaluate SemiHSVison-AN and it achieves a GPT-4 rubric
030 score of 1.29, exceeding HuatuoGPT-Vision-34B (1.13) and Claude3-Opus (1.17),
031 indicating the effectiveness of SemihVision datasets¹.
032

1 INTRODUCTION

035 Large Multimodal Models (LMMs) show strong potential for general medical AI (Yan et al., 2023;
036 Liu et al., 2024b; Jin et al., 2024; Li et al., 2024; Chen et al., 2024b), and recent works adapt general
037 models to medicine by fine-tuning on PMC image–text corpora (e.g., LLaVA-Med, HuatuoGPT-
038 Vision, MedTrinity) (Li et al., 2024; Chen et al., 2024b; Xie et al., 2024). Despite this promise, datasets
039 remain the bottleneck: current collections diverge from real diagnostic workflows and multi-view
040 evidence, preventing medical MLLMs from acquiring robust, clinically grounded reasoning.

041 Prevailing medical-MLLM datasets drive the core limitations: **(L1) lack of end-to-end, real diag-
042 nstic workflows**—PubMed/PMC image–caption pairs or synthetic captions dominate, and datasets
043 rarely couple complete imaging studies with patient history and expert-authored reports (Four Stages:
044 evidence → findings → discussion → diagnosis); datasets seldom link region-level evidence across
045 views/series or longitudinally, so supervision does not cover the full diagnostic workflow (see
046 Fig. 4) (Bustos et al., 2020; Irvin et al., 2019; Johnson et al., 2019; Ikezogwo et al., 2024). **(L2) lack**
047 **of multi-view evidence**—datasets typically compress a clinical case into a single global caption
048 of an isolated image—often model-generated—while omitting non-imaging clinical evidence (e.g.,
049 laboratory tests, vital signs, medications, prior history) and provide no structured linkage between
050 imaging findings and these signals; thus, supervision skews toward caption-/QA-style associations
051 rather than integrated diagnostic synthesis grounded jointly in imaging and clinical data (Xie et al.,
052 2024; Pal et al., 2023; Dorfner et al., 2024). Consequently, such datasets yield models that struggle

053 ¹We will share our code and datasets: <https://anonymous.4open.science/r/PMC-Cambrian-CBC2/README.md>

case/VQA resources (PMC-CaseReport, PMC-VQA) (Wu et al., 2023; Zhang et al., 2023), instruction-style sets from PubMed imagery (LLaVA-Med VQA, PubMedVision) (Li et al., 2024; Chen et al., 2024b), structured annotation efforts (RadGenome-Chest CT) (Zhang et al., 2024), and multi-granular pipelines (MedTrinity) (Xie et al., 2024). Despite progress, prior corpora commonly lack of end-to-end, real diagnostic workflows. Most corpora reduce supervision to single captions or short Q&A and omit the stepwise pipeline (history → findings → differential → impression/plan) and provenance, so models practice recall rather than executing the clinical workflow; and lack of multi-view evidence—images from the same case are treated independently, with little linkage across views/series/modalities (e.g., AP/LAT, CT slices, MRI sequences), preventing synthesis of corroborating/contradictory evidence. In contrast, SemiHVision is an expert-in-the-loop, multimodal-retriever-grounded corpus that restores L1 by supervising staged reports and decision targets and addresses L2 by aligning views/slices/modalities within each case and context-linked attributions, yielding instruction signals centered on evidence-based diagnostic reasoning across major modalities.

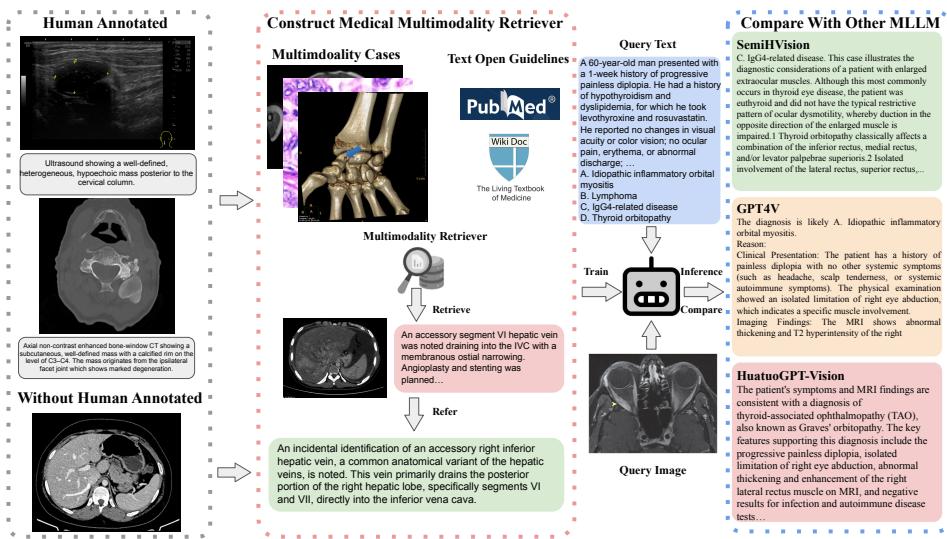


Figure 2: **SemiHVision curation pipeline.** We target two data gaps—(i) lack of end-to-end, clinical diagnosis supervision and (ii) neglect of non-imaging clinical evidence. Human-annotated branch: clinicians annotate image findings and link them to clinical history and labs/vitals/medications, aligning report structure (findings → differentials → impression/plan). GPT-4o then reformats these into instruction-style Q&A and evidence-linked captions without altering the expert content. Unannotated branch: for studies without labels, a lightweight retriever surfaces openguidelines snippets (Chen et al., 2023) and similar cases; GPT-4o drafts instructions/captions conditioned on this context, followed by expert screening and edits. Both branches are standardized into a training-ready schema that preserves (a) study-level clinical context, (b) region-level imaging evidence, and (c) stepwise diagnostic reasoning targets, yielding supervision aligned with real clinical diagnosis rather than caption-style recall.

2.2 MEDICAL MULTIMODAL MODEL

In recent years, several efforts have fine-tuned general-purpose multimodal models on medical data, yielding promising results. For example, Med-Flamingo (Moor et al., 2023) adapted OpenFlamingo-9B (Chen et al., 2024a) with a small-scale medical corpus, and Med-PaLM (Tu et al., 2024) extended PaLM-E (Driess et al., 2023) using one million medical image–text pairs. Similarly, models like LLaVA-Med, Med-Gemini (Saab et al., 2024), and HuatuoGPT Vision have utilized instruction tuning over curated PubMed-derived datasets for medical QA. However, these efforts primarily rely on image–caption pairs or short-form Q&A extracted from biomedical literature (e.g., PubMed), and therefore lack exposure to the complex, multi-step reasoning required in real-world clinical scenarios. In contrast, we train SemiHVision-8B-AN model on our SemiHVision corpus, which is explicitly grounded in clinical guidelines and case-based supervision. As a result, our model demon-

162 strates stronger capabilities in end-to-end clinical reasoning, including patient history interpretation,
 163 differential diagnosis, evidence justification, and final decision-making.
 164

165 3 SEMIHSVISON 166

167 SemiHSVISON explicitly tackles (L1) the lack of end-to-end, real diagnostic workflows and (L2) the
 168 lack of multi-view/multi-modal evidence by designing multi-stage instruction fine-tuning data directly
 169 from clinical cases. Each case is organized along the diagnosis workflow and yields supervision
 170 for detection/localization → evidence attribution → diagnosis/next step, while evidence from the
 171 same case is linked across views and modalities with ROI grounding and clinical context. This
 172 case-centric, study-level construction both supervises the full diagnostic workflow (resolving L1) and
 173 aligns cross-view/cross-modal signals needed for accurate synthesis (resolving L2).
 174

175 3.1 DATA COLLECTION 176

177 **Data Source and Image Selection Strategy** To endow the model with the missing **L2** capability, we
 178 curate complete, multi-view/multi-modal datasets, preserve series/view structure, and deliberately
 179 balance coverage across CT/X-ray/MRI/US/histopathology so the model can learn cross-view corre-
 180 spondences and case-level synthesis. For pretraining, we filter PubMed-derived items (25M → 14M
 181 after removing corrupted/short texts) and purge non-medical PMC items using a lightweight classi-
 182 fier, then *rebalance toward underrepresented, clinically critical modalities* (MRI, X-ray) and retain
 183 series/view structure (AP/LAT, CT slices, MRI sequences). For 3D studies, we use provided slice
 184 IDs and evenly sample additional slices, capping each study at ≤ 20 2D slices to preserve *intra-study*
 185 *continuity* without overwhelming redundancy. This case/study-centric sampling preserves cross-view
 186 correspondences and ROI continuity needed to learn multi-view fusion (details in Appendix A.8,
 187 Table 8).

188 **Human Annotated Workflow** To supervise the end-to-end diagnostic workflow (**L1**), we prior-
 189 itize expert-labeled sources (e.g., Eurorad, Radiopaedia) that mirror real workflows (history →
 190 findings → differential → impression/plan). Because raw annotations vary in length and style, we
 191 standardize them into consistent workflow fields and align sentences to views/ROIs. For lengthy
 192 reports (e.g., Eurorad), we decompose into (i) per-image findings, (ii) study-level synthesis, and
 193 (iii) discussion/decision text, regenerating only format (not content) to ensure consistency while
 194 preserving expert intent. The result is study-level supervision that simultaneously (i) teaches stepwise
 195 reasoning and decisions (addresses L1) and (ii) ties claims to specific views/slices and clinical context
 196 (supports L2). Further details appear in Appendix A.9.
 197

198 3.2 DATA CONSTRUCTION PIPELINE 199

200 Guided by the above limitations, we construct a clinically grounded multimodal corpus from two
 201 sources—human-annotated clinical cases and unannotated medical images—so that training targets
 202 preserve study structure and fuse imaging with non-imaging clinical evidence.
 203

204 **Stage I: Clinical curation and indexing.** We curate *complete imaging studies* with accompanying
 205 clinical context from Eurorad and Radiopaedia (reports, case descriptions, and region-of-interest (ROI)
 206 hints when available), and build a guideline repository from OpenGuidelines (Chen et al., 2023). Each
 207 study retains its series/view organization (e.g., multi-view radiographs, CT/MRI slices) and is linked,
 208 when available, to patient-level variables (history, labs, vitals, medications). We normalize report
 209 sections into a consistent template (*findings, differentials, impression/plan*), harmonize modality/view
 210 tags, and de-duplicate near-identical cases. A lightweight image+text retriever (UniIR with fusion
 211 scoring) indexes both the guideline corpus and the image-report collection, enabling retrieval of
 212 authoritative guidance and closely related cases for studies lacking annotations. This preserves
 213 end-to-end diagnostic context rather than reducing supervision to single-image captions.
 214

215 **Stage II: Multi-View Evidence Linked.** For *human-annotated* cases, we restructure existing
 216 reports into a process-centric template (evidence → Image Findings → Diagnosis) and align sentence
 217 spans to ROIs; clinical signals (history, labs, vitals, medications) are propagated and explicitly
 218 referenced where they inform the differential. For unannotated images, the retriever surfaces a small
 219

set of supportive items (typically $k=4$; at least one guideline plus similar cases), which serve as context for GPT-4o to draft evidence-linked captions and provisional reports conditioned on study structure and ROI cues. Drafts undergo expert screening/edits to remove unsupported statements, enforce explicit ties between textual claims and image evidence (with ROI references), standardize terminology (e.g., laterality, anatomy), and ensure that non-imaging clinical signals are correctly integrated. This converts both branches into supervision that teaches how localized visual evidence and clinical context jointly shape the differential and impression.

Stage III: Diagnosis Workflow Construction. From the curated reports and captions, we programmatically form instruction-response pairs that supervise the diagnostic workflow end-to-end: (i) Detection/Localization—identify and localize salient findings with explicit slice/view/ROI references; (ii) Evidence Attribution—explain differentials by citing the supporting image regions and pertinent clinical signals; (iii) Diagnosis & Next Step—state a working diagnosis and propose an appropriate next diagnostic action. To reduce shortcut learning, we introduce normal and negative constructions with clear purpose and provenance: normal controls (studies without acute findings, requiring a justified “no acute finding” answer), absent-lesion distractors (plausible pathologies drawn from guidelines/similar cases but not present in the current study, used to test evidence checking), and near-miss distractors (findings that occur in anatomically adjacent regions or on alternate views/slices to test precise localization). For each negative, responses must state why the distractor is not supported (e.g., incorrect region, contradictory clinical labs), which trains the model to verify rather than recall. We balance positive/negative instances per study (e.g., 1:1–1:2 depending on modality) and label each item with machine-readable fields (study id, modality, series/view, ROI refs, clinical signals, findings, differentials, diagnosis, next step, evidence citations) to produce a training-ready schema consistent across views/series and modalities. The overall process is illustrated in Figure 2. Finally, we conducted a human evaluation of data quality. Finally, we conducted a human evaluation of data quality. Three physicians (each with 10+ years of clinical experience) independently reviewed 100 randomly sampled cases, checking whether the synthesized constructions matched the original cases; 95% were fully consistent, with an inter-rater agreement score of 0.90.

3.3 DATA FEATURE ANALYSIS

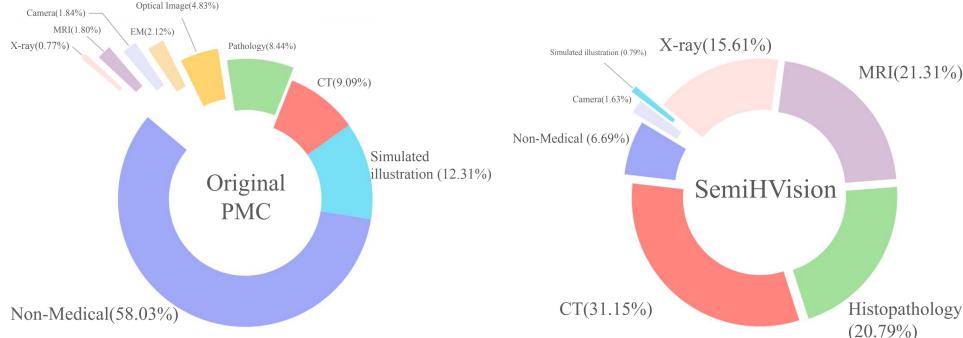


Figure 3: A comparative distribution of image modalities between the original PMC dataset and the SemiHVision dataset. The original PMC dataset contains a significant portion of non-medical content (58.03%), with a relatively lower representation of key medical imaging modalities like MRI (1.80%) and X-ray (0.77%). In contrast, the SemiHVision dataset demonstrates a more balanced distribution, with a substantial increase in clinically relevant modalities such as CT (31.15%), MRI (21.31%), and X-ray (15.61%), while minimizing the presence of non-medical images (6.69%).

Unlike traditional methods for generating instruction datasets, we collected a broader range of human-annotated data across multiple modalities. We conducted a distribution analysis on randomly sampled 200k entries from both the original PMC and SemiHVision datasets. Expert annotators classified the images into categories such as X-ray, DSA, CT, MR, PET/SPECT, Ultrasound, Histopathology, and others. Additionally, we employed GPT-4o for image classification, and to ensure accuracy, a random sample of 100 images was reviewed by human experts, yielding a classification accuracy of 73%. We focused on analyzing higher-frequency modalities, as depicted in Figure 3. The analysis

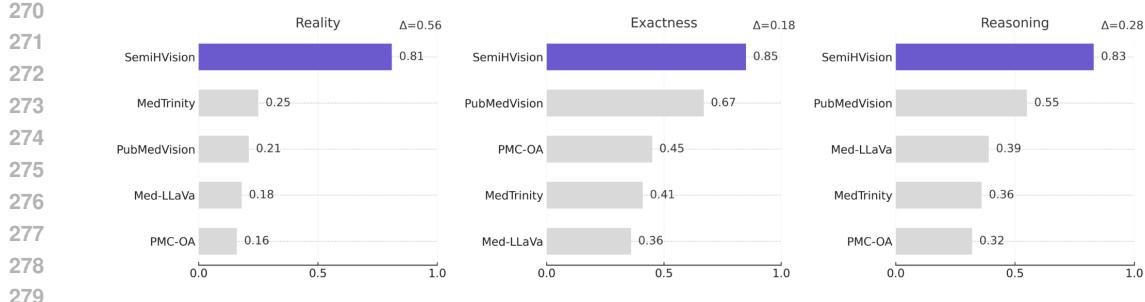


Figure 4: Compared with legacy medical QA datasets, which mainly provide image captions or caption-derived Q&A without full case context (e.g., PMC-OA and MedTrinity list images with descriptive text but no question; PubMedVision offers PubMed-style Q&A), SemiHVision pairs images with clinical history, imaging findings, differential cues, and diagnosis prompts that mirror real workflows. We quantify *clinical-scene fidelity* using a five-level rubric (1–5; poor→excellent). First, automatic screening: Qwen2.5-VL scores up to 1M samples per dataset by assigning log-probabilities to labels 1–5 and converting them into expected rubric scores; we rank items and keep the top 1k per dataset. Second, three physicians independently rate the retained datasets along *Reality*, *Exactness*, and *Reasoning*; scores are mapped to five grades and then normalized to [0, 1], after which we report per-dataset means. The figure shows three panels (one per axis) as Δ -lollipop plots: each marker’s horizontal position encodes the normalized mean; Δ annotates the gap between the best and second-best. Result: current medical-QA datasets remain far from real clinical scenarios on all three axes, while SemiHVision achieves the highest clinical-scene fidelity.

revealed that non-medical images constitute a significant portion of the original PMC dataset, with simulated illustrations like statistical charts being the second largest category. In contrast, clinically critical modalities like CT, MRI, and X-ray were significantly underrepresented, highlighting the scarcity of these essential medical images in the PMC dataset. Despite prior filtering efforts, the low representation of modalities like MRI and X-ray means the final dataset still lacks sufficient numbers of these images. For the SemiHVision dataset, we performed a similar sampling and distribution analysis. Unlike the PMC dataset, not all entries were classified using GPT-4o, as some, such as those from Quilt-1M, were already pre-labeled. The resulting distribution demonstrates that SemiHVision contains a more balanced representation of clinically relevant modalities. Notably, modalities underrepresented in the PMC dataset, such as MRI and X-ray, have a much higher proportion in SemiHVision, ensuring more comprehensive coverage of medical knowledge essential for model training and expanding the scope of medical expertise.

4 EXPERIMENT SETTINGS

We adopt a two-step protocol. **Step 1 (L1):** train SemiHVision-8B with workflow-supervised SFT to teach the full clinical pipeline (history → findings → differential → impression/plan). We then evaluate both traditional medical VQA (SLAKE, VQA-RAD, PathVQA, PMC-VQA) and JAMA to verify that learning the workflow yields broad gains across standard tasks and improves diagnosis structure on case problems. **Step 2 (L2):** after annealing on study-level, multi-view/multi-modal cases to teach cross-view synthesis. We re-evaluate, with emphasis on JAMA’s rubric (Key Points/Inference/Evidence) and cross-view consistency checks, to test whether the model now uses multi-view evidence to handle real-world clinical diagnosis.

4.1 TRAINING EXPERIMENT SETUP

During the training of SemiHVision-8B, we employed a two-stage process. First, we filtered the original PMC dataset by removing captions with fewer than 20 words, yielding a final dataset of 14 million samples. We then pre-trained the model on this refined dataset using a learning rate of 1e-4 and an image token length of 512. DeepSpeed Stage 2 was utilized, with a batch size of 8 and a gradient accumulation step of 6. During this stage, we focused solely on training the adapter while

Model	VQA-RAD	SLAKE	PathVQA	PMC-VQA	Avg.
GPT-4o-mini	45.9	59.0	37.9	33.3	44.0
Claude3-Opus	52.5	55.2	54.3	60.7	55.7
Med-Flamingo	45.4	43.5	54.7	23.3	41.7
RadFM	50.6	34.6	38.7	25.9	37.5
LLaVA-Med-7B	51.4	48.6	56.8	24.7	45.4
Qwen-VL-Chat	47.0	56.0	55.1	36.6	48.9
Yi-VL-34B	53.0	58.9	47.3	39.5	49.7
LLaVA-7B	52.6	57.9	47.9	35.5	48.5
LLaVA-13B	55.8	58.9	51.9	36.6	50.8
LLaVA-34B	58.6	67.3	59.1	44.4	57.4
LLaVA-8B	54.2	59.4	54.1	36.4	51.0
+ LLaVA_Med	60.2	61.2	54.5	46.6	55.6
+ PubMedVision	63.8	74.5	59.9	52.7	62.7
HuatuoGPT-Vision-34B	68.1	76.9	63.5	58.2	66.7
Our Model					
SemiHVision-8B-20M	67.8	76.1	57.8	53.6	63.8
SemiHVision-8B	69.2	77.2	63.6	58.4	67.1
SemiHVision-8B-Mix	74.2	81.3	76.3	59.1	72.2
SemiHVision-8B-AN	86.1	87.7	80.4	61.9	79.0

Table 1: Performance comparison of various models on medical VQA benchmarks (VQA-RAD, SLAKE, PathVQA, PMC-VQA) with average scores is presented. SemiHVision-8B-20M refers to the model trained using all slices from the 3D dataset. SemiHVision-8B prioritizes human-annotated slices and selectively sampled portions for training, using GPT-4o-generated synthetic data. SemiHVision-8B-Mix is trained by combining both the human-annotated datasets and the GPT-4o-generated synthetic datasets. SemiHVision-8B-AN is the result after annealing on human-annotated datasets based on SemiHVision-8B.

freezing the other model components. The pre-training phase ran on four H100 GPUs for 420 hours. This stage provides generic vision–language grounding prior to task-specific supervision.

In the fine-tuning phase, we used the SemiHVision dataset with a learning rate of 2e-5, while keeping the DeepSpeed Stage 2 configuration, with a batch size of 6 and a gradient accumulation step of 6. Unlike the pre-training phase, the full model parameters were trained. This fine-tuning process was conducted on 8 H100 GPUs for 90 hours. For instruction tuning, we divided the process into two phases: standard instruction tuning and the Annealing phase which is the same as Llama3 (Dubey et al., 2024). The learning rate in Annealing phase is 1e-5. During the instruction tuning phase, we used non-human-annotated data, primarily GPT-4o-generated synthetic data. In the Annealing phase, we focused on human-annotated data, where GPT-4o applied further augmentation to enhance the dataset (The details are shown in Appendix A.3).

4.2 AUTOMATIC EVALUATION PIPELINE

We evaluate on both traditional medical VQA benchmarks and a case-based JAMA benchmark (Appendix A.4). Because surface-similarity metrics (e.g., F1/ROUGE) are ill-suited to clinical reasoning, our pipeline uses two stricter measures: *UMLS-F1* (concept overlap via SciSpacy/UMLS; Appendix A.7) and a blinded *GPT-4o rubric score*. The rubric assesses fine-grained diagnostic ability along three doctor-designed axes—**Key Points** (coverage of critical clinical elements in the reference), **Inference** (correctness and completeness of the stepwise diagnostic path), and **Evidence** (whether claims are grounded in specific findings, imaging views/ROIs, or clinical signals). To reduce stylistic bias, model outputs are style-normalized before judging, and the judge sees only extracted gold summaries of *Key Points/Inference/Evidence*, not the full reference text. Concretely, on Medical VQA (SLAKE, VQA-RAD, PathVQA, PMC-VQA) we report **accuracy** to test whether learning the end-to-end workflow (**L1**) yields broad gains on standard tasks; on JAMA we report (i) close-ended **accuracy** where applicable, (ii) **UMLS-F1**, and (iii) the blinded rubric score, which explicitly stresses multi-view evidence use and attribution, thereby probing **L2**.

378

5 RESULTS

380

5.1 ADDRESSING L1 RAISES PERFORMANCE ON TRADITIONAL BENCHMARK

382 **Results on Traditional Benchmark.** Table 1 shows that SemiHVision models fine-tuned on GPT-4o
 383 synthetic data significantly outperform both general-purpose and medical-specific models on standard
 384 medical VQA benchmarks: SemiHVision-8B reaches an average **67.1%**, surpassing the much larger
 385 HuatuoGPT-Vision-34B (**66.7%**) and exceeding a similar-sized LLaVA-8B trained on PubMedVision
 386 by **+4.4%**. Further, when we *anneal* by continuing training on human-annotated diagnostic data,
 387 SemiHVision-8B-AN achieves an outstanding **79.0%**, outperforming SemiHVision-8B-Mix (**72.2%**)
 388 and beating HuatuoGPT-Vision-34B by **18.4%**. It also exceeds private models Claude3-Opus (**55.7%**)
 389 and GPT-4o-mini (**44.0%**). These results indicate that—notwithstanding parameter count—our study-
 390 aware, clinically grounded supervision delivers larger gains on recall-heavy VQA metrics than
 391 caption-centric pretraining alone, and annealing on human-annotated cases further amplifies these
 392 gains.

393 **Why fixing L1 helps on traditional VQA.** L1 targets the lack of end-to-end, clinically workflow
 394 supervision. By preserving study structure (views/series), tying text to report fields (findings, differ-
 395 entials, impression), and injecting clinically grounded targets via annealing, supervision shifts from
 396 single-image captions to case-level, evidence-aware signals. Although traditional VQA benchmarks
 397 primarily reward knowledge recall rather than full diagnostic workflow, this end-to-end, study-aware
 398 supervision increases structured fact density and reduces spurious shortcuts, which directly maps
 399 to higher answer accuracy on recall-style questions. Hence, addressing L1—first through curated,
 400 report-anchored pretraining (yielding **67.1%**; **+4.4%** over PubMedVision and even above the **66.7%**
 401 larger model) and then through annealing with human-annotated diagnostic data (up to **79.0%**,
 402 **+18.4%** over Huatuo-34B)—systematically raises traditional benchmark performance without relying
 403 on parameter scale.

404 **Annealing and overall lift.** To demonstrate the importance of annealing, we trained two mod-
 405 els: SemiHVision-8B-Mix, which mixes GPT-4o synthetic data and human-annotated data, and
 406 SemiHVision-8B-AN, which is first trained on GPT-4o synthetic data and then annealed on human-
 407 annotated data. SemiHVision-8B-AN achieves an outstanding **79.0%** average accuracy, surpassing
 408 SemiHVision-8B-Mix (**72.2%**) and outperforming HuatuoGPT-Vision-34B by **18.4%**. Compared to
 409 private models like Claude3-Opus (**55.7%**) and GPT-4o-mini (**44.0%**), SemiHVision-8B-AN consis-
 410 tently excels across benchmarks, underscoring that addressing L1 (end-to-end, clinically grounded
 411 supervision of studies rather than single captions) systematically raises traditional recall-style scores.

412

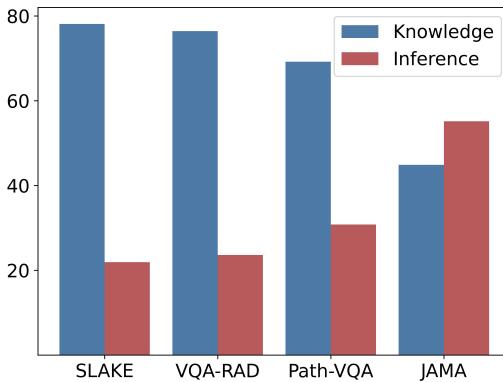
5.2 ADDRESSING L1 & L2 IMPROVES DIAGNOSTIC REASONING ON REAL-WORLD CASES

	Claude3-Opus	GPT-4o-mini	Huatuo-7B	Huatuo-34B	SemiHVision	SemiHVision-AN
Accuracy	58.4	46.2	34.5	44.7	41.2	58.5
UMLS Factuality	0.18	0.16	0.13	0.16	0.11	0.23
GPT-4 Overall	1.17 ± 0.04	0.91 ± 0.06	1.08 ± 0.03	1.13 ± 0.05	0.78 ± 0.04	1.29 ± 0.02
GPT-4 Key-Points	1.27	0.99	1.11	1.01	0.82	1.28
GPT-4 Inference	1.56	1.13	1.06	1.06	0.63	1.32
GPT-4 Evidence	0.67	0.60	1.08	1.31	0.89	1.27

413 Table 2: UMLS-F and GPT-4 score on JAMA Clinical Challenge across 6 different models :Claude3-
 414 Opus, GPT-4o-mini, Huatuo-GPT-Vision 7B, Huatuo-GPT-Vision 34B, SemiHVision, SemiHVision-
 415 AN. We also change Deepseek model to evaluate them to eliminate the bias as shown in Table 7

416 While public medical MLLMs often look strong on traditional benchmarks—occasionally even
 417 surpassing advanced general models like Claude3-Opus—a critical question remains: *Do medical*
 418 *MLLMs actually outperform general MLLMs on clinical tasks?* To answer this, we evaluate
 419 six models—Claude3-Opus, GPT-4o-mini, Huatuo-7B, Huatuo-34B, SemiHVision, SemiHVision-
 420 AN—on the JAMA Clinical Challenge using our evaluation pipeline (Table 2). We report both
 421 accuracy (standard close-ended QA) and diagnostic reasoning via the automatic scoring pipeline in
 422 Sec. 4.4, decomposed into Key Points, Inference, and Evidence. Despite strong traditional-benchmark
 423 results (e.g., SemiHVision-AN accuracy **58.5%**), models struggle on JAMA: Huatuo-34B excels
 424 on Evidence (**1.31**, higher than Claude’s **0.67**) yet shows weaker Inference (**1.06**); in contrast, the
 425 general models Claude3-Opus and GPT-4o-mini achieve Inference **1.56** and **1.13**, respectively. These
 426

432 findings indicate that larger medical-specific models can memorize domain facts without translating
 433 them into superior diagnostic reasoning—i.e., medical MLLMs do not necessarily outperform general
 434 MLLMs on clinical tasks requiring inference.


435 **Human study and reliability.** To corroborate the automatic pipeline, three medical professionals
 436 reviewed a 100-question sample and expressed preferences between rationales from Claude3-Opus
 437 and SemiHVision given the gold rationale. Results align with automation: SemiHVision-AN attains a
 438 **0.57** win rate over Claude3-Opus, supporting the reliability of our automatic evaluation.

439 **Training for robust diagnostic capability (annealing).** Addressing *How can we train a medical*
 440 *MLLM with robust diagnostic capabilities?*, we instruction-tune SemiHVision. Initially, it can answer
 441 medical QA but scores lower across metrics, particularly Inference (**0.63**), due to the absence of
 442 human-annotated diagnostic supervision. After applying annealing—pretraining on GPT-4o synthetic
 443 data then fine-tuning on human-annotated diagnostic data—the enhanced SemiHVision-AN achieves
 444 the top GPT-4 Overall score **1.29** and competitive accuracy **58.5%**. This demonstrates that integrating
 445 high-quality, human-annotated diagnostic data substantially improves diagnostic reasoning and can
 446 surpass models trained solely on synthetic or unannotated data (e.g., PubMedVision).

447 **Why fixing L2 helps—and why traditional**
 448 **metrics can mislead.** Traditional VQA sets are
 449 dominated by *knowledge* items (SLAKE **78.1%**,
 450 VQA-RAD **76.4%**, PathVQA **69.2%**), so mod-
 451 els can score well by recalling single-view facts
 452 or template associations; JAMA contains far
 453 fewer knowledge items (**44.9%**) and instead re-
 454 quires *inference* from *multiple* views/modalities
 455 (Fig. 5). This mismatch explains why surface ac-
 456 curacy on VQA can overstate clinical readiness:
 457 those tests rarely force cross-view corroboration,
 458 ROI grounding, or contradiction checks. Ad-
 459 dressing **L2** changes the mechanics of reasoning:
 460 (i) triangulation—the model must align findings
 461 across AP/LAT sequences/slices, and modalities
 462 to confirm or refute a hypothesis (e.g., pneumo-
 463 nia vs. atelectasis); (ii) disambiguation—look-
 464 alikes are separated by view-dependent cues
 465 (projection, windowing, phase) and linked to
 466 clinical signals (labs, history); (iii) attribution
 467 and counterfactuals—claims must cite specific ROIs/views and remain consistent if a view is re-
 468 moved or replaced, reducing shortcut heuristics; and (iv) temporal/study coherence—evidence must
 469 agree across related images from the same case. Once these constraints are learned, JAMA’s rubric
 470 dimensions improve because they directly reward multi-evidence synthesis: Inference rises from **0.63**
 471 to **1.32**, Overall from 0.78 ± 0.04 to 1.29 ± 0.02 , and UMLS-F1 from **0.11** to **0.23**. As a judge-bias
 472 check, re-scoring with DeepSeek yields consistent conclusions (Table 7).

473 6 CONCLUSION

474 In summary, we diagnose two root causes of current medical MLLM underperformance—**L1** the
 475 absence of end-to-end diagnostic workflow supervision and **L2** the lack of multi-view/multi-modal
 476 evidence alignment—and address both with SemiHVision, a case-centric, study-level, multi-stage
 477 instruction corpus. Trained first for workflow competence and then annealed on expert, study-level
 478 data to learn cross-view synthesis, SemiHVision-AN attains SOTA on traditional medical VQA while
 479 also delivering large gains on the JAMA Clinical Challenge, where evidence-linked reasoning is
 480 required. Our evaluation pipeline—combining accuracy, UMLS-F1, and a blinded rubric on Key
 481 Points, Inference, Evidence—confirms that improvements are not merely stylistic: models trained
 482 on SemiHVision generalize better across standard tasks after fixing L1 and, after fixing L2, more
 483 reliably integrate corroborating findings across views/ROIs and clinical signals to support real clinical
 484 diagnosis. SemiHVision thus provides both the data recipe and training protocol needed to convert
 485 caption-style knowledge into clinically grounded diagnostic reasoning.

476 Figure 5: This figure illustrates the proportion of
 477 questions assessing knowledge and inference in the
 478 Slake, VQA-RAD, Path-VQA, and JAMA Clinical
 479 Challenge datasets.

486 7 LIMITATIONS AND ETHICAL CONSIDERATIONS

487
 488 Despite the promising results demonstrated by SemiHVision-AN, several limitations warrant con-
 489 sideration. Firstly, the coverage of anatomical regions in our dataset is limited due to the scarcity of
 490 high-quality, human-annotated medical data. While we have incorporated multiple imaging modalities
 491 such as X-ray, CT, and MRI, the representation across different body parts remains uneven. This
 492 imbalance may affect the generalizability of our model in diverse clinical scenarios, potentially
 493 limiting its performance on underrepresented regions. Additionally, the model size is constrained
 494 to 8 billion parameters, which, while efficient for training and deployment, may restrict the ability
 495 to handle more complex reasoning tasks that require deeper understanding and broader context.
 496 Exploring larger model architectures could enhance diagnostic performance in future work.

497 Moreover, the broader societal impacts of deploying SemiHVision-AN necessitate careful consid-
 498 eration. Automated medical systems hold significant potential for improving healthcare efficiency
 499 and accuracy but could also influence the roles of medical professionals and patient care practices.
 500 It is crucial to approach the implementation of such technological solutions with caution, ensuring
 501 they serve as a complement rather than a replacement to the expertise of healthcare professionals.
 502 Balancing technological advancement with ethical considerations is essential to maximize benefits
 503 while mitigating potential risks in clinical practice.

504 8 REPRODUCIBILITY STATEMENT

505 We have taken several steps to ensure the reproducibility of our work. All models and algorithms
 506 are described in detail in the main text (Sections 3), with theoretical formulations of the motivation
 507 provided in section 3. The description of datasets and preprocessing steps is given in Section 4.
 508 Hyperparameters and training configurations are reported in Section 4.

511 REFERENCES

512 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
 513 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
 514 *arXiv preprint arXiv:2308.12966*, 2023.

515 Olivier Bodenreider. The unified medical language system (umls): integrating biomedical terminology.
 516 *Nucleic acids research*, 32(suppl_1):D267–D270, 2004.

517 Aurelia Bustos, Antonio Pertusa, Jose-Maria Salinas, and Maria De La Iglesia-Vaya. Padchest: A
 518 large chest x-ray image dataset with multi-label annotated reports. *Medical image analysis*, 66:
 519 101797, 2020.

520 Delong Chen, Jianfeng Liu, Wenliang Dai, and Baoyuan Wang. Visual instruction tuning with
 521 polite flamingo. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 522 17745–17753, 2024a.

523 Junying Chen, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xidong Wang,
 524 Ruifei Zhang, Zhenyang Cai, Ke Ji, Guangjun Yu, et al. Huatuogpt-vision, towards injecting
 525 medical visual knowledge into multimodal llms at scale. *arXiv preprint arXiv:2406.19280*, 2024b.

526 Zeming Chen, Alejandro Hernández Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
 527 Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami,
 528 et al. Meditron-70b: Scaling medical pretraining for large language models. *arXiv preprint
 529 arXiv:2311.16079*, 2023.

530 Felix J Dorfner, Amin Dada, Felix Busch, Marcus R Makowski, Tianyu Han, Daniel Truhn, Jens
 531 Kleesiek, Madhumita Sushil, Jacqueline Lammert, Lisa C Adams, et al. Biomedical large languages
 532 models seem not to be superior to generalist models on unseen medical data. *arXiv preprint
 533 arXiv:2408.13833*, 2024.

534 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
 535 Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
 536 language model. *arXiv preprint arXiv:2303.03378*, 2023.

540 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 541 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 542 *arXiv preprint arXiv:2407.21783*, 2024.

543 Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for
 544 medical visual question answering. *arXiv preprint arXiv:2003.10286*, 2020.

545 Wisdom Ikezogwo, Saygin Seyfioglu, Fatemeh Ghezloo, Dylan Geva, Fatwir Sheikh Mohammed,
 546 Pavan Kumar Anand, Ranjay Krishna, and Linda Shapiro. Quilt-1m: One million image-text pairs
 547 for histopathology. *Advances in neural information processing systems*, 36, 2024.

548 Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik
 549 Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al. CheXpert: A large chest
 550 radiograph dataset with uncertainty labels and expert comparison. In *Proceedings of the AAAI
 551 conference on artificial intelligence*, volume 33, pp. 590–597, 2019.

552 Qiao Jin, Fangyuan Chen, Yiliang Zhou, Ziyang Xu, Justin M Cheung, Robert Chen, Ronald M
 553 Summers, Justin F Rousseau, Peiyun Ni, Marc J Landsman, et al. Hidden flaws behind expert-level
 554 accuracy of gpt-4 vision in medicine. *arXiv preprint arXiv:2401.08396*, 2024.

555 Alistair EW Johnson, Tom J Pollard, Nathaniel R Greenbaum, Matthew P Lungren, Chih-ying Deng,
 556 Yifan Peng, Zhiyong Lu, Roger G Mark, Seth J Berkowitz, and Steven Horng. Mimic-cxr-jpg, a
 557 large publicly available database of labeled chest radiographs. *arXiv preprint arXiv:1901.07042*,
 558 2019.

559 Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically
 560 generated visual questions and answers about radiology images. *Scientific data*, 5(1):1–10, 2018.

561 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
 562 Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision
 563 assistant for biomedicine in one day. *Advances in Neural Information Processing Systems*, 36,
 564 2024.

565 Weixiong Lin, Ziheng Zhao, Xiaoman Zhang, Chaoyi Wu, Ya Zhang, Yanfeng Wang, and Weidi Xie.
 566 Pmc-clip: Contrastive language-image pre-training using biomedical documents. In *International
 567 Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 525–536.
 568 Springer, 2023.

569 Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. Slake: A semantically-
 570 labeled knowledge-enhanced dataset for medical visual question answering. In *2021 IEEE 18th
 571 International Symposium on Biomedical Imaging (ISBI)*, pp. 1650–1654. IEEE, 2021.

572 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 573 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 574 pp. 26296–26306, 2024a.

575 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
 576 neural information processing systems*, 36, 2024b.

577 Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Yash Dalmia, Jure Leskovec, Cyril
 578 Zakka, Eduardo Pontes Reis, and Pranav Rajpurkar. Med-flamingo: a multimodal medical few-shot
 579 learner. In *Machine Learning for Health (ML4H)*, pp. 353–367. PMLR, 2023.

580 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Med-halt: Medical domain
 581 hallucination test for large language models. *arXiv preprint arXiv:2307.15343*, 2023.

582 Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang,
 583 Tim Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine.
 584 *arXiv preprint arXiv:2404.18416*, 2024.

585 Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed Amin, Pi-Chuan Chang,
 586 Andrew Carroll, Charles Lau, Ryutaro Tanno, Ira Ktena, et al. Towards generalist biomedical ai.
 587 *NEJM AI*, 1(3):A1oa2300138, 2024.

594 Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Towards generalist foundation
 595 model for radiology. *arXiv preprint arXiv:2308.02463*, 2023.

596
 597 Yunfei Xie, Ce Zhou, Lang Gao, Juncheng Wu, Xianhang Li, Hong-Yu Zhou, Sheng Liu, Lei Xing,
 598 James Zou, Cihang Xie, et al. Medtrinity-25m: A large-scale multimodal dataset with multigranular
 599 annotations for medicine. *arXiv preprint arXiv:2408.02900*, 2024.

600 Zhiling Yan, Kai Zhang, Rong Zhou, Lifang He, Xiang Li, and Lichao Sun. Multimodal chatgpt for
 601 medical applications: an experimental study of gpt-4v. *arXiv preprint arXiv:2310.19061*, 2023.

602
 603 Alex Young, Bei Chen, Chao Li, Chengan Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
 604 Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. *arXiv preprint*
 605 *arXiv:2403.04652*, 2024.

606
 607 Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weixiong Lin, Ya Zhang, Yanfeng Wang, and Weidi
 608 Xie. Pmc-vqa: Visual instruction tuning for medical visual question answering. *arXiv preprint*
arXiv:2305.10415, 2023.

609
 610 Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Jiayu Lei, Ya Zhang, Yanfeng Wang, and Weidi Xie.
 611 Radgenome-chest ct: A grounded vision-language dataset for chest ct analysis. *arXiv preprint*
arXiv:2404.16754, 2024.

613 A APPENDIX

614 A.1 LLM USAGE

615
 616 In accordance with the ICLR 2026 policies on LLM usage, we disclose how LLMs were used in
 617 this work. LLMs were employed to assist with grammar polishing, wording improvements, and
 618 drafting text during paper preparation. All technical content, proofs, experiments, and analyses were
 619 conceived, implemented, and validated by the authors. Authors remain fully responsible for the
 620 correctness of the claims and results.

621
 622 No LLMs were used to generate research ideas or produce results. No confidential information was
 623 shared with LLMs, and no prompt injections or other inappropriate uses were involved.

624
 625 This disclosure aligns with the ICLR Code of Ethics: contributions of tools are acknowledged, while
 626 accountability and verification rest entirely with the human authors.

628 A.2 TEMPLATE PROMPT

629
 630 **Generate Instruction Data** In constructing our instruction dataset, we utilize both closed-ended
 631 and open-ended question formats. For closed-ended data, such as PMC-VQA, Amboss VQA, JAMA
 632 train VQA, Slake train VQA, VQA-RAD train, and Path VQA, we generate answer options only. For
 633 open-ended tasks, particularly from JAMA datasets, we also require the model to provide reasoning
 634 along with the answers. Additionally, GPT-4o is employed to generate question-answer pairs (QAPs)
 635 based on the images and their corresponding augmented captions, with each caption paired with 3 to
 636 10 QAPs depending on its length and complexity. The questions generated are carefully designed
 637 to be directly related to the images, ensuring that answers can either be explicitly found or inferred
 638 from the caption content. The template prompt details are shown in Table 4. This approach minimizes
 639 dataset's hallucinations by grounding GPT-4o's output in the information provided in the captions
 640 and image data. Furthermore, we utilize a multigranular information, such as specific ROI, and the
 641 broader medical context that connects local and global abnormalities to improve model's fine grained
 642 ability. By following this structured methodology, we ensure the generation of high-quality, clinically
 643 relevant instruction data that improves the accuracy and interpretability of the models.

644
 645 **Evaluation Pipeline Prompt:** When evaluating close QA, we only need to calculate accuracy.
 646 However, many open QA tasks, such as diagnostic reasoning questions in the JAMA Clinical
 647 Challenge, present additional challenges. Although several methods exist for measuring textual
 648 similarity, such as F1 or ROUGE, both approaches have significant limitations in the medical domain.
 649 Therefore, we propose a very strict evaluation pipeline by using two evaluation metrics: the USMLE-
 650 Factuality score and the GPT-4o score. For the GPT-4o score, directly allowing GPT-4o to grade the

648 answers is often ineffective, as GPT-4o tends to favor answers that align with its preferred linguistic
 649 style, which may not match our intended criteria. Thus, we introduce a scoring framework to evaluate
 650 model’s fine grained diagnostic ability based on three aspects: **Key Points, Inference, and Evidence**
 651 which is designed by doctors(The details are shown in Appendix A.2):
 652

653 • **Key Points** assess whether the model’s answer includes the critical elements present in the
 654 ground truth.

655 • **Inference** evaluates whether the diagnostic reasoning in the model’s answer is correct,
 656 follows the same steps as the ground truth, and whether any key steps are omitted.

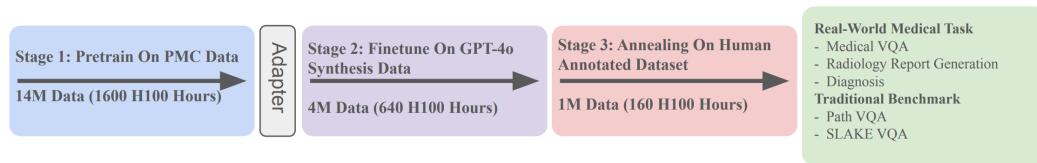
657 • **Evidence** examines whether the model’s answer provides the crucial evidence to support its
 658 conclusions or diagnostic reasoning.

659

660 Finally, an average score will be calculated to represent the overall quality of the answer. To further
 661 reduce the influence of linguistic style on GPT-4’s scoring, we propose revising all model-generated
 662 answers through GPT-4, ensuring that all outputs align with GPT-4’s own style distribution. During
 663 this revision, GPT-4 will only see the model’s answer, without access to any other information.

664 When scoring, GPT-4 will generate its own summaries of **Key Points, Inference, and Evidence**
 665 based on the ground truth. When assigning scores to these aspects, GPT-4 will no longer see the
 666 original answer but will only reference its summarized **Key Points, Inference, and Evidence**. For
 667 further details, please refer to Table 5, 6.

668


Model	VQA-RAD (Finetuned)	SLAKE (Finetuned)	PathVQA (Finetuned)	PMC-VQA (Finetuned)	Avg.
Fine-tuning on the training set.					
LLAVA-v1.5-LLAMA3-8B	63.3	68.9	85.2	50.3	66.9
LLAVA_Med-8B	66.3	69.5	90.7	52.7	69.8
HuatuGPTVision-8B	68.9	84.1	93.0	57.3	75.8
SemiHVision	88.3	91.1	92.7	88.6	90.2

670 Table 3: Finetuning results on VQA-RAD, SLAKE, PathVQA, and PMC-VQA datasets.

671

672 A.3 INSTRUCTION TUNNING

673

675 Figure 6: We apply three stages to train SemiHVision.

676

677 We employed an annealing strategy in training SemiHVision-AN to enhance its diagnostic capabilities.
 678 Empirically, annealing on small amounts of high-quality, human-annotated data significantly boosts
 679 performance on key benchmarks. Similar to Llama3, we performed annealing with a data mix
 680 that prioritizes high-quality data in select domains, excluding any training sets from commonly
 681 used benchmarks. This approach allowed us to assess the true few-shot learning capabilities and
 682 out-of-domain generalization of SemiHVision-AN.

683 We evaluated the efficacy of annealing on the JAMA Clinical Challenge and other diagnostic reasoning
 684 benchmarks. The annealing process substantially improved the performance of the pre-trained
 685 SemiHVision-8B model, demonstrating enhanced reasoning abilities and clinical applicability. These
 686 improvements suggest that, even with a model size constrained to 8 billion parameters, strategic
 687 annealing with high-quality data can compensate for limitations in model scale, enabling the model to
 688 handle complex reasoning tasks requiring deeper understanding. The whole training phase is shown
 689 in figure 6.

Table 4: Generate Instruction Data Prompt Example Template.

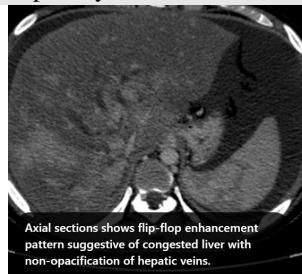
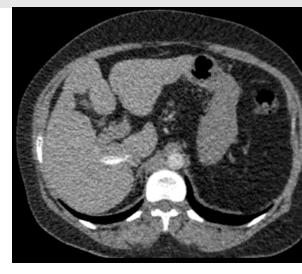


702	System Prompt	Analyze the provided MRI image and generate a detailed and professional medical report that describes only the abnormalities, significant features, or relevant observations directly seen in the image. Use precise medical terminology and maintain a formal tone. Do not include any introductory phrases, such as "The provided image reveals," or any concluding remarks. Here are some relevant medical guidelines and Clinical cases for you to generate.
703	Medical Guideline	Angioplasty (PTBA) of the hepatic vein is a safe and effective treatment for Budd-Chiari syndrome (BCS) caused by hepatic venous outflow obstruction. This study, conducted between September 1996 and October 2008, included 101 patients (52 males, 49 females) with a mean age of 31.3 years, all presenting with symptomatic portal hypertension. Of these, 92 patients underwent successful PTBA, targeting the right, left, or accessory hepatic veins, with a technical success rate of 91%. PTBA significantly reduced hepatic venous pressure...
704	Instruction Prompt	Your second task is to generate 1-2 valuable questions and their corresponding answers that are relevant to the image's content and it would be better that the answers could be explicitly found within the discussion.
705	Clinical Case	<p>Axial sections shows flip-flop enhancement pattern suggestive of congested liver with non-opacification of hepatic veins.</p> <p>Ostial narrowing of the accessory hepatic vein.</p> <p>Image Findings: The patient underwent contrast-enhanced computed tomography which showed features of a congested liver with flip-flop pattern of enhancement. Hepatic veins show hypoattenuation on delayed phase. An accessory hepatic vein is also noted in segment VI. A diagnosis of Budd Chiari syndrome (BCS) was made on the basis of the clinical and imaging features. The patient was referred to the interventional radiology team for an endovascular rescue. On conventional venogram, the diagnosis of BCS was confirmed as the hepatic veins were thrombosed. An accessory segment VI hepatic vein was noted draining into the IVC...</p>
706	Format Prompt	Return the results in the following format: Report: report content Question: Question content Answer: Answer content. Don't generate any other information Here is the image and discussion:
707	Title: Accessory right inferior hepatic vein	<p>Discussion:Marked dilatation of the pulmonary trunk (6.7 cm) with the right (5.4 cm) and left (4 cm) main branches. Lung window shows mild bilateral diffuse faint groundglass centrilobular lung nodules that may reflect an underlying infection. Scans through the upper abdomen revealed average size cirrhotic liver and reflux of contrast into the IVC and hepatic veins with Incidental opacification of accessory right inferior hepatic vein...</p>
708		
709		
710		
711		
712		
713		
714		
715		
716		
717		
718		
719		
720		
721		
722		
723		
724		
725		
726		
727		
728		
729		
730		
731		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

Table 5: Evaluation Pipeline Prompt Example Template.

756	Based on the question and answer, summarize ten key points that you consider to be
757	the most crucial from the standard answer. Return the response in the following format: {1.2.3....} Here is the question:{question} Here is the answer:{answer} Please do not provide any additional information.
758	Extract Key Points
759	1. Multifocal electroretinogram (ERG) showed reduced signal in the right eye throughout the macula, confirming the diagnosis of AZOOR.2. Acute zonal occult outer retinopathy (AZOOR) was first described by Gass in 1993...
760	Key Points
761	Based on the question and answer, please provide a detailed summary of the diagnostic reasoning from the standard answer. Return the response in the following format: {1.2.3....} Here is the question:{question} Here is the answer:{answer} Please do not provide any additional information.
762	Extract Diagnostic Reasoning
763	1. The patient is a 7-year-old boy with a slowly growing, asymptomatic lump on the left lower neck since birth.2. Physical examination showed a yellowish, hump-like mass with a hairy surface and cartilage-like consistency near the left sternocleidomastoid muscle...
764	Diagnostic Reasoning
765	Based on the question and answer, please provide a detailed evidence list which is proposed by correct answer. Return the response in the following format: {1.2.3....} Here is the question:{question} Here is the answer:{answer} Please do not provide any additional information.
766	Extract Evidence
767	1. Slowly growing, asymptomatic lump on left lower neck since birth.2. Physical examination revealed a yellowish, hump-like mass with hairy surface and cartilage-like consistency.3. Ultrasonography indicated a hypoechoic, avascular, bulging nodule with an anechoic tubular structure.4. MRI demonstrated a protuberant nodule with diffuse...
768	Evidence
769	Act as a USMLE evaluator, your role involves assessing and comparing a medical student's explanation to the provided target answer. Begin the assessment by carefully reviewing the provided target answer. Then, based on following specific criteria, determine the score for the student's answer. Please judge whether medical student's answer include these key points(or some other relevant points. But the amount of points must be complete). For example, ground truth have 10 key points, if student answer include one key he will get 0.5 point(if the answer include 5 points so should be 2.5). Medical student's answer: {answer} Key Points: {Key Point} Please only return a float number(from 0 to 5). You should check each point one by one(shouldn't judge based on language style such as fluence and so on. Only judge based on whether the student's answer include correct or relevant and complete key points). Don't generate any other information.
770	Key Points Score
771	

A.4 BASELINE & BENCHMARK

Medical MLLMs: We evaluated three medical multimodal large language models (MLLMs): Med-Flamingo Moor et al. (2023), RadFM Wu et al. (2023), LLaVA-Med-7B Li et al. (2024) and HuatuoGPTVision-34B Chen et al. (2024b).

General MLLMs: We assessed the latest models from the LLaVA series, including LLaVA-v1.6-7B, LLaVA-v1.6-13B, and LLaVA-v1.6-34B Liu et al. (2024a). Additionally, we compared these models with Yi-VL-34B Young et al. (2024) and Qwen-VL-Chat Bai et al. (2023). Additionally, we also evaluated several closed-source models: GPT-4-O-Mini and Claude3-Opus.

To evaluate the medical multimodal capabilities of the MLLMs, we employed two types of benchmarks:

Medical VQA Benchmark: We used the test sets from VQA-RAD Lau et al. (2018), SLAKE Liu et al. (2021), PathVQA He et al. (2020), and PMC-VQA Zhang et al. (2023) to assess the models' medical question-answering abilities. The experiment settings are the same as HuatuoGPT Vision.

New Diagnosis Reason Benchmark Task: To test the model's inference and medical knowledge capabilities, we will evaluate several medical multimodal models on the JAMA Clinical Challenge datasets. The JAMA Clinical Challenge dataset presents complex real-world cases from the Journal of the American Medical Association, challenging models with diagnostic and management tasks based

Table 6: Evaluation Pipeline Prompt Example Template.

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	<p>Act as a USMLE evaluator, your role involves assessing and comparing a medical student’s explanation to the provided target answer. Begin the assessment by carefully reviewing the provided target answer. Then, based on following specific criteria, determine the score for the student’s answer. Please judge whether medical student’s answer’s diagnostic reasoning is correct based on ground truth. For example, ground truth have 10 steps, if student answer include one correct step he will get 0.5 point(if student have other correct diagnostic reasoning path it should also be correct. But the amount of evidence must be complete. It means that each step is about 0.5 point if there are 10 steps). Medical student’s answer: {answer} Ground Truth: {diagnostic reasoning} Please only return a float number(from 0 to 5). You should check each step one by one(shouldn’t judge based on language style such as fluence and so on. Only judge based on whether student’s diagnostic reason is correct or relevant). Don’t generate any other information.</p>
Evidence Score	<p>Act as a USMLE evaluator, your role involves assessing and comparing a medical student’s explanation to the provided target answer. Begin the assessment by carefully reviewing the provided target answer. Then, based on following specific criteria, determine the score for the student’s answer. Please judge whether medical student’s answer provide detail evidence such as ground truth. For example, ground truth have 10 evidence, if student answer include one evidence he will get 0.5 point(if student give other correct detail evidence, it is also correct. But the amount of evidence must be complete.) Medical student’s answer: {answer} Detail Evidence: {evidence} Please only return a float number(from 0 to 5). You should check each evidence one by one(shouldn’t judge based on language style such as fluence and so on. Only judge based on whether student propose correct and complete diagnostic evidence). Don’t generate any other information.</p>

on clinical data and imaging. Together, these datasets provide rigorous benchmarks for assessing the diagnostic and decision-making performance of MLLMs in real-world clinical settings.

A.5 FINE-TUNED RESULTS

To assess the impact of SemiHVision on downstream tasks, we applied fine-tuning using the benchmark training sets. As illustrated in Table 3, SemiHVision substantially enhances performance in downstream medical tasks, providing notable improvements across all four VQA tasks.

A.6 LANGUAGE STYLE INFLUENCE

While our method still utilizes GPT-4o, it effectively eliminates the influence of language style. This is because our scoring is based primarily on whether key points are covered and whether there are any hallucinated key points. Each key point corresponds to a separate score, so variations in language style do not affect the outcome—language style won’t cause the model to include more or fewer key points. It’s true that switching to a different evaluation model may lead to slight differences in the extracted key points, which could influence the absolute score. However, keep in mind that these key points are derived from the ground-truth answer, and LLMs generally perform very well in summarization tasks. So while there may be changes(for example some model will summarize the most five key points but GPT4o will summarize 10 points), they do not affect the relative ranking of the scores. For fairness, we also evaluated the subset of data using DeepSeek as the scoring model. As shown in the Table 7, although the absolute values differ slightly, the relative scores remain consistent.

A.7 FACTUALITY METRICS: UMLS-F1

To evaluate the factual accuracy of LLM outputs, we leverage the UMLS concept overlap metric. The Unified Medical Language System (UMLS) Bodenreider (2004) enhances biomedical interoperability

864 Table 7: Performance comparison across different models. Bold indicates best performance.
865

Model	Claude3-Opus	GPT-4o-mini	Huatuo-7B	Huatuo-34B	SemiHVision	SemiHVision-AN
Accuracy	58.4	46.2	34.5	44.7	41.2	58.5
UMLS Factuality	0.18	0.16	0.13	0.16	0.11	0.23
GPT-4 Overall	1.17	0.91	1.08	1.13	0.78	1.29
DeepSeek Overall	2.31	1.95	2.06	2.24	1.86	2.55

870
871 by unifying a comprehensive collection of biomedical terminologies, classification systems, and
872 coding standards. By reconciling semantic variances and representational disparities across different
873 biomedical repositories, UMLS facilitates standardized understanding.
874

875 We employ the Scispacy library² to identify and align medical named entities in texts with their
876 corresponding UMLS concepts. Scispacy excels in entity recognition, enabling accurate association
877 of named entities in LLM outputs with relevant UMLS concepts, a critical capability for assessing
878 factual accuracy.

879 Our analytical process utilizes precision and recall metrics. Precision measures the proportion of
880 shared concepts between the LLM output and the ground truth, indicating factual correctness. Recall
881 assesses how well the LLM output covers the concepts present in the ground truth, reflecting the
882 relevance of the information. Formally, given the concept sets from the ground truth (C_{ref}) and the
883 LLM output (C_{gen}), precision and recall are calculated as:

$$884 \quad \text{Precision} = \frac{|C_{\text{ref}} \cap C_{\text{gen}}|}{|C_{\text{gen}}|}, \quad (1)$$

$$885 \quad \text{Recall} = \frac{|C_{\text{ref}} \cap C_{\text{gen}}|}{|C_{\text{ref}}|}. \quad (2)$$

890 The F1 score, derived from these precision and recall values, provides a balanced measure of the
891 LLM output's accuracy and relevance.
892

893 A.8 DATA SOURCE

895 The fine-tuning datasets include DeepLesion, MIMIC-CXR-JPG, PadChest, Quilt, LLD-MMRI, and
896 MAMA-MIA, along with benchmark training QA datasets such as VQA-RAD, Path VQA, PMC
897 VQA, and Slake VQA, covering multiple modalities like CT, MRI, X-ray and so on. Additionally, we
898 expanded the dataset with data from Eurorad and Radiopaedia to include more diverse modalities as
899 shown in table 8. Additionally, to enable the model to support multiple languages, such as Chinese,
900 we randomly selected 300k datasets and translated them into Chinese for training.
901

902 A.9 HUMAN EVALUATION AND CASE STUDY

904 **Case Study for Evaluation** We selected a case from the JAMA Clinical Challenge to evaluate the
905 diagnostic reasoning capabilities of different models, as shown in Table 11³. In the case we apply three
906 different colors: **red**, **blue**, **brown** to ask GPT-4O to annotated key points, inference points and evidence
907 points. Our analysis revealed that Claude3-Opus performed accurate inference but lacked detailed
908 evidential support. SemiHVision was able to generate diagnostic reasoning with comprehensive
909 evidence, incorporating most of the important key points. In contrast, HuatuoGPTVision-34B and
910 HuatuoGPTVision-7B failed to capture the essential key points and were unable to effectively utilize
911 medical knowledge for detailed inference, despite having access to extensive medical information
912 that could provide evidence.

912 **Human Annotated Sample Training Data** We sampled a case from EURORAD⁴. For EURORAD
913 Dataset, there are severral sections: Image Caption, Clinical History, Image Findings and Discussion
914 as shown in Table 12. The Image Caption provides a concise description of each image presented.
915

916 ²Using the Scispacy *en_core_sci_lg* model

917 ³The case is sourced from <https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2681464>.

918 ⁴The case is sourced from <https://www.eurorad.org/case/16705>.

Dataset	Data Size	Modality	ROI	Human Annotation	Slice ID
Deeplesion	24,821	CT	✗	✗	✗
PadChest	150,730	CT	✗	✓	-
Eurorad	691,370	CT,X-Ray,MRI...(Multi)	✓	✓	✓
MIMIC-CXR-JPG	620,113	X-Ray	✗	✓	-
LLD	30,390	MRI	✓	✗	✓
MAMA-MIA	76,381	MRI	✓	✗	✓
PMC-VQA	152,603	CT,X-Ray,MRI...(Multi)	✗	✓	-
Path-VQA	19,654	Pathology	✗	✓	-
PMC-Instruct	619,606	CT,X-Ray,MRI...(Multi)	✗	✓	-
Quilt	1,017,416	Histopathology	✗	✓	-
Radiopaedia	1,131,614	CT,X-Ray,MRI...(Multi)	✓	✓	✓
SLAKE	9,835	CT,X-Ray,MRI	✗	✓	-
VQA-RAD	1,798	X-Ray,MRI	✗	✓	-
AMBOSS & JAMA	45,820	Multi & Only Text	✓	✓	-
Chinese Data	300,000	Multi	-	-	-

Table 8: Data Source.

Table 9: Distribution of Articles Across JAMA Specialty Journals

Journal	Count
JAMA Otolaryngology–Head & Neck Surgery	513
JAMA Ophthalmology	466
JAMA Dermatology	368
JAMA (General)	328
JN Learning	299
JAMA Surgery	133
JAMA Oncology	105
JAMA Cardiology	92
JAMA Neurology	61
JAMA Pediatrics	60
JAMA Psychiatry	6

The Clinical History records the patient’s medical background and presenting symptoms. In the Imaging Findings section, experts analyze the images to arrive at a diagnostic conclusion, combining observations from all available imaging modalities. The Discussion elaborates on the inference steps and presents the evidence supporting the diagnosis, along with relevant background information to aid in understanding how the conclusion was reached. We also present one sample for our SemiHVision dataset.

Case Study for Multimodality Retriever We did a case study to prove the important of multimodality retriever in our pipeline as shown in Table 13. The inclusion of a retriever in the image description task introduces a marked improvement in the specificity and accuracy of the generated descriptions. Without the retriever, the model (GPT-4o) provides a generalized description of the image, identifying broad anatomical landmarks (heart, aorta, and vertebral column) and speculating on potential abnormalities, such as a mass or vascular anomaly. While the description is coherent, it lacks precision, as the model does not have access to clinical guidelines or related cases, resulting in a speculative rather than a diagnostic interpretation.

In contrast, when the retriever is introduced, the model is supplemented with relevant clinical guidelines and case data, significantly enhancing its diagnostic accuracy. For example, in the case with the retriever, GPT-4o correctly identifies the subaortic ventricular septal defect (VSD) and provides a detailed explanation of its location, dimensions (2.7 cm), and potential clinical implications, such as abnormal blood flow and symptoms like shortness of breath. The addition of retriever-assisted information allows the model to go beyond general observations and offer more specific, clinically relevant insights, directly aligning the image interpretation with known medical cases.

972	Dataset	Caption Available	License
973	DeepLesion	Yes	CC BY 4.0
974	PadChest	Yes	PADCHEST Dataset Research Use Agreement
975	Eurorad	Yes	Creative Commons Attribution 4.0 International License
976	MIMIC-CXR-JPG	No	PhysioNet Credentialed Health Data License 1.5.0
977	LLD	Yes	LLD-MMRI Agreement
978	MAMA-MIA	Yes	CC BY-NC-SA 4.0
979	PMC-VQA	Yes	CC BY-SA
980	PMC-Instruct	Yes	OpenRAIL
981	Quilt	Yes	-
982	Radiopaedia	No	Radiopaedia Agreement
983	JAMA Clinical Challenge	No	JAMA Agreement
984	LLaVA-Med	Yes	CC BY-NC 4.0

Table 10: Overview of caption availability and dataset licenses.

Human Annotator Information We worked with six annotators, all of whom are experts. By experts, we mean either individuals with an MD degree or radiologists with over 10 years of clinical experience. For the image classification task, the three annotators hold MD degrees or work on radiology more than 10 years. For the subsequent human evaluation tasks, such as the one conducted on the JMLR dataset, we engaged three senior radiologists who assessed the model outputs with reference to the ground truth. Each of these doctors has more than ten years of professional experience.

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 11: Sample Case in JAMA Clinical Challenge.

Question: A woman in her mid-20s presented with subacute bilateral vision loss that was worse in the left eye. Her medical history was remarkable for type 1 diabetes diagnosed at 16 years of age and proliferative diabetic retinopathy in both eyes that had been treated with panretinal photocoagulation 7 years earlier. She had undergone pars plana vitrectomy with endolaser to treat a tractional retinal detachment in her right eye 2 years before this presentation. She also had a history of hypertension and chronic kidney disease, and she was 15 weeks into pregnancy. Visual acuity was 20/50 OD and 20/100 OS. Intraocular pressure was normal bilaterally, and no relative afferent pupillary defect was detected. Findings of an anterior segment examination were normal. The patient was in no apparent distress and denied any headache, chest pain, or focal weakness. Ophthalmoscopic examination (Figure) revealed mild optic nerve head edema that was greater in the left eye than the right eye with associated nerve fiber layer hemorrhage in the left eye. Nerve fiber layer infarctions, dot and blot hemorrhages, and lesions caused by panretinal photocoagulation also were seen bilaterally. Optical coherence tomography showed macular edema that involved the center of the macula in both eyes (Figure, inset). A. Obtain a fluorescein angiogram B. Determine blood glucose level and perform glycated hemoglobin test C. Measure heart rate, respiratory rate, and blood pressure D. Perform immediate computed tomography of the head Answer with the option's letter from the given choices directly and give me the reason. Answer with the option's letter from the given choices directly and give me the reason

Diagnostic Reason: **Malignant hypertension with papillopathy** C. Measure heart rate, respiratory rate, and blood pressure The patient was found to have hypertension, with a blood pressure of 195/110 mm Hg. Heart and respiratory rates were normal. Measurement of the arterial blood pressure may be performed rapidly in the clinic with a sphygmomanometer and is **essential to rule out malignant hypertension**, which is a **potentially life-threatening cause of vision loss**. Although the differential diagnosis for **bilateral optic nerve edema** is broad, workup should always include assessment of blood pressure when appropriate, because a **hypertensive emergency** (also known as **malignant hypertension**) may cause substantial morbidity or mortality if not diagnosed and treated promptly. Findings may include **macular star**, **macular edema**, **serous retinal detachment**, **intraretinal hemorrhage**, and **optic disc edema** with or without associated hemorrhage.^{1,2} Optic nerve head edema may occur with systolic blood pressures as low as 160 mm Hg, with the median onset occurring at 188 mm Hg.³ The macular edema associated with hypertensive retinopathy may be distributed more nasally, as was seen in this patient.⁴ This patient had **mild optic nerve edema** despite high systemic blood pressure and substantial macular edema. This less-pronounced optic nerve edema likely was attributable to **optic nerve atrophy** at baseline. **Proliferative diabetic retinopathy** and **panretinal photocoagulation** can be associated with optic atrophy, and **atrophic optic nerves** tend to become less edematous than healthy optic nerves.⁵⁻⁷ Regarding the other choices above, a **fluorescein angiogram (choice A)** would be expected to show leakage from the optic nerve and macula, but such findings are already available from the **optical coherence tomography**, which showed **intraretinal and subretinal fluid**. Although assessment of serologic levels of **glucose and glycated hemoglobin (choice B)** is important in the management of diabetic retinopathy, results from such tests are not immediately available and have less bearing on the **immediate management** of the case (this patient's glycated hemoglobin level was 10.5% [to convert to a proportion of total hemoglobin, multiply by 0.01]).

1080 Performing **computed tomography (choice D)** would be a reasonable later step, especially if the patient's
 1081 blood pressure was found to be normal, to rule out an **intracranial mass**. In addition to hypertension, other
 1082 causes of optic nerve head edema exist. **Papilledema** (when optic nerve head edema is secondary to **increased**
 1083 **intracranial pressure**) is often bilateral and may be caused by **intracranial mass lesions, meningitis, cerebral**
 1084 **venous thrombosis, or intracranial hypertension**, or it may be **idiopathic**. Bilateral optic nerve head edema
 1085 also may be caused by **diabetic papillopathy** (which is a rare cause of optic disc edema, but which is bilateral
 1086 in up to 50% of cases^{8,9}) and **toxic optic neuropathies**. **Optic disc drusen** are frequently bilateral and may
 1087 cause so-called **pseudopapilledema**.¹⁰ Severe hypertension resulting in **acute retinopathy** and **optic nerve**
 1088 **head edema** is considered a **hypertensive emergency** because of its association with **end-organ damage**,
 1089 namely, damage to the **retina** and **optic nerve**. This case serves as a reminder that, although the differential
 1090 diagnosis for optic nerve head edema is broad, **immediately assessing the patient's blood pressure** to evaluate
 1091 for **hypertensive emergency** in the eye clinic may be **critical**, because this treatable condition could lead to
 1092 **substantial morbidity or mortality** if diagnosis is delayed. The patient was admitted to the medicine service
 1093 for **management of hypertension**. At an ophthalmology follow-up examination 3 months later, her blood
 1094 pressure was 128/73 mm Hg and her visual acuity was **20/40 OD** and **20/60 OS**, close to her visual acuity
 1095 before this acute event. On examination, the **optic nerve head edema** had **resolved**, and **optical coherence**
 1096 **tomography** showed resolution of macular edema.

1096 **SemiHVision: Malignant hypertension with papillopathy C. Measure heart rate, respiratory rate, and blood**

1097 **pressure**

1098 The key to the correct diagnosis is the presence of **bilateral optic neuropathy** in a pregnant woman.

1099 The patient's history of **hypertension and chronic kidney disease**, along with the findings of **bilateral optic**

1100 **neuropathies**, suggested a **systemic etiology**. A fluorescein angiogram (choice A) would not be the next step

1101 because the patient was **asymptomatic** and had **no signs of retinal ischemia**. A glycated hemoglobin test

1102 (choice B) would not be indicated because the patient had **no signs of diabetic retinopathy**. A computed

1103 tomography scan of the head (choice D) would not be appropriate because the patient had a **normal**

1104 **examination** and **no signs of intracranial hemorrhage**. Besides hypertension, other causes of optic nerve head

1105 edema exist. Papilledema, which is optic nerve head edema secondary to increased intracranial pressure,

1106 is often bilateral and may result from intracranial mass lesions, meningitis, cerebral venous thrombosis,

1107 **intracranial hypertension, or it may be idiopathic**. Bilateral optic nerve head edema can also be caused by

1108 diabetic papillopathy—a rare cause of optic disc edema that is bilateral in up to 50% of cases¹—and toxic optic

1109 neuropathies. Optic disc drusen, which are frequently bilateral, may lead to so-called pseudopapilledema.

1110 Severe hypertension causing **acute retinopathy** and **optic nerve head edema** is considered a **hypertensive**

1111 **emergency** due to its association with **end-organ damage**, specifically affecting the retina and optic nerve.

1112 This case emphasizes that, although the differential diagnosis for optic nerve head edema is extensive,

1113 promptly assessing the patient's **blood pressure** in the eye clinic to evaluate for a **hypertensive emergency** is

1114 **critical**. Immediate evaluation is **crucial** because this treatable condition could lead to **significant morbidity**

1115 or **mortality** if diagnosis is delayed. The patient was admitted to the medical service for **hypertension**

1116 **management**. At an ophthalmology follow-up examination three months later, her blood pressure was 128/73

1117 mm Hg, and her visual acuity improved to 20/40 in the right eye (OD) and 20/60 in the left eye (OS), nearing

1118 her visual acuity before this acute event. Upon examination, the **optic nerve head edema** had **resolved**, and

1119 **optical coherence tomography** showed a resolution of the macular edema.

1117 **Claude3-Opus:** This case presents several concerning features that make **measuring vital signs** the most

1118 **urgent next step: Bilateral optic nerve edema (worse in left eye)** in a **young pregnant woman** with:

- 1119 • Type 1 diabetes
- 1120 • Hypertension
- 1121 • Chronic kidney disease
- 1122 • Active pregnancy (15 weeks)

1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 The key concern here is **POSTERIOR REVERSIBLE ENCEPHALOPATHY SYNDROME (PRES)**, which
 1135 is:

1136 • A neurological condition characterized by vasogenic edema
 1137 • Commonly associated with severe hypertension
 1138 • More common in pregnant women
 1139 • Can present with visual symptoms and optic nerve edema
 1140 • Can be life-threatening if not treated promptly

1141 Why other options are less appropriate:

1142 • A (Fluorescein angiogram): Contraindicated in pregnancy
 1143 • B (Blood glucose/HbA1c): While important for diabetic management, not the most urgent concern
 1144 given the presentation
 1145 • D (Head CT): While eventually needed if PRES is suspected, vital signs should be checked first as
 1146 they'll guide immediate management

1147 The vital signs are crucial because:

1148 • They will help determine if this is a hypertensive emergency requiring immediate intervention.
 1149 • They're non-invasive and provide immediate critical information

1150 The findings will guide the urgency and direction of further workup

1151 • If severely elevated blood pressure is found, immediate treatment could prevent serious complications
 1152 for both mother and fetus
 1153 • This represents a potential medical emergency where checking vital signs is the most appropriate
 1154 first step to guide immediate management decisions.

1155 **Huatuo-GPT-Vision-34B:** The patient, who has a history of **type 1 diabetes** and is currently **15 weeks pregnant**, presents with **optic nerve head edema, macular edema, and hemorrhages in both eyes**; therefore, it is crucial to **assess her blood glucose levels and perform a glycated hemoglobin (HbA1c) test to evaluate and manage her glycemic control status**, as this evaluation is essential to **identify any acute changes or complications related to her pregnancy and existing diabetes**, since poor glycemic control can lead to rapid progression of diabetic retinopathy, exacerbate ocular conditions, and pose significant risks to both maternal and fetal health—including the potential for congenital anomalies, preeclampsia, and worsening of chronic kidney disease—thus, **timely assessment and adjustment of her diabetes management plan are vital to prevent further vision loss and ensure the well-being of both the mother and the developing fetus**.

1156 **Huatuo-GPT-Vision-7B:** **B. Determine blood glucose level and perform glycated hemoglobin test** Reasoning:
 1157 The patient has a history of **type 1 diabetes**, which is known to cause **diabetic retinopathy leading to vision loss** as seen in the images provided (**optic nerve head edema with hemorrhage**). The presence of **macular edema** also suggests **ongoing or poorly controlled diabetes** affecting her eyes. **A fluorescein angiogram would be useful for assessing vascular abnormalities but may not directly address the underlying issue related to poor glycemic control**. Measuring heart rate, respiratory rate, and blood pressure are important general assessments but do not specifically relate to the ophthalmic findings presented here. Immediate computed tomography of the head might be considered if there was suspicion of other complications like intracranial pathology; however, it's less relevant given the current clinical context focused on eye examination results linked to diabetes management issues.

1158 **GPT-o-mini:** Correct Answer: **C. Measure heart rate, respiratory rate, and blood pressure**. Reason: **Measuring blood pressure is critical** in this scenario to identify **malignant hypertension**, a potentially **life-threatening condition** that can lead to **vision loss through optic nerve and retinal damage**. **Immediate assessment of blood pressure helps rule out hypertensive emergencies**, allowing for **timely intervention**.

1159 **Expert Comment:** SemiHVision and Claude3-Opus accurately recognized the urgency of measuring vital signs to assess for malignant hypertension in this patient, who presents with bilateral optic nerve edema and a history of hypertension and chronic kidney disease during pregnancy. Their reasoning reflects a proper understanding of the need for immediate intervention to prevent serious complications. On the other hand, Huatuo-GPT-Vision-34B and Huatuo-GPT-Vision-7B focused on assessing glycemic control by selecting to determine blood glucose levels and perform a glycated hemoglobin test. While managing diabetes is important, they failed to prioritize the immediate life-threatening condition suggested by the patient's symptoms, thus overlooking the critical need to rule out a hypertensive emergency. GPT-4o-mini could get the correct answer and some key points but lack lots of detail evidence to prove it.

1188

1189

1190

1191

1192

1193

1194

1195

1196

Table 12: Human Annotated Sample Case.

Image Caption: 1. Sagittal T2-weighted image shows a large high signal intensity cystic mass (red arrow) with a nodular, low signal intensity component (yellow arrow). Normal left ovary with follicles (white arrow) is seen posteriorly – negative beak sign. 2. Sagittal T2-weighted image shows a large high signal intensity cystic mass (red arrow) arising from right ovary (white arrow) – positive beak sign. There is another small, nodular, low signal intensity component (yellow arrow). 3. Axial T1-weighted image shows a large cystic mass (red arrow). The lesion has parts of low signal intensity (yellow arrow) and its content is slightly hyperintense (asterisk). 4. Axial fat-suppressed post-contrast T1-weighted image shows wall enhancement (red arrow) and solid component enhancement (yellow arrow) and its content is hypointense (asterisk). 5. Diffusion-weighted MR image (b1000) shows hyperintensity of the solid component (yellow arrow). 6. Axial ADC map from diffusion-weighted MR image (Fig. 1e) demonstrates marked hypointensity of the solid component (yellow arrow), in keeping with dense cellularity of the lesion.

Clinical History: A 21-year-old G0P0 woman with no medical history was referred to our institution for a sonographically detected cystic right adnexal mass. She has a history of pelvic discomfort without other complaints. Physical examination was normal. Laboratory findings were also normal except for an elevated CA 125 65.2 U/mL (normal <35.0).

Image Findings: MRI examination revealed a cystic tumour arising from the right ovary with 7.5 cm. On T2-weighted images, the signal intensity of the cyst content was high and two small nodular peripheral solid components were detected, adhering to its internal wall, with low signal (Fig. 1a, b). The normal left ovary was present with follicles (Fig. 1a). On pre-contrast T1-weighted images, the mass exhibited slightly high signal intensity (Fig. 1c). On contrast-enhanced fat-suppressed T1-weighted images, wall enhancement and solid component enhancement were detected (Fig. 1d). Finally, the ADC map (Fig. 1f) from diffusion-weighted image (Fig. 1e) demonstrates marked hypointensity of the solid component, in keeping with its dense cellularity. Surgical excision was proposed and accepted by the patient. The histopathological investigation revealed a typical ovarian serous borderline tumour.

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Discussion: Borderline ovarian tumours are uncommon ovarian neoplasms, intermediate between benign and malignant types, corresponding to 5% of all epithelial ovarian tumours. [1, 2] Serous borderline tumour represents the most common type of borderline tumours arising in the ovary, and typically, it is confined to the adnexa and presents an indolent course. [3] However, up to 6.8% of these tumours can progress to low grade serous carcinoma. [3] Serous borderline tumours are divided into typical (90%) and borderline tumours with micro-papillary patterns (5%–10%). [4] These neoplasms usually present as bilateral adnexal masses with more proliferation of papillary projections than do benign cystadenomas, they are often seen in younger patients, and laboratory findings show the serum CA-125 level mildly elevated. [2, 3, 5, 6] The peak age of presentation is 45 years. [5] Small tumours usually do not cause symptoms and are often detected as an incidental finding on sonography. [7] Larger or more advanced neoplasms might cause pain or pelvic discomfort. The diagnosis of this type of tumour is based on histopathological examination. As they are staged using the same ovarian cancer staging of malignant ovarian neoplasms [5], MRI plays a crucial rule in this evaluation. There are no pathognomonic imaging features of borderline ovarian tumours and they frequently resemble a benign lesion. Nevertheless, some pathologic and MR imaging studies suggested that large papillary projections are highly suggestive of borderline or malignant neoplasms. [1, 8] The preferred treatment is bilateral oophorectomy. Fertility sparing procedures such as unilateral oophorectomy or cystectomy are related with a higher incidence of recurrence when compared with bilateral oophorectomy (10-20% vs. approximately 5% for radical surgery). [3, 4] Young age (<30 years) has also been found to be a risk factor for recurrent disease in patients treated conservatively. As in this case, patients should be instructed to complete child-bearing within a short time frame following initial diagnosis, due to the high risk of recurrence. [3] The most important feature in predicting an adverse outcome in serous borderline tumours is the presence of serous lesions involving the peritoneum (so-called invasive implants). [3, 4] Tumours without invasive implants, as in this case, have been considered to be nonaggressive tumours, associated with a good prognosis and high survival rate. Follow-up using ultrasound imaging is mandatory, with particular attention paid to the remaining ovary in conservatively treated young patients. [4] Written informed patient consent for publication has been obtained.

SemiHVision(only a sample for one image):

User:What type of imaging technique is shown in Fig. 1a of the provided image?

GPT:The image shows a T2-weighted MRI scan.

User:Where is the cystic tumour located according to the image?

GPT:The cystic tumour is arising from the right ovary

User:What is the size of the cystic tumour?

GPT:The cystic tumour is 7.5 cm in size.

User:What does the red arrow in the image indicate?

GPT:The red arrow indicates the normal left ovary with follicles.

User:What does the yellow arrow in the image point to?

User:The yellow arrow points to one of the small nodular peripheral solid components adhering to the internal wall of the cystic tumour.

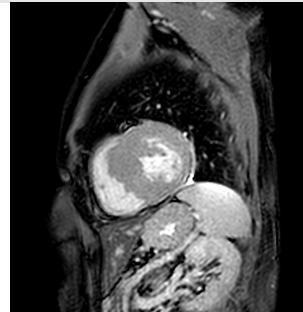
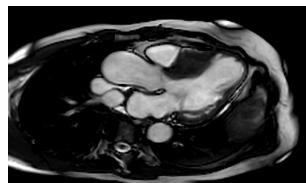
User:What characteristic of the cyst content is shown by the high signal intensity in the T2-weighted image?


User:The high signal intensity indicates that the cyst content is fluid-filled.

User:What is shown by the asterisk (*) in the image?

User:The asterisk (*) indicates the cystic tumour arising from the right ovary.

1296
1297



Table 13: Human Annotated Sample Case.

1298
1299
1300
1301
1302
1303
1304
1305
1306
13071308
1309
1310
1311
1312
1313
1314
1315
1316
1317

Prompt(without retriever): Generate the Image description based on the image.

GPT-4o: The image is a sagittal CT scan, likely of the thoracic or abdominal region. The scan shows various soft tissue structures, including major organs. The blue arrow points toward a specific structure, possibly a blood vessel or part of an organ. This could indicate an abnormality such as a mass, an aortic aneurysm, or an area of vessel narrowing or dissection. In the background, major anatomical landmarks like the heart, aorta, and vertebral column are visible, as well as some portions of the liver or spleen. The areas of high contrast indicate dense structures, such as bones, while softer tissues are seen in varying shades of gray, highlighting different densities. This scan could be used to evaluate conditions like vascular abnormalities, tumors, or other pathologies in the chest or upper abdominal region. Further clinical information would be necessary to confirm the exact diagnosis.

Prompt(with retriever): Generate the Image description based on the image. Here are some medical guidelines and Clinical cases for you.

1319
1320
1321
1322
1323
1324
1325
1326
1327
13281329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Case Discussion: A case of asymmetric hypertrophic cardiomyopathy with mild subaortic stenosis and partial systolic anterior motion of the mitral valve. Since the pressure gradient obtained by phase contrast imaging was rather low, echocardiographic reevaluation and/or follow-up was recommended. The case also demonstrates a typical pattern of myocardial fibrosis in the basal and midventricular septal segments at the anterior and posterior right ventricular insertion points.

GPT-4o: The image is a coronal oblique CT scan of the thoracic region, focused on the heart and its surrounding structures. The blue arrow indicates a subaortic ventricular septal defect (VSD), measuring approximately 2.7 cm. This congenital heart defect refers to an abnormal opening in the interventricular septum (the wall separating the left and right ventricles of the heart), located just below the aortic valve. The surrounding anatomy includes parts of the heart chambers, likely showing the left and right ventricles, as well as nearby vascular structures such as the aorta. The defect appears to allow abnormal communication between the ventricles, which could lead to altered blood flow dynamics, potentially causing symptoms such as shortness of breath, fatigue, or heart failure if left untreated.