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ABSTRACT

In this paper, we study whether model-based reinforcement learning (RL), in par-
ticular model-based value expansion, can provide a scalable recipe for tackling
complex, long-horizon tasks in offline RL. Model-based value expansion fits an
on-policy value function using length-n imaginary rollouts generated by the cur-
rent policy and a learned dynamics model. While larger n reduces bias in value
bootstrapping, it amplifies accumulated model errors over long horizons, degrad-
ing future predictions. We address this trade-off with an action-chunk model that
predicts a future state from a sequence of actions (an “action chunk”™) instead of a
single action, which reduces compounding errors. In addition, instead of directly
training a policy to maximize rewards, we employ rejection sampling from an ex-
pressive behavioral action-chunk policy, which prevents model exploitation from
out-of-distribution actions. We call this recipe Model-Based RL with Action
Chunks (MAC). Through experiments on highly challenging tasks with large-
scale datasets of up to 100M transitions, we show that MAC achieves the best per-
formance among offline model-based RL algorithms, especially on challenging
long-horizon tasks.
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Figure 1: Two main components of MAC. (Left) Action-chunk models predict a future state given a sequence
of actions (an “action chunk”), reducing compounding errors and enabling long-horizon model rollouts. (Right)
Rejection sampling from an expressive (flow) behavioral action-chunk policy enables modeling multi-modal
action distributions, while preventing model exploitation from out-of-distribution actions.

1 INTRODUCTION

Offline reinforcement learning (RL) holds the promise of training effective decision-making agents
from data, leveraging large-scale datasets. While offline RL has achieved successes in diverse do-
mains (Kumar et al., 2023; Springenberg et al., 2024), its ability to handle complex, long-horizon
tasks remains an open question. Prior work has shown that standard, model-free offline RL often
struggles to scale to such tasks (Park et al., 2025b), hypothesizing that the cause lies in the patholo-
gies of off-policy, temporal difference (TD) value learning.

In this work, we investigate whether an alternative paradigm, namely model-based RL, and in par-
ticular model-based value expansion (Feinberg et al., 2018), provides a more effective recipe for
long-horizon offline RL. In this recipe, we first train a dynamics model, and fit an on-policy value
function by rolling out the current policy within the learned model, which is then used to update
the policy. Since on-policy value learning has demonstrated promising scalability to long-horizon
tasks (Berner et al., 2019; Guo et al., 2025), in contrast to the relatively limited evidence for off-
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policy TD learning (Park et al., 2025b), we hypothesize that the combination of on-policy value
learning and dynamics modeling may also exhibit strong horizon scalability.

However, there is a tricky trade-off in this recipe. In model-based value expansion, we typically train
a value function by rolling out the policy for n steps within the model and regressing toward the
target: V(s;) < Z?:_Ol Yiresi +79"V (S¢4n). Here is the dilemma. On the one hand, we want to use
a large n in this value update, as this reduces the bias in the bootstrapped target value, Y"V (544 ,).
This is particularly important given that bias accumulation is one of the major factors that hinder
the scaling of offline RL (Park et al., 2025b). On the other hand, we want to keep n small enough,
as errors in the dynamics model accumulate through autoregressive queries over the horizon. Is
there a solution to this trade-off that enables long-horizon model rollouts while preventing error
accumulation?

Our main hypothesis in this work is that action-chunk models and policies, combined with recent
innovations in expressive generative models, can provide a natural solution to the above dilemma,
enabling scaling of offline model-based RL to long-horizon tasks. Namely, instead of training a
single-step model p( | 5/, a;), we train a multi-step model p( | s, ) that takes an
action-chunk ay.;4+,—1 as input and predicts a future state that is n-step ahead. This substantially
reduces the number of recursive model calls and mitigates compounding errors (Figure 1, left),
enabling long-horizon imaginary rollouts over 100 environment steps.

To use an action-chunk model in the model-based actor-critic framework, we need an action-chunk
policy. However, directly training a reward-maximizing action-chunk policy is challenging in of-
fline RL, due to the potentially multi-modal, high-dimensional action-chunk distributions in the
dataset (Li et al., 2025). Hence, we employ rejection sampling based on samples from an expressive
behavioral action-chunk policy trained with flow matching (Lipman et al., 2024). By simply defin-
ing the policy as the behavioral action-chunk sample that maximizes the value function, we can not
only capture complex action distributions from the dataset (Figure 1, right), but also effectively pre-
vent model exploitation (Kidambi et al., 2020).

We call this recipe Model-Based RL with Action Chunks (MAC), which constitutes the main con-
tribution of this work. Experimentally, we show that MAC vastly improves the horizon scalability of
offline model-based RL. In particular, we demonstrate that our scalable model-based RL recipe can
consume 100M-scale data to achieve state-of-the-art performance on highly complex, long-horizon
robotic manipulation tasks from OGBench (Park et al., 20252), often outperforming previous model-
free and model-based approaches.

2 RELATED WORK

Offline model-free RL. Offline RL aims to learn a return-maximizing policy from a previously col-
lected dataset, without interaction with the environment (Lange et al., 2012; Levine et al., 2020). As
in online RL, offline RL methods can be categorized into model-free and model-based ones. Offline
model-free RL methods train a policy without learning a dynamics model. Prior works have pro-
posed a number of model-free approaches based on diverse techniques, such as conservatism (Ku-
mar et al., 2020), behavioral regularization (Wu et al., 2019; Peng et al., 2019; Nair et al., 2020; Fu-
jimoto & Gu, 2021; Tarasov et al., 2023; Park et al., 2025c¢), uncertainty estimation (An et al., 2021;
Nikulin et al., 2023), in-sample maximization (Kostrikov et al., 2022; Xu et al., 2023; Garg et al.,
2023), rejection sampling (Chen et al., 2023; Hansen-Estruch et al., 2023), and more (Brandfon-
brener et al., 2021; Sikchi et al., 2024).

Offline model-based RL. In this work, we focus on offline model-based RL, a paradigm that first
trains a dynamics or trajectory model, and then trains a policy based on rollouts generated from the
learned model. A line of work trains generative models (e.g., Transformers (Vaswani et al., 2017)
and diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020)) to model the entire trajectory
distribution of the dataset, and typically use conditioning and guidance to compute actions (Chen
etal., 2021; Janner et al., 2021b; 2022; Lee et al., 2022; Ajay et al., 2023; Jiang et al., 2023; Li et al.,
2023; Chen et al., 2024; Ding et al., 2024; Jackson et al., 2024; Cheng et al., 2025). Another line of
work trains a (typically single-step) dynamics model, and trains a policy based on rollouts autore-
gressively sampled from the learned model. These approaches employ the learned dynamics model
for (1) “Dyna”-style data augmentation (Sutton, 1991; Janner et al., 2019; Yu et al., 2020; Kidambi
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et al., 2020; Yu et al., 2021; Rigter et al., 2022; Sun et al., 2023; Sims et al., 2024; Lu et al., 2023a),
(2) planning (Testud et al., 1978; Argenson & Dulac-Arnold, 2021; Chitnis et al., 2024; Zhou et al.,
2025), and (3) value estimation (Feinberg et al., 2018; Jeong et al., 2023; Park & Lee, 2025; Hafner
et al., 2025), with diverse techniques to prevent model exploitation and distributional shift, such as
ensemble-based uncertainty estimation. Our method is based on model-based value expansion and
falls in the third category. However, unlike most of the previous works in this category, we employ
an action-chunk model instead of a single-step dynamics model to reduce effective horizons and
thus error accumulation.

Horizon reduction and model-based RL. The curse of horizon is a fundamental challenge in rein-
forcement learning (Liu et al., 2018; Park et al., 2025b). In the context of model-free RL, previous
studies have proposed diverse techniques to reduce effective horizon lengths, such as n-step returns
to reduce the number of Bellman updates (Sutton & Barto, 2005), and hierarchical policies to reduce
the length of the effective policy horizon (Nachum et al., 2018; Park et al., 2023). Long horizons
are a central challenge in model-based RL too, since model rollouts suffer from compounding errors
as the horizon grows. Prior works in model-based RL address this challenge with trajectory model-
ing (Janner et al., 202 1b; 2022), hierarchical planning (Li et al., 2023; Chen et al., 2024), skill-based
action abstraction (Shi et al., 2022), and action-chunk multi-step dynamics modeling (Asadi et al.,
2019; Lambert et al., 2021; Zhao et al., 2024; Zhou et al., 2025). Our work is closest to prior works
that use action-chunk dynamics models. However, these works either use the action-chunk model
only for planning without having the full actor-critic loop (Asadi et al., 2019; Lambert et al., 2021;
Zhou et al., 2025), or model the entire state-action chunks (Zhao et al., 2024). Unlike these prior
works, we perform on-policy value learning with an action-chunk model and policy, while not in-
volving additional planning or full trajectory generation.

3 PRELIMINARIES

Problem setting. We consider a Markov decision process (MDP) defined as M = (S, A, r, u, p),
where S is the state space, A = R? is the action space, r(s,a) : § x A — R is the reward

function, u(s) € A(S) is the initial state distribution, and p(s’ | s,a) : S x A — A(S) is
the transition dynamics kernel. A(X') denotes the set of probability distributions on a space X,
and we denote placeholder variables in . For a policy 7(a | s) : & — A(A), we define

Vﬂ(s) = ]ETNP"( [so=s) [Etoio fytr(sb at)] and Qﬂ(sz a) = ]ETNp”( |so=s,a0=a) [Zzo ’}/tr(stv at)]?
where v € (0, 1) denotes the discount factor, 7 = (sg, ag, 7o, $1, - - .) denotes a trajectory, and p™
denotes the trajectory distribution induced by p, p, and 7. The goal of offline RL is to find a policy
7 that maximizes Eg (. )[V ™ (s0)] from an offline dataset D = {r(V} consisting of previously
collected trajectories, with no environment interactions.

Flow matching. Flow matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al.,
2023) is a technique in generative modeling to train a velocity field whose flow generates a target
distribution of interest. As with diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), flow
models iteratively transform a noise distribution to the target distribution, and have been shown to
be highly expressive and scalable (Esser et al., 2024; Lipman et al., 2024).

Formally, assume that we are given a target distribution p(+) € A(R¥). For a time-dependent
velocity field v(u, ) @ [0,1] x R¥ — R* (we use u to denote times in flow matching to avoid
notational conflicts with environment steps in MDPs), we define its flow, ¢ (1, ) : [0, 1] xRF — R,
as the unique solution to the following ordinary differential equation (ODE) (Lee, 2012):

d
@7/)(%30) - v(u,q/z(u,:c)). (1

Flow matching aims to find a velocity field whose flow transforms a noise distribution (e.g., k-
dimensional standard Gaussian, N (0, I;)) at u = 0 to the target distribution at u = 1.

Prior work (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) has shown that
we can train such a velocity field by minimizing the following loss:

E  oooNO10), oimp(e),  [0(t24) = (21— 20)|3] - 2)
u~Unif([0,1]), z,=(1—u)zo+uzy
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We refer to the tutorial by Lipman et al. (2024) for detailed explanations and proofs. After training
the velocity field, we can obtain samples from the target distribution by numerically following the
velocity field to solve the ODE in practice (e.g., with the Euler method).

4  OFFLINE MODEL-BASED RL WITH ACTION CHUNKS

Motivation. Our high-level goal is to scale up offline model-based RL to complex, long-horizon
decision-making problems. Among model-based RL frameworks, we specifically focus on model-
based value expansion (Feinberg et al., 2018), which combines dynamics modeling and on-policy
value learning. This is because each of these components, namely generative modeling and on-
policy RL, has individually been shown to scale to long-horizon tasks (Berner et al., 2019; Harvey
et al., 2022; Guo et al., 2025).

In model-based value expansion, we first train a dynamics model, and train an on-policy value
function with the following update:

n—1
V(31) = YA (8epis i) + 9"V (3e4m), 3)
i=0
where (s; = 8¢, at, $t41, - - -, S14n) 18 a length-n imaginary rollout sampled from the model using

the current policy, and V' is a target value function. The policy is then updated to maximize the
learned value function, and we repeat this procedure.

The problem is: how long should model rollouts be? Unfortunately, we have two seemingly contra-
dictory desiderata.

On the one hand, we want model rollouts to be long enough. If n is too small, we end up with a
large number of biased value updates with short-horizon bootstrapping in Equation (3). This causes
the biases to accumulate over the horizon, which is known to be one of the main obstacles hindering
value-based RL from scaling to long-horizon tasks (Park et al., 2025b). Hence, we want to keep n
large enough.

On the other hand, we want model rollouts to be short enough. If we use a standard policy 7 (« | s),
we need to autoregressively call a learned dynamics model n times to generate a length-n model
rollout (8¢, ¢, $¢41,- - -, S8t4n). This makes errors in the dynamics model accumulate within the
trajectory chunk, which would degrade performance. Hence, we want to keep n small enough.

Is there a way to naturally resolve this dilemma?

4.1 THE IDEA

Our main idea in this work is that a combination of an action-chunk policy and an action-chunk
model can provide a clean solution to the above dilemma, enabling scaling to complex, long-horizon
tasks. Specifically, we train an action-chunk model p( | sty ) S x AT = A(S)
and an action-chunk policy 7 ( | 5:) : & = A(A™), where a;.; denotes the action chunk
(aiy @iyt - ,aj). Since each individual call of the model generates n actions at once, we can
reduce the number of recursive model calls by a factor of n. This way, we can mitigate both bias
accumulation in value learning and error accumulation in model rollouts.

However, several challenges remain in implementing this idea in practice. First, Gaussian policies,
used in many previous works in offline model-based RL (Yu et al., 2020; Sun et al., 2023; Lu
et al., 2023b; Chitnis et al., 2024; Park & Lee, 2025), are generally not expressive enough to model
complex, multi-modal action-chunk distributions (Figure 1). Second, penalizing out-of-distribution
actions based on uncertainty in the dynamics model, as typically done by prior work in offline
model-based RL (Yu et al., 2020; Kidambi et al., 2020; Sun et al., 2023), can be challenging due to
the potentially high complexity of the action-chunked dynamics distribution.

To handle these challenges, we employ rejection sampling from an expressive behavioral action-
chunk policy. Specifically, we use flow matching (Lipman et al., 2024) to train a behavioral cloning
(BC) action-chunk policy, and define a policy as the arg max action chunk (among /N chunks sam-
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Algorithm 1 Offline Model-Based RL with Action Chunks (MAC)

Input: Dataset D, rollout length H, action chunking size n, rejection sampling size M

// Training loop

while not converged do

> Sample action-chunked batch from the dataset (a: = at:t+n—1, Tt = Zj:; Y Trigi)
Sample batch {(s¢, at, rt, St40)} ~ D

> Train BC policy using dataset transitions
Update flow BC policy my with flow-matching loss (Equation (7))
Update one-step BC policy 7, with distillation loss (Equation (8))

> Train dynamics and reward model using dataset transitions
Update dynamics model p,, to minimize E[||py(s¢, at) — st1n|/3] (Equation (5))

Update reward model 7y, to minimize E[||ry (s¢, at) — 74 H;] (Equation (6))

> Generate model rollouts (5; = s;)
fork=0,1,...,H —1do
@ty < POLICY (St4kn)
L Stt(hr1)ns Prakn ~ Do (- | Btk @rakn)s o (- | Btphns Gigkn)

> Update value using model rollouts
Update value V., with n H-step targets from the rollout (Equation (10))

> Learn critic for faster rejection sampling
Update critic (), with the learned value function V,, (Equation (11))

// Extract action from flow BC policy mg with rejection sampling
function POLICY(s)

z~N(0,1)

a) =7, (s, 2)

return argmax, ) .. aon Qu(s, a)

pled from the BC policy) that maximizes the learned value function:

d ,
m(se) = arg max Q(st, ag?t)+n71), 4)

{04101 HLy i ( |5¢)
where 77 ( | 51) : & — A(A™) denotes an action-chunk flow BC policy, Q(s/, ) :

. . d e
S x A™ — R denotes an action-chunk value function, and = denotes equality in distribution.

Compared to Gaussian policies, the flow-based behavior policy better models multi-modal action
distributions, allowing us to sample action chunks that stay in-distribution, which obviates the need
for an additional uncertainty penalization mechanism. Moreover, rejection sampling is generally
more robust to hyperparameters (Zhou et al., 2025; Park et al., 2025b), making our method simpler
and easier to tune than other alternatives, which may require tuning an uncertainty penalization
coefficient for each task.

4.2 PRACTICAL ALGORITHM

Based on the idea discussed in the previous section, we now describe the full details of our method
for scalable offline model-based RL, which we call Model-Based RL with Action Chunks (MAC).
MAC consists of the following components: an action-chunk dynamics model p,;, an action-chunk
reward model 7, a flow action-chunk policy 7y , and value functions Vi, and @),,. For notational
simplicity, we override the symbols 1, and ¢ to denote all model-, and value-related parameters,
respectively. Moreover, we denote a; € A™ to be the action chunk ., and 7; to be the sum of
discounted rewards for n steps 370 7744

Action-chunk dynamics and reward models. For dynamics modeling, we minimize the following
losses to train a deterministic action-chunk dynamics model py(s/,a;) : S x A” — S and an



Published as a conference paper at ICLR 2026

action-chunk reward model ry (s;, ;) : S x A™ = R:
Ldyn(w) = E(st,at,--- ,St+n)~D [pr<sta at) - St+nH§] ) (5)
L () = Baparrrrom 1wt a) = i3] ©)

where trajectory chunks are uniformly sampled from the offline dataset. The dynamics function p,;
is modeled by a deterministic multi-layer perceptron (MLP). While we found this to be sufficient in
our benchmark environments, we note that it is possible to replace the MLP with an expressive flow
model (as in our policy) in stochastic or partially observable environments.

Flow action-chunk policies. For the actor, we employ rejection sampling using a behavioral flow
action-chunk policy, as described in Section 4.1. To train a flow BC policy, we train a state-
dependent velocity field vp : R x & x A™ — A", with the flow-matching loss (Equation (2)):
LY0) =E  .on(0,1,0), (sa0~D, Ve, 50,a2) — (@ — 2)|3] - O]
u~Unif([0,1]), a.=(1—u)z+uz
We define 7y (s¢, 2) € A™ as the destination of the induced flow at w = 1 when starting with (s;, z)
at v = 0 and following the velocity field vg. Then, by sampling multiple noises z ~ N (0, I,,4) and
computing 7y (s¢, z), we can obtain behavioral action-chunk samples, which are then used for rejec-
tion sampling (Equation (4)) along with a learned value function (described in the “Value learning”
section below).

One issue with this rejection sampling framework is speed. To compute a single action chunk using
Equation (4), we need N I queries of the velocity field vy, where N is the number of samples and F’
is the number of flow steps in the Euler method ' For example, with N = 8 and F' = 10, we need
to query the velocity field 80 times to sample a single action chunk. This is particularly prohibitive
in model-based RL, as we need to sample multiple imaginary rollouts during training in batches,
unlike methods that employ rejection sampling only at test time (Hansen-Estruch et al., 2023; Park
et al., 2025b; Zhou et al., 2025).

To address this issue, we train an additional one-step” flow policy that directly predicts the output
of the ODE flow policy. Specifically, we train a one-step MLP action-chunk policy 7, (s, 2) :
S x A" — A™ parameterized by w, with the following flow distillation loss (Park et al., 2025c¢):

LENW) = Egyop, oo (0,100) LI (525 2) = [mo(se, 2)]x [13] ®
where [-]x denotes the “stop gradient” operation.

Unlike the ODE policy, 7, only requires a single network call to produce an action chunk, reducing
the number of queries from NF to N for rejection sampling in Equation (4). This substantially
reduces both the training and inference cost of MAC.

Value learning. In MAC, value functions are trained from on-policy model rollouts (i.e., imaginary
trajectories). To train value functions, we first generate M imaginary (action-chunk) trajectories of
length H,
i B) A1) A() A()  A() 4G NG M

DME = {(S,g )’ az(f )7 r§ )’ SE‘Jznv a,ngn, T£+)n’ ) 5£-‘2Hn) =1 (9)
where a; denotes the action chunk a;..y, generated from the rejection sampling policy, and #;
denotes the discounted sum of rewards Z;:Ol v'ry4; predicted from the reward model ry (+|s¢, ay).
Here, initial states sgl) are uniformly sampled from the dataset, and subsequent actions, rewards, and
next states are synthesized by our rejection-sampling policy, reward model, and dynamics model,
respectively, hence the hat notation.

After collecting D™, we update the value function V,,(s,) : S — R with the following loss:

H—-1 2
LY(p) =E <V¢(§t+kn) = AR — ’Y(H_k)nvcp(§t+Hn)> ; (10)
i=k

'We note that wall-clock training time heavily depends on F' than N, since rejection sampling can be
parallelized, while flow sampling is not.

>We emphasize that “one-step” is different from “environment steps” in RL. Although the phrasing can be
ambiguous, “one-step” (or “single-step”) is the standard term for single-step distillation procedures (e.g., as
used in Park et al. (2025¢); Frans et al. (2025)). Because this terminology is already conventional, we would
like to retain “one-step” for consistency with prior works.



Published as a conference paper at ICLR 2026

where ¢ denotes exponentially averaged target parameters (Mnih et al., 2013), and the expectations

are over (8; = 8, ¢, 4, . . ., S$t4 1y ) uniformly sampled from D™& and k uniformly sampled from
{0,1,...,H—1}.
Finally, we train the action-chunk Q function Q, (s, @) : S x A™ — R for the rejection sampling
with the following loss:

L2(p) = Eg,np [(Qu(st, @) — Pt — “Yn[ch(§t+n)]x)2} . (11)

We do not reuse D™8 after performing one gradient update of value functions; i.e., we generate new
model rollouts every epoch. We provide a pseudocode for MAC in Algorithm 1.

Notes on hyperparameters. While MAC has several learnable components, MAC is comparatively
easier to tune the hyperparameters than prior methods in our experiments. In particular, we use the
same horizon hyperparameters of (n, H) = (10, 10) for all tasks considered in this work. We also
use the same number (N = 32) of samples for flow rejection sampling during evaluation across all
tasks. That is, we can use the hyperparameters across all tasks, while prior model-based baselines
(e.g., MOBILE, MOPO) requires task-specific rollout horizons and uncertainty penalties to remain
stable. See Appendix A for the full details.

5 EXPERIMENTS

Now, we empirically evaluate the performance of MAC through a series of experiments. Our main
research question is how well MAC scales to long-horizon tasks compared to previous offline model-
based RL approaches, which we answer in Section 5.1. Then, we compare MAC with previous
methods on standard offline RL benchmark tasks to assess its effectiveness as a general offline RL
algorithm (Section 5.2). Finally, we provide several analyses and ablation studies to understand the
importance of each component of MAC (Section 5.3). In our experiments, we use four random seeds
(unless otherwise mentioned) and report standard deviations in tables and 95% confidence intervals
in plots. In tables, we highlight numbers that are above or equal to 95% of the best performance.

5.1 EXPERIMENTS ON LARGE-SCALE, LONG-HORIZON TASKS

We first study the horizon scalability of MAC by evaluating it on large-scale, long-horizon bench-
mark tasks.

Tasks and datasets. To assess the scalability limits of each algorithm, we employ three highly
challenging, long-horizon simulated robotic tasks used in the work by Park et al. (2025b) modified
from OGBench (Park et al., 2025a): humanoidmaze-giant, cube-octuple, and puzzle-4x5.
These tasks are not just long-horizon but also goal-conditioned (i.e., the agent must reach any
goal states given at test time), requiring complex, multi-task reasoning over a long episode. They
present a variety of control challenges from high-dimensional humanoid navigation to complex ob-
ject manipulation and combinatorial puzzle solving. The hardest task in each environment requires
700-3000 environment steps and 8—20 different atomic motions to complete. In addition to these
long-horizon tasks, we also evaluate methods on shorter-horizon variants in each category (i.e.,
humanoidmaze-medium, cube-double, and puzzle-3x3) to examine each method’s ability to
handle different horizon lengths.

For datasets, we mainly employ the 100M-transition datasets provided by Park et al. (2025b). These
large-scale datasets are collected in a task-agnostic manner (e.g., trajectories consisting of random
atomic motions), meaning that the agent must understand the dynamics and stitch different parts of
trajectories to achieve test-time tasks.

Methods. We mainly compare MAC against six previous model-based RL methods across diverse
categories, including flat and hierarchical, and actor-critic and planning approaches.

Among standard model-based RL approaches, we consider MOPO, MOBILE, LEQ, and F-MPC.
MOPO (Yu et al., 2020) and MOBILE (Sun et al., 2023) are Dyna-style methods (i.e., ones that gen-
erate imaginary rollouts, augment the dataset, and run off-policy RL) based on different uncertainty
penalization techniques. LEQ (Park & Lee, 2025) is a model-based actor-critic method based on
conservative return estimation. F-MPC is a flow-based variant of D-MPC (Zhou et al., 2025), which
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Table 1: Results on large-scale, long-horizon tasks. MAC achieves the best performance among model-
based RL algorithms.

Model-Free Seq. Modeling Model-Based

Environment GCIQL n-SAC+BC SHARSA Diffuser HD-DA MOPO MOBILE LEQ FMPC MAC

humanoidmaze-medium-navigate-oraclerep-vO0 551 98 +2 95 2 00 0 +o0 27 x5 23 13 Ozo 1845 36 +2
humanoidmaze-giant-navigate-oraclerep-v0 41 82 4s 43 +6 00 0+o0 00 00 00 00 00
cube-double-play-oraclerep-v0 T4 +3 32420 95 43 1+ 241 25 +12 1543 Oxo 37413 10041
cube-octuple-play-oraclerep-v0 00 0+o0 1943 00 0+o0 0+o 00 0+o0 0 +o 30 46
puzzle-3x3-play-oraclerep-v0 98 43 91 2 100 +o 11 141 19 42 1515 1x1 1236 1000
puzzle-4x5-play-oraclerep-v0 20 +1 19 +a 91 24 00 040 00 00 1+3  Oxo 99 +3

trains an action-chunk dynamics model as in our method, but performs planning (based on a behav-
ioral Monte Carlo value function) instead of training an on-policy value function with actor-critic.

Among sequence modeling approaches, we consider Diffuser and HD-DA. Diffuser (Janner et al.,
2022) models trajectories with diffusion (Ho et al., 2020) for planning, and HD-DA (Chen et al.,
2024) extends Diffuser using hierarchical models and high-level planning to handle long horizons.

For reference, we additionally consider three performant model-free RL algorithms as well: IQL, n-
SAC+BC, and SHARSA. IQL (Kostrikov et al., 2022) is a standard model-free offline RL algorithm
based on in-sample value learning. n-SAC+BC (Park et al., 2025b) is a behavior-regularized offline
RL method that employs n-step returns to handle long horizons. SHARSA (Park et al., 2025b)
is a state-of-the-art offline RL algorithm designed for long-horizon tasks that employs hierarchical
policies and flow rejection sampling.

5.1.1 RESULTS

We present the main comparison results on six tasks in Table I. The results suggest that MAC
achieves the best performance across all settings among model-based RL algorithms. In particular,
none of the previous model-based RL approaches achieves non-trivial performance on three long-
horizon tasks. This is likely because they either use single-step models, which suffer from error
accumulation (see Figure 2), or are based on planning, which is insufficient to perform full-fledged
long-horizon dynamic programming. Moreover, even compared to state-of-the-art model-free RL
approaches (e.g., SHARSA), MAC achieves the best performance on four out of six tasks, especially
on long-horizon manipulation tasks (cube-octuple and puzzle-4x5).

Negative results. Despite its strength on manipulation tasks, MAC, as well as all other model-based
RL approaches, struggles on long-horizon robotic locomotion tasks (e.g., humanoidmaze-giant).
This is a widely known phenomenon; prior works (Chitnis et al., 2024; Park & Lee, 2025) have also
found that model-based RL particularly struggles in similar robotic maze navigation environments
(e.g., antmaze-large in D4RL (Fu et al., 2020)). We believe this is mainly due to the difficulties in
modeling contact-rich dynamics in locomotion domains, where dynamics tend to be highly erratic
due to discontinuities, resulting in severe model error accumulation. While MAC’s action-chunk
dynamics model does mitigate this issue to some extent, leading to the best performance among
model-based RL approaches (Table 1), it is not sufficient to fully close the gap between model-free
and model-based approaches on these locomotion tasks. We believe this issue may be addressed by
more expressive generative models or latent dynamics models, which we leave for future work.

5.2 EXPERIMENTS ON STANDARD BENCHMARKS

Next, we evaluate MAC on standard, reward-based benchmark tasks to assess its ability to serve as
a general offline RL algorithm under limited data.

Tasks and datasets. We employ 25 single-task manipulation tasks from five environments in OG-
Bench (Park et al., 2025a): cube-{single, double}, scene, and puzzle-{3x3, 4x4}. Unlike
in Section 5.1, these tasks are reward-based (i.e., not goal-conditioned), where the agent gets a re-
ward according to the progress of the task. We use the 1M-sized play datasets given by the bench-
mark. We report the average success rate across 5 tasks for each environment.

Methods. For model-based approaches, we consider the four standard model-based RL algorithms
used in Section 5.1. Additionally, we consider four standard, performant model-free RL algorithms
used in the work by Park et al. (2025¢): IQL (Kostrikov et al., 2022), ReBRAC (Tarasov et al.,
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Table 2: Results on standard reward-based benchmark tasks. MAC achieves the best performance among
both model-based and model-free RL algorithms.

Model-Free Model-Based
Environment IQL ReBRAC IDQL FQL MOPO MOBILE LEQ FMPC MAC
cube-single-play-v0 (5 tasks) 8349 9145 95 +4 96 +3 1244 81+s 00 95 99 +2
cube-double-play-v0 (5 tasks) 7 +11 12 447 15 417 29 421 141 112 0o 32 5344
scene-play-v0 (5 tasks) 28 +36 41 a7 46 +as 56 +45 [F) 844 0 +o 414 97 +a
puzzle-3x3-play-v0 (5 tasks) 913 21 438 10 +21 30 a1 20 +o 1240 10 +7 141 20 +o
puzzle-4x4-play-v0 (5 tasks) 7 +a 1448 29 +13 17 £10 00 0xo0 0o 0o 78 +13

2023), IDQL (Hansen-Estruch et al., 2023), and FQL (Park et al., 2025¢). Among them, FQL is a
state-of-the-art model-free offline RL method on these tasks.

5.2.1 RESULTS

Table 2 summarizes the comparison results on 25 standard benchmark tasks. The results show
that MAC achieves the best average performance on four out of five environments. Notably, MAC
achieves substantially better performance than all other methods especially on (relatively) long-
horizon environments, such as cube-double, scene, and puzzle-4x4. MAC also outperforms
state-of-the-art model-free RL algorithms, showing the promise of offline model-based RL in ma-
nipulation domains.

5.3 Q&As

In this section, we discuss and analyze the components of MAC through the following Q&As.

Q: Do action chunks actually mitigate error accumulation?

A: Our main motivation for using action chunking is to re-

duce error accumulation in autoregressive trajectory genera- & 101 Chunl;
tion. However, one might question whether it is actually the & 5
case, given that increasing the action chunk length also in- g 10
creases the difficulty of learning the model. To examine this, = ofo==s=ow """ ¢

we analyze how the chunk length affects model errors. Specif- 0 50 100

ically, we train dynamics models with action chunk lengths of Rollout Length

{1,5, 10,25} and measure their mean squared prediction errors ~Figure 2: Action chunking reduces
along a length-100 dataset trajectory in puzzle-4x5. Figure 2 model errors.

presents the result, suggesting that longer action chunks indeed substantially mitigate error accumu-
lation. Notably, the errors from a standard one-step model diverge over time, substantiating the ne-
cessity of multi-step prediction for long-horizon tasks.

Q: How does the action chunk length affect performance?

A: To answer this question, we train MAC cube-double cube-octuple
with four action chunk lengths ({1,5,10,25})
on one short-horizon and one long-horizon
task (cube-double and cube-octuple, respec-
tively) used in Section 5.1. As shown in Fig-
ure 3, action chunking with an appropriate chunk ‘ ‘ ‘ : ol o ‘ ‘ ‘
size can substantially improve performance on Action Chunk Lengeh  Action Chunk Lengeh
both tasks. Notably, while cube-double can

still be partially solved without action chunking,
cube-octuple cannot be solved at all without it. This demonstrates that action chunking is crucial
especially on long-horizon tasks. However, Figure 3 also shows that too long action chunks can de-
grade performance, mainly due to the difficulty of open-loop multi-step future prediction.

-
o
o

20

<4
o

Success Rate

Figure 3: Action chunk length vs. performance.

Q: How important is flow rejection sampling?

A: Another key feature of MAC is its use of flow Table 3: Ablation study of MAC.
rejection sampling. To understand the importance

. . Task MAC (Gau) MAC (FQL) MAC

of this component, we conduct an ablation study cubo-singlo-playv0 - - oL
. . 5 . ube-si: - y-Vv 3 +21 0
of MAC by using (1) a Gaussian (“Gau”) action- cube-double-play-v0 0 %0 2.5 50 412
chunk policy instead of a flow policy, and (2) scene-play-v0 040 A0xar 10040
. . . .. puzzle-3x3-play-v0 0 +o0 0 =0 0 +o0
gradient-based policy extraction (one-step distil- puzzle-dx4-play-v0 040 2311 85 +1e
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lation from FQL (Park et al., 2025¢)) instead of

rejection sampling. We present the ablation results on the default tasks for five reward-based envi-
ronments used in Table 3. The results indicate that the use of expressive flow matching is crucial for
MAC, and that rejection sampling generally yields better performance on most tasks.

6 CLOSING REMARKS

In this work, we introduced MAC as a model-based actor-critic algorithm that combines an action-
chunk policy and an action-chunk model. MAC enables generating imaginary autoregressive roll-
outs up to 100 steps, achieving the best performance among model-based RL approaches on chal-
lenging, long-horizon tasks.

We now revisit the initial promise of this paper. In Section 1, we motivated offline model-based RL
as a promising alternative to offline model-free RL in terms of horizon scalability. Our answer is
(at least partially) affirmative: on a variety of long-horizon manipulation tasks, we show that MAC
does outperform state-of-the-art model-free RL algorithms (Table 1). However, as discussed in Sec-
tion 5.1, even the best model-based RL algorithm (MAC) underperforms on contact-rich locomo-
tion tasks (e.g., humanoidmaze), suggesting room for improvement in sequential dynamics model-
ing. Moreover, value learning can become challenging when chunk sizes are very large (Figure 3),
and rejection sampling may limit performance on low-quality datasets (e.g., random datasets) as the
behavioral policy cannot provide useful guidance for policy extraction. We believe that incorporat-
ing more advanced modeling techniques and policy extraction techniques could address these limi-
tations, which we leave for future work.

REPRODUCIBILITY STATEMENT

For the reproducibility of our work, we provide the code of MAC in https://github.com/
kwanyoungpark/MAC. We fully describe the experimental details and hyperparameters to repro-
duce the results for our method and baselines in Appendix A.
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A EXPERIMENTAL DETAILS

We implement MAC on top of the codebase of Park et al. (2025b). Each experiment takes approxi-
mately 2 days for large-scale benchmarks, and around 3 hours for single-task benchmarks on a sin-
gle A5000 GPU. Please refer to Appendix A.2 for detailed time measures.

A.1 IMPLEMENTATION DETAILS

Network architectures. We follow the setup of the work by Park et al. (2025¢;b), using 4-layer
MLPs with layer normalization (Ba et al., 2016) for all neural networks (the policy, critic, dynamics
model, and reward model). For large-scale benchmarks, we parameterize the reward model and the

terminal model using a single success prediction network f (s;, @, ), where termination is calculated
as 1( fy(s¢, a¢) > 0.5) and reward is calculated as 1( fy(s¢, a¢) > 0.5) — 1. For reward-based tasks,
we use a reward model ry (s, @, ) without termination.

Accelerating rejection sampling during training. To improve training time, we use different
numbers of samples for rejection sampling during training and evaluation (which we call Niain
and Nies¢. Specifically, we use Nyp,in, = 8 during training (except in puzzle-4x5, where a larger
Nirain = 32 was necessary due to the BC policy branching over 20 possible actions) and Niest = 32
at test time.

Implementation details for the compared methods. We implement MOPO, MOBILE, and LEQ
in our codebase. For MOPO, epistemic uncertainty is estimated as the maximum standard deviation
across ensemble members (Yu et al., 2020). For LEQ, we omit dataset expansion, which we found
to have a negligible impact in our benchmarks. We use 5 dynamics model ensembles for all methods
and disable early stopping and validation filtering when training the model, as we found they are un-
reliable on large-scale datasets (training and validation metrics are nearly identical in these settings).

For D-MPC (Zhou et al., 2025), we implement the flow variant of D-MPC (F-MPC) in our code-
base. Specifically, we train a flow BC policy ( | s;) and a flow dynamics model
Doy ( | ) instead of using diffusion models. For reward-based benchmarks, we

calculate the return-to-go as Gy = Zf:t ry without discounts, as in the original paper. For goal-
conditioned (large-scale) benchmarks, we similarly define the return-to-go without discounts for the
goal-conditioned tasks as Gy = 1(g € {s¢, -+, sr}). Unlike the original architecture, we do not
use history conditioning and transformers (as all tasks are Markovian) and use the same MLP archi-
tecture as other methods for a fair comparison.

For sequence modeling approaches (Diffuser and HD-DA), we follow the official implementation
for DARL’s maze2d environment (Fu et al., 2020), and adjust the maximum length of the trajectory
generation and the number of diffusion steps (of the high-level policy for HD-DA) to be the maxi-
mum length of the environment (e.g., H = 4000 for humanoidmaze-giant). We re-plan the trajec-
tory every 100 steps, as we found that this is necessary to achieve a non-zero performance on long-
horizon tasks, unlike in the maze2d benchmark.

For other model-free methods, we use the implementations by Park et al. (2025b) and Park et al.
(2025a). We also take the results from these papers for the corresponding methods.

Implementation details for ablation experiments. For the ablation study on the action-chunk
length, we fix the horizon length H to 10 and only change the action-chunk length n € {1, 5, 10, 25}.
For MAC (Gau) of the ablation study on flow rejection sampling, we parameterize the action-chunk
policy with a; = tanh(z;), where z¢ ~ N (g (st), 03 (s¢)).

Figure 4: OGBench tasks.
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A.2 TRAINING TIME

We report the average training time and inference time for single-task and multi-task experiments
in A5000 for MAC and prior MBRL methods in the table below. MAC trains in around 3 hours
for a single task and 55 hours for multi-task experiments, which is 1.2 - 2.2 times longer than other
methods. Inference speed of MAC is similar or 1.5 times longer than other methods. All models use
identical architecture sizes across methods.

Table 4: Training time of MAC and prior MBRL methods.

Training time (hours) MOPO MOBILE FMPC LEQ (H=5) MAC

Single-task 1.4 2.6 1.7 1.6 3.1
Multi-task 25.1 36.7 28.4 252 55.5

Table 5: Inference time of MAC and prior MBRL methods.

Inference time (ms) MOP0O MOBILE FMPC LEQ MAC

Single-task 1.8 1.8 2.3 1.6 25
Multi-task 5.1 52 7.3 52 72

A.3 HYPERPARAMETERS

Shared hyperparameters. Here, we report shared hyperparameters for MAC, MOPO, MOBILE,
and all model-free baselines. The hyperparameters for goal-conditioned tasks are presented in Ta-
ble 6, and those for reward-based tasks are in Table 7. We note that these hyperparameter con-
figurations mostly follow those of SHARSA (Park et al., 2025b) for multi-task experiments, and
FQL (Park et al., 2025c¢) for single-task experiments.

Table 6: Shared hyperparameters for large-scale benchmark tasks.

Hyperparameters Value

Gradient steps 2M

Learning rate 3x107*

Optimizer Adam (Kingma & Ba, 2015)

Batch size 1024

MLP size [1024, 1024, 1024, 1024]

ACtOr (p&irs Piapom Pirajs Prana) 1atio (0, 1,0,0) (cube)
(0,0.5,0,0.5) (puzzle)
(0,0,1,0) (humanoidmaze)

Value (P&, Devom s Piaajs Prana) 1atio  (0.2,0,0.5,0.3)

Table 7: Shared hyperparameters for reward-based benchmark tasks.

Hyperparameters Value

Gradient steps 1M

Learning rate 3x107*

Optimizer Adam (Kingma & Ba, 2015)
Batch size 256

MLP size [612,512,512,512]

MAC hyperparameters. We report the hyperparameters for our method in Table 8. Note that
MAC uses the same (n, H, Nirain, Niest) = (10, 10, 8, 32) across all tasks, except for puzzle-4x5,
where using Nipain = 32 during training is important as the BC policy has 20 possible branches.

17



Published as a conference paper at ICLR 2026

Accordingly, only in puzzle-4x5, we decrease the hidden dimensionality of the networks to 256 to
compensate for the increased training time from N i, = 32.

Table 8: Hyperparameters of MAC.

Hyperparameters Value

Learning rate 3x107*

Optimizer Adam

Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Layer normalization True

Target network update rate  0.005

Discount factor ~ 0.999

Flow steps 10

Nirain 8 (default), 32 (puzzle-4x5)
N; test 32

Rollout length H 10

Action-chunk size n 10

Hyperparameters for baselines. We report the optimal hyperparameters of all baselines for goal-
conditioned experiments in Table 9 and reward-based experiments in Table 1 1.

For MOPO and MOBILE, we perform a hyperparameter sweep over rollout lengths H € {1, 5,10}
and penalty coefficients § € {0.1,0.5,1.0,2.0,3.0,5.0}, where H denotes the model rollout horizon
and $ is the penalization coefficient for model uncertainty or Bellman inconsistency, respectively.
We note that reducing the MBPO loop’s model batch ratio f from 0.95 to f € {0.5,0.25} is crucial
for training on long-horizon tasks, as also noted by Park & Lee (2025).

For LEQ, we search over rollout lengths H € {1,5,10} and expectiles 7 € {0.1,0.3,0.5}, where
the expectile 7 controls the degree of conservatism for critic and policy learning.

For model-free methods in large-scale benchmarks, we follow the list of hyperparameters to search
over in the work by Park et al. (2025b). For SHARSA, we searched over n € {25,50}. For n-
SAC+BC, we search over n. € 10, 25, 50 and regularization coefficients o € {0.01,0.03,0.1,0.3}.
For GCIQL, we follow (Park et al., 2024) and extract policies with DDPG+BC, searching over
a € {0.003,0.01,0.03,0.1,0.3,1.0, 3.0}.

We denote “N/A” in the tables if a method achieves zero performance across all hyperparameters
tested in our sweep. If not specified, all other hyperparameters follow the defaults provided in the
original papers.

Table 9: Hyperparameters for baselines for large-scale benchmark tasks.

Environment MOPO (H, B, f) MOBILE (H,(3,f) LEQ(H,T1)
cube-double-play-v0 (10,1.0,0.25)  (5,0.5,0.5) N/A
cube-octuple-play-v0 N/A N/A N/A
humanoidmaze-medium-navigate-v0 (1,0.5,0.5) (1,1.0,0.5) N/A
humanoidmaze-giant-navigate-v0 N/A N/A N/A
puzzle-3x3-play-vO0 (5,5.0,0.5) (10,3.0,0.25) (1,0.1)
puzzle-4x5-play-vO0 N/A N/A (1,0.1)

Table 10: Hyperparameters for baselines for reward-based benchmark tasks.

Environment MOPO (H, B, f) MOBILE (H,(3,f) LEQ(H,1)
cube-single-play-vO0 (10,2.0,0.25)  (10,5.0,0.25) N/A
cube-double-play-vO0 (10,1.0,0.25) N/A N/A
scene-play-v0 (10,2.0,0.25)  N/A N/A
puzzle-3x3-play-vO0 N/A N/A N/A
puzzle-4x4-play-vO0 N/A N/A N/A
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Hyperparameters for ablation studies. We report the optimal hyperparameters for the ablated
variants of MAC: one that replaces the flow policy with a Gaussian policy (“Gau”), and another
that replaces rejection sampling with FQL’s one-step distillation (“FQL”). For the Gaussian policy
variant, we reuse the same hyperparameters as our main method. For the FQL variant, we search
over the behavior cloning coefficients « € {0.1,0.3,1.0, 3.0}.

Table 11: Hyperparameters for ablation experiments.

Environment

MAC (FQL) ()

cube-single-play-vO0
cube-double-play-v0
scene-play-vO0
puzzle-3x3-play-v0
puzzle-4x4-play-vO0

1.0
0.3
1.0
1.0
1.0
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B COMPLETE NUMERICAL RESULTS

For completeness, we provide the full per-task results for large-scale, long-horizon environments
and reward-based environments in Table 12 and Table 13 (corresponding to Table | and Table 2).
The results are averaged over 4 seeds and we report the standard deviations for each tasks. We
highlight the numbers that are above or equal to 95% of the best performance.

Table 12: Complete results for large-scale experiments.

Model-Free Seq. Modeling Model-Based
Environment Task GCIQL n-SAC+BC SHARSA Diffuser HD-DA MOPO MOBILE LEQ FMPC MAC
taskl 823 97 +a 95 6 0+o0 0o 4827  38x1a  Ozxo 279 67 +12
task2 95 +6 100 +o 100 o 00 0o 85121  75x1s  Ozo 22in 87 +o
humanoidmaze-medium-navigate- task3 0o 98 43 100 o 0o 0 +o 00 0o Oxo 1843 7 +o
oraclerep-v0 task4 00 97 +a 8213 0+o0 00 00 0+o0 00 56 00
taskb 98 +3 98 3 100 +o 0o 0o 00 00 Ox0o 20zxn 22414
overall 55 +1 98 +2 95 42 040 040 27 15 23 43 Oxo0 184s 36 +2
taskl 0o 58 +18 22418 0+o0 0o 00 0+o0 00 0o 0o
task2 10 47 87 +8 43 +22 0+o0 0o 00 0+o0 00 0o 0o
humanoidmaze-giant-navigate- task3 513 85 11 23 119 0+0 00 00 00 00 00 00
oraclerep-v0 task4 243 82 +11 40 +14 0 +o 0o 0o 0 +o 0o 0o 0o
taskb 34 98 +3 87 +18 0+o0 0o 00 0+o0 0o 0o 0o
overall 4 42 82 45 43 +6 0 +0 00 00 0+o0 00 00 00
taskl 100 +o 67 +32 100 +o 643 643 42418 5012 Oxo 7341 10040
task2 100 +o 13411 100 +o0 0+o0 041 17 +14 15 +11 Oxo 37428 10040
cube-double-play-oraclerep-v0 task3 100 o 37 +23 100 +o 0o 01 18 +15 T+s Oxo 43423 1000
task4 33 14 15 +18 73 +14 0+o0 01 20 =14 0+o0 00 3+ 98 +3
taskb 38 +16 28 +33 100 +o 0+1 140 3013 543 Ozo 30+16 1000
overall T4 +3 32 +20 95 43 1+ 2+1 25 +12 1513 Oxo 37+13 10041
taskl 0o 0o 88 +6 0+o0 00 00 0+0 020 00 83 +a
task2 0+o 0o 5410 040 0 +o 00 0+o0 00 0 +o 20 49
cube-octuple-play-oraclerep-v0 task3 0+o 0+o 347 0+o0 0 +o [E 0+o0 00 0o 40 +21
task4 00 00 0 +o0 0 +o0 00 00 0+0 00 00 516
taskb 00 00 040 0o 040 00 00 00 040 34a
overall 0o 0o 1943 0+o0 0+o 00 0+o0 00 0 +o 30 +6
taskl 100 +o 95 +6 100 +o 32 CE 93 +9 77 +23  3x7 25215 1000
task2 100 %o 80 11 100 +o 040 041 00 0+0 Ozo 18+18 1000
puzzle-3x3-play-oraclerep-v0 task3 98 +3 93 45 100 +o 0o 00 00 0o 00 8+s 1000
task4 100 +o 92 +8 100 +o 0+o0 0o 00 0+o0 00 243 100 +o0
taskb 93 +13 95 6 100 +o 0x0 00 00 0xo0 00 T+9 1000
overall 98 +3 91 42 100 o0 141 141 19 +2 1545 1+1 1246 10040
taskl 98 +3 73 +20 100 +o 0+o0 0o 00 0+o0 7 +13 0o 100 +o
task2 0o 15418 100 +o 0o 0o 00 00 00 0o 100 +o
puzzle-4x5-play-oraclerep-vo task3 0 +o 0 +o 97 +4 0 +o 0o 0 +o 0 +o 0 +o Oxo 10040
task4 0o 818 92 46 0+o0 0o 00 0+o0 00 0o 100 +o
taskb 0o 0o 68 +13 00 0o 0o 0o 00 0o 93 +13
overall 20 +1 19 44 91 44 0+o0 00 00 0+o0 143 00 99 43

20



Published as a conference paper at ICLR 2026

Table 13: Complete results for reward-based experiments.

Model-Free Model-Based

Environment Task IQL ReBRAC  IDQL FQL MOPO  MOBILE LEQ FMPC MAC
taskl 88 +3 89 =5 95 +2 97 +2 1216 8512 Ox0o 10+s 1000

task2 85 +s 9244 96 +2 97 +2 10+16 80 +12 0o 8xs 1000

cube-single-play-singletask—v0 task3 9145 93 43 99 1 98 +2 15414 83417 Oto 1049 98 +3
greTprayTsing taskd 7346 9245 93:a  Odus 245 72419 Oso  134s 9843

task5 78 +o 87 +8 90 +6 93 3 20426 87 +19 00 34 97 7

overall 839 914s 95 +4 96 +3 12 44 814s 0 +o 945 99 +2
taskl 27 +5 45 16 39 +190 61 +o 213 7 +s Ox+o  15:+10 82 15
task2 141 7 +3 16 +10 36 +6 0 +o 0 +o 0 +o 0 +o0 50 +12
. task3 0 +o 441 17 +8 2245 243 0 +o 0 +o 0 +o 55 +10
cube-double-play-singletask—v0 g 040 11 041 5.2 00 Oxo  Oxo  Ozo  284s
taskb 443 4 42 141 19 410 243 0 +o 0 +o 0 +o 50 +9

overall T +11 12 417 15 +17 29 +21 1+ 142 0 +o 342 53 +4

taskl 94 +3 95 42 100 +o 100 +o 30 +38 37 +16 0 +o 15+15 10040

task2 1243 50 +13 33 +14 76 +s 243 5 +10 0 +o 3+a 100 +o
scene-plav-singletask-v0 task3 3247 55 +16 94 44 98 +1 0 +o 0 +o 0 +o 0+o 95 +10
pray=sing taskd 041 34s 4is 511 0o Oxo  Oxo  Ozo 9546
taskb 0 +o 0 +o 0 +o 0 +o 0 +o 0 +o 0 +o 2+3 93 +8

overall 28:ss 41 +a7 46 +aa 56 +as 6 +s 844 0 +o 4+ 97 +4

taskl 3346 97 +a 52 +12 90 +4 100 +o 60 +a7 52 +36 543 100 +o

task2 443 1+ 0+1 16 +5 0+o0 00 00 00 0+o0

. task3 3+2 31 0 +o 10 43 0 +o 0 +o 0 +o 0 +o 0 +o
puzzle-3x3-play-singletask-v0 task4 2+1 21 00 16 5 00 00 0o 00 00
task5 32 513 00 16 +3 00 00 00 23 00

overall 9413 2143 10 +21 30 431 20 +o 12 49 10 47 141 20 +o0

taskl 12 42 26 +4 48 s 34 18 0 +o 0 +o 0 +o 0 +o 98 +3
task2 T x4 1214 1445 16 +5 00 0o 00 00 33 27

uzzle—4dxd-play-singletask-v0 task3 943 1543 34 +5 1845 040 040 040 O+0o 10040
P playTsing taskd 5i2 104s 2646 1lis 040 Oz  Oz0 Oxo  85zu
taskb 441 7 +3 24 +11 7 +3 0 +o 0 +o 0 +o 0 +o 72 +a0
overall T +a 14 18 29 +13 17 +10 0 +o 0 +o 0 +o 0 +o 78 +13
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C D4RL RESULTS

We report the scores for the DARL (Fu et al., 2020) environments, which has been used as a standard
dataset for offline RL evaluation. Same as OGBench experiments, we report the normalized score
across 4 seeds and report the standard deviation for each tasks. The results for prior works are
reported following their respective papers. MOPO* is an improved version of MOPO, introduced in
Sun et al. (2023). We highlight the numbers that are above or equal to 95% of the best performance.

For sequence modeling methods, we consider TT (Janner et al., 2021a), which predicts offline tra-
jectory with a Transformer model (Vaswani et al., 2017) and find the best trajectory by conditioning
with target return-to-go, and TAP (Jiang et al., 2023), which improves TT by quantizing the action
space with VQ-VAE (van den Oord et al., 2017).

Table 14: D4RL MuJoCo Gym results.

Model-free Seq. modeling Model-based

Dataset CQL ReBRAC IQL TT TAP MOPO* MOBILE LEQ MAC

hopper-r 5 8 7 6 - 31 32 32 28 +3
hopper-m 61 102 66 67 63 62 102 103 9244
hopper-mr 86 98 94 99 87 99 104 103 95 +2
hopper-me 96 107 91 110 105 81 111 109 110+:
walker2d-r 5 18 5 5 - 7 17 21 5+1
walker2d-m 79 82 78 84 64 81 87 74 823
walker2d-mr 76 77 73 89 66 85 92 98 86 +s
walker2d-me 109 112 109 101 107 112 117 108 108 +:
halfcheetah-r 31 30 11 6 - 38 32 30 12+o0
halfcheetah-m 46 66 47 46 45 73 74 71 47 +1
halfcheetah-mr 45 51 44 44 40 72 66 65 38 +1
halfcheetah-me 95 101 86 95 91 90 105 102 68 +2
Total 740 852 717 747 - 844 960 923 771
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D TRAINING CURVES

We provide the training curve of MAC for large-scale, long-horizon environments and reward-based
environment in Figure 5 and Figure 6 (corresponding to Table | and Table 2). We plot the mean and
the standard deviation (across 4 seeds) by covering [mean - std, mean + std] area with a lighter color.
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Figure 5: Training curve of MAC in large-scale, long-horizon environments. We report the success rate for
15 evaluation episodes across 4 seeds (total 60 episodes). Shaded region represents the [mean - std, mean + std].
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Figure 6: Training curve of MAC in reward-based environments. We report the success rate for 15 evalu-
ation episodes across 4 seeds (total 60 episodes). Shaded region represents the [mean - std, mean + std].
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Figure 7: Training curve of MAC in D4RL environments. We report the success rate for 15 evaluation
episodes across 4 seeds (total 60 episodes). Shaded region represents the [mean - std, mean + std].
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E MORE ABLATION EXPERIMENTS

Q: Is distillation with 7y necessary?

A: To understand the importance of this com-
ponent, we conduct an ablation study of MAC
removing the distillation. Specifically, we di-
rectly train the one-step flow model 7, with flow
matching BC loss, instead of distilling the multi-
step flow model my. We present the ablation re-
sults on the default tasks for five reward-based en-
vironments used in Table 15. The results indicate

Table 15: Ablation of using 7.

Task MAC (w/o mg) MAC
100 +o
50 +12
100 +o0
0 +o

85 +14

243
0 +o
549
2x3
15 +6

cube-single-play-vO0
cube-double-play-v0
scene-play-v0
puzzle-3x3-play-v0
puzzle-4x4-play-v0

that the use of 7y is crucial for MAC in OGBench

tasks where behavioral policies are highly multi-modal.

Q: How does model error correlate with the performance?

A: Figure 8 shows the policy performance and
rollout error with respect to the rollout length
for various action chunk sizes. For chunk sizes
of 1, 5, and 10, we observe a consistent trend
that at a given rollout length, smaller chunks
produce larger model-prediction errors and cor-
respondingly lower policy performance (clearly
shown in rollout length of 50 and 100). How-

Chunk

-
o

0.5 5

z 10
25

Model Error
Performance

pa——— e}

o

0.0
100 0

0 50
Rollout Length

Figure 8: Model error correlate with the perfor-
mance, unless action chunk size is too large.

50
Rollout Length

100

ever, excessively large chunk sizes (25) breaks this trend, where it achieves lower rollout error, but
does not yield better performance. It is because while larger chunks helps reducing the compound-
ing model error, they also make both policy learning and Q-function estimation harder since the ac-
tion space grows exponentially. While flow rejection sampling mitigates this problem by limiting
the action sequence to in-distribution actions, extremely large chunk sizes exacerbate this problem,
hurting the performance despite improved model accuracy.
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