
ML for Computer Architecture and Systems (MLArchSys), ISCA 2024

Fast DL-based Simulation with Microarchitecture
Agnostic Traces and Instruction Embeddings

Santosh Pandey∗, Amir Yazdanbakhsh†, Hang Liu∗
∗ Rutgers University. santosh.pandey@rutgers.edu,hl1097@soe.rutgers.edu

† Google DeepMind. ayazdan@google.com

Abstract—Microarchitecture simulators are indispensable tools
for microarchitecture designers to validate, estimate, optimize,
and manufacture new hardware that meets specific design re-
quirements. While the quest for a fast, accurate and detailed
microarchitecture simulation has been ongoing for decades,
existing simulators excel and fall short at different aspects: (i)
Although execution-driven simulation is accurate and detailed, it
is extremely slow and requires expert-level experience to design.
(ii) Trace-driven simulation reuses the execution traces in pursuit
of fast simulation but faces accuracy concerns and fails to achieve
significant speedup. (iii) Emerging deep learning (DL)-based sim-
ulations are remarkably fast and have acceptable accuracy, but
fail to provide adequate low-level microarchitectural performance
metrics such as branch mispredictions or cache misses, which is
crucial for microarchitectural bottleneck analysis. Additionally,
they introduce substantial overheads from trace regeneration and
model re-training when simulating a new microarchitecture.

Re-thinking the advantages and limitations of the aforemen-
tioned three mainstream simulation paradigms, this paper intro-
duces TAO that redesigns the DL-based simulation with three
primary contributions: First, we propose a new training dataset
design such that the subsequent simulation (i.e., inference) only
needs functional trace as inputs, which can be rapidly generated
and reused across microarchitectures. Second, to increase the
detail of the simulation, we redesign the input features and
the DL model using self-attention to support predicting various
performance metrics of interest. Third, we propose techniques
to train a microarchitecture agnostic embedding layer that en-
ables fast transfer learning between different microarchitectural
configurations and effectively reduces the re-training overhead of
conventional DL-based simulators. TAO can predict various per-
formance metrics of interest, significantly reduce the simulation
time, and maintain similar simulation accuracy as state-of-the-
art DL-based endeavors. Our extensive evaluation shows TAO
can reduce the overall training and simulation time by 18.06×
over the state-of-the-art DL-based endeavors.

I. INTRODUCTION

Since its inception, microarchitecture simulators rapidly be-
come the most commonly used tools in computer architecture-
related research (see the report [37]). As of today, computer
architecture simulation is the textbook standard and virtually
used in any architecture explorations, e.g., design space ex-
ploration [18], [22], [23], [40], microarchitectural bottleneck
analysis [5], [14], workload characterization [16], [30] among
many others [25], [41]. As a common practice, architecture
researchers often use popular software architecture simula-
tors to incorporate their radical new ideas. The simulation
yields a range of metrics that characterize the execution of
benchmarks, with the level of detail in the simulation dictating
the specificity of these metrics. Such output metrics provide

feedback to the researcher for further explorations and/or
decision makings.

The quest towards a fast, accurate and detailed cycle-
level architecture simulation has never stopped. This cohort
of researchers have mainly dedicated their efforts into three
prominent paradigms, i.e., execution-driven simulation [1], [4],
[7], [19], [29], [31], [34], [41], trace-driven simulation [2],
[3], [13], [20], [21], [33], and recently the DL-based simu-
lation [24], [28], [32], [38] (see [6], [8], [11], [39] for more
types of architecture simulations). Figure 1(a)-(c) illustrates
the workflow used by each paradigm: (i) Execution-driven
simulation offers the most detailed and accurate framework,
although this comes at the cost of extremely slow speed
and high maintenance overhead. (ii) Trace-driven simula-
tion faces accuracy concerns in pursuit of higher throughput
than execution-driven simulations with trace reuse. Reusing
the same trace for different microarchitectures raises accu-
racy concerns as the execution order of different memory
instructions can vary. (iii) Emerging DL-based simulations
are remarkably fast and can provide comparable cycle-level
accuracy, whereas hit three roadblocks: limited output metrics,
expensive microarchitecture-specific trace generation, and re-
stricted microarchitecture support.

Departing from the designs and desired goals from the
aforementioned three paradigms, this paper redesigns DL-
based cycle-level microarchitecture simulator. Particularly, we
take as input the functional and detailed traces train a DL-
based simulator, support a set of desired performance metrics
of interest and fast microarchitecture exploration, achieving
the comparable accuracy as execution-driven simulation, and
an order of magnitude higher throughput than the state-of-the-
art DL-driven simulator, i.e., SimNet. Figure 1(d) illustrates
the workflow of our system, which encompasses the following
three contributions:

• First, we introduce a unique training dataset design so
that the subsequent simulation (i.e., inference) only needs
light-weighted and reusable functional trace as inputs.

• Second, for predicting a variety of performance metrics
of interest, we propose an DL model with separate em-
bedding and self-attention based performance prediction
layers.

• Third, we introduce transfer learning techniques to
rapidly explore various microarchitectures. This includes

1

mailto:santosh.pandey@rutgers.edu
mailto:hl1097@soe.rutgers.edu
mailto:ayazdan@google.com

Program 1
executable

Simulator
for any
µArch

Detailed
trace on
µArch A

Output
metrics

Trace
simulator
for any
µArch

Output
metrics

(a) Execution-driven
simulation

(e.g., gem5)

(b) Trace-driven
simulation

(e.g., MacSim)

Program 1
Detailed
trace on
µArch A

Output
metrics

Program 1

Program 2
DL model
for µArch

A

(c) DL-based simulator
(e.g., SimNet)

Detailed trace
on µArch A

Output
metrics

Program 1

Program 2 A DL
model of

any µArch

(d) TAO

Train a
model for
µArch A

Step (i) Training

µArch A
specific

trace

Functional trace Train a
model for
µArch A

Functional
trace

Fast transfer
learning

*µArch = Microarchitecture

Step (ii) Simulation Step (ii) Simulation

Step (i) Training

Detailed trace
on µArch B

Program 1
Unseen microarchitecture

Functional trace Train a
model for
µArch B

Fig. 1: Mainstream simulation mechanisms vs. our effort, i.e., TAO.

architecture agnostic embedding layers and judicious
training dataset selection.

II. DESIGN PRINCIPLE, CHALLENGE AND OVERVIEW

This paper adheres to two design principles for designing
DL-based simulator. Design Principle #1. We advocate that (i)
the input to the DL model should only capture the instruction
execution sequence and (ii) the DL model should govern the
hardware features. Design Principle #2. An DL-based mi-
croarchitecture simulator should (i) report various performance
metrics during the architecture simulation and (ii) support
rapid explorations of different architecture configurations.

Challenges. TAO faces three grand challenges: (i) For the
training dataset, we need to associate the microarchitecture
impacts with each executed instruction in the functional
trace. (ii) Reporting various performance metrics demands us
to derive sufficiently powerful DL models that can capture
the impacts of various hardware components. (iii) Training
microarchitecture-agnostic program embeddings presents dif-
ficulties because the embeddings are biased towards the archi-
tecture they are trained on. These three challenges motivate
the design of TAO.

Overview. Section IV unveils TAO, our multi-modal DL
architecture for microarchitecture simulation. Our approach
adheres to design principle #1 by proposing a workflow
to construct training datasets from detailed and functional
traces which attributes the differences in these two traces to
performance metrics, allowing the reuse of functional traces
for varying microarchitectures. For design principle #2, we
propose multi-metric predictions with feature engineering with
a self-attention model to increase the simulation detail. Further,
we propose techniques to train microarchitecture agnostic
embedding layers that enable fast transfer learning which
significantly reduces the re-training overhead of DL-based
microarchitecture training and simulation.

III. BACKGROUND

Execution trace. This paper extensively uses execution
trace, which refers to the stream of instructions generated
by functional or detailed simulation. The gem5 simulator
is modified to generate execution traces capturing various
static instruction properties and dynamic performance metrics.
Functional trace refers to the microarchitecture agnostic trace
generated with functional simulation using AtomicSimpleCPU

model. We use the terms functional trace and microarchitecture
agnostic trace interchangeably. It only contains static proper-
ties like opcode, registers, and other instruction flags. Detailed
trace refers to the trace generated with the O3CPU model.
It captures various microarchitecture specific performance
metrics like data access misses, instruction cache misses,
branch mispredictions, speculative instructions and latency of
individual instructions.

IV. TAO

A. Training Dataset Construction
TAO uses functional trace as input to the model and the out-

put (i.e. label) can be various performance metrics. This per-
mits the subsequent simulation (i.e., inference) to only require
functional trace as inputs, which can be rapidly generated and
reused across microarchitectures. For the output, we use three
major performance metrics, i.e., latency, branch misprediction,
and data cache misses, to explain how we process the detail
and function traces to arrive at the training dataset. However,
it is important to note that TAO can potentially support other
performance metrics.

Functional and detailed traces output similar sequence order,
which permits us to associate each instruction of a functional
trace with a detailed trace. However, the challenge is that
the difference in number of instructions between detailed and
functional traces is nontrivial. Detailed trace generally differs
from functional trace in the following two aspects. The de-
tailed trace includes two types of additional dynamic instruc-
tions during execution that are missing in the functional trace.
Specifically, the detailed trace contains incorrect speculative
and stall instructions. Incorrect speculative instructions are
the wrongly executed instructions squashed based on branch
prediction. Stall instructions are used to stall the pipeline by
inserting a no-operation (nop) instruction in the pipeline when
any other instructions cannot be executed. Our key idea is that
both types of additional instructions can be converted into
numerical performance differences and attributed to specific
instructions from the functional trace.

Squashed speculative instructions. If the predicted branch
path is correct, speculatively executed instructions will be
correct, thus the instruction streams of detailed and functional
traces will be identical. When a speculative path is wrong due
to branch misprediction, speculatively executed instructions
should be squashed. This case leads to a distinction between

2

Instruction context

Linear

Li
ne

ar

K M
atM

ul

SoftM
axQ

V

M
atM

ul

Linear

• Fetch cycles
• Execution cycles

Branch
misprediction

Data access
level

Sigm
od

K M
atM

ul

SoftM
ax

Softm
ax

Multi-head self-attention

Opcode Registers Access
distance

Branch
history

5 [0,0,0,0] - [0,0,0,0]
2 [0,1,0,0] [0,0,0,0] -
9 [1,0,0,1] [4,0,0,0] -
3 [0,1,0,0] - -

Linear

Linear
Embed

Opcode Registers Access
distance

Branch
history

5 [0,0,0,0] - [0,0,0,0]
2 [0,1,0,0] [0,0,0,0] -

Program execution trace

Performance metrics

• …

Fig. 2: Our initial DL model architecture.

functional and detailed traces. The total impact of branch
misprediction can be accounted for in the functional trace with
the fetch timing information obtained from the detailed trace.
If a branch is mispredicted, it will delay the fetch of the next
correct instruction. In a detailed trace, the fetch latency of the
correct instruction does not include the speculation or branch
resolution overhead. To include the miss prediction overhead,
we remove the squashed instruction from the detailed trace,
get the difference in the fetch clock as the fetch latency, and
add it to the subsequent instruction.

Pipeline stalls. Stall instructions can be handled similarly
to squashed speculative instructions. When no instruction can
be executed in the pipeline due to dependency or resource
contention, nop instructions are filled. Similar to squashed
speculative instructions, we remove and project the latency
impact of nop instructions to the subsequent instruction. We
use the fetch clock from the detailed trace to determine the
additional fetch latency delay.

B. Multi-Metric DL Model Design

Feature engineering. We propose new techniques to build
cross-instruction features, in addition to the per-instruction
features from the state-of-the-art [24]. We extract four key
instruction properties from the microarchitecture agnostic ex-
ecution trace: the opcode, registers, data access address and
PC address. Opcode and registers derive the per-instruction
features. For opcode, we employ an integer mapping for each
unique opcode in the dataset. Regarding registers, since the
instructions can involve multiple registers, we create a bitmap
vector with a size equal to the total number of registers. If an
instruction uses ith register, ith index in the vector will be set
to 1 (0 otherwise). Both source and destination registers are
included in the bitmap vector.

Cross-instruction features are derived from the PC and
memory addresses. We use the branch history as input to
model the outcome of conditional branch instructions. This
history, indicating the outcomes of prior branch instructions, is
employed by existing branch predictors to predict whether the
branch will be taken [15]. To model the data access level, we
calculate the access distance, which is the difference between
current memory access and the previous Nm memory accesses.
We use a memory context queue to track the access distance
of Nm memory accesses.

DL model architecture. Figure 2 exemplifies our DL model
design. The model first generates instruction embeddings from

input features with two-level embedding layers and then uses
multi-headed self-attention to perform multi-metric prediction.
We use a sequence of N+1 instructions as input to the model.
The embedding layers generate instruction embeddings in two
steps. Initially, embeddings are created independently for each
category of input. This separate generation facilitates enhanced
representation learning for each category. Specifically, for
opcode, a trainable lookup table based embedding layer is
employed. For the remaining categories, distinct linear embed-
ding layers are utilized. The individual instruction embedding
is obtained by combining categorical embeddings through a
linear layer. Note embedding layers independently generate
instruction embeddings for current and N context instructions.

Following the generation of instruction embeddings, the
prediction layers employ multi-head self-attention to deter-
mine the performance metrics. Considering the impact of
microarchitecture, this approach allows attention layers to
model the interaction between current and earlier instructions.
Using self-attention obviates the need for manually tracking
context instructions, enhancing efficiency. Employing multiple
heads enables each head to learn unique hardware-instruction
interplay. The output from each head is concatenated and
passed through a linear layer. Overall, the model predicts the
latency for each instruction individually.

We use different operators to predict different performance
metrics based on the output of the last linear layer: (i) The
fetch and execution cycles are directly predicted from the
linear layer. (ii) An additional sigmoid layer is incorporated
for branch prediction to predict whether the branch will be
mispredicted. (iii) We use a softmax layer for the data access
level, as the output can be multiple categories. (iv) More
performance metrics like instruction cache miss and TLB miss
can be predicted through a sigmoid layer. During training, a
loss is computed from each performance metric and combined
with a linear ratio in backpropagation. To obtain the total
cycle of all instructions, we use the retire clock of instructions.
Retire clock is computed as current clock + fetch latency +
execution latency. The retire clock of the last instruction of a
benchmark determines the total cycles.

Intuitive explanation on supporting a set of performance
metrics. Multi-metric prediction exploits the relatedness of
performance metrics. With the attention model and microarchi-
tecture agnostic input, our design allows us to output various
performance metrics of interest. It can capture the relation-

3

ship between each performance metric and the specific input
features that impact the metric. This allows all metrics to be
derived from the same hidden layers. Multi-metric prediction
has two benefits. First, it increases the output details of the
simulation. Second, individual loss from data access level and
branch prediction helps the model relate the cycle prediction
with memory and branch behavior during training.

C. Fast Transfer Learning via Microarchitecture Agnostic
Embeddings

Figure 3 illustrates our fast transfer learning process to
enable TAO for a new unseen microarchitecture rapidly, i.e.,
µArch C, employing microarchitecture agnostic embedding
layers and fine-tuning. Initially, shared embedding layers are
trained with two carefully selected microarchitectures, i.e.,
µArch A and µArch B. During training for µArch C, the
parameters of shared embedding layers are frozen, i.e., we
do not update the parameters during backpropagation. The
parameters of prediction layers and embedding adaptation
layer are fine-tuned with the training dataset for µArch C.

Parameters
frozen

µArch A

µArch B

Shared
Embedding

layers
µArch C µArch C

prediction layersWC

Transfer
learning

Parameters
fine-tuned

Shared
embedding

layers

µArch A
prediction layers YA

YB

Loss LB

Loss LA

µArch B
prediction layers

WA

WB

G!W!" +G#W#"
2

G! = ∇L!

G" = ∇L"

G!W!#

G"W"#

G!W!#

G$W"#

Fig. 3: Overview of transfer learning process for microarchi-
tecture µArch C and gradient normalization of TAO.

Microarchitecture agnostic embedding design. The
shared embedding layers generate embedding for each individ-
ual instruction, and microarchitecture specific prediction layers
predict the performance labels. The prediction layers of each
microarchitecture computes the gradients for the embedding
layers separately. We propose to combine them to update the
shared embedding layers.

Such designs that combine gradients to update shared layers
can face two critical issues: negative transfer and imbal-
ance in gradient magnitude for shared layers: (i) Negative
transfer [26], [43] occurs when the shared layers receive
gradients from different microarchitecture that are opposite to
each other. (ii) Imbalance in gradients magnitude [12] arises
when one microarchitecture is too dominant during training,
inducing gradients with relatively large magnitudes. These
issues impact convergence and generalization [12], [43].

In Granite, to derive the gradients for shared embedding
layers, the gradients from the prediction layers of each µArch
are averaged. Just averaging the gradients may resolve neither
the negative transfer nor gradient imbalance problem [42].
Using gradient imbalance as an example, if the gradient of
one task is larger in magnitude than the other, the larger one
will dominate the average gradients. GradNorm, addresses

the imbalance in gradient magnitude for multi-task learning
by using learnable combination weights (wA and wB) to
combine the losses from each task. This indirectly controls
the magnitude of the gradients. The underlying rationale is
to dynamically adjust the combination weights in response to
the gradient magnitudes of shared layers, ensuring they neither
become excessively large nor too small.

While GradNorm can address gradient magnitude imbal-
ance, it cannot adequately address negative transfer issues that
arise from conflicting gradient directions. Of note, conflicting
gradients may appear when the performances of two different
microarchitectures are opposite for the same instruction. Mod-
ifying the magnitude of gradients may not effectively change
gradient direction in joint training [42]. Hence, it may not fully
mitigate the adversarial effect of gradients. Adding this linear
projection layer resolves the negative transfer issue as follows:
during backpropagation, to compute the gradients for the linear
projection layer, we multiply the gradients from the earlier
layer GA with the transpose of the weight matrix WA, i.e.,
GAW

T
A based on the chain rule. Under most of the cases, this

operation rotates the gradients in the gradient space, changing
the direction of gradients.

Figure 3 illustrates our design that tackles negative transfer
and gradient imbalance. In contrast to GradNorm which relies
on reactive approaches of projecting conflicting gradients to
a different plane [42] or finding common direction [35] to
mitigate negative transfer, we adopt a proactive solution. We
add an individual embedding adaptation layer, i.e., WA for
µArch A, similarly WB for µArch B, between the embedding
and performance network. The linear layer WA projects the
shared embedding (i.e., Green layers) into microarchitecture
specific spaces (i.e., µArch prediction layers) during forward
propagation. To tackle the gradient imbalance concern, we
normalize the gradients for the embedding layers based on
the magnitude of the gradients GAWA and GBWB to reduce
any existing gradient magnitude imbalance.

Training dataset. TAO only uses two microarchitectures
based on performance variations to train the model efficiently
with the desired accuracy. This is significantly more efficient
than training general embedding layers with random microar-
chitectures. To achieve the accuracy and efficiency goal, we
define metrics to measure the architectural variations and select
the two architectural variations with the most difference.

To measure the microarchitecture variations, we select four
performance metrics, i.e., CPI, L1 cache miss, L2 cache miss,
and branch misprediction rate. We measure the performance
metrics difference of different microarchitectures with Maha-
lanobis distance [27] instead of Euclidean or Cosine distance
for two reasons: (i) Euclidean distance is sensitive to a larger
value of one metric, and Cosine distance ignores the value
difference. (ii) The other two distances do not consider the
correlation among the performance metrics or their scales
during distance computation.

4

TAO SimNet Speedup
(vs. SimNet) gem5 Speedup

(vs. gem5)
Training 1.9 hours 54.2 hours 28.52× - -

Simulation Trace generation 0.53 hours 13.22 hours 24.94× 7.81× 14.01 hours 7.26×Inference 1.41 hours 1.93 hours 1.37×
Overall 3.84 hours 69.35 hours 18.06× 14.01 hours 3.66×

TABLE I: Simulation time comparison with the state-of-the-art DL-based simulator SimNet and gem5 for 10 billion instructions.
V. EVALUATION

We use the widely adopted SPEC CPU2017 [10] benchmark
suite to evaluate TAO. To construct the training dataset, we
first generate program traces of 100 million instructions from
each training benchmark with default test workloads using
the gem5 O3CPU and AtomicSimpleCPU model, respec-
tively. We study the simulation error and throughput in this
section. Particularly, simulation error represents the absolute
CPI prediction error for each benchmark and is defined as
|CPIpred−CPItruth|

CPItruth
× 100%. Simulation throughput is mea-

sured in million instructions per second (MIPS).

A. Comparison with the State-of-the-Art

Our evaluation of accuracy shows that for most microarchi-
tectures and benchmarks, TAO closely matches the simulation
error of SimNet. On average, SimNet and TAO exhibit sim-
ulation errors of 5.11% and 5.23%, respectively. The slightly
higher simulation error of TAo can be attributed to prediction
error for branch misprediction and cache misses.

Table I compares the overall time for training and simulation
of SimNet vs TAO. Both SimNet and TAO are trained until the
error during training is under 6%. It takes 54.2 hours to train
a CNN SimNet model. Meanwhile, with microarchitecture
agnostic embeddings and transfer learning, TAO can train a
model with similar accuracy in merely 1.9 hours. It improves
the training time by 28.52×. For simulation, SimNet requires
13.22 hours to generate an input trace with 10 billion instruc-
tions. In contrast, utilizing the microarchitecture independent
trace, the trace generation time is significantly reduced to 0.53
hours for TAO. For SimNet, it takes 1.93 hours to simulate 10
billion instructions with a simulation throughput of 1.46 MIPS.
On the other hand, TAO completes the simulation in 1.41
hours with a throughput of 1.98 MIPS. This speedup against
SimNet results from the use of inexpensive functional trace
and avoiding history context simulation involving CPU-GPU
data movements. Overall, TAO demonstrates a remarkable
speed advantage for simulating a new microarchitecture, being
18.06× faster than SimNet. Compared to gem5, TAO provides
a speedup of 3.66×.

B. Multi-metric Prediction Error

This section compares the prediction error for L1 cache
miss and branch misprediction. For evaluation, we vary the
L1 Dcache size (16KB, 32KB, 64KB, 128KB) and the
branch predictors (Local, Tournament, BiMode, and
TAGE_SC_L).

Figures 4(a) compares the average cache MPKI across
four test benchmarks obtained while varying L1 DCache size
for gem5 simulation and TAO. The simulated cache MPKI

decreases as the cache size increases from 16KB to 128KB.
Cache MPKI predicted by TAO aligns with the simulated result
from gem5, demonstrating that a cache size of 128KB results
in the least MPKI.

In Figures 4(b), we compare the average branch MPKI
across four test benchmarks using different branch predictors
for gem5 and TAO. The simulated result from gem5 indicates
the highest branch MPKI for the Local and the lowest for the
Tage_SC_L. Branch MPKI predicted by TAO also aligns with
the simulated result from gem5. The prediction error is lower
for simpler branch predictors like Local, experiencing only
a marginal increase for relatively complex branch predictors
like Tage_SC_L. Nonetheless, TAO maintains the relative
accuracy across the spectrum of branch predictors.

VI. GENERALITY OF TAO

Unseen benchmarks. TAO can be generalized across a
wide variety of unseen benchmarks. The generality of TAO
comes from the fact that the deep learning model is trained
at the instruction level. We use multiple diverse training
benchmarks to train over a variety of instructions. That allows
TAO to predict performance metrics for each instruction across
different benchmarks accurately. Our evaluation confirms that
TAO maintains a good accuracy over unseen benchmarks.

Unseen architectures. TAO is designed to simulate single-
core out-of-order superscalar processors. To simulate an un-
seen microarchitecture, we gather a training dataset through
gem5 simulation and train the DL model with transfer learning
(see Figure 1(d)). TAO can accommodate changes in ISAs
similarly to microarchitecture changes with some additional
feature engineering for ISA-specific opcodes and registers.
TAO cannot be directly used to simulate multi-core CPU and
GPU architectures. However, the techniques proposed in this
paper, i.e., microarchitecture agnostic trace, embeddings, and
multi-metric prediction, establish a framework for a rapid DL-
based simulation and is transferable to other architectures.

VII. RELATED WORKS

Earlier ML-based performance models [17], [36] opt to
build a performance model that can extrapolate the perfor-
mance to unseen microarchitecture designs by simulating a
few designs. Recent DL-based prediction models overcome
the limitations of ML-based performance models by increasing
the level of abstraction at the instruction level. Ithemal [28]
and Granite [38] are two recent works performing basic block
prediction. These models first gather training datasets by
collecting the basic blocks with tools like Dynamorio [9].
The models predict the latency of each block separately. The
input features are constructed based on each instruction and

5

16KB 32KB 64KB 128KB
L1 Dcache size

0

20

M
P

K
I

gem5 TAO

(a) L1 Dcache MPKI.

Local BiMode Tournament Tage SC L
Branch predictors

0

1

2

M
P

K
I

gem5 TAO

(b) Branch MPKI.

Fig. 4: Prediction error of TAO for L1 Dcache misses and branch mispredictions.

their structure in the basic blocks. Ithemal uses LSTM to
construct the embeddings for each basic block hierarchically.
Meanwhile, Granite leverages the structure and dependency
graph of instructions within the basic block and GNN models
for throughput prediction. Basic block throughput prediction
models are limited to static basic block prediction, ignoring
the impact of caches and branch prediction.

VIII. CONCLUSION AND FUTURE WORK

This paper introduces a DL-based simulator TAO that
supports detailed, accurate and fast microarchitecture explo-
rations. Notably, it achieves 18.06× higher throughput com-
pared to the state-of-the-art simulator, i.e., SimNet.

While TAO notably enhances simulation throughput, further
research is required to enhance the practicality of DL-based
simulation. DL-based simulators currently rely on traditional
detailed simulations to gather training datasets for unseen
microarchitectures, incurring overhead in simulator design.
Futhermore, current DL-based simulation is confined to single-
core architectures, highlighting the need for research into
modeling inter-core interaction and synchronization for multi-
core architectures. Addressing these shortcomings could make
DL-based simulation more appealing for architects.

REFERENCES

[1] J. H. Ahn, S. Li, O. Seongil, and N. P. Jouppi, “Mcsima+: A manycore
simulator with application-level+ simulation and detailed microarchitec-
ture modeling,” in 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2013, pp. 74–85.

[2] A. Alomar, P. Hamadanian, A. Nasr-Esfahany, A. Agarwal, M. Alizadeh,
and D. Shah, “Causalsim: A causal framework for unbiased trace-driven
simulation,” in 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), 2023, pp. 1115–1147.

[3] Y. Arafa, A.-H. Badawy, A. ElWazir, A. Barai, A. Eker, G. Chennupati,
N. Santhi, and S. Eidenbenz, “Hybrid, scalable, trace-driven performance
modeling of GPGPUs,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1–15.

[4] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for
computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[5] C. Bai, J. Huang, X. Wei, Y. Ma, S. Li, H. Zheng, B. Yu, and Y. Xie,
“Archexplorer: Microarchitecture exploration via bottleneck analysis,”
in Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, 2023, pp. 268–282.

[6] F. Bellard, “QEMU, a fast and portable dynamic translator.” in USENIX
annual technical conference, FREENIX Track, vol. 41. California, USA,
2005, p. 46.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[8] H. Brais, R. Kalayappan, and P. R. Panda, “A survey of cache simula-
tors,” ACM Computing Surveys (CSUR), vol. 53, no. 1, pp. 1–32, 2020.

[9] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS
conference on Virtual Execution Environments, 2012, pp. 133–144.

[10] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 41–42.

[11] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[12] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask
networks,” in International conference on machine learning. PMLR,
2018, pp. 794–803.

[13] B. Cmelik and D. Keppel, “Shade: A fast instruction-set simulator for
execution profiling,” in Proceedings of the 1994 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, 1994,
pp. 128–137.

[14] B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn, “Using inter-
action costs for microarchitectural bottleneck analysis,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36. IEEE, 2003, pp. 228–239.

[15] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach, 5th ed. Elsevier, 2011.

[16] K. Hoste and L. Eeckhout, “Microarchitecture-independent workload
characterization,” IEEE micro, vol. 27, no. 3, pp. 63–72, 2007.

[17] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A predictive
performance model for superscalar processors,” in 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’06).
IEEE, 2006, pp. 161–170.

[18] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “Construction and
use of linear regression models for processor performance analysis,” in
The Twelfth International Symposium on High-Performance Computer
Architecture, 2006. IEEE, 2006, pp. 99–108.

[19] S. Kanev, G.-Y. Wei, and D. Brooks, “Xiosim: power-performance
modeling of mobile x86 cores,” in Proceedings of the 2012 ACM/IEEE
international symposium on Low power electronics and design, 2012,
pp. 267–272.

[20] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An extensible simulation framework for validated GPU modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 473–486.

[21] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,
“Macsim: A cpu-gpu heterogeneous simulation framework user guide,”
Georgia Institute of Technology, 2012.

[22] R. G. Kim, J. R. Doppa, and P. P. Pande, “Machine learning for
design space exploration and optimization of manycore systems,” in
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2018, pp. 1–6.

6

[23] S. Krishnan, A. Yazdanbakhsh, S. Prakash, J. Jabbour, I. Uchendu,
S. Ghosh, B. Boroujerdian, D. Richins, D. Tripathy, A. Faust et al.,
“Archgym: An open-source gymnasium for machine learning assisted
architecture design,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, 2023, pp. 1–16.

[24] L. Li, S. Pandey, T. Flynn, H. Liu, N. Wheeler, and A. Hoisie, “SimNet:
Accurate and High-Performance Computer Architecture Simulation
Using Deep Learning,” Proc. ACM Meas. Anal. Comput. Syst., vol. 6,
no. 2, jun 2022. [Online]. Available: https://doi.org/10.1145/3530891

[25] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and
W. Sung, “Power modeling for GPU architectures using McPAT,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 19, no. 3, pp. 1–24, 2014.

[26] S. Liu, Y. Liang, and A. Gitter, “Loss-balanced task weighting to reduce
negative transfer in multi-task learning,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, 2019, pp. 9977–9978.

[27] G. J. McLachlan, “Mahalanobis distance,” Resonance, vol. 4, no. 6, pp.
20–26, 1999.

[28] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, portable and fast basic block throughput estimation using
deep neural networks,” in International Conference on machine learning.
PMLR, 2019, pp. 4505–4515.

[29] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in HPCA-16 2010 The Sixteenth International
Symposium on High-Performance Computer Architecture. IEEE, 2010,
pp. 1–12.

[30] H. H. Najaf-Abadi and E. Rotenberg, “Configurational workload char-
acterization,” in ISPASS 2008-IEEE International Symposium on Perfor-
mance Analysis of Systems and software. IEEE, 2008, pp. 147–156.

[31] P. M. Ortego and P. Sack, “SESC: SuperESCalar simulator,” in 17 th
Euro micro conference on real time systems (ECRTS’05). Citeseer,
2004, pp. 1–4.

[32] S. Pandey, L. Li, T. Flynn, A. Hoisie, and H. Liu, “Scalable deep
learning-based microarchitecture simulation on gpus,” in SC22: Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2022, pp. 1–15.

[33] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero,
“Trace-driven simulation of multithreaded applications,” in (IEEE IS-
PASS) IEEE International Symposium on Performance Analysis of
Systems and Software. IEEE, 2011, pp. 87–96.

[34] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” ACM SIGARCH Computer
architecture news, vol. 41, no. 3, pp. 475–486, 2013.

[35] O. Sener and V. Koltun, “Multi-task learning as multi-objective opti-
mization,” Advances in neural information processing systems, vol. 31,
2018.

[36] K. Seshadri, B. Akin, J. Laudon, R. Narayanaswami, and A. Yaz-
danbakhsh, “An evaluation of edge tpu accelerators for convolutional
neural networks,” in 2022 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2022, pp. 79–91.

[37] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and
V. S. Pai, “Challenges in computer architecture evaluation,” Computer,
vol. 36, no. 8, pp. 30–36, 2003.

[38] O. Sỳkora, P. M. Phothilimthana, C. Mendis, and A. Yazdanbakhsh,
“GRANITE: A Graph Neural Network Model for Basic Block Through-
put Estimation,” in 2022 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2022, pp. 14–26.

[39] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A
simulation framework for cpu-gpu computing,” in Proceedings of the
21st international conference on Parallel architectures and compilation
techniques, 2012, pp. 335–344.

[40] A. Yazdanbakhsh, C. Angermueller, B. Akin, Y. Zhou, A. Jones,
M. Hashemi, K. Swersky, S. Chatterjee, R. Narayanaswami, and
J. Laudon, “Apollo: Transferable architecture exploration,” arXiv
preprint arXiv:2102.01723, 2021.

[41] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The design
and use of simplepower: a cycle-accurate energy estimation tool,” in
Proceedings of the 37th Annual Design Automation Conference, 2000,
pp. 340–345.

[42] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gra-
dient surgery for multi-task learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 5824–5836, 2020.

[43] X. Zhao, H. Li, X. Shen, X. Liang, and Y. Wu, “A modulation module for
multi-task learning with applications in image retrieval,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
401–416.

7

https://doi.org/10.1145/3530891

	Introduction
	Design Principle, Challenge and Overview
	Background
	Tao
	Training Dataset Construction
	Multi-Metric DL Model Design
	Fast Transfer Learning via Microarchitecture Agnostic Embeddings

	Evaluation
	Comparison with the State-of-the-Art
	Multi-metric Prediction Error

	Generality of Tao
	Related Works
	Conclusion and future work
	References

