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Abstract

The aim of this paper is to develop novel quantum algorithms for Gaussian process quadra-
ture methods. Gaussian process quadratures are numerical integration methods where Gaus-
sian processes are used as functional priors for the integrands to capture the uncertainty
arising from the sparse function evaluations. Quantum computers have emerged as poten-
tial replacements for classical computers, offering exponential reductions in the computa-
tional complexity for machine learning tasks. In this paper, we combine Gaussian process
quadratures and quantum computing by proposing a quantum low-rank Gaussian process
quadrature method based on a Hilbert space approximation of the Gaussian process kernel
and enhancing the quadrature using a quantum circuit. The method combines the quan-
tum phase estimation algorithm with the quantum principal component analysis technique
to extract information up to a desired rank. Then, Hadamard and SWAP tests are im-
plemented to find the expected value and variance that determines the quadrature. We
use numerical simulations of a quantum computer to demonstrate the effectiveness of the
method. Furthermore, we provide a theoretical complexity analysis that shows a polyno-
mial advantage over classical Gaussian process quadrature methods. The code is available
at https://anonymous.4open.science/r/Quantum_HS_GP_Quadrature/.

1 Introduction

The integration of analytically intractable functions is usually addressed by numerical methods such as
classical quadrature rules (Arthur, 1986). However, alternatives to the classical quadrature rules are Bayesian
quadratures which formulate the numerical integration problem as a Bayesian inference problem over the
integral value, hence allowing for quantification of uncertainty arising from the finite number of function
evaluations (O’Hagan, 1991; Minka, 2000; Hennig et al., 2022). In particular, a common way is to consider a
Gaussian prior distribution for the integrand, which leads to so-called Gaussian process quadratures (GPQs)
(Minka, 2000; Hennig et al., 2022). However, the GPQ methods struggle with computational efficiency,
especially when handling large datasets since the algorithm complexity scales as O(N?), with N being the
number of evaluation points, which is a problem inherited from the similar complexity challenge in Gaussian
process regression.

Quantum computers have emerged as a novel approach for general computational purposes, showing even
exponential speedups in computational complexity over their classical counterparts. The HHL algorithm
(Harrow et al., 2009), quantum kernel methods (Schuld & Killoran, 2019), quantum phase estimation (QPE,
Kitaev, 1995), and quantum amplitude amplification (QAA, Brassard et al., 2002) are quantum algorithms
that offer a computational advantage in different numerical tasks (Schuld et al., 2016; Shor, 1994; Grover,
1996; Wiedemann et al., 2023; Canatar et al., 2023). Quantum algorithms for numerical integration in
the classical setting have been proposed by Yu et al. (2020) and Shu et al. (2024). Furthermore, Car-
rera Vazquez & Woerner (2021) and Martinez de Lejarza et al. (2023) implement quantum algorithms that
have a quadratic speedup with respect to Monte Carlo integration methods. These approaches assume that
the set of evaluation points is already encoded as quantum states and restrictions in the function domain.
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The contribution of this paper is to propose a novel quantum algorithm for numerical integration using
Gaussian process quadrature rules. A naive numerical integration algorithm using a Gaussian quadrature on
a non-quantum classical computer would have a complexity of O(N?), which is inherited from the complexity
of Gaussian process regression (Rasmussen et al., 2006). In this paper, we use a modification of the low-
rank quantum Gaussian process regression algorithm developed in Farooq et al. (2024). In the algorithm, a
quantum computer is used to solve the matrix inverse in GPQ, whose computational complexity dominates
the overall computational complexity of the method. The proposed method begins by implementing a
Hilbert space kernel approximation (Solin & Sarkké, 2020) using a classical computer to evaluate the basis
function integrals at the evaluation points. Then, the resulting data matrix needs to be loaded into a
quantum computer efficiently, and for this purpose, the approximate quantum amplitude encoding scheme is
implemented (Nakaji et al., 2022a). Using quantum principal component analysis (qPCA) (Lloyd et al., 2014)
and QPE we extract information about the dominant eigenvalues of the previously encoded data matrix.
This information is used to implement conditional rotations that allow the estimation of the expected value
and the variance of the quadrature using a Hadamard and SWAP test respectively (Schuld & Petruccione,
2021; Buhrman et al., 2001). We provide the numerical simulation of our proposed solution for quantum
low-rank Gaussian process quadrature in a classical processor that simulates a quantum computer, allowing
us to compare it with classical Gaussian process quadrature methods.

Our method also provides a polynomial computational advantage compared to classical methods for
Gaussian process quadrature. The quantum algorithm implemented in this paper delivers a complexity
O(log(M)r?%s?/€), where M is the number of basis functions used in the Hilbert space approximation (usu-
ally M < N), with given quantum data, and O(poly(log(NM))log(M)r2e~3) when data is given classically.
The computational complexity of a GPQ method implemented on a classical computer with the Hilbert
space method would be O(M?) and hence, the advantage is polynomial.

The paper is organized as follows. In Section 2 we briefly review the Gaussian process quadrature methods
and show how to approximate them with the Hilbert space method. In Section 3 we summarize the generic
quantum algorithms used in this paper. Section 4 encompasses the core of this work, presenting the quantum
low-rank Gaussian process quadrature method and discussing the computational complexity of the algorithm.
In Section 5 numerical simulations using a classical computer are shown. Section 6 concludes the work.

2 Hilbert Space Approximation for Gaussian Process Quadrature

Gaussian processes f ~ GP (0,k (x,x’)) can be used as functional prior distributions to model unknown
functions f over a d-dimensional inputs x on to a space Q@ C R%. The covariance function k (x,x’) defines
the properties of the unknown function f and the mean can often be assumed to be zero, as we do here.
Regression of a function f(x) can be performed using the Gaussian process as the prior distribution in a
process known as Gaussian process regression (GPR) (Rasmussen et al., 2006). Then, a set of N noisy
measurements D = {X = {x1, -+ ,xn},¥ = (Y1, - ,yn)} with y; = f(x;) + &;, where ¢; ~ N(O,a2),
induce a posterior Gaussian distribution p (f(x.) | x«, D) = N (f(xx) | E[f(x4)], V[f(x4)]) on a new point
X, given by

E[f(x.) | D] = k! (K+0%T) 'y, (1)
VIf(x)| D] = k(xx.)—k! (K+0°T) k.. (2)
Here, K is a N x N matrix with entries K;; = k(x;,x;) and k, is a vector with the ith entry being k(x.,x;).

The choice of the covariance or kernel function defines the properties of the Gaussian process regression
solution. A common kernel choice for GPR is the square exponential covariance function (Rasmussen et al.,
2006)

1
k‘(x,x'):o?exp (—212||x—x/||2> , (3)

where oy and [ are the signal scale and length scale hyperparameters respectively. Gaussian processes can also
be used to construct Bayesian quadrature rules leading to so-called Gaussian process quadratures (Minka,
2000; Hennig et al., 2022) which we discuss next.
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The objective of a Gaussian process quadrature is to estimate the integral of a given function f(x) over a
domain x € 2 against a weight function p(x), that is,

T= /Q Fx)n(x)dx. (4)

To perform this estimation, we consider a Gaussian process approximation of the function f conditional on a
finite set of evaluation points y with y; = f(x;) +¢; at some given evaluation points x;. Then the conditional
expected value of the integral given this data D is

7= [ Bl | Dlutx)ax
[ Heontons] <oy ’

which can be used as an estimator for the integral I~T7. Similarly, we can evaluate the variance of the
estimator. The resulting conditional expected value and variance are given by (Hennig et al., 2022; Karvonen
& Séarkka, 2017)

Qpq = ku(X)T (K+01) 'y, (6)
Veq = p(ky) =k (X)T(K+0%1) 1k, (X), (7)

where the ith component of the vector k,(X) is ku(x;) = [ok(xi,x)p(x)dx and the scalar p(k,) =
fQ fQ (x)dxp(x")dx’. The resulting quadrature Qpq approximates the integral Z by performing
mtegratlon over the kernel rather than the function f itself, and by using these values it forms weights for
the function values. There exist a number of methods that can be used to reduce the complexity of Gaussian
process regression such as inducing point methods (Quinonero-Candela & Rasmussen, 2005) and Hilbert
space kernel approximations (Solin & Séarkké, 2020), which can be used to speed up the GPQ rule.

In this paper, we implement the Hilbert space method of Solin & Sdrkka (2020) on the quadrature rule
to reduce the complexity of the operation. We start by considering the eigenvalue problem of the Laplace
operator in a well-behaved domain ¢ such that the eigenfunctions and eigenvalues of the operator exist.
The solution would give a set of eigenfunctions ¢;(x) € ¢ with correspondent real and positive eigenvalues
A;j (Arfken et al., 2013). The eigenfunction are orthonormal respect to the inner product [ ¢;¢idx = d;j,
defining a Hilbert space over (.

If the kernel function is isotropic, that is, k(x,x’) = k(||x — x'||), then the covariance function can be
approximated in the domain ¢ as (Solin & Sarkka, 2020)

ZS( V) 65(x)6; (). ®)

where the spectral density S(w) is the Fourier transform (F) of the scalar covariance function k(7) s (w)
where 7 = ||x — X/||.

Equations (6) and (7) can be written in terms of the approximated kernel, giving

Qg ~®,(P'®+o*A )Ry, (9)
Veq =~ U2<I>I(<I>T‘I>+U2A_l)_1(1>w (10)
where the vector ®,, has the components ®,,, = fQ i (x)p(x)dx, A is a diagonal matrix with components

Aj; =S (\/E) and the matrix ® has components <I>Z] = qSJ (x;). The approximation of the kernel now
depends on the domain {, which is not necessarily the same as the integration domain 2. The matrix in
Equations (9) and (10) that needs to be inverted now has rank M instead of N. This kernel approximation
reduces the computational complexity involved in matrix inversion provided that M < N.
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The expected value and variance expressions of the quadrature can be decomposed using singular value
decomposition (SVD) to embed them into quantum states (Schuld et al., 2016). Some modifications of
Equations (9) and (10) must be done before the implementation of the algorithm (Farooq et al., 2024). For
the GPR, we need to obtain the eigenvalues and eigenvectors of (®'® + 6?A~'), which we aim to express
in terms of & ®. By writing the expected value and variance of the quadrature in terms of this common
set of eigenvectors, the expected value and variance can be written in terms of quantum states.

Similarly to Farooq et al. (2024) we start by considering X = ®VA € RV*M  where VA is a diagonal
matrix with elements v/A;; = v/S(v/\;), the quadrature equations take the form

—1
Qsq = X, (X"X+0%) X'y, (11)
Voo = o2X] (X'X+0%) "X, (12)
where XZ = @;\/X Now the eigenvectors of X TX + 02T are the same as those of X T X.

Using singular value decomposition (SVD) to the data matrix X it is possible to write the expected value
and variance of the GPQ in terms of quantum states. Let X = UXV ' be the SVD of the data matrix
X. The matrix ¥ € RF*® is diagonal, containing the real singular values A1, g, ..., Ag, being R the rank
of the matrix X. The orthogonal matrices U € RV*E and V € RF*M correspond to the left and right
singular vectors, respectively. Thereof, the SVD of XX 4 ¢%I = VX'V T leads to the diagonal matrix 3’

with elements 3/, = A2 + 2. Then, the eigendecomposition of (XTX + 021)71 XT is given by

R
T 21\ 1T T A T
(XX +0°T) X' =VE'U' =) mvrur , (13)
r=1 T
where 3" is diagonal with components X, = ﬁ and the vectors u, and v, correspond to the r-th column

vectors of the matrices U and V respectively. Then, using the SVD, the expected value and variance of the
GPQ can be written as

R
Ar
Qua = > Xy, (19
r=1 )\T+U
ST
Veq = 02ZmXIVTVIXH. (15)
r=1"T

The SVD in the expected value and variance of the GPQ allows us to write them as expected values of
quantum operators, extending the complexity reduction provided by the Hilbert space approximation of the
kernel into the quantum algorithm.

3 Quantum Algorithm Background

In this section, we will review the quantum algorithms needed to implement the quantum low-rank Gaussian
process quadrature. Readers who are familiar with fundamental quantum algorithms can skip this section
and directly move to the next Section 4.

3.1 Quantum Fourier transform

The quantum Fourier transform (QFT) performs the same transformation as the discrete Fourier transform.
It was first used in Shor’s integer factoring algorithm (Shor, 1994). Nowadays, QFT is an essential part of
various quantum linear algebra algorithms such as quantum phase estimation, matrix inversion problems,
and qPCA (Nielsen & Chuang, 2011; Harrow et al., 2009; Lloyd et al., 2014). The discrete Fourier transform
takes an input vector x and transforms it into another vector in the frequency domain y through

1 wij
S ey, k=0,,2" 1. (16)
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Similarly, QFT is defined as a linear operator that acts on an orthonormal basis |0),...,|N — 1) where
N = 2" with the following action:
271
e . (17)
We can express this as the unitary transformation
toi2tel
Tig
LYY e s
2" k=0 j=0
acting on an arbitrary state, which can be expressed as
271 271
> wili) = Y welk)- (19)
j=0 k=0

To understand how the QFT has been implemented on quantum computers, it is helpful to express the
state |j) in a binary representation as j = jij2---jn, where ji, 4o, - ,jn are either 0 or 1. The binary
representation of an entire number can be written as j = §12" 7! 4+ 2272 + .- + 5,20, Similarly, a decimal
number 0.j1j2 - - - j; can be expressed in a binary representation as j; /2 + j2/4 + - -+ + 5;/2!. The QFT in
Equation (17) can be written in product form following Nielsen & Chuang (2011) as

. . 1 7i0.5 700.jn—1J 70041724
|Jl,"' ,Jn> - W [(‘0> + 62 0.9n |1>) (|0> +€2 0.9n—1Jn |1>) o (|0> +e2 0.j1J2" " Jn |1>)} . (20)
This expression can be implemented using a quantum circuit composed only of the Hadamard gate

H =21 {1 _11}, and the two-qubit controlled rotation CRy = [I

7 |1 0 RJ given in a block-diagonal

1 0
0 e2mi /Qk:| . The action of the Hadamard gate on the target quantum state [j;) is
e

Hlj) = % (\O} + %5 |1>> . On the other hand, the operation of CR,, on a two-qubit state |j.ji), where
the first qubit is the control and the second is the target, does not affect the second qubit if the first is in

form, where Ry = [

the zero state C Ry |0j:) = |0j:), and when the control qubit in one state is C Ry |1j;) = e 3Rt [15¢).

We start with an n-qubit input quantum state represented in |ji - - j,). Applying the Hadamard gate to
the first qubit gives the following quantum state
H|jr) |72 dn) = 5173 (10) + eI 1)) gz - i) - (21)

Then, the operation of the controlled-R, gate to the first two qubits results in

CR, |j2j1> |j3 .. 'jn> 21/2 (|O> £2mi0.41j2 |1>) |j2 .. .j"> . (22)

Similarly, applying the controlled gates Ry for k£ = 3,...,n on the first qubit yields the following expression:
1 00 e . .

|£1> 21/2 <|O> + 62 i0.j1J2 Jn |1>) |J2 .. ']n>7 (23)

where |£1) is an intermediate quantum state. We then apply the Hadamard gate to the second qubit and
repeat the controlled operation of Ry for k = 3,...,n on the second qubit giving

1 70051427, . .

|£2> 22/2 (‘O) + 62 0.51J2° " n 1>) |]3 . ']n>~ (24)
We continue in this fashion for each qubit until & = n and perform the SWAP operation to change the
location of the least significant bit, which leads us to the final quantum state

(|0> + e271'L'O.j71 |1>) (|0> + 627r£0.jn,1jn |1>) . (|O> 4 e27r£().j1j2-~~jn |1>)

1>) (|0> 4 2mi0.5273Jn

(25)
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Figure 1: Circuit diagram to implement the quantum Fourier transform on a quantum computer.

Figure 1 shows the circuit demonstration of the QFT. In the first step, one Hadamard gate and n — 1
conditional rotation gates make a total of n gates. Similarly, in the second step, we require n — 1 gates.
Continuing in this manner, the total number of gates is n + (n — 1) +--- + 1 = n(n + 1)/2. Therefore, the
computational complexity of the QFT is O(n?). In contrast, implementing the discrete Fourier transform
using the classical fast Fourier transform (FFT) would require a computational complexity of O(n2™). The
QFT is often used as a subroutine of several quantum algorithms such as quantum phase estimation, which
we discuss in the next section.

3.2 Quantum phase estimation

Given a unitary operator U acting on an n qubit quantum state |¢) with eigenvalue equation U |¢) = e*™% |¢),
the objective of the quantum phase estimation (QPE) algorithm is to estimate the value of ¢ (Kitaev, 1995).
The QPE starts with a unitary transformation that can implement powers of U conditioned on ancillary
qubits

2m—1 2" —1
1 1 &
gz D0 K8 = s ST UM 6). (26)
k=0 k=0
The action of the unitary operator U* on the eigenvector |¢) yields the eigenvalue e2™*¢% given as

on

1 1 ;] '
52 STk Ur ) = 75 3 Jk) (277 |¢))
k=0 k=0

1 2" -1
= 2 ST R 10).
k=0

Applying the inverse QFT to Equation (27), the eigenvalue estimate is stored in the quantum register as

gn_
1

on/2

1
€27k |1y |6) 2L 5y 1) (27)
k=0

We then perform a measurement in the computational basis to obtain the estimate ¢ of the eigenvalue.

1
5
Generally, ¢ cannot be represented exactly by 2%, however, the QPE algorithm still gives the best possible

approximation, according to Kitaev (1995), given by

The binary string [ with the highest success probability corresponds to the exact estimate ¢ only if ¢ =

2" —1 2" —1

i QFT! 1 i —3/2™) |,
> TR 9) S s D I ) |g). (28)
k=0 k=0

1
on/2
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Figure 2: Circuit diagram to implement the quantum phase estimation on a quantum computer.

The highest success probability of measuring the closest estimate using the QPE algorithm becomes

2

2m—1
N omik(p—35/2™)
p(j) = /3 kz_o e2mik(p—j ) (29)

This depends on the difference between ¢ and the binary fractional integer j/2™. Therefore, to increase the
precision of the estimate ¢, we need to add more ancilla qubits to the QFT. Figure 2 presents the circuit of
the quantum phase estimation algorithm.

QPE requires the implementation of powers of the unitary operator U = et on a quantum computer using
Hamiltonian simulation of the H operator (Lloyd, 1996). Standard methods to implement Hamiltonian
simulation involve decomposing the unitary matrix into all possible combinations of Pauli operators which
has a huge computational complexity (Nielsen & Chuang, 2011). To obtain practical advantages over classical
systems, we have to find solutions in which we can efficiently simulate the unitary system. Several algorithms
have been proposed in this area, for example, Berry et al. (2007) consider a sparse Hamiltonian operator,
another approach approximates it using Taylor series (Berry et al., 2015), and the commonly used Suzuki-
Trotter method (Suzuki, 1976). Hamiltonian simulation can be efficiently done when the input state and the
Hamiltonian operator are the same (Lloyd et al., 2014), with a method called density matrix exponentiation.
It can be used in the quantum principal component analysis (qPCA) if the quantum density operator is
non-sparse but low-rank. In this paper, we utilize this concept of qPCA for the Gaussian process quadrature
rule.

3.3  Quantum principal component analysis

Instead of explicitly calculating the unitary matrix U = e/t we can simulate the unitary operation using

SWAP operators. For this, we add the extra condition that the Hermitian operator should be represented
as the density matrix of some quantum state, that is, H = p. We apply the SWAP operation to the state
p® o and perform a partial trace operation. The expression for this simulation turns out to be (Lloyd et al.,

2014; Schuld & Petruccione, 2021)

tro{e P98 (0 @ p) 52} = 0 — iAt[p, o] + O(At?)
o o= AL GiPAL

where o — iAt[p, 0] with [p,0] = po — o are the first terms of Taylor expansion of e~?Atgel?At and try(.)

is partial trace over second subsystem.

Density matrix exponentiation is often used with the quantum phase estimation technique. Once we have
exponentiated the density matrix, we can extract the eigenvalues through quantum phase estimation. To do
so, we need to prepare the powers of U*F = giPkAt,

Lloyd et al. (2014) showed that using the exponential density matrix along with the estimation of the
quantum phase, O(e~3) copies of p are required for this, where e represents the precision to estimate the
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eigenvalues. These copies are then combined with an ancilla register of n qubits in superposition to obtain

2m -1
pe,= Y k) (kleoe i eiP e . ") (30)
k=0
We now perform a sequence of two-qubit conditional SWAP operators, each of which swaps the first qubit

state o with the gth copy of p conditioned on the ancilla qubit. The SWAP operators are entangled with
the ancillary register, so the index |k) governs the sequence of SWAP operators up to the copy %) as

2" —1 k
1 —iSyt
Pes = 72 ;;) (kALY (kA ®g1;[16 : (31)

After taking the partial trace over all the copies of p, we obtain the result

2" —1
pes = O |k) (k| @ e PR gelPAT L O(AL). (32)
k=0

This mixed quantum state representation is suitable for applying the QFT (Schuld & Petruccione, 2021).
Letting o = p, it calculates the eigenvalues and eigenvectors of the operator g. Obtaining eigenvalues and
eigenvectors in this way is known as quantum principal component analysis.

The SWAP operator is a sparse matrix and can be simulated efficiently. Lloyd et al. (2014) showed that
this algorithm can be implemented with a computational complexity of O(logn) on a quantum computer
when multiple copies of the density operator are already given as quantum states. This qPCA is qubit
efficient as long as we do not have to estimate the eigenvalue to a precision that does not grow exponentially.
According to Lloyd et al. (2014), this technique is only suitable when the density matrix is dominated by a
few eigenvalues that do not require high precision for estimation.

4  Quantum Hilbert space low-rank Gaussian process quadrature

In this section, we provide the main contribution of our paper, which explores how quantum computers can
be used to evaluate integrals using the Hilbert space low-rank Gaussian process quadrature. For this, we
implement the Hilbert space kernel approximation developed by Farooq et al. (2024) for quantum-assisted
Gaussian process regression and extend it to the GPQ rule. We initially consider the amplitude encoding
scheme in Appendix A.4 to encode the data matrix X € RV*M with entries ™ in the form

M—-1N-1

[ox) = D > @t lm)|n). (33)

m=0 n=0

The state |¢x) has to be normalized, then, the entries 7' satisfy the condition >_, [ 2} |2= 1. The ampli-
tude data encoding implicates a computational complexity O(NM) in ordinary quantum state preparation
methods (Schuld & Petruccione, 2021). However, efficient quantum amplitude encoding methods have been
recently proposed, achieving a O(poly(log(NM))) computational complexity (Nakaji et al., 2022b).

Starting from the quantum state in Equation (33), we consider its Gram-Schmidt decomposition (Schuld
et al., 2016) which gives

|¢X> = Z)\T ‘UT> ‘ur> . (34)

Further, consider the density matrix pxtx = Tr,{|¥x) (¥x|} given by tracing out the |n) register of the
quantum state in Equation (33). The resulting density matrix can be written in terms of the Gram-Schmidt
decomposition in Equation (34) as

R
pxx = Tra{lux) (x|} = D Alfor) (vl (35)

r=1
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Figure 3: Quantum circuit to prepare the |¢);) quantum state. The red gates represent the parts of the
algorithm where the qPCA is implemented, meanwhile, the green part envelopes the implementation of the
QPE algorithm.

Once the density operator is built, it is possible to apply it as an exponential evolution operator to the |m)
register of |¢x) following the qPCA technique (Lloyd et al., 2014) explained in Section 3.3. Since the state
|thx) is the eigenstate of the operator in Equation (35), it is also the eigenstate of exp(—ipxTxt). With this
argument, it is possible to implement the QPE algorithm (see Section 3.2) to estimate the eigenvalues of
PXTX-

The algorithm starts by building a specific state |11) that stores the information of the evaluation points.
Figure 3 shows the quantum circuit used to create this state. Four quantum registers are needed, the last
two are the |n), and |m), registers needed to store [¢x); then, we need a register |0)_ that will store the
eigenstates; finally, we need an ancilla register |0) . Conditioning on the second register, we implement the
QPE algorithm with unitary evolution performed through qPCA. Denoting intermediate states as |£;) the
resulting state after the QPE algorithm is

|€1) Z)‘ [Ur ) () |)\$>‘r‘0>a'

The binary representation of the eigenvalue A\ can be used to condition a R, (61) rotation around the y axis
of angle 61 = 2arcsin (ﬁ) in the ancilla register. After the rotation, the state of the quantum circuit
takes the form

2
2 Cc1 C1
&) ZA o) furda 188 (V1= (5ross ) 00+ (5702 ) 10

The term ﬁ has to be smaller than one, this condition is satisfied by an appropriate selection of the
constant ¢; (Cleve et al., 1998). Finally, it is possible to reverse the operation over the 7 register, which

provides the state
R C 2 C
1 1
Y1) = ; A V) ), 10) - 141 = (W) 0), + N to? Dl - (36)

It is important to note that when the ancilla qubit is in the state |1) , the state of the qubit registers m and
n represents part of the quadrature expected value.

We can estimate the quadrature expected value Qg with quantum states by introducing the information
of the vector X, and the evaluation points y. For this, we need an additional quantum state named [¢y)
with the same number of registers as in [th;1). By considering the quantum states |X,,), = > = |m)
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Figure 4: Quantum circuit to estimate the quadrature variance. The red gates represent the parts of the
algorithm where the qPCA is implemented, meanwhile, the green part envelopes the implementation of the
QPE algorithm.

and |y),, = >, ¥n |n), we use the amplitude encoding scheme to build the state [¢2) = [X,,), |y),, [0), [1),,
which is normalized.

Consider the dot product between the [¢)1) and |1)2) states, which takes the form

R
A
(V1 [ ¥2) =1 E 2+ o2 T o2 (X# | ’Ur>m (vl Ur>n~ (37)
r=1"T

Dividing the dot product by the rotation constant c;, the result corresponds to the expected value Qpq =

(1 | ¥2) /1 given in Equation (14). The dot product between two states can be implemented in a quantum

computer through a Hadamard test, which is explained in the Appendix A.5. As a result, the expected value

in the quadrature can be written in terms of the probability py of the ancilla qubit to be in the state |0) as
2p0 -1

QBq = o (38)

The variance of the quadrature can be calculated using a similar circuit. After the quantum phase estimation,
the circuit is in the intermediate state |€), now the conditioned rotation R,(f2) has a different angle

0, = 2 arcsin ("“) This results in the state
Ary/A2402

2
2 0y + 2 )
A /A2 + 02 AN 02

where the constant ¢y satisfies the condition ¢y < A\/A2 + 02. The algorithm proceeds by conditioning the
ancilla register to be in the state |1), and including the vector X,,. In this case, we need an additional register,
with the same length as |m), to store the quantum state [¢5) = |X,). By including an additional ancilla
register |0), a SWAP test can be implemented between the |X,,) and the |m) register of the circuit. Appendix
A.6 provides the detailed steps for implementing the SWAP test on quantum computers. Measuring both
ancillary qubits to be in the quantum state |1), the probability is

R
1€8) =D A on) fur), MDY, 4] 1=
r=1

R

2 /R
G 1 1 9
p11—2<;w—zw|<xuvr>|>v (39)

=1

where the second term is proportional to the variance of the quadrature given in Equation (15), then it can

be written as
& 1 2p11
Vg = o? - = 40
BQ o ; )\% T 0_2 C% ’ ( )
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giving the Gaussian process quadrature variance. The quantum circuit to estimate the quadrature variance
is shown in Figure 4.

Once the quantum computational method for Gaussian quadrature computation has been constructed we
are interested in the computational complexity of the algorithm with respect to the classical Gaussian
process quadratures. The quantum state preparation subroutines in our algorithm can be implemented using
the quantum state preparation technique described by Nakaji et al. (2022a), which efficiently prepares the
quantum state |1)x) with a computational complexity of O(poly(log(NM))) when the dataset consists of real
numbers. We then apply qPCA along with QPE, which has a total computational cost O(log(M)e~3) (Schuld
et al., 2016). The next step involves the conditional unitary, which has a low computational complexity of
O(log(%)), so we can neglect its computation cost. We perform measurements in the variance circuit before
the SWAP test, which can be implemented with amplitude amplification techniques in O(k?). We then
employ the Hadamard and SWAP tests, whose complexity is linear in the number of qubits; thus, the
measurement accounts for only a constant factor, which can be ignored. The total computational cost to
estimate the expected value and variance of our algorithm for the quantum Gaussian process quadrature
rule is O(poly(log(NM))log(M)k?e~3). On the other hand, the classical version of the GPQ rule requires
a computational cost of O(M?3), which shows that our algorithm is polynomially faster than the classical
algorithm.

5 Numerical Simulations

The simulations performed in this paper correspond to executions of quantum circuits in a classical computer
that simulate the result that would be obtained on quantum hardware. The classical simulations already
pose several challenges for different factors. The QPE algorithm needs several qubits to provide reasonable
estimates of the eigenvalues. Moreover, since we estimate multiple eigenvalues in this step, it is important
to differentiate them properly. Implementing the qPCA evolution operator is sensitive to the parameter ¢.
In this case, we select t = 27r/§ and modify the value of ¢ as suggested by Cleve et al. (1998), following the
inequality § > A2, where \,,q, is the largest eigenvalue of the decomposition. For a good approximation,
§ should be slightly greater than A2

max*

As an example for simple demonstration purposes, we considered the integral Z; = fQ f@)p(z)dz of a
simple one-dimensional sinusoidal function f(xz) = 1 + sin(z), similar to the one used for regression by
Farooq et al. (2024), integrated over the interval Q = [—m, n] with weight function p(z) = 1. We choose
¢ within the same range [—L, L] with L = 7 to implement the framework outlined in this work. In this
domain, the eigenfunctions corresponding to the Laplace operator are the sinusoidal functions ¢;(z) =
L=Y2sin(rj(z + L)/2L), each associated with its respective eigenvalue \; = (75/2L)2.

The first demonstration of the algorithm was implemented using a constant value of § = A2, +0.01, N = 8
evaluation points, 7 = 16 qubits to store the eigenvalues, M = 4 eigenfunctions to approximate the kernel
and 10° shots per circuit execution. The simulations were implemented using a classical simulator of a
quantum computer using the QISKIT library (Qiskit contributors, 2023). For the simulations, we consider

the square exponential kernel in Equation (3) with hyperparameters oy = 1 and ¢ = 1, whose spectral
density is S(w) = UJ%\/ 27l exp <—¥) The noise ¢ of the evaluation points has a Gaussian distribution

with zero mean and variance o = 0.05.

Figure 5 shows the distribution that estimates the integral Z; given by the GPQ in Equations (6) and (7),
the low-rank Hilbert space quadrature (HSQ) in Equations (9) and (10) and our proposed quantum Hilbert
space quadrature method (QHSQ). The distributions given by R = 1,2 are quite distant from the integral
value, meaning those low-rank approximations do not have enough information to approximate the integral.
Also, these two distributions have a similar expected value, which is expected since the vector X,, of this
problem has X, = X, = 0. Similarly, the distributions with 2 = 3,4 have a similar expected value, this
time around the expected value of the integral given by the classical HSQ, showing the effectiveness of our
proposed algorithm.

The expected value and variance of the method were plotted in Figure 6 against the number of evaluation
points used for the quadrature, which are symmetrically distributed around z = 0. Besides the number of

11
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Figure 5: Estimate of the quadrature for the integral Z;. The estimation results deliver the expected
value and variance of the Gaussian distributions plotted above that approximates the integral. The dotted
black plot corresponds to the GPQ, the dashed red plot corresponds to the HSQ and the solid green plots
correspond to the estimates using our QHSQ algorithm with R = 1,2, 3, 4.

evaluation points, all simulation parameters are the same as in the previous example. The implementation
of the algorithm is susceptible to the parameter §, occasionally, it can lead to wrong results due to the small
rotations implemented in the circuit and the limited number of 7 qubits used to approximate the eigenvalues
A2. To avoid outlier results, we implemented the algorithm with six different values of 6 = A2, + €, with
e € {0.01,0.009,0.008,0.007,0.006}, and we took the median of these results for each number of evaluation
points.

For the quantum implementation, it can be seen that as R increases, the expected value approaches the
integral real value and also the classical counterpart of the method. It can also be seen that the quantum
method has greater fluctuation than the classical methods, mainly attributed to the limited amount of qubits
used in the simulations, the finite amount of shots, and the small rotations implemented in the algorithm.
On the other hand, we can see how the variance of the quadratures decreases with the number of evaluation
points as expected.

6 Conclusion

In this paper, we introduced a novel quantum algorithm for low-rank Gaussian process quadrature. The
method combines the uncertainty quantification properties of Bayesian quadrature methods for numerical
integration (O’Hagan, 1991; Minka, 2000) with the speedups provided by quantum computation. Our method
provides a polynomial complexity reduction compared to the classical GPQ rule, enhancing the solution of
analytically intractable integration problems. We have also demonstrated the practical performance of the
method using numerical simulations run on a classical simulator of a quantum computer, which shows that
the algorithm works in practice.

The proposed quantum algorithm is suitable for a fault-tolerant quantum computer with enough quan-
tum registers to implement the algorithm precisely. Recent developments in materials research have shown
promise in the realization of fully scalable quantum computers with higher coherence times (Acharya et al.,
2024), which opens a window for implementing the method in real hardware. Also, we discussed the sen-
sitivity of the method concerning the QPE ¢ parameter. However, this drawback can be overcome with
advanced quantum simulation techniques (Zulehner & Wille, 2019) that improve the classical demonstration
of the method.

12



Under review as submission to TMLR

75 3.5
A QP
6.0 = P N . ‘l - HSS 130
“1 QHSQ R=1 125
_ 45 GPQ - 2.0 &
2030_ -® HSQ '1.5.2
. QHSQ R=1 =
QHSQ R=2 11.0
L5r e~ QHSQ R=3 los
—e— QHSQ R=4 '
0.0t : . 10.0

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of evaluation points Number of evaluation points

Figure 6: Expected value and variance of the Gaussian quadrature methods against the number of evaluation
points. The dotted black line corresponds to the GPQ, the dashed red to the HSQ and the solid green lines
correspond to our proposed QHSQ method with R = 1,2, 3, 4.

Future work could include the optimization of the quantum circuit needed for the algorithm implementation
and demonstrations using advanced classical simulation techniques for quantum computers. Besides the well-
known data encoding problem in quantum computing, the complexity of the algorithm is mainly dominated
by the QPE and the qPCA parts of the algorithm. These steps can be reduced using iterative approaches
for the QPE algorithm (Smith et al., 2022), allowing it to be parallelized. The qPCA implementation can
be enhanced using a hybrid approach, despite increasing the classical resources needed to implement the
algorithm, a variational circuit can be implemented to reduce the complexity of the quantum circuit that is
executed (Xin et al., 2021). This could enable the algorithm to be executed in a noisy intermediate-scale
quantum computer.
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A Review of Fundamental Concepts of Quantum Computing

In this section, we will review the fundamental concepts used to implement our algorithm, known as the
quantum-assisted Hilbert space Gaussian process quadrature rule. We follow and use the symbols and
notations as used by Schuld & Petruccione (2021).
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A.1 Qubits

The basic unit of a quantum computer is the qubit, which is the analog of the bit in classical computers. A

1
a linear combination of both states, known as superposition, given by (Nielsen & Chuang, 2011)

lg) = |0) + B1), (41)

with a, 3 € C. Moreover, the squared amplitudes |«|? and |S]? correspond to the probability of measuring
the qubit |g) in the state |0) or |1) respectively. Then, they satisfy the condition |a|? +|3|?> = 1. An n-qubit
unentangled quantum system can be represented as the tensor product of single-qubit states

V) =lq1) @+ @ |gn) - (42)

single qubit can be either in quantum state |0) = B] or |1) = {0} Moreover, it can also be represented as

More generally, it can be written as the superposition

2" -1
) = > aili), (43)
=0
where «a; € C, Zial |oa;]> = 1, and {[i)} represents the computational basis {|0---0) = [0),---,|1---1) =

|2 — 1)}. Interactions between qubits can lead them into entangled states, which play an important role in
the development of quantum algorithms and applications of quantum technologies. Entangled states cannot
be represented as the product of individual states, for example, an entangled two-qubit quantum state can

be represented as
1 1

75 (100,100, +10), 1),,) = 5
The complete state cannot be written as |¢1) ® |g2), however, it corresponds to the superposition of specific
states of the computational basis.

¥) (100)15 + [11)15) - (44)

It is important to notice that neither qubit 1 nor 2 in the quantum state has a definite value, but when
the state of one qubit is measured, a probabilistic process, then the state of the other qubit is completely
defined. When the qubit ¢; is measured in a specific state, for example, |0), the qubit go immediately takes
the value |0). The same logic applies when the measurement is performed over the qubit g.

A.2 Quantum gates

Quantum logic gates are the fundamental building blocks of quantum circuits, whose action on the quantum
states defines the dynamics of the circuit. This section follows Schuld & Petruccione (2021) to give a brief
introduction to single and multiqubit gates. Quantum gates are realized through unitary transformation.
Unlike the classical gates, quantum gates are reversible. For a single qubit, there are three fundamental
gates known as Pauli matrices

I B ) N (O

The Pauli X-gate is equivalent to the classical NOT gate for a quantum system. This gate flips |0) to |1)
and vice versa. This can be represented in matrix form as

S 1 G BT (1 RO R

The Pauli Z-Gate introduces a phase of -1 to the |1) state and keeps |0) state unchanged

TR R A [ Rt
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Similarly, the Pauli Y gate flips the quantum state and performs a phase flip operation on a quantum state

L R R 1 R R

A more general form of single-qubit gates is the rotations around the z,y, z axis of the Bloch sphere Nielsen
& Chuang (2011). These rotations are parametrized with respect to an angle and have the form

The previous rotations can now defined a general rotation of a qubit parametrized by three angles given by

cos 2 —e A

in @
U@¢»=mew—9mwm49&uﬁﬂg%;gawMﬁg)- (50)

Besides single qubit gates, multiqubit gates act over multiple qubits through unitary quantum operations.
These gates are usually responsible for entanglement between qubits. The Controlled-NOT (CNOT) gate is
the most common two-qubit quantum gate. The quantum state is changed only when the control qubit is
in the |1) state and remains unchanged if the control qubit is in the |0) state. The matrix representation of
the Controlled-NOT gate is defined as follows

10 0 0
01 0O
CNOT =0) (0@ +[1)(1]|® X = 00 0 1 (51)
0 01 0
The operation of the CNOT gate on two-qubit quantum states is given by
CNOT |00) =]00), CNOT|01) =101), CNOT|10) =|11), CNOT|11) = |10). (52)

The concept of controlled gates is extended to controlled general rotations, which can be represented in a
matrix of the form

1 0 0 0
CU@.6.0 = 00T+ ASVEON = [ o con A (53)
> R 0 0 Cosg —e~iA sing )
0 0 ¢“sin g et cos g

With two-qubit and single-qubit gates, building any possible multiqubit quantum circuit is possible (DiVin-
cenzo, 1995).

A.3 Quantum measurements

We need to perform measurements to retrieve quantum information from quantum state |¢). The outcomes
of these measurements are random, whose probabilities are given by the elementary operators M; = |¢;) (¢;]
through Born’s rule (Nielsen & Chuang, 2011)

bi = <¢\Mz|¢> (54)

The measurement operators are a collection of rank-1 projectors that sum to the identity >, M; = L
Generally, we take the computational basis, which is orthonormal, to define the measurement operators for
different quantum algorithms.
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Similarly, we can perform partial measurements over some fraction of the qubits that compose the system.
For example, performing measurements only on the first qubit in the |0) basis gives

po = (¥[10) (O @T--- @ T|¢). (55)

Partial measurements are used in the Hadamard and SWAP tests to estimate the inner product between
quantum states.

A.4 Amplitude encoding

The amplitude encoding scheme encodes each element of the normalized vector into a coefficient of the
quantum state. Suppose we have a vector x = [z1,--- ,zgn], where x € C". We first normalize the vector

such that Z?n |z;|2 = 1 and encode the vector into the quantum state as (Schuld & Petruccione, 2021)

2" —1

lvx) = Z z; i) - (56)

=0
We can also encode the matrix A € C2"*2" with entries a;; that fulfill > i lai;|> = 1 in a similar fashion to

on_{19m_1

WAy =Y > aili)lj), (57)

i=0 j=0
with the enlarged Hilbert space accordingly. The index registers |i), |j) refer to the ith row and the jth

column of the matrix A.

A.5 Hadamard test

The Hadamard test calculates the inner product between two states along with correct signs. The additional
overhead with the Hadamard test is that the ancilla qubit is entangled with both quantum states |¢;) and
[t2) as follows (Schuld & Petruccione, 2021):

1
V2

Once we have the state available in this entangled form, we then apply a Hadamard gate to the ancilla qubit,
resulting in

¥3) = —= (10) [¥1) + |1) [¢h2)) - (58)

) = 510) @ (1) + 4a)) + 5 © (1) — [42)). (59)

After this, we measure on the computational basis. The real and imaginary parts of the inner product
between the two quantum states are given by

Re((1lip2)) = 2po — 1, Im({¢1]p2)) =1 — 2po. (60)

When the states are real, the calculation of the real part becomes the actual inner product between the two
quantum states.

A.6 SWAP test

The SWAP test in quantum computers is used to extract the square of the absolute value of the inner
product between two quantum states |11) and |3) (Schuld & Petruccione, 2021). Suppose that we are given
these two quantum states in the tensor product form |¢1) [1)2). We start by adding an extra ancilla qubit
|0} |¢01) |12). Then, we apply a Hadamard gate to the ancilla qubit, resulting in the following quantum state

1

V2

(10) + 1)) [n) [9p2) = \% (10) [¢1) [2) + [1) [9h1) [4h2)) - (61)
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Next, we apply the swap operation between the two states conditioned on the ancilla qubit being in the

quantum state |1) as
1
V2

Applying another Hadamard gate on the ancilla qubit we have

SWAP /2

(10) @ (Ivh1) [th2) + [v2) [¥1)) + 1) @ (|¥1) [th2) — [h2) [¥1))) -

N =

When we measure the ancilla qubit, the probability of measuring the state |0) is

po =5 + 5] (k) 2.

(10) [61) [t62) + 1) [oa) [2)) S22y L 10y 45y o) + (1) i) [1)) -

(62)

(64)

This method evaluates the inner product, however, the squared of the absolute value does not allow us to

estimate the sign of the inner product.
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