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Abstract—Despite significant advancements in brain-computer
interface (BCI) technology, systems capable of leveraging phys-
iological signals to detect and recognize human intentions in
real-time are still underdeveloped. To achieve a new level of
human-machine interaction, it is essential to integrate motor
activity correlates with state-of-the-art artificial intelligence (AI)
architectures. In this study, we present the first demonstration
of handwriting decoding − a complex motor task − using a
novel myographic method called Optomyography (OMG). Unlike
previous electromyography (EMG)-based approaches that treat
handwriting decoding as a classification problem, we frame it as
a continuous trajectory reconstruction challenge. We evaluated
GRUScribe (GRU-based decoder) and TransScribe (transformer-
based decoder), successfully decoding 10 numerical digits and 33
Russian letters from 20 able-bodied and 4 amputee participants,
without requiring elaborate preprocessing. Our results demon-
strate the remarkable potential of OMG for recognizing complex
motor activity. We believe that our work sets a new benchmark in
non-invasive muscle activity decoding, offering direct applications
in advanced prosthetic control and human-machine interfaces.

Index Terms—Optomyography, Machine learning, Augmenta-
tion, Motor decoding, Electromyography, Human-machine inter-
action, Brain computer interfaces

I. INTRODUCTION

Daniel Wolpert’s profound observation cuts to the core of
our existence: ”We have a brain for one reason and one
reason only and that is to produce adaptable and complex
movements. Movement is the only way you have of affecting
the world around you.” [1]. This elegant statement captures
a fundamental truth about human existence − our ability to
interact with and shape our environment relies entirely on
movement. If movement is our primary means of engaging
with the world, then limb amputation represents a profound
disruption to our most basic way of being human.

Globally, limb amputation represents a major health crises
as it affects millions of people, yearly [2]. Loss of limb
functionality greatly impacts personal independence, profes-
sional capabilities and psychological health [2], [3]. Prosthetic
technologies emerge as critical interventions to restore motor
function, enable daily activities and mitigate the physiological
and psychological consequences of limb loss. Historically,
prosthetic development has progressed through multiple tech-
nological stages to restore limb functionality [4]. Early me-
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chanical prostheses primarily served cosmetic purposes while
providing basic structural support with minimal movement
capabilities. Later, body-powered prosthetic systems intro-
duced functional movement by manipulating residual limb
muscle activity to generate mechanical actions. However, these
approaches offered limited degrees of freedom and thus limited
control [4].

Electromyography (EMG) technology caused a paradigm
shift in prosthetic design [5]–[7]. This technology enables
interpretation of neuromuscular signals by capturing electri-
cal potentials generated during muscle contractions [8]. By
translating bioelectrical signals into mechanical commands,
EMG-based prostheses offer remarkable potential for more
natural and responsive artificial limb control. Nevertheless,
current EMG-based prosthetic systems face substantial chal-
lenges in terms of limited signal-to-noise ratio, cross talk
among channels and insufficient sensory feedback [5]–[7],
[9]–[11]. Moreover, patients frequently report difficulties in
precise device control, mental fatigue during operation and
a persistent gap between prosthetic performance and natural
limb functionality [5]–[7]. These limitations constrain the
functional utility and user acceptance of advanced prosthetic
technologies.

Apart from prosthetic control system, myographic signals
have substantially contributed to the evolution of human-
machine interfaces (HMIs) [12], [13]. These systems enable
users to interact with or/and control a diverse array of external
technologies. A growing trend in this domain is the integration
of wearable devices, such as wristbands equipped with myog-
raphy sensors, that interpret muscle activity to issue control
commands [14]. However despite notable advancements in
hardware design, signal fidelity and machine learning-based
physiological signal decoding techniques, myographic-based
HMIs have yet to achieve widespread adoption because of the
shortcoming discussed above [12]–[14].

Recently, optomyography (OMG) [15], [16], emerged as a
highly efficient non-invasive method to record muscle activity.
This technique uses near-infra-red light to measure perfusion
and oxygenation in a contracting muscle. Biological tissues
demonstrate a unique light transmission characteristic within
the 700-900 nm wavelength spectrum [17]. In a standard
measurement configuration, an LED generates near-infrared



Fig. 1: Top. Experimental paradigm; a trans-radial amputee is replicating the trajectory of displayed digit. OMG band is on
the residue limb such that the sensors are on the ventral surface of the skin. Middle. Decoded digits of an amputee using
TransScribe. Although ”3” is decoded incorrectly but overall performance is reliable. Bottom. Decoded alphabets of an amputee
using TransScribe with reliable performance.

that penetrates the tissue, while a photodetector captures the
resulting light scattering within the surrounding biological
structures [16]. OMG offers several significant advantages over
commonly used surface electromyography (sEMG), including

superior signal to noise ratio and higher resistance to external
interference [16].

Several studies have investigated OMG for motor decoding
tasks [13], [18]–[23]. However, these studies have largely



been limited to recognition of simple hand movement or
discrete gestures. In this work, we advanced significantly by
demonstrating OMG’s potential in recognizing complex motor
activity through decoding handwriting, a task requiring fine
motor control and temporal precision.

Our work makes the following key contributions:
• We present the first application of decoding 10 numerical

digits and 33 Russian alphabets using OMG and demon-
strates OMG’s untapped potential beyond simple gesture
recognition.

• We evaluate state of the art sequence modeling archi-
tectures (GRU and transformer) and establish that our
approach may work effectively for both able-bodied and
trans-radial amputees which represents a significant
advancement for assistive technology applications.

• We test data augmentation techniques tailored to OMG
in our attempt to substantially improve decoding perfor-
mance.

Our work establishes a new benchmark in non-invasive
muscle activity decoding, with direct applications to advanced
prosthetic control systems and HMIs. The capabilities demon-
strated in this work, particularly the successful decoding of
complex motor patterns in participants with amputated limb,
represent a significant step toward bridging the gap between
artificial and natural limb functionality.

II. METHODOLOGY

This section present a comprehensive framework for decod-
ing handwritten trajectories from OMG. Our cohort consisted
of 24 participants, including 20 able-bodied individuals and 4
trans-radial amputees. All participants were over 18 years of
age and provided written informed consent in accordance with
protocols approved by the local ethical committee.

A. OMG to digits

Fig. 2: An illustration
of OMG band’s place-
ment on able-bodied par-
ticipants

1) Experimental paradigm:
Our designed experimental
paradigm involved displaying a
five-second video of a numerical
digit being drawn steadily on
a computer screen. Participants
were instructed to replicate the
trajectory of character as shown
in the presented video. Able-
bodied participants used a pen
to physically replicate character
trajectories on a tablet or paper,
while amputees exerted mental
effort to move their phantom
limb in a way that matched the
trajectory displayed on the screen. During these attempted
movements, visible contractions of degenerated muscles
were observed in the residual limb. Digits from 0 to 9 were
displayed in a random order. Fig. 1 illustrates the experimental
setup and procedure. 12 participants, including 10 able-bodied
individuals and 2 trans-radial amputees participated in this

experimental paradigm. This deliberate inclusion of amputees
enables us to evaluate the clinical translatability of our
approach.

OMG data was captured using a custom-designed OMG
wristband (Motorica LLC), which incorporated four IR emit-
ters and ten IR receivers. The wristband was capable of
transmitting data across 50 channels at a frequency of 30 Hz.
Figure 1 illustrates the position of wristband on amputees. For
able-bodied participants, we positioned wristband on the distal
forearm near carpal canal such that the sensors were on the
ventral surface of the skin (Fig. 2). Each participant performed
20 trials per digit.

Experiments were conducted under direct supervision of
a researcher who visually confirmed trajectory adherence
in real-time. Additionally, participants were instructed to
verbally report any instances where they failed to accurately
track a character trajectory. This was done to ensure data
quality and prevent artifacts from unintended movements.

2) Preprocessing: A key innovation in our approach is the
intentional minimization of preprocessing steps. This design
choice serves two purposes: (i) to test the inherent information
carrying capacity of raw OMG, and (ii) to demonstrate the
superiority of OMG over traditional EMG that typically re-
quires extensive preprocessing. We implemented only essential
channel quality assessment and discard channels that failed to
meet the following empirically derived criteria:

• E[Xi] > 200 (threshold empirically derived from pilot
data) and,

• 2(E[Xi1 ]) > E[Xi2 ] and,
• 2(E[Xi2 ]) > E[Xi1 ]

Here E[Xi] is the mean of channel Xi where i ∈ [1, 50].
Similarly, E[Xi1 ] and E[Xi2 ] are the mean of first half
and second half of channel Xi, respectively. This filtration
approach was implemented to address potential band
displacement during data collection, which could compromise
signal integrity. Inadequate band-to-skin contact allows
external light infiltration, which results in increased signal
amplitude and reduced data quality. Apart from this minimized
filtration, no experimental calibration was required or done.

3) Augmentation: We implemented an offline augmentation
pipeline in our attempt to increase the diversity of OMG
data, enhance decoders’ generalization and improve the
quality of decoded trajectories. This pipeline included
addition of gaussian noise and fourier transform (FT)
surrogates, and performing smooth time masking, sign
flipping, frequency shifting, channel shuffling and time
reversing in/on training data. These augmentation techniques
are inspired from parallel EEG and audio processing studies.
A short description of all the augmentation techniques used
in this study is provided in supplementary material section 1.1.

4) Decoder architecture: Since our work represents the first
attempt to decode handwriting using OMG, we implemented



Fig. 3: Decoders’ architecture. Raw OMG after preprocess-
ing was fed to GRUScribe to translate into digit trajectories.
Similarly, digits and alphabets trajectories were obtained by
first passing OMG to embedding layer followed by TransS-
cribe.

two state-of-the-art sequence modeling architectures to estab-
lish strong baselines for future research. Both architectures
treat the decoding task as a regression problem and mapped
standardized OMG data directly to continuous 2D trajectories.
While these architectures are standard, their application to
OMG decoding is novel.

We used Gated Recurrent Unit (GRU) [24] and Trans-
former [25] neural networks followed by multilayer perceptron
(named as GRUScribe and TransScribe, respectively) to
translate OMG data into the corresponding trajectories of
digits. GRU is a type of recurrent neural network (RNN)
[26] that is particularly well-suited for sequence prediction
tasks due to its ability to capture temporal dependencies in
time-series data. GRUs utilize gating mechanisms to control
the flow of information. This control allows them to retain
relevant information over longer sequences while mitigating
the vanishing gradient problem, we commonly encounter in
traditional RNNs.

On the other hand, the Transformer architecture, which has
gained prominence in natural language processing domains,
leverages self-attention mechanisms to process input data in
parallel rather than sequentially. This allows for more efficient
training and the ability to capture long-range temporal depen-
dencies within the data. Fig. 3 presents the architectures of the
both decoders, used in our study. Details about GRUScribe
and TransScribe parameters are provided in supplementary
material section 1.3.

In our implementation, the input to the decoders consisted
of the standardized OMG data (having a mean of 0 and
standard deviation of 1), while the output was the respective
trajectories of the digits. We utilized Soft Dynamic Time
Warping (SoftDTW) [27] as the loss function, while ADAMW
[28] optimizer was employed to enhance the training process
by adjusting the learning rate dynamically. The decoders were
trained in each subject independently assuming individual
set of weights for each participant. The training lasted for
a predefined number of epochs (ranging from 200 to 400)
without using techniques such as reducing learning rate
or early stopping. We encapsulated the whole training and
testing process in Leave-One-Out-Cross-Validation (LOOCV)
[29] to ensure robust evaluation of the model’s performance.

In LOOCV, for each participant, during each iteration, one
trial was set aside for testing while the model was trained
on the remaining 19 trials. This process was repeated 20
times so that each trial was used once as the test set (see
supplementary material section 1.2).

5) Evaluation metric: To quantitatively assess the quality
of the decoded/reconstructed trajectories, we utilized the
Normalized Fréchet Distance (NFD) [30] as our evaluation
metric. The NFD is a scale-invariant measure of similarity
between two curves, derived from the standard Fréchet
distance. It quantifies the minimum ’continuous’ distance
required to traverse both curves while considering their shapes
and the order of points along the trajectories. This metric is
particularly useful in our study (compared to traditional Mean
Square Error (MSE) and correlation coefficients) since it
accounts for variations in speed, size and timing. This allows
for a more accurate comparison of the decoded/reconstructed
and actual trajectories. Using test set as ground truth, we
computed NFD between the decoded trajectories and ground
truth for each participant.

6) Comparative analysis: In the final stage, we conducted
a comparative analysis to evaluate the quality of trajectories
decoded by GRUScribe and TransScribe. This analysis aimed
to identify the most effective decoder for our task of decoding
handwriting. Additionally, we performed a similar analysis to
assess the quality of trajectories obtained through various aug-
mentation methods applied to each decoder. This analysis was
done to determine which augmentation techniques yielded the
best and worst results in enhancing the decoder’s performance.

B. OMG to alphabets

We developed a similar experimental paradigm as in section
II-A1 but instead of digits, 33 letters of Russian Cyrillic
alphabet were displayed in random order. We collected OMG
data from 12 participants, comprising 10 able-bodied indi-
viduals and 2 trans-radial amputees with the same custom-
designed OMG wristband. It is noteworthy that although both
amputees were right-hand dominant, the experimental trials
were conducted using their left residual limb. Each participant
performed 20 trials per letter.

For translating OMG data to corresponding alphabet trajec-
tories, we utilized TransScribe (section. II-A4, fig. 3). Whole
training and testing pipeline was encapsulated into 5-fold
cross validation scheme [31]. In this validation strategy, for
each participant, the 20 trials were randomly divided into five
folds, each containing 4 trials. In each iteration, one fold
(4 trials) was used for testing while the model was trained
on the remaining 16 trials. This process was repeated five
times so that each trial was used once as part of the test set
(see supplementary material section 1.2). Other experimental
settings remained consistent as of section II-A4. We applied
the same augmentation pipeline (section II-A3) and employed
an identical evaluation and comparison strategy as in sections
II-A5 and II-A6, respectively.



Fig. 4: Decoding results of an amputee. A. Ground truth used
to train decoders, B. Decoded trajectories using GRUScribe,
B. Decoded trajectories using TransScribe. A clear improve-
ment in decoding can be observed, D. Mean NFD (over all
folds) between ground truth and decoded trajectories on a log
scale. The axis represent digits. Quantitatively, the TransScribe
outperformed GRUScribe.

C. A step toward real-time decoding

In our attempt toward real-time decoding, we developed
a sequential two-model approach where the first model (a
transformer encoder) was trained to decode a small OMG
segments into an initial trajectory of character and the second
model (an RNN) was designed to forecast the subsequent
trajectory based on the first model’s output. We fed non
overlapping segment of varying OMG sizes: initial 20%, 33%,
and 50% of the total trial duration.

III. RESULTS

We achieved significant decoding accuracy using GR-
UScribe with ADAMW optimizer and SoftDTW loss function.
Figure 4A and 4B present the actual and decoded trajec-
tories for an amputee, respectively. Decoded trajectories for
all subjects are available in supplementary material, section
1.4. TransScribe yielded notable improvements in decoding
accuracy. Figure 4C presents the decoded trajectories for an
amputee with TranScribe, demonstrating enhanced trajectory
decoding compared to GRUScribe. Our results with decoding
of amputees was particularly encouraging. Decoded trajecto-
ries for all subjects are available in supplementary material
section 1.5.

Direct comparison between GRUScribe and TransScribe
revealed consistent performance differences (fig. 4B and 4C).
NFD metric quantitatively validated the superior performance
of TransScribe across all participants. Figure 4D present the
average NFD across all cross-validation folds for each digit
for an amputee. Complete comparisons for all subjects are
available in supplementary material section 1.6.

Data augmentation techniques applied to GRUScribe pro-
duced variable results (fig 5A). Figure 5B presents perfor-
mance metrics with and without augmentation across each
digit for an amputated participant. Complete comparisons
for all subjects are available in supplementary material sec-
tion 1.3. Analysis revealed inconsistent patterns, with certain
augmentation techniques improving performance for specific

Fig. 5: Effect of augmentation on GRUScribe performance
for an amputee. A. Visualization of decoded trajectories with
different augmentation techniques, B. Mean NFD between
ground truth and decoded trajectories on a log scale. The axis
represent digits, C. Box plot presenting the summary of mean
NFD (over all digits) across all folds. Diamonds represent
”mean” statistic. Decoder performed inconsistently for every
augmentation technique.

digits while decreasing performance for others (fig 5C). Vi-
sual inspection suggested improved decoding quality except
when using time reversal augmentation (see supplementary
material section 1.4). We observed a similar variability when
applying augmentation techniques to TransScribe (fig 6).
Channel shuffle augmentation notably decreased performance
of TransScribe, while other augmentation techniques showed
digit-specific effects (see supplementary material section 1.5).

Extension to alphabet decoding task revealed similar trends.
Figure 1 displays the decoding performance across all 33
Russian alphabets for an amputated participant. Complete
trajectory comparisons for all subjects are available in supple-
mentary material section 1.7 . While NFD showed inconsistent
patterns (fig. 7A and 7B), visual inspection of trajectories indi-
cated performance improvement (see supplementary material
section 1.7).

The inconsistent effects of augmentation across decoders,
digits and alphabets suggest complex interactions between
OMG data and model architecture. These variations likely
stem from individual physiological differences and motor-
behavior variability and indicate a need for customized aug-
mentation strategies.

The results we obtained in our attempt toward real time
decoding highlighted the inter-model dependency where the
second model’s performance demonstrated a strong correlation
with the first model’s decoding accuracy (fig. 8). While the
33% and 50% window configurations forecasted reliable tra-



Fig. 6: Effect of augmentation on TransScribe performance
for an amputee. A. Visualization of decoded trajectories with
different augmentation techniques, B. Mean NFD (over all
folds) between ground truth and decoded trajectories on a
log scale. The axis represent digits, C. Box plot presenting
the summary of mean NFD (over all digits) across all folds.
Diamonds represent ”mean” statistic. Inconsistent performance
can be observed.

Fig. 7: Effect of augmentation on alphabets decoding of an
amputee. Left. Mean NFD (over 5 folds) between ground truth
and decoded trajectories on a log scale. The axis represent
alphabets, Right. Box plot presenting the summary of mean
NFD (over all alphabets) across 5 folds. Diamond represent
”mean” statistic. Similar to digit decoding, decoder performed
inconsistently here.

jectories, the 20% window consistently underperformed. This
finding indicates the critical importance of refining the first
model.

IV. DISCUSSION

This study presents the first demonstration of complex
handwritten trajectory decoding from OMG and established
a new benchmark in non-invasive muscle activity decoding.

Fig. 8: A step toward real-time decoding. A. Trajectory fore-
casting using only the initial 20% of OMG signal, B. initial
33%, C. initial 50%. Blue represents initial trajectory.

Our findings reveal that OMG holds significant capacity to
recognize intricate muscle activity which can be decoded
without elaborate preprocessing or subject-specific algorithmic
customization.

We choose Russian Cyrillic alphabets alongside numerical
digits; (i) to demonstrate that OMG can capture intricate
muscle movements required for complex motor actions and
(ii) because all participants were native to the Russian writing
system. The fundamental principle that OMG can decode fine
motor intentions should generalize across writing systems.
However, we acknowledge that different scripts may present
unique challenges, and cross-linguistic validation represents an
important direction for future research

Our choice of GRU-based (GRUScribe) and Transformer-
based (TransScribe) architecture was motivated by the need to
capture short-long range temporal dependencies in handwrit-
ing trajectories. The superior performance of TransScribe over
GRUScribe can be attributed to two architectural advantages.
First, transformers’ self-attention mechanism directly model
relationships between any positions in the sequence regardless
of distance and thus captures the long-range dependencies
essential in handwriting where the beginning of a character
often relates to its ending. Secondly, the multi-headed attention
allows simultaneous focus on different aspects of muscles
movement and thus better handles the variable timing pat-
terns inherent in natural handwriting. These advantages make
TransScribe particularly well-suited for decoding the complex
temporal relationships embedded in OMG. Apart from GR-
UScribe and TransScribe, we explored a broader range of
architectures including CNN, RNN and LSTM models, as
well as hybrid Transformer+CNN architectures. However, GR-
UScribe and TransScribe yielded the most significant results
and are therefore featured in this work.

We observed inconsistent effects of augmentation tech-
niques across different decoders, digits and alphabets. This
inconsistency suggests complex interactions between OMG
data and decoders architecture. The observed variability in
decoding performance across augmentation techniques may



be attributed to multiple factors. Individual differences in
OMG band contact, tissue composition and participant-specific
muscle activation patterns likely influence augmentation effec-
tiveness. Furthermore, the complexity of movement execution,
potential learning effects during experimental trials and mus-
cle fatigue can contribute to the inconsistent augmentation
outcomes. These factors collectively suggest that optimal
augmentation strategies may need customization based on both
architecture type and individual physiological characteristics.
Despite this variability, our results demonstrate significant
progress in using OMG to decode complex and intricate mus-
cle movements without elaborate and complex preprocessing
pipelines.

Prior work in myographic-based handwriting recognition
has predominantly employed EMG signals and approached the
problem as a classification task [32]–[37]. With the exception
of [38] these studies have focused on categorizing muscle
activity into discrete character classes rather than reconstruct-
ing the actual writing trajectories. Advancing [38], our work
fundamentally shifts this paradigm by treating handwriting
decoding as a regression problem, enabling continuous tra-
jectory reconstruction that preserves the temporal and spatial
dynamics of the original movement.

This regression-based approach offers several theoretical
and practical advantages. First, it captures the rich temporal
structure of handwritten trajectories that are lost in classi-
fication approaches. Second, it provides a more naturalistic
interface for prosthetic control and HMIs that aligns with
how the neuromuscular system inherently functions. Finally, it
establishes a more challenging benchmark for evaluating the
information content of myographic signals and the capability
of neural architectures to extract this information.

Natural human movement unfolds through infinite gra-
dations of force, speed and position, not through discrete,
binary commands. When reaching for a delicate object, our
muscles activate in complex, continuously varying patterns
that precisely control pressure, trajectory and timing. Tra-
ditional prosthetic systems and HMIs that rely on discrete
muscle signals create an artificial barrier between intention and
action and force amputees to mentally translate their natural
movement intentions into limited, predefined commands.

The continuous decoding paradigm demonstrated in this
work addresses this fundamental mismatch by capturing the
rich, analog nature of neuromuscular signals. By interpret-
ing the subtleties of varying muscle activation patterns, our
approach enables proportional control that mirrors natural
movement. An amputee could potentially increase grip force
gradually through intuitive, progressive muscle engagement
rather than selecting between preset options.

Furthermore, this approach significantly reduces the cogni-
tive burden on users, who would no longer need to consciously
choose between limited movement categories. Instead, they
could focus on the task itself and allow their natural mus-
cle patterns to drive the prosthetic response. The resulting
movements would appear more fluid, natural and potentially
contributing to improved psychological acceptance and em-

bodiment of prosthetic devices.
The key limitation of this study is an absence of the direct

comparison of OMG with EMG-based decoding, the current
state-of-the-art in myographic recognitio system. However,
current hardware constraints make it challenging to simulta-
neously collect. OMG armband requires tight skin contact to
prevent external light interference through the bracelet’s gaps.
Integrating additional EMG electrodes at the same muscle sites
would compromise the optical signal quality, making simulta-
neous acquisition currently infeasible with existing hardware.
We are planning comparative studies that will include multiple
sensing modalities for future work.

Notably, integration of OMG with existing myoelectric
prosthetic systems should be relatively straightforward, as
OMG sensors can directly replace conventional EMG sensors
in current prosthetic designs without requiring major hardware
modifications to the control architecture. However, full clin-
ical deployment will still require addressing key engineering
challenges including optimization of sensor placement within
prosthetic sockets and development of user training protocols.
Additionally, comparative evaluation against current clinical
solutions will be essential to establish clinical efficacy and
user acceptance. Future clinical development will require col-
laborative efforts with prosthetic manufacturers, rehabilitation
specialists, and end-users to ensure that OMG-based systems
meet the practical demands of daily prosthetic use while
providing meaningful functional improvements over existing
solutions.

If Wolpert is right about the brain’s primary purpose being
movement, then limb loss represents not just a physical
challenge but a fundamental threat to how we experience being
human. This is why prosthetic and HMI design must evolve
beyond mere functionality to address both physical capability
and psychological wellbeing.

V. CONCLUSION

We demonstrated that OMG can be effectively leveraged
to decode handwriting - an intricate motor activity through
a regression-based approach, without requiring extensive pre-
processing. Our TransScribe consistently outperformed the
GRUScribe, which highlights the importance of modeling
long-range dependencies in OMG signals for fine motor
control decoding. Notably, the successful reconstruction of
handwriting trajectories in amputee participants underscores
the potential of our approach for developing prosthetic con-
trol paradigms that mirror natural human movement. Future
work will focus on designing customized data augmentation
techniques, reducing the dependence on large training datasets,
and implementing low-latency, real-time decoding pipelines to
advance toward clinically viable prosthetic applications.
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