
Aria-NeRF: Multimodal Egocentric View Synthesis

Abstract— We seek to accelerate research in developing rich,
multimodal scene models trained from egocentric data, based
on differentiable volumetric ray-tracing inspired by Neural
Radiance Fields (NeRFs). The construction of a NeRF-like
model from an egocentric image sequence plays a pivotal role in
understanding human behavior and holds diverse applications
within the realms of VR/AR. Such egocentric NeRF-like models
may be used as realistic simulations, contributing significantly
to the advancement of intelligent agents capable of executing
tasks in the real-world. The future of egocentric view synthesis
may lead to novel environment representations going beyond
today’s NeRFs by augmenting visual data with multimodal
sensors such as IMU for ego-motion tracking, audio sensors
to capture the surface texture and human language context,
and eye-gaze trackers to infer human attention patterns in the
scene. To support and facilitate the development and evaluation
of egocentric multimodal scene modeling, we present a compre-
hensive multimodal egocentric video dataset. This dataset offers
a comprehensive collection of sensory data, featuring RGB
images, eye-tracking camera footage, audio recordings from a
microphone, atmospheric pressure readings from a barometer,
positional coordinates from GPS, connectivity details from Wi-
Fi and Bluetooth, and information from dual-frequency IMU
datasets (1kHz and 800Hz) paired with a magnetometer. The
dataset was collected with the Meta Aria Glasses wearable
device platform. We evaluated two baseline NeRF-based models,
Nerfacto and NeuralDiff, on our dataset. While they were
capable of producing reasonable visual reproduction of the
scene, our findings also highlight opportunities for further
improvement using a variety of sensing modalities beyond
vision. The diverse data modalities and the real-world context
captured within this dataset serve as a robust foundation for
furthering our understanding of human behavior and enabling
more immersive and intelligent experiences in the realms of
VR, AR, and robotics.

I. INTRODUCTION

Recent advances in VR/AR technologies highlight a grow-
ing need for creating immersive virtual environments. Neural
Radiance Fields (NeRFs) [21] is a technique that has gained
much attention for its capability to generate photorealistic
3D scenes, meeting this demand for strengthened immersion
and realism. Utilizing NeRF for the creation of lifelike
simulations is of significant value, particularly in the de-
velopment of intelligent agents capable of executing real-
world tasks. Nevertheless, dynamic NeRF remains a complex
problem [15]. Unlike traditional NeRF, which deals with
static scenes, dynamic NeRF aims to capture and represent
objects and scenes that change over time. This introduces
the need for modeling complex temporal dynamics, such as
object motion, deformation, or interactions, which can be
challenging to represent accurately. On the other hand, it also
presents an intriguing avenue to explore whether multimodal
sensory data can enhance NeRF training. This work focuses
on egocentric view synthesis, which is a natural scenario

featuring rich multimodal data that can be captured by multi-
sensory wearable devices.

The progression of egocentric vision [28, 31] heavily relies
on hardware advancements. This is particularly relevant in
the context of wearable devices like Aria Glasses [24, 33],
which capture data from a first-person perspective in real-
life scenarios. Aria Glasses, designed as a research tool to
accelerate advances in AR/VR, embodied AI, and human
behavior modeling, employ a range of sensors to capture
first-person perspective video, audio, data on eye movement
and location, providing a comprehensive platform for under-
standing a user’s intention, as well as their interactions with
the world.

In this paper, we present the Aria-NeRF Dataset, a
comprehensive multimodal egocentric dataset designed for
multimodal egocentric scene modeling, with diverse real-
world multi-sensory data captured using Aria Glasses. Ex-
tensive experiments demonstrate that our dataset is a rich
testbed for typical NeRF-based tasks and algorithms, with
high-quality annotations to explore by future research. Our
dataset is also scalable, offering a cost-effective pipeline
for converting Aria Glasses-captured videos into NeRF-
compatible training data.

In summary, our main contributions are as follows:
• We introduce the task of Multimodal Egocentric
Scene Modeling, a step towards egocentric view
synthesis with neural scene representations, using Fish-
eye RGB images and multimodal sensory data.

• We build a novel Aria-NeRF Dataset, which
includes multiple modalities, such as Fisheye im-
ages, RGB, depth, IMU, audio, etc. The proposed
Aria-NeRF Dataset serves as a rich testbed for
advancing multimodal NeRF, for example, audio-
guided NeRF, and gaze-guided NeRF. In particu-
lar, Aria-NeRF Dataset has language annotations,
which are suitable for training LLMs-guided NeRF.

• We evaluate and benchmark Nerfacto [35] and Neu-
ralDiff [37] on the proposed Aria-NeRF Dataset
extensively. The results reveal the challenging nature of
our dataset and egocentric view synthesis, suggesting
the need for further improvement of the current NeRF
methods.

II. RELATED WORKS

a) One/Few-shot NeRF: The field of one/few-shot Neu-
ral Radiance Fields (NeRF) has seen significant advance-
ments in recent years. Several approaches have been pro-
posed to tackle the challenges of synthesizing novel views
and reconstructing 3D scenes with limited available data.



Fig. 1: Aria-NeRF Dataset, Kitchen 1 subset, comprises a diverse range of sensory data, including RGB images, ET
camera, microphone, barometer, GPS, Wi-Fi, Bluetooth, SLAM, and two sets of IMU data (1kHz and 800Hz), along with
a magnetometer.

Mip-NeRF 360 [2] addresses the task of Unbounded Anti-
Aliased Neural Radiance Field synthesis, using a non-linear
scene parameterization, online distillation, and a distortion-
based regularizer to overcome the challenges presented by
unbounded scenes. EgoNeRF [5] employs spherical coordi-
nates and leverages 360-degree panoramic videos as input
to construct neural radiance fields. In addition, there have
been several multi-stage approaches [3, 12] that attempt
to synthesize new view images by reconstructing an ex-
plicit mesh from egocentric omnidirectional videos. Zero-
1-to-3 [17] enables zero-shot novel view synthesis and 3D
reconstruction using only a single image.

In contrast, we assume a more casual input setting, where
the viewpoint and scene composition may vary widely,
data may be abundant, but from an egocentric viewpoint
embedded in the scene, and video data is augmented by other
multimodal data sources.

b) Dynamic NeRF: Recent studies have also focused on
synthesizing novel views of dynamic scenes using a single
camera. D-NeRF [27] has the capability to synthesize novel
views of dynamic scenes with intricate non-rigid geometries
at arbitrary time points. Nerfies [26] and HyperNeRF [25]
represent scenes using deformation fields that are conditioned
on either time instant [27] or per-frame learned latent defor-
mation cod [25, 26, 36]. NeuralDiff [37] tackles 3D object
segmentation by employing a triple-stream neural renderer
to separate the background, foreground, and actor. While
these methods can handle lengthy videos, their primary
effectiveness lies in object-centric scenes with limited object

motion and controlled camera paths. Alternatively, some
approaches model scenes as time-varying NeRFs [8, 9, 14,
41, 43]. NSFF [14] employs neural scene flow fields to
capture complex 3D scene motion in real-world videos.
However, it performs best on short, forward-facing videos
lasting 1-2 seconds duration. DynIBaR [15], focuses on
synthesizing novel views from monocular videos depicting
complex dynamic scenes. Our dataset is also well-suited for
dynamic NeRF tasks.

c) Multimodal NeRF: Multimodal Neural Radiance
Field [44] is valuable for robot vision and scene understand-
ing. Zhu et al. [48] introduce a method that aligns different
modalities, incorporating point clouds and infrared image
supervision. CLIP-NeRF [40] proposes a unified framework
that enables user-friendly manipulation of NeRF using either
a short text prompt or an exemplar image. MMNeRF [45]
learns multimodal and multi-view features to guide neural ra-
diance fields toward a generic model. OMMO [19] serves as
a multimodal benchmark for outdoor NeRF-based tasks, pro-
viding complex objects and scenes with calibrated images,
point clouds, and prompt annotations. ObjectFolder [10] is
a dataset designed for multisensory object-centric learning,
incorporating vision, audio, and touch modalities. In addition
to RGB cameras, our dataset includes a range of sensor types
such as Fisheye cameras, IMU (Inertial Measurement Unit),
audio, and more. This diverse collection of data enables the
training of NeRF models using multiple modalities.

d) VR/AR: NeRF holds great potential for creating
immersive environments in Augmented and Virtual Reality
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Fig. 2: Scene Examples

TABLE I: Dataset Statistics 1: Time and Sensors - RGB, Eye Tracking (ET), Microphone, Barometer, and GPS Data.

Subset Time (s) RGB ET Microphone Barometer GPS

Fountain1 124.9 1261 1261 2953 6276 127
Lounge-1 69.0 701 701 1640 3497 0
Lounge-2 69.6 707 707 1656 3524 0
Lounge-3 146.5 1476 1476 3457 7374 0

Flightroom 159.6 1607 1607 3765 8046 0
Drone-Workbench-1 145.3 1465 1465 3430 7316 0
Drone-Workbench-2 127.5 1286 1287 3013 6411 0
Drone-Workbench-3 78.2 793 793 1856 3960 0
Conference-Room-1 107.4 1085 1085 2541 5412 0
Conference-Room-2 77.2 783 783 1833 3907 0

Kitchen-1 134.8 1360 1360 3185 6791 0
Kitchen-2 123.4 1245 1245 2917 6216 0

Robot-Workstation-1 69.7 708 708 1657 3530 71
Robot-Workstation-2 41.5 426 426 996 2122 43

(AR/VR) applications. NeRF is highly applicable with the
ability to generate realistic and high-quality visual expe-
riences in these domains. Fov-NeRF [7] is a technique
that specifically targets Virtual Reality (VR) applications
by introducing a gaze-contingent neural radiance field. This
method enhances the responsiveness of neural synthesis
within the VR environment, resulting in improved visual
quality and realism in virtual experiences. Instant-3D [13]
is an algorithm-hardware co-design acceleration framework
that enables instant on-device NeRF training. This frame-
work facilitates instant 3D reconstruction for AR/VR appli-
cations, allowing for real-time and interactive experiences.

TLIO [18], trained with pedestrian data from a headset,
has the capability to produce statistically consistent mea-
surements and uncertainty for IMU-only state estimation.
This contributes to accurate tracking and positioning in
AR/VR scenarios. EPIC Fields [38] enhances the EPIC-
KITCHENS dataset by incorporating 3D camera information.
Recently, HoloAssist [42] is an egocentric human interaction
dataset, where two people collaboratively complete physical
manipulation tasks. Our dataset, which includes a commodity
omnidirectional camera with two fish-eye lenses, has the po-
tential to enhance VR/AR applications by providing valuable
data for training and improving NeRF-based techniques.



TABLE II: Dataset Statistics 2: encompasses a diverse array of sensory data including Wi-Fi, Bluetooth, SLAM, and
measurements from both IMUs and magnetometers. The dataset features two variants of IMU data: one sampled at 1kHz
and another at 800Hz.

Subset Wi-Fi Bluetooth SLAM IMU (1kHz) IMU (800Hz) Magnetometer

Fountain1 340 1 1261 126029 102124 1262
Lounge-1 326 26 700 70037 56751 702
Lounge-2 294 37 707 70683 57275 708
Lounge-3 583 81 1476 147492 119508 1480

Flightroom 476 0 1607 160611 130143 1613
Drone-Workbench-1 530 0 1465 146314 118556 1468
Drone-Workbench-2 408 0 1286 128586 104195 1288
Drone-Workbench-3 250 0 793 79241 64211 794
Conference-Room-1 391 34 1085 108440 87871 1086
Conference-Room-2 157 20 783 78257 63410 784

Kitchen-1 522 0 1360 135900 110119 1363
Kitchen-2 606 0 1245 124453 100845 1248

Robot-Workstation-1 543 0 708 70760 57338 708
Robot-Workstation-2 318 0 426 42562 34490 426

TABLE III: Quantitative Results. In the context of PSNR, SSIM, and LPIPS metrics, NeuralDiff generally surpasses Nerfacto
across various scenarios.

Subset Nerfacto NeuralDiff
PSNR↑ SSIM ↑ LPIPS ↓ PSNR↑ SSIM ↑ LPIPS ↓

Fountain1 20.16 0.7075 0.5212 29.09 0.9131 0.1695
Lounge-1 19.93 0.7284 0.5261 29.98 0.9270 0.2238
Lounge-3 19.63 0.7036 0.5951 29.93 0.9230 0.1441

Flightroom 19.41 0.7177 0.4601 29.30 0.8979 0.1689
Drone-Workbench-1 20.52 0.6820 0.5626 25.67 0.8578 0.3315
Drone-Workbench-2 20.93 0.6887 0.5169 30.60 0.9324 0.1149
Drone-Workbench-3 25.05 0.7736 0.4804 31.28 0.9427 0.1050
Conference-Room-1 17.10 0.6247 0.6767 19.22§ 0.6140§ 0.6908§
Conference-Room-2 20.70 0.7267 0.5482 29.42 0.9444 0.1071

Kitchen-1 20.19 0.6957 0.5854 32.72 0.9454 0.1144
Kitchen-2 22.67 0.7538 0.4825 34.13 0.9634 0.0552

Robot-Workstation-1 20.37 0.7336 0.4149 22.90 0.8474 0.2020
Robot-Workstation-2 20.97 0.7420 0.4493 20.44 0.7779 0.3362

§ stops at epoch 4 due to convergence issues.
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Fig. 3: Nerfacto Visualization Results on Kitchen 1 subset. We show the step numbers in the rendered video. Nerfacto results
reveal some blurred regions, underscoring inherent limitations in its performance.

III. METHOD

We evaluate two existing methods: Nerfacto [35] which is
adept at constructing neural radiance fields for static scenes
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Fig. 4: NeuralDiff Visualization Results on Kitchen 1 subset. NeuralDiff can disentangle the background, dynamic foreground,
and actors, all achieved in an unsupervised manner.

using real-world data, and NeuralDiff [37], a method ex-
plicitly tailored for dynamic Neural Radiance Field (NeRF)
scenarios.

A. Nerfacto

The Nerfacto model is the default model used by nerfstu-
dio [35] for building neural radiance fields of static scenes
from real data. This model is a combination of various
established methods known for their efficacy with real data.
Key techniques integrated into the Nerfacto model include
camera pose refinement, per-image appearance conditioning,
proposal sampling, scene contraction, and hash encoding.

a) Ray Generation and Sampling: The Nerfacto al-
gorithm begins by optimizing camera views via an op-
timized SE(3) transformation [16]. Utilizing these views,
RayBundles are generated. To enhance both the efficiency
and efficacy of the sampling process, a piece-wise sampler
is employed. Initially, this sampler operates uniformly up
to a designated distance from the camera. Subsequently, its
sampling becomes progressively distributed, with each sam-
ple’s step size increasing incrementally. These samples are
introduced to a proposal network sampler, as conceptualized
in the MipNeRF-360 approach [1]. Nerfacto incorporates
a compact fused MLP equipped with hash encoding [23]
for representing the scene’s density function, attributing to
its computational efficiency without compromising accuracy.
To further reduce the number of samples along rays, the
proposal network sampler is designed to encompass multiple
density fields.

b) Scene Contraction and NeRF Field: Many real-
world scenes are unbounded, meaning they could extend
indefinitely. Nerfacto applies scene contraction to transform
this unbounded space into a fixed-size bounding box [1].
Instead of the conventional L2 norm contraction, Nerfacto

adopts an L∞ norm contraction, resulting in a cubic do-
main rather than a spherical boundary. This cubic form is
more conducive to the voxel-based hash encodings. Sub-
sequently, these compacted spatial samples are compatible
with the hash encoding framework provided by Instant-NGP,
accessible through the tiny-cuda-nn [22] Python interface.
Additionally, Nerfacto integrates per-image appearance em-
beddings to mitigate variations in lighting and exposure
encountered across different training cameras, referencing
techniques used in [20]. It also incorporates strategies from
Ref-NeRF [39] to enhance the computation and prediction
of surface normals.

B. NeuralDiff
NeuralDiff [37] is crafted for dynamic NeRF applications.

It possesses the capability to autonomously disentangle the
background, foreground, and actor within the NeRF repre-
sentation.

NeuralDiff contains three sub-networks: Background den-
sity σb

k ∈ R+ and color cbk ∈ R3 can be obtained
from the Background Network: (σb

k, c
b
k) = MLPb(gtrk, dt).

The dynamic foreground is modelled by Foreground Net-
work: (σf

k , c
f
k , β

f
k ) = MLPf (gtrk, z

f
t ) produces a ‘fore-

ground’ occupancy σf and color cf . Additionally, it
predicts an uncertainty score βf

k . A frame-specific code
zf ∈ RD captures the properties of the foreground that
change over time. zt = B(t)Γ where B(t) ∈ RP is
a simple handcrafted basis and the motion Γ ∈ RP×D

are coefficients such that P ≪ T . Specifically, B(t) =
[1, t, sin 2πt, cos 2πt, sin 4πt, cos 4πt, · · · ] is a deterministic
harmonic coding of time. Foreground objects are manipu-
lated by the actor/observer, whose movements are sporadic,
while the actor’s body undergoes continuous motion. To
model this dynamic actor, Actor Network (σa

k , c
a
k, β

a
k) =

MLPf (rk, z
a
t ) is used. The key difference is that the 3D



point rk is expressed relative to the camera (v.s. gtrk which
is expressed relative to the world). gt ∈ SE(3) is the moving
camera motion, where SE(3) is the group of Euclidean
transformations. dt is the unit-norm viewing direction.

C. Dataset and Benchmark

Our dataset possesses three distinct characteristics:
• It comprises egocentric and dynamic scenes.
• The data is derived from real-world scenes.
• It incorporates multiple modalities.
The data modalities in our Aria-NeRF Dataset are

captured by RGB cameras, ET camera, Microphone, Barom-
eter, GPS, Wi-Fi, Bluetooth, SLAM/Mono Scene camera
left, SLAM/Mono Scene camera right, IMU (1kHz), IMU
(800Hz), and Magnetometer. The statistics for each subset
and for the different modalities can be found in Tab. I and
Tab. II.

1) Data Collection: Our dataset includes different scenar-
ios. We collected multimodal sensory data in these scenarios,
including RGB videos, ET camera, Microphone, Barom-
eter, GPS, Wi-Fi, Bluetooth, SLAM, IMU (1kHz), IMU
(800Hz), and Magnetometer, as shown in Figure 1. Each
participant wears Aria Glasses to perform specific tasks
within each scenario. These tasks may include activities
like navigating, utilizing tools, and interacting with common
household objects. In certain scenarios, GPS information is
unavailable due to the absence of GPS signals within indoor
environments. Similarly, the collection of Bluetooth data
information is contingent upon the presence of a Bluetooth
device near the scene. In the absence of a nearby Bluetooth
device, capturing Bluetooth data becomes unfeasible.

In our data preprocessing pipeline, we employ Aria Data
Tools1 to extract data from MPS files2, which is later utilized
for visualization purposes. For pose estimation based on
RGB video sequences, we employ COLMAP [32]. Our
dataset does not necessitate additional annotations.

IV. EXPERIMENTS

In this section, we first introduce the training details. We
then evaluate Nerfacto and NeuralDiff on our dataset. Our
analysis reveals that the proposed Aria-NeRF Dataset
is challenging, and there is much room for current NeRF
methods to improve in the context of egocentric view syn-
thesis.

A. Baselines and Implementation Details

We run two baselines on our collected dataset:
• Nerfacto: We employed the default training settings

of nerfstudio, conducting training for 30, 000 iterations
with an initial learning rate of 10−8 during the pre-
warmup phase, and a final learning rate of 0.0001.

• NeuralDiff: The NeuralDiff model is trained for 10
epochs with a learning rate of 0.0005, utilizing 64 ray
samples.

1https://facebookresearch.github.io/Aria_data_
tools/

2https://facebookresearch.github.io/projectaria_
tools/docs/data_utilities/core_code_snippets/mps

B. Quantitative Results
Qualitative results are presented in Table III for Nerfacto

and NeuralDiff. In terms of PSNR, SSIM, and LPIPS met-
rics, NeuralDiff generally surpasses Nerfacto across various
scenarios. However, it is important to note that Nerfacto
produces a de-distorted image, while NeuralDiff generates
a fisheye image closely resembling the ground truth. The
latter exhibits curvature characteristics.

C. Qualitative Results
Qualitative results are presented in Figure 3 for Nerfacto

and Figure 4 for NeuralDiff. Notably, the visualization of
Nerfacto reveals some blurred regions, underscoring inherent
limitations in its performance. In contrast, the visualization of
NeuralDiff demonstrates its remarkable ability to disentangle
elements within the scene, disentangling the background,
dynamic foreground, and actors, all in an unsupervised
manner. Both methods exhibit potential for enhancement in
the application of dynamic NeRF.

V. DISCUSSION

An advantage of Aria Glasses, in contrast to the HoloLens,
is their lightweight and highly portable design, making them
seamlessly adaptable to people’s everyday lives. It is worth
noting that a limitation of the Aria Glasses RGB sensor is
its relatively lower image resolution compared to current
smartphone RGB cameras.

Recent advances in foundation models have brought new
paradigm shifts and breakthroughs in different research
areas [4, 29]. Foundation models emerge with generalist
intelligence that can solve a wide range of tasks after being
trained with a large quantity of data. With data at its core,
foundation model research is embracing a new trend towards
multimodality [30, 46]. Aria-NeRF Dataset, along with
other large-scale egocentric datasets such as Ego4D [11] and
EPIC-KITCHENS [6], holds great promise in bolstering the
development of multimodal foundation models for egocentric
view synthesis. Once trained, Aria-NeRF can also be used
for many downstream perception and planning tasks, such
as NeRF-based object detection [34], semantic segmenta-
tion [47], and so on.

VI. CONCLUSION

In this work, we tackled the problem of egocentric view
synthesis. To facilitate research in this field, we introduced
Aria-NeRF Dataset, a multimodal egocentric dataset
captured using Aria Glasses. We benchmarked two baseline
models, Nerfacto and NeuralDiff, on this novel dataset.
While these two models can generate reasonable view syn-
thesis, the experimental results revealed much potential for
improvement given the challenging nature of the dataset. The
dataset’s rich diversity of modalities and real-world context
lay a solid groundwork for advancing our understanding
of human behavior and bolstering more immersive and
intelligent experiences in the realms of VR and AR.

https://facebookresearch.github.io/Aria_data_tools/
https://facebookresearch.github.io/Aria_data_tools/
https://facebookresearch.github.io/projectaria_tools/docs/data_utilities/core_code_snippets/mps
https://facebookresearch.github.io/projectaria_tools/docs/data_utilities/core_code_snippets/mps
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