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Abstract

We consider the problem of tabular infinite horizon concave utility reinforcement learning
(CURL) with convex constraints. For this, we propose a model-based learning algorithm that
also achieves zero constraint violations. Assuming that the concave objective and the convex
constraints have a solution interior to the set of feasible occupation measures, we solve a
tighter optimization problem to ensure that the constraints are never violated despite the
imprecise model knowledge and model stochasticity. We use Bellman error-based analysis
for tabular infinite-horizon setups which allows analyzing stochastic policies. Combining
the Bellman error-based analysis and tighter optimization equation, for T interactions with
the environment, we obtain a high-probability regret guarantee for objective which grows
as Õ(1/

√
T ), excluding other factors. The proposed method can be applied for optimistic

algorithms to obtain high-probability regret bounds and also be used for posterior sampling
algorithms to obtain a loose Bayesian regret bounds but with significant improvement in
computational complexity.

1 Introduction

In many applications where a learning agent uses reinforcement learning to find optimal policies, the agent
optimizes a concave function of the expected rewards or the agent must satisfy certain constraints while
maximizing an objective (Altman & Schwartz, 1991; Roijers et al., 2013). For example, in network scheduling,
a controller can maximize fairness of the users using a concave function of the average reward of each of
the users (Chen et al., 2021). Consider a scheduler which allocates a resource to users. Each user obtains
some reward based on their current state. The goal of the scheduler is to maximize fairness among the users.
However, there are certain preferred users for which some service level agreements (SLA) must be made.
For this setup, the scheduler aims to find a policy which maximizes the fairness while ensuring the SLA
constraints of the preferred users are met. Note that, here, the objective is a non-linear concave utility in the
presence of constraints on service level agreement. Setups with constraints also exist in autonomous vehicles
where the goal is to reach the destination quickly while ensuring the safety of the surroundings (Le et al.,
2019; Tessler et al., 2018). Further, an agent may aim to efficiently explore the environment by maximizing
the entropy, which is a concave function of the distribution induced over the state and action space (Hazan
et al., 2019).

Owing to the variety of the use cases, recently, there has been significant effort to make RL algorithms for
setups with constraints, or concave utilties, or both. For episodic setup, works range from model based
algorithms (Brantley et al., 2020; Yu et al., 2021) to primal-dual based model-free algorithms (Ding et al.,
2021). Recently, there has been a thrust towards developing algorithms which can also achieve zero-constraint
violations in the learning phase as well (Wei et al., 2022a; Liu et al., 2021; Bai et al., 2022b). However, for
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the episodic setup, the majority of the current works consider the weaker regret de�nition speci�ed by Efroni
et al. (2020) and only achieve zero expected constraint violations. Further, these algorithms require the
knowledge of a safe policy following which the agent does not violate constraints, or the knowledge of the
Slater's gap � which determines how far a safe policy is from the constraint boundary.

The de�nition which considers the average over time makes sense for an in�nite horizon setup as the long-term
average is naturally de�ned (Puterman, 2014). For a tabular in�nite-horizon setup, Singh et al. (2020)
proposed an optimistic epoch-based algorithm. Much recently, Chen et al. (2022) proposed an Optimistic
Online Mirror Descent based algorithm. In this work, we consider the problem of maximizing concave utility
of the expected rewards while also ensuring that a set of convex constraints of the expected rewards are also
satis�ed. Moreover, we aim to develop algorithms that can also ensure that the constraints are not violated
during the training phase as well. We work with tabular MDP with in�nite horizon. For such setup, our
algorithm updates policies as it learns the system model. Further, our approach also bounds the accumulated
observed constraint violations as compared to the expected constraint violations.

For in�nite horizon setups for non-constrained setup, the regret analysis has been widely studied (Fruit et al.,
2018; Jaksch et al., 2010). However, we note that the dealing with constraints and non-linear setup requires
additional attention because of the stochastic policies. Further, unlike episodic setup, the distribution at
the epoch is not constant and hence the policy switching cost has to be accounted explicitly. Prior works
in in�nite horizon also faced this issue and provide some tools to overcome this limitation. Singh et al.
(2020) builds con�dence intervals for transition probability for every next state given the current state-action
pair and obtains a regret bound ofO(T2=3). Chen et al. (2022) obtains a regret bound ofO(TM

p
T) with

O(T2
M S3A) constraint violations for ergodic MDPs with TM mixing time following an analysis which works

with con�dence intervals on both transition probability vectors and value functions.

To overcome the limitations mentioned in previous analysis and to obtain a tighter result, we propose an
optimism basedUC-CURL algorithm which proceeds in epochse. At each epoch, we solve for an policy
which considers constraints tighter by � e than the true bounds for the optimistic MDP in the con�dence
intervals for the transition probabilities. Further, as the knowledge of the model improves with increased
interactions with the environment, we reduce this tightness. This � e-sequence is critical to our algorithm as,
if the sequence decays too fast, the constraints violations cannot be bounded by zero. If this sequence decays
too slow, the objective regret may not decay fast enough. Further, using the� e-sequence, we do not require
the knowledge of the total time T for which the algorithm runs.

We bound our regret by bounding the gap between the optimal policy in the feasible region and the optimal
policy for the optimization problem with � e tight constraints. We bound this gap with a multiplicative factor
of O(1=� ), where � is Slater's parameter. Based on our analysis using the Slater's parameter� , we consider a
case where a lower boundTl on the time horizon T is known. This knowledge ofTl allows us to relax our
assumption on � .

Further, for the regret analysis of the proposedUC-CURL algorithm, we use Bellman error for in�nite
horizon setup to bound the di�erence between the performance of optimistic policy on the optimistic MDP
and the true MDP. Compared to analysis of Jaksch et al. (2010), this allows us to work with stochastic
policies. We bound our regret as~O( 1

� LdTM S
p

A=T + CTM S2A=T(1 � � )) and constraint violations as 0,
where S and A are the number of states and actions respectively,L is the Lipschitz constant of the objective
and constraint functions, d is the number of costs the agent is trying to optimize, andTM is the mixing
time of the MDP. The Bellman error based analysis along with Slater's slackness assumption also allows to
develop posterior sampling based methods for constrained RL (see Appendix G) by showing feasibility of the
optimization problem for the sampled MDPs.

To summarize our contributions, we improve prior results on in�nite horizon concave utility reinforcement
learning setup on multiple fronts. First, we consider convex function for objectives and constraints. Second,
even with a non-linear function setup, we reduce the regret order toO(TM S

p
A=T) and bound the constraint

violations with 0. Third, our algorithm does not require the knowledge of the time horizonT, safe policy, or
Slater's gap � . Finally, we provide analysis for posterior sampling algorithm which improves both empirical
performance and computational complexity.
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2 Related Works

Constrained RL: Altman (1999) builds the formulation for constrained MDPs to study constrained
reinforcement learning and provides algorithms for obtaining policies with known transition models. Zheng &
Ratli� (2020) considered an episodic CMDP (Constrained Markov Decision Processes) and use an optimism
based algorithm to bound the constraint violation as ~O(1=T0:25) with high probability. Kalagarla et al.
(2021) also considered the episodic setup to obtain PAC-style bound for an optimism based algorithm. Ding
et al. (2021) considered the setup ofH -episode length episodic CMDPs withd-dimensional linear function
approximation to bound the constraint violations as ~O(d

p
H 5=T) by mixing the optimal policy with an

exploration policy. Efroni et al. (2020) proposes a linear-programming and primal-dual policy optimization
algorithm to bound the regret as O(S

p
H 3=T). Wei et al. (2022a); Liu et al. (2021) considered the problem

of ensuring zero constraint violations using a model-free algorithm for tabular MDPs with linear rewards and
constraints. However, for in�nite horizon setups, the analysis from �nite horizon algorithms does not directly
hold. This is because �nite horizon setups can update the policy after every episode. But this policy switch
modi�es the induced Markov chains which takes time to converge to a stationary distribution.

Xu et al. (2021) considered an in�nite horizon discounted setup with constraints and obtain global convergence
using policy gradient algorithms. Bai et al. (2022b) proposed a conservative stochastic model-free primal-dual
algorithm for in�nite horizon discounted setup. Ding et al. (2020); Bai et al. (2023) also considered an
in�nite horizon discounted setup with parametrization. They used a natural policy gradient to update
the primal variable and sub-gradient descent to update the dual variable. In addition to the above results
on discounted MDPs, the long-term rewards have also been considered. Singh et al. (2020) considered
the setup of in�nite-horizon ergodic CMDPs with long-term average constraints with an optimism based
algorithm. Gattami et al. (2021) analyzed the asymptotic performance for Lagrangian based algorithms
for in�nite-horizon long-term average constraints, however they only show convergence guarantees without
explicit convergence rates. Chen et al. (2022) provided an optimistic online mirror descent algorithm for
ergodic MDPs which obtain a regret bound ofO(TM S

p
SAT ), and Wei et al. (2022b) provided a model

free SARSA algorithm which obtains a regret bound ofO(
p

SAT 5=6) for constrained MDPs. Agarwal et al.
(2022b) proposed a posterior sampling based algorithm for in�nite horizon setup with a regret of~O(TM S

p
AT )

and constraint violation of ~O(TM S
p

AT ).

Algorithm(s) Setup Regret Constraint Violation Non-Linear
con RL (Brantley et al., 2020) FH ~O(LH 5=2S

p
A=K ) O(H 5=2S

p
A=K ) Yes

MOMA (Yu et al., 2021) FH ~O(LH 3=2
p

SA=K ) ~O(H 3=2
p

SA=K ) Yes
TripleQ (Wei et al., 2022a) FH ~O( 1

� H 4
p

SAK � 1=5) 0 No
OptPess-LP (Liu et al., 2021) FH ~O( H 3

�

p
S3A=K ) 0 No

OptPess-Primal Dual (Liu et al., 2021) FH ~O( H 3

�

p
S3A=K ) ~O(H 4S2A=� ) No

UCRL-CMDP (Singh et al., 2020) IH ~O(
p

SAT � 1=3) ~O(
p

SA=T1=3) No
Chen et al. (Chen et al., 2022) IH ~O( 1

� TM S
p

SA=T) ~O( 1
� 2 T2

M S3A) No
Wei et al. (Wei et al., 2022b) IH ~O( 1

�

p
SAT � 1=6) 0 No

Agarwal et al. (Agarwal et al., 2022b) IH ~O(TM S
p

A=T) ~O(TM S
p

A=T) No
UC-CURL (This work) IH ~O( 1

� LTM S
p

A=T) 0 Yes

Table 1: Overview of work for constrained reinforcement learning setups. For �nite horizon (FH) setups,H
is the episode length andK is the number of episodes for which the algorithm runs. For in�nite horizon
(IH) setups, TM denotes the mixing time of the MDP, and T is the time for which algorithm runs. L is the
Lipschitz constant. We note that all the IH setups assume ergodic MDPs, where the FH setups do not
require the ergodic assumption as the system resets to the �nal state after every episode.

Concave Utility RL: Another major research area related to this work is concave utility RL (Hazan et al.,
2019). Along this direction, Cheung (2019) considered a concave function of expected per-step vector reward
and developed an algorithm using Frank-Wolfe gradient of the concave function for tabular in�nite horizon
MDPs. Agarwal & Aggarwal (2022); Agarwal et al. (2022a) also considered the same setup using a posterior
sampling based algorithm. Recently, Brantley et al. (2020) combined concave utility reinforcement learning
and constrained reinforcement learning for an episodic setup. Yu et al. (2021) also considered the case of
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episodic setup with concave utility RL. However, both (Brantley et al., 2020) and (Yu et al., 2021) consider
the weaker regret de�nition by Efroni et al. (2020), and Cheung (2019); Yu et al. (2021) do not target the
convergence of the policy. Further, these works do not target zero-constraint violations. Recently, policy
gradient based algorithms have also been studied for discounted in�nite horizon setup (Bai et al., 2022a).

Another parallel line of work in RL which deals with concave utilities is variational policy gradient (Zhang
et al., 2021; 2020). However, they consider discounted MDPs whereas we consider undiscounted setup for our
work.

Compared to prior works, we consider the constrained reinforcement learning with convex constraints and
concave objective function. Using in�nite-horizon setup, we consider the tightest possible regret de�nition.
Further, we achieve zero constraint violations with objective regret tight in T using an optimization problem
with decaying tightness. A comparative survey of key prior works and our work is also presented in Table 1.

3 Problem Formulation

We consider an ergodic tabular in�nite-horizon constrained Markov Decision Process M =
(S; A ; r; f; c 1; � � � ; cd; g; P; � ). S is �nite set of S states, andA is a �nite set of A actions. P : S � A ! �( S)
denotes the transition probability distribution such that on taking action a 2 A in state s 2 S, the system
moves to states0 2 S with probability P(s0js; a). r : S � A ! [0; 1] and ci : S � A ! [0; 1]; i 2 1; � � � ; d
denotes the average reward obtained and average costs incurred in state action pair(s; a) 2 S � A , and � is
the distribution over the initial state.

The agent interacts with M in time-steps t 2 1; 2; � � � for a total of T time-steps. We note that T is possibly
unknown and s1 � � . At each time t, the agent observes statest and plays action at . The agent selects an
action on observing the states using a policy � : S ! �( A ), where �( A ) is the probability simplex on the
action space. On following a policy� , the long-term average reward of the agent is denoted as:

� P
� = lim

� !1
E�;P

hX �

t =1
r (st ; at )=�

i
(1)

where E�;P [�] denotes the expectation over the state and action trajectory generated from following� on
transitions P. The long-term average reward can also be represented as:

� P
� =

X

s;a
� P

� (s; a)r (s; a) = lim

 ! 1

(1 � 
 )V �;P

 (s) 8s 2 S

where V �;P

 (s) is the discounted cumulative reward on following policy� , and � P

� 2 �( S � A ) is the steady-
state occupancy measure generated from following policy� on MDP with transitions P (Puterman, 2014).
Similarly, we also de�ne the long-term average costs as follows:

� P
� (i ) = lim

� !1
E�;P

hX �

t =1
ci (st ; at )=�

i
= lim


 ! 1
(1 � 
 )V �;P


 (s; i ) 8s 2 S

=
X

s;a
� P

� (s; a)ci (s; a) (2)

The agent interacts with the CMDP M for T time-steps in an online manner and aims to maximize a function
f : [0; 1] ! R of the average per-step reward. Further, the agent attempts to ensure that a function of average
per-step costsg : [0; 1]d ! R is at most 0. In the hindsight, the agents wants to play a policy � � which which
satis�es:

max
�

f
�
� P

�

�
s:t: g

�
� P

� (1); � � � ; � P
� (d)

�
� 0 (3)

Let P t
�;s =

Q t
t 0=1 P� denote the t-step transition probability on following policy � in MDP M starting from

some states where P� (�js) =
P

a � (ajs)P(�js; a). Let T �
s! s0 denote the time taken by the Markov chain

induced by the policy � to hit state s0 starting from state s. Further, let TM := max� E[T �
s! s0] be the mixing

time of the MDP M . We now introduce our assumptions on the MDPM .
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Assumption 3.1. For MDP M , we have kP t
�;s � P� k � C� t with P� being the long-term steady state

distribution induced by policy � , and C > 0 and � < 1 are problem speci�c constants. Additionally, the
mixing time of the MDP M if �nite or TM < 1 . In other words, the MDP, M , is ergodic.

Assumption 3.2. The rewards r (s; a), the costsci (s; a); 8 i , and the functions f and g are known to the
agent.

Assumption 3.3. The scalarization function f is jointly concave and the constraints g are jointly convex.
Hence for any arbitrary distributions D1 and D2, the following holds.

f (Ex �D 1 [x]) � Ex �D 1 [f (x)] (4)

g (Ex �D 2 [x ]) � Ex �D 2 [g (x)] ; x 2 Rd (5)

Assumption 3.4. The function f and g are assumed to be aL � Lipschitz function, or

jf (x) � f (y)j � L jx � yj; x; y 2 R (6)

jg (x) � g (y)j � L kx � yk1 ; x ; y 2 Rd (7)

Remark 3.5. We consider a standard setup of concave and the Lipschitz function as considered by Cheung
(2019); Brantley et al. (2020); Yu et al. (2021). Note that the analysis in this paper directly works for
f : RK ! R, where the function takes as inputK average per-step rewards forK objectives.
Remark 3.6. For non-Lipshitz continuous functions such as entropy, we can obtain maximum entropy
exploration if choose function f = �

P
k � k log(� k + � ) with r k (s; a) = 1f sk ;a k g for a particular state action

pair sk ; ak and choosingK = S � A to cover all state-action pairs and a regularizer� (Hazan et al., 2019).

Assumption 3.7. There exists a policy� , and one constant� > LdST M
p

(A logT)=T+( CSA logT)=(T(1�
� )) such that

g
�
� P

� (1); � � � ; � P
� (d)

�
� � � (8)

This assumption is again a standard assumption in the constrained RL literature (Efroni et al., 2020; Ding
et al., 2021; 2020; Wei et al., 2022a).� is referred as Slater's constant. Ding et al. (2021) assumes that the
Slater's constant � is known. Wei et al. (2022a) assumes that the number of iterations of the algorithm is at
least ~
 (SAH=� )5 for episode lengthH . On the contrary, we simply assume the existence of� and a lower
bound on the value of � which gets relaxed as the agent acquires more time to interact with the environment.

Any online algorithm starting with no prior knowledge will need to obtain estimates of transition probabilities
P and obtain reward r and costsck ; 8 k 2 f 1; � � � ; dg, for each state action pair. Initially, when algorithm
does not have good estimate of the model, it accumulates a regret as well as violates constraints as it does
not know the optimal policy. We de�ne reward regret R(T) as the di�erence between the average cumulative
reward obtained vs the expected rewards from running the optimal policy� � for T steps, or

R(T) = f
�
� P

� �

�
� f

� X T

t =1
r (st ; at )=T

�

Additionally, we de�ne constraint regret C(T) as the gap between the constraint function and incurred and
constraint bounds, or

C(T) =
�

g
� X T

t =1
c1(st ; at )=T;� � � ;

X T

t =1
cd(st ; at )=T

��

+
, where(x)+ = max(0 ; x)

In the following section, we present a model-based algorithm to obtain this policy� � , and reward regret and
the constraint regret accumulated by the algorithm.

4 Algorithm

We now present our algorithm UC-CURL and the key ideas used in designing the algorithm. Note that if
the agent is aware of the true transition P, it can solve the following optimization problem for the optimal
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feasible policy.

max
� (s;a )

f
� X

s;a
r (s; a)� (s; a)

�
(9)

with the following set of constraints,
X

s;a
� (s; a) = 1 ; � (s; a) � 0 (10)

X

a2A
� (s0; a) =

X

s;a
P(s0js; a)� (s; a) (11)

g
� X

s;a
c1(s; a)� (s; a); � � � ;

X

s;a
cd(s; a)� (s; a)

�
� 0 (12)

for all s0 2 S; 8 s 2 S; and 8 a 2 A . Equation (11) denotes the constraint on the transition structure for
the underlying Markov Process. Equation (10) ensures that the solution is a valid probability distribution.
Finally, Equation (12) are the constraints for the constrained MDP setup which the policy must satisfy. Using
the solution for � , we can obtain the optimal policy as:

� � (ajs) =
� (s; a)

P
b2A � (s; b)

8 s; a (13)

However, the agent does not have the knowledge ofP to solve this optimization problem, and thus starts
learning the transitions with an arbitrary policy. We �rst note that if the agent does not have complete
knowledge of the transition P of the true MDP M , it should be conservative in its policy to allow room
to violate constraints. Based on this idea, we formulate the� -tight optimization problem by modifying the
constraint in Equation (12) as.

g
� X

s;a
c1(s; a)� � (s; a); � � � ;

X

s;a
cd(s; a)� � (s; a)

�
� � � (14)

Let � � be the solution of the � -tight optimization problem, then the optimal conservative policy becomes:

� �
� (ajs) =

� � (s; a)
P

b2A � � (s; b)
8 s; a (15)

We are now ready to design our algorithmUC-CURL which is based on the optimism principle (Jaksch
et al., 2010). The UC-CURL algorithm is presented in Algorithm 1. The algorithm proceeds in epochse.
The algorithm maintains three key variables � e(s; a), Ne(s; a), and P̂(s; a; s0) for all s; a. � e(s; a) stores the
number of times state-action pair (s; a) are visited in epoche. Ne(s; a) stores the number of times(s; a) are
visited till the start of epoch e. P̂ (s; a; s0) stores the number of times the system transitions to states0 after
taking action a in state s. Another key parameter of the algorithm is � e = K

p
(log te)=te where te is the

start time of the epoch e and K is a con�gurable constant. Using these variables, the agent solves for the
optimal � e-conservative policy for the optimistic MDP by replacing the constraints in Equation (11) by:

X

a2A
� (s0; a) �

X

s;a
~Pe(s0js; a)� (s; a) (16)

~Pe(s0js; a) > 0;
X

s0
~Pe(s0js; a) = 1 (17)

k ~Pe(�js; a) �
P̂ (s; a; �)

1 _ Ne(s; a)
k1 �

s
14S log(2At )
1 _ Ne(s; a)

(18)

for all s0 2 S; 8s 2 S; and 8a 2 A and x _ y = max(x; y). Equation (18) ensures that the agent searches for
optimistic policy in the con�dence intervals of the transition probability estimates.

Combining the right hand side of (16) with (10) gives
X

s0

X

s;a
~Pe(s0js; a)� (s; a) = 1 =

X

s0;a
� (s0; a)
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Algorithm 1 UC-CURL
Parameters : K
Input : S, A, r , d, ci 8 i 2 [d]

1: Let t = 1 , e = 1 ; � e = K
q

ln t
t

2: for (s; a) 2 S � A do
3: � e(s; a) = 0 ; Ne(s; a) = 0 ; bP(s0; a; s) = 0 8 s0 2 S
4: end for
5: Solve for policy � e using Eq. (19)
6: for t 2 f 1; 2; � � � g do
7: Observest , and play at � � e(�jst )
8: Observest +1 , r (st ; at ) and ci (st ; at ) 8 i 2 [d]
9: � e(st ; at ) = � e(st ; at ) + 1

10: bP(st ; at ; st +1 ) = bP(st ; at ; st +1 ) + 1
11: if � e(s; a) = max f 1; Ne(s; a)g for any s; a then
12: for (s; a) 2 S � A do
13: Ne+1 (s; a) = Ne(s; a) + � e(s; a)
14: e = e+ 1 , � e(s; a) = 0
15: end for
16: � e = K

q
ln t

t

17: Solve for policy � e using Eq. (19)
18: end if
19: end for

Thus, joint with (16), we see that equality in (16) will be satis�ed at the boundary as
P

a � (s0; a) for somes0

can never exceed the boundary to compensate for anothers0 and hence, for alls0,
P

a � (s0; a) will lie on the
boundary. In other words, the above constraints give

P
a2A � (s0; a) =

P
s;a

~Pe(s0js; a)� (s; a). Further, we
note that the region for the constraints is convex. This is because the setf x; y; z : xy � zg is convex when
x; y; z � 0. We note that even though the optimization problem may look non-convex due to constraints
having product of two variables, we see Equations (9), (14), and (16)-(18) form a convex optimization problem.
We expand more on this in Appendix B. We note that (Rosenberg & Mansour, 2019) provide another approach
to obtain a convex optimization problem for optimistic MDP.

Let � e be the solution for � e-tight optimization equation for the optimistic MDP. Then, we obtain the optimal
conservative policy for epoche as:

� e(ajs) =
� e(s; a)

P
b2A � e(s; b)

8 s; a (19)

The agent plays the optimistic conservative policy � e for epoche. Note that the conservative parameter � e
decays with time. As the agent interacts with the environment, the system model improves and the agent
does not need to be as conservative as before. This allows us to bound both constraint violations and the
objective regret. Further, if during the initial iterations of the algorithms a conservative solution is not
feasible, we can ignore the constraints completely. We will show that the conservation behavior is required
when t = �( T) to compensate for the violations in the initial period of the algorithm E.2.

For the UC-CURL algorithm described in Algorithm 1, we choosef � eg = f K
p

(log te)=teg. However, if the
agent has access to a lower boundTl (Assumption 3.7) on the time horizon T, the algorithm can change the
� e = K

p
(ln( te _ Tl ))=(te _ Tl ) � � in each epoche as follows. Note that if Tl = 0 , � e becomes as speci�ed in

Algorithm 1 and if Tl = T, � e becomes constant for all epochse.
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5 Regret Analysis

After describing UC-CURL algorithm, we now perform the regret and constraint violation analysis. We
note that the standard analysis for in�nite horizon tabular MDPs of UCRL2 (Jaksch et al., 2010) cannot
be directly applied as the policy � e is possibly stochastic for every epoch. Another peculiar aspect of the
analysis of the in�nite horizon MDPs is that the regret grows linearly with the number of epochs (or policy
switches). This is because a new policy induces a new Markov chain and this chain take time to converge to
the stationary distribution. The analysis still bounds the regret by ~O(TM S

p
A=T) as the number of epochs

are bounded byO(SA logT).

Before diving into the details, we �rst de�ne few important variables which are key to our analysis. The �rst
variable is the standard Q-value function. We de�ne Q�;P


 as the long term expected reward on taking action
a in state s and then following policy � for the MDP with transition P. Mathematically, we have

Q�;P

 (s; a) = r (s; a) + 


X

s02S
P(s0js; a)V �;P


 (s0); V �;P

 (s) = Ea� �

�
Q�;P


 (s; a)
�

We also de�ne Bellman error B �; ~P (s; a) for the in�nite horizon MDPs as the di�erence between the cumulative
expected rewards obtained for deviating from the system model with transition ~P for one step by taking
action a in state s and then following policy � . We have:

B �; ~P (s; a) = lim

 ! 1

�
Q�; ~P


 (s; a) � r (s; a) � 

X

s02S
P(s0js; a)V �; ~P


 (s; a)
�

(20)

After de�ning the key variables, we can now jump into bounding the objective regret R(T). Intuitively, the
algorithm incurs regret on three accounts. First source is following the conservative policy which we require
to limit the constraint violations. Second source of regret is solving for the policy which is optimal for the
optimistic MDP. Third source of regret is the stochastic behavior of the system. We also note that the
constraints are violated because of the imperfect MDP knowledge and the stochastic behavior. However, the
conservative behavior actually allows us to violate the constraints within some limits which we will discuss in
the later part of this section.

We start by stating our �rst lemma which bounds the regret due to solving for a conservative policy. We
de�ne � e-tight optimization problem as optimization problem for the true MDP with transitions P with
� = � e. We bound the gap between the value of functionf at the long-term expected reward of the policy for
� e-tight optimization problem and the true optimization problem (Equation (9)-(12)) in the following lemma.

Lemma 5.1. Let � P
� � be the long-term average reward following the optimal feasible policy� � for the true

MDP M and let � P
� e

be the long-term average rewards following the optimal policy� e for the � e tight
optimization problem for the true MDP M , then for � e � � , we have,

f
�
� P

� �

�
� f

�
� P

� e

�
� 2L� e=� (21)

Proof Sketch. We construct a policy for which the steady state distribution is the weighted average of two
steady state distributions. First distribution is for the optimal policy for the true optimization problem.
Second distribution is for the policy which satis�es Assumption 3.7. We show that this constructed policy
satis�es the � e-tight constraints. Further, using Lipschitz continuity, we convert the di�erence between
function values into the di�erence between the long-term average rewards to obtain the required result. The
detailed proof is provided in Appendix C.

Lemma 5.1 and our construction of� e sequence allows us to limit the growth of regret because of conservative
policy by ~O(LdTM S

p
A=T).

To bound the regret from the second source, we use a Bellman error based analysis. In our next lemma, we
show that the di�erence between the performance of a policy on two di�erent MDPs is bounded by long-term
averaged Bellman error. Formally, we have:

Lemma 5.2. The di�erence of long-term average rewards for running the optimistic policy � e on the
optimistic MDP, � ~Pe

� e
, and the average long-term average rewards for running the optimistic policy� e on the
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true MDP, � P
� e

, is the long-term average Bellman error as

�
~Pe
� e

� � P
� e

=
X

s;a
� P

� e
B � e ; ~Pe (s; a) (22)

Proof Sketch. We start by writing Q� e ; ~Pe

 in terms of the Bellman error. Subtracting V � e ;P


 from V � e ; ~Pe

 and

using the fact that � P
� e

= lim 
 ! 1 V �;P

 and � ~Pe

� e
= lim 
 ! 1 V �; ~Pe


 , we obtain the required result. A complete
proof is provided in Appendix D.3.

After relating the gap between the long-term average rewards of policy� e on the two MDPs, we aim to
bound the sum of Bellman error over an epoch. For this, we �rst bound the Bellman error for a particular
state action pair (s; a) in the following lemma. We have,

Lemma 5.3. With probability at least 1 � 1=t6e, the Bellman error B � e ; ~Pe (s; a) for state-action pair (s; a) in
epoche is upper bounded as

B � e ; ~Pe (s; a) �

s
14S log(2AT )
1 _ Ne(s; a)

k~hk1 (23)

where Ne(s; a) is the number of visitations to (s; a) til l epoch e and ~h is the bias of the MDP with transition
probability ~Pe.

Proof Sketch. We start by noting that the Bellman error essentially bounds the impact of the di�erence in
value obtained because of the di�erence in transition probability to the immediate next state. We bound the
di�erence in transition probability between the optimistic MDP and the true MDP using the result from
(Weissman et al., 2003). This approach gives the required result. A complete proof is provided in Appendix
D.3.

We use Lemma 5.2 and Lemma 5.3 to bound the regret because of the imperfect knowledge of the system
model. We bound the expected Bellman error in epoche starting from state st e and action at e by constructing
a Martingale sequence with �ltration F t = f s1; a1; � � � ; st � 1; at � 1g and using Azuma's inequality (Bercu et al.,
2015). Using the Azuma's inequality, we can also bound the deviations because of the stochasticity of the
Markov Decision Process. The result is stated in the following lemma with proof in Appendix D.

Lemma 5.4. With probability at least 1 � T � 5=4, the regret incurred from imperfect model knowledge and
process stochastics is bounded by

O(TM S
p

A(log AT )=T + ( CTM S2A logT)=(1 � � )) (24)

The regret analysis framework also prepares us to bound the constraint violations as well. We again start
by quantifying the reasons for constraint violations. The agent violates the constraint because1. it is
playing with the imperfect knowledge of the MDP and 2. the stochasticity of the MDP which results in the
deviation from the average costs. We note that the conservative policy� e for every epoch does not violate
the constraints, but instead allows the agent to manage the constraint violations because of the imperfect
model knowledge and the system dynamics.

We note that the Lipschitz continuity of the constraint function g allows us to convert the function of d
averaged costs to the sum ofd averaged costs. Further, we note that we can treat the cost similar to rewards
(Brantley et al., 2020). This property allows us to bound the cost incurred incurred in a way similar to how we
bound the gap from the optimal reward by LdTM S

p
A(log AT )=T. We now want that the slackness provided

by the conservative policy should allowLdTM S
p

A(log AT )=T constraint violations. This is ensured by our
chosen� e sequence. We formally state that result in the following lemma proven in parts in Appendix D and
Appendix E.

Lemma 5.5. The cumulative sum of the� e sequence is upper and lower bounded as

X E

e=1
(te+1 � te)� e = �

�
K

p
T logT

�
(25)
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After giving the details on bounds on the possible sources of regret and constraint violations, we can formally
state the result in the form of following theorem.

Theorem 5.6. For all T and K = �( LdTM S
p

A + CSA=(1 � � )) , the regret R(T) of UC-CURL algorithm
is bounded as

R(T) = O

 
1
�

LdTM S

r

A
logAT

T
+

CTM S2A logT
(1 � � )T

!

(26)

and the constraints are bounded asC(T) = 0 , with probability at least 1 � 1
T 5= 4 .

5.1 Posterior Sampling Algorithm

We can also modify the analysis to obtain Bayesian regret for a posterior sampling version of the UC-CURL
algorithm using Lemma 1 of (Osband et al., 2013). In the posterior sampling algorithm, instead of �nding the
optimistic MDP, we sample the transition probability ~Pe using an updated posterior. This sampling allows
to reduce the complexity of the optimization problem by eliminating Eq. (17) and Eq. (18). The complete
algorithm is described in Appendix G. We note that optimization problem for the UC-CURL algorithm is
feasible because the true MDP lies in the con�dence interval. However, for the sampled MDP obtaining the
feasibility requires a stronger Slater's condition.

5.2 Further Modi�cations

The proposed algorithm, and the analysis can be easily extended toM convex constraints g1; � � � ; gM by
applying union bounds. Further, our analysis uses Proposition 1 of (Jaksch et al., 2010) to bound the epochs
by O(SA log2 T). However, we can improve the empirical performance of theUC-CURL algorithm by
modifying the epoch trigger condition (Line 11 of Algorithm 1). Triggering a new episode whenever� e(s; a)
becomesmaxf 1; � e� 1(s; a) + 1 g for any state-action pair results in a linearly increasing episode length with
total epochs bounded byO(SA +

p
SAT ). This modi�cation results in a better empirical performance (See

Appendix 6 for simulations) at the cost of a higher theoretical regret bound and computation complexity for
obtaining a new policy at every epoch.

6 Simulation Results

To validate the performance of theUC-CURL algorithm and the PS-CURL algorithm, we run the simulation
on the �ow and service control in a single-serve queue, which was introduced in (Altman & Schwartz, 1991).
Along with validating the performance of the proposed algorithms, we also compare the algorithms against
the algorithms proposed in (Singh et al., 2020) and in (Chen et al., 2022) for model-based constrained
reinforcement learning for in�nite horizon MDPs. Compared to these algorithms, we note that our algorithm
is also designed to handle concave objectives of expected rewards with convex constraints on costs with0
constraint violations.

In the queue environment, a discrete-time single-server queue with a bu�er of �nite sizeL is considered. The
number of customers waiting in the queue is considered as the state in this problem and thusjSj = L + 1 .
Two kinds of the actions, service and �ow, are considered in the problem and control the number of customers
together. The action space for service is a �nite subsetA in [amin ; amax ], where 0 < a min � amax < 1. Given
a speci�c service actiona, the service a customer is successfully �nished with the probabilityb. If the service
is successful, the length of the queue will reduce by 1. Similarly, the space for �ow is also a �nite subsection
B in [bmin ; bmax ]. In contrast to the service action, �ow action will increase the queue by1 with probability
b if the speci�c �ow action b is given. Also, we assume that there is no customer arriving when the queue is
full. The overall action space is the Cartesian product of theA and B . According to the service and �ow
probability, the transition probability can be computed and is given in the Table 2.

De�ne the reward function as r (s; a; b) and the constraints for service and �ow asc1(s; a; b) and c2(s; a; b),
respectively. De�ne the stationary policy for service and �ow as � a and � b, respectively. Then, the problem
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