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ABSTRACT

Robust optimization provides a principled and unified framework to model many
problems in modern operations research and computer science applications, such
as risk measures minimization and adversarially robust machine learning. To use
a robust solution (e.g., to implement an investment portfolio or perform robust
machine learning inference), the user has to a priori decide the trade-off between
efficiency (nominal performance) and robustness (worst-case performance) of the
solution by choosing the uncertainty level hyperparameters. In many applications,
this amounts to solving the problem many times and comparing them, each from a
different hyperparameter setting. This makes robust optimization practically cum-
bersome or even intractable. We present a novel procedure based on the proximal
point method (PPM) to approximate many Pareto-efficient robust solutions using
the PPM trajectory. Compared with the existing method with computation cost
N x Tgrc, the cost of our method is Tre + (N — 1) x Tspy;> Where N is the
number of robust solutions to be generated, Trc is the cost of solving a single
robust optimization problem, and 75555 is cost of a single step of an approximate
PPM. We prove exact PPM can produce exact Pareto efficient robust solutions for
a class of robust linear optimization problems. For robust optimization problems
with nonlinear and differentiable objective functions, compared with the existing
method, our method equipped with first-order approximate PPMs is computation-
ally cheaper and generates robust solutions with comparable performance.

1 INTRODUCTION

One of the main obstacles in deploying robust optimization models for real-world decision-making
under uncertainty is determining an appropriate trade-off between nominal performance and worst-
case performance before the uncertainty is realized. For example, in portfolio optimization, setting
the level of risk aversion is challenging. Similarly, in adversarial machine learning, choosing the ad-
versarial perturbation set parameters to balance average accuracy versus accuracy under adversarial
attacks is a critical decision. Decision makers often need to obtain and test multiple robust solu-
tions, each corresponding to a different solution on the efficiency-robustness Pareto frontier, before
deciding which one to deploy.

To obtain multiple robust solutions, decision makers adjust hyperparameters such as the shape and
size (radius) of the uncertainty set (Soyster, |1973; [Ben-Tal & Nemirovskil, [1999; Bertsimas & Sim),
2004) or by employing globalized robust optimization approaches that use penalty functions and
coefficient hyperparameters (Ben-Tal et al.| 2006; 2009). Consequently, generating each robust so-
lution demands solving a different instance of the robust optimization problem, which is generally
more computationally expensive than solving their deterministic counterparts. For instance, ad-
versarial training is more expensive than traditional training because it involves solving an inner
maximization problem to find adversarial attacks. In theory, the robust counterpart of linear pro-
grams (LPs) with ellipsoidal uncertainty sets becomes second-order cone programs (SOCPs), and
the robust counterpart of uncertain SOCPs becomes semidefinite programs (SDPs). As a result, find-
ing the right robust solution can be prohibitively costly in practice, let alone finding many of them
to compare.
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Contributions. To address this challenge, we propose a new way of thinking about this prob-
lem, along with a novel proximal point method (PPM)- based algorithm to approximate efficiency-
robustness Pareto efficient robust solutions. Compared with the cost of the existing approach of
N x Trc, the computational cost of our method is Trc + (IV — 1) X TPPM, where N is the number
of robust solutions to be generated, T is the cost of solving a single robust optimization problem,
and T'5=+ is the cost of a single step of an approximate PPM. Specifically, the procedure first solves
for the “most-robust” solution, then uses it as the starting point to perform approximate PPM up-
dates towards the “least-robust” (deterministic counterpart) solution. We discover, intriguingly, that
the proximal point trajectory approximates the set of Pareto efficient robust solutions that we want
to obtain in the first place.

We prove that for robust LPs with uncertain objective functions under the simplex decision domain
and ellipsoidal uncertainty sets, the proximal point trajectory are exactly Pareto efficient robust so-
lutions. For robust LPs with a random polyhedron domain, we prove that with high probability, the
performances of the Pareto efficient robust solutions are bounded by the performances of two prox-
imal point trajectories. To validate the theoretical results for constrained robust LPs, we conduct
numerical experiments on portfolio optimization. To demonstrate the computation efficiency of our
method for robust optimization problems with nonlinear and differentiable objective functions, we
apply our method to adversarially robust deep learning.

Related Work. Given the problem we study, our work is closely related to multiple literatures. Here
we review each literature and compare each with our work.

Proximal Point Method. In the continuous optimization literature, the interest in PPM (Martinet

1970); Rockafellar| (1976b)) has been predominantly in its convergence properties (Rockafellar
19764d); Gliler (1991); [Ferris| (1991); [Parikh et al.| (2014); Beck| (2017)) and its role as a theoretical

framework for analyzing the convergence of other optimization algorithms (e.g., gradient descent,
Extra-gradient method, optimistic gradient method, and Nesterov’s Accelerated gradient method
can all be analyzed as approximations of PPM (Ahn & Sra| (2022); Mokhtari et al.|(2020b)). Our
work fundamentally deviates from the literature and focuses on studying the entire trajectory of
(approximate) PPM as (approximate) robust optimization solutions.

Implicit gradient regularization. Literature has shown iterates of gradient methods when minimizing
a loss function alone, provide implicit regularization. Different from the literature (Ali et al.|(2020);
Wu et al.| (2020); [Suggala et al| (2018); Barrett & Dherin| (2020); Ji et al.| (2020); [Sun et al.|(2023);
Li et al.| (2021)); Ji & Telgarsky| (2019); Wang et al.|(2023)) that tends to be descriptive and focused
on unconstrained problems, as an intermediate result towards our main Theorem, we give a new,
direct and constructive proof for the implicit regularization of PPM under the constrained setting.
Our work is also closely related to the literature on the equivalence between regularization/risk
measure and robustness. It has been established that regularized learning is equivalent to robust
optimization (El Ghaoui & Lebret (1997); [Xu et al.| (2009); |[Shafieezadeh Abadeh et al.| (2015);
[Mohajerin Esfahani & Kuhn| (2018))). Moreover, risk measure minimization is equivalent to robust
optimization (Freund| (1987); [Natarajan et al (2009b)). Our work establishes a correspondence
between the uncertainty set, regularization/risk measure, and PPM distance-generating function.

Robust Optimization. Existing work on calibrating the uncertainty set radius typically relies on
probabilistic guarantees, namely, prior bounds on solution robustness (Bertsimas et al.| (2021)); [Mo-|
|hajerin Esfahani & Kuhn| (2018)); Blanchet et al.|(2019a))). However, such approaches assume prior
knowledge of the uncertainty distribution or observations on the uncertainty, which can be unavail-
able in practice. Even with distributional information or data on the uncertainty, the resulting radius
typically leads to overly conservative robust decisions. An alternative is to generate multiple ro-
bust solutions under varying radii before selecting the solution for deployment. To the best of our
knowledge, no methods exist for generating multiple robust solutions other than solving the robust
optimization problem multiple times. Our work shows for a class of robust LPs, the exact PPM iter-
ates are exact robust solutions; for robust optimization with nonlinear and differentiable objectives,
approximate PPM iterates can serve as computationally cheap approximate robust solutions.
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2 PROBLEM SETTING AND MAIN IDEA

2.1 NOTATIONS

We denote the dual norm of ||-|| as || ||, defined as ||z||.. = sup{z "« : ||| < 1}. The p-norm, |||,
is given by ||z[|, = (X1, |xi|p)1/p. The infinity norm, || - ||, is defined as ||2[|oc = max;epp |4/
The ball of radius r around - with respect to the norm || - || is represented by By (z,7) = {z € R™ :
||z—2[| <}, and the ball of radius r around the origin is denoted as B).||(r) = {z € R™ : [|z|| < r}.

The projection operator onto the set X is denoted as Ily(x) = argming ey ||z’ — z||3. Finally, e
represents a vector of ones.

2.2 PROBLEM SETTING

We start with a constrained optimization problem with parameters a in the objective function:
min f(z,a).
min f(z, )

The decision variable z € R"™ is subject to a compact and convex domain X, ¢ € R™ is an uncertain
vector, which is only known to belong to an uncertainty set /. The robust counterpart is

(RC) g,lc_l;(l max f(x,a), (1)

where the uncertainty set I/ takes the following form:
U={ag+&: E€E2CR"}.

Here ay is some fixed nominal vector, £ can be interpreted as the perturbation, and = is a nonempty
compact convex set. In the case that = is empty, (RC) reduces to a nominal optimization problem
with no uncertainty:

() min f(z,a0).

Consequently, we define the efficient decision, g as the optimizer to problem (P) and the robust
decision, g as the optimizer to problem (RC), i.e.,
rg = argmin f(z,a TR = argminmax f(x,a).
E ngXf(7 0)1 R ga:EXaEZ/I f(7 )
For any x € X, its efficiency, E(x) and robustness, R(z) is defined respectively as its performance
under nominal or worst-case uncertainty defined as

E(z) :== —f(z,a0p), R(z) := — max f(z,a).

It is easy to verify that the following inequalities hold

In practice, the trade-off between the efficiency and robustness of robust solutions can be controlled
by adjusting the size of the uncertainty set. Specifically, we define an efficiency-robustness Pareto
efficient robust solution with a nonempty compact convex uncertainty set } such that ag € V C U
as

zpe(V) := argminmax f(z,a).

pe(V) gminmax f(z, a)

For instance, under norm-ball uncertainty sets, we define the set of efficiency-robustness Pareto
efficient robust solutions as the set of robust solutions generated while adjusting the radius of the
norm-ball uncertainty set:

rpr(r) (= argmin max x,a0+&): re(0,00) .
{arei) = argmiy o fe.00+€)5 7 e (0.00)
Comparing with existing notions of Pareto efficiency of robust solutions (lancu & Trichakis|(2014))
which requires no other robust solutions that perform as least as well across all uncertainty realiza-
tions and better for some uncertainty realizations, we relax the requirement and trade-off worst-case
performance with the performance under a nominal uncertainty realization.
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2.3 MAIN IDEA

If the uncertainty set radius r for = is set too large, then a solution zpg(r) of (RC) tends to be
overly conservative and gives bad average case performance, i.e., low E(zpg(r)). If the radius is
set too small, then the solution may not perform reliably under large out-of-sample perturbations or
adversarial attacks &, i.e., resulting in low R(xpg(r)). What is the right ?

Existing literature (Mohajerin Esfahani & Kuhn| (2018); Blanchet et al.| (2019bza)) points to ways
to choose r based on statistical theory, using observed perturbation data £ to estimate =. But in
practice, we may not have any data about =. Even if we do, such designs are known in the robust
optimization community to be overly conservative. The only practical option is to solve the problem
(RC) many times, each with a different , and compare the solutions in terms of their average case
and worst-case performances.

Our main contribution is proposing a completely new way of thinking about this problem. Instead of
solving (RC) N times where NN is the number of solutions we want to compare, we can approximate
these Pareto efficient robust solutions within two algorithmic passes. The first pass is to obtain
a robust solution zpg(rmax) for (RC) with a large value r = ry,x. Then we use Tpg(Tmax) as
the initial point of an iterative algorithm (approximate PPM), to solve for the problem (RC) with
r = 0 (i.e., the nominal problem (P)). The intermediate approximate PPM iterates for = provide a
reasonable, sometimes perfect, representation of the Pareto efficient robust solutions.

3 TECHNICAL PRELIMINARIES

3.1 GENERALIZED PROXIMAL POINT METHODS AND THE CENTRAL PATHS

Here we introduce the generalized proximal point method and the central path for the nominal
problem (P). Importantly, we introduce a preliminary result toward the proof of our main theorem,
which is the equivalence between the sequence generated by the proximal point method for a linear
problem (P) and the central path of the linear problem (P).

We begin with the introduction of the generalized proximal point method where a Bregman distance
is in place of the usual Euclidean distance. First, we define the Bregman distance. We assume the
distance-generating function ¢ : X — R satisfies the following technical assumptions:
Al. o is strictly convex, closed, and continuously differentiable in X'.
A2. If {z}} is a sequence in X which converges to a point T in the boundary of X, and y is any
point in X, then limy_, oo (Vh(zg),y — z) = —00.

The Bregman distance D, : X x X — R w.r.t. ¢ is defined as

Dy(z,y) = ¢(x) — p(y) — (Ve(y),z — y).
Example 1.

* Let p(x) = ||z[|3, then Dy(z,y) = [|lz — ylf3.
* Let (p((t) = <$,E£L’>, then D&P(may) = <.’£ - y,E(ﬂc - y)>

Letxzg € X, the generalized proximal point method for solving the problem (P) generates a sequence
{z} € X as

Trt1 = argmin f(@,a0) + A Dy (2, 1)
where {\,} € R, satisfies > o0 A, ' = +o0.

The central path of the problem (P) with barrier function induced by the Bregman distance as
Dy (-, z¢) is defined as {z(w) : w € (0,00)} and

z(w) = arg mi}(l f(z,a0) + wDy(z, o).
S

If o = xR, the central path can be interpreted as a set of robust solutions that trade-off between
efficiency and robustness. Specifically, by adjusting w, the central path solutions trade off efficiency,
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f(z, ap) with the Bregman divergence to the most robust solution, D, (z, zr ). The following result
states for a linear problem (P), the proximal point method sequence and the central path are equiv-
alent, i.e., a proximal point sequence initialized by o = xR is contained in the central path with
Trog = TR.

Proposition 1 (Theorem 3 in Iusem et al.| (1999)). For problem (P) with linear objective func-
tions f(x,ap) := (ag,x) and a closed and convex polyhedron domain, X := {x € R"™ : Az < b}.
Assume that ¢ satisfies Al and A2. Let {z(w) : w € (0,00)} by the central path of the problem
(P) w.rt. Dy(-, o) and let {1} be the proximal point method sequence for the problem (P) with
Bregman distance D.,. If the sequence wy, is defined as

—1

Wi = )\j_l , fork=1,2, ...,
then
xp = x(wg), fork=1,2,...

3.2 CORRESPONDENCE BETWEEN ROBUST OPTIMIZATION AND RISK MEASURE
MINIMIZATION

Our analysis also draws from the deep connection between robust optimization and risk measure
minimization. Specifically, it has been shown that risk measures can be mapped explicitly to robust
optimization uncertainty sets and vice versa (Natarajan et al.| (2009a); |Bertsimas & Brown|(2009)).
In particular, we utilize the following correspondence between the robust optimization ellipsoidal
uncertainty set and the mean-standard deviation risk measure.

Lemma 1 (Correspondence between Ellipsoidal Robust Linear Optimization and and Mean—

Variance Risk Minimization). Under some closed convex polyhedron domain X € R™ and ellip-

soidal uncertainty set Z(a) = {€ € R : |[£71/2¢||y < a} where © € R"™ ™ is a symmetric matrix,
The robust optimization problem

i a 2

%}}5215(’5)@0 +&, ) (2)

is equivalent to the following mean-standard deviation risk measure minimization problem

ng(l(ao, x) + ay/{(x, Xx). 3)

The proof of Lemmal(]is presented in Appendix

4 THEORY: EQUIVALENCE BETWEEN THE PARETO EFFICIENT ROBUST
SOLUTIONS AND THE PROXIMAL POINT METHOD TRAJECTORY

In this section, we show that under the simplex domain and ellipsoidal uncertainty set, a set of Pareto
efficient robust solutions to uncertain linear optimization problems with uncertainty in the objective
function can be obtained exactly as a proximal point method trajectory. Further, for random problem
instances with random polyhedron domains, we show that the performances of the Pareto efficient
solutions are bounded probabilistically in between the performances of two proximal point method
trajectories. The main implication of our result is the following: instead of solving a different
instance of a robust optimization problem to arrive at each solution on the efficiency-robustness
Pareto frontier, an entire “menu” of solutions on the efficiency-robustness Pareto frontier can be
obtained approximately, under some condition exactly in a single pass via gradient methods.

4.1 EXACT RESULT: SIMPLEX DOMAIN AND ELLIPSOIDAL UNCERTAINTY SET

We first consider the case of Pareto efficient robust solutions to robust linear optimization problems
with uncertain objective functions under the simplex domain and ellipsoidal uncertainty sets. We
show a proximal point sequence is contained within the set of Pareto efficient robust solutions. In
particular, we have the following theorem.
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Theorem 1 (Correspondence Between Pareto-Efficiency Robust Solutions and the Proximal
Point Trajectory). Under linear objective functions, f(x,a) := {a,x). Let {zpg(a): a > 0} be
the set of Pareto efficient robust solutions under simplex domain A™ = {x €RY : (e, x) = 1} and
ellipsoidal uncertainty set Z(o)) = {& € R" : |£7Y/2¢||y < o} where ¥ satisfies ©~'e € R™. Let
{x1} be the proximal point sequence w.r.t. D, (z,y) = (x —y, 3 (x —y)), associated with sequence
{Ar} and starting point xr = arg mingeAn MaxXeez(o0) (@0 + &, ). If the sequence {wy } is defined

as
-1

k—1
Wi = ZA;I , fork=1,2,..,
§=0

and let a(wy) be such that arg mingean(ag, x) + a(wg)y/{(x,Xx) = argmingean(ag,z) +
wy(z, Xx). Then
xr = rzpr(a(wy)), fork=1,2 ...

We present the proof for Theorem 1 in Appendix [A] In addition, we provide a closed-form solution
for a(wy,) as a function of the current wy, and the current PPM solution z, in Appendix Practically,
after each PPM step, we know the current PPM solution xj, is a robust solution with radius, o(wy)
which we can calculate in closed-form.

4.2  IMPLICATION OF THEOREM[Il PPM ITERATES AS PARETO EFFICIENT ROBUST
SOLUTIONS

Theorem [T] inspires an efficient algorithm for approximating multiple Pareto efficient robust solu-
tions in two passes: first, solve the robust problem (RC) for zR; second, solve the nominal problem
(P) with approximate PPM initialized with xR, finally the iterates of the approximate PPM are ap-
proximate Pareto efficient robust solutions. Specifically, we present the following algorithms.

Algorithm 1 Multiple Approximate Pareto efficient Robust Solutions via Proximal Point Methods

Input: {\,} € Ry satisfying >3 ) Ay ' = +oo and ¢ : X' — R satisfying Assumption Al and A2.
Solve for zr = arg mingecx maxqcy f(z,a) and set o = zg.
fork=0,1,...do
Tpr1~arg mingex f(z,a0) + A Dy (2, zk)
end for
return {xz;} as approximate efficiency-robustness Pareto efficient robust solutions.

Compared with the cost of the existing method: N x Tgrc, the computation cost of algorithm [I]
is Tre + (N — 1) x T1513'1€1’ where NV is the number of robust solutions to be generated, Trc is
the cost of solving a single robust optimization problem, and T55y; is the cost of a single step of
an approximate PPM. In general, performing an exact proximal point method update is no easier
than solving the robust optimization problem, therefore, the computation cost reduction is enjoyed
only when we can equip Algorithm[T]with cheap approximate PPM. Specifically, for linear objective
functions, i.e., f(x,a) = (a, x), the exact proximal point method updates are equivalent to projected
gradient descent (PGD) updates with the same cost as solving the robust problem. For nonlinear
differentiable objectives, the proximal point method can be approximated by computationally cheap
first-order approximates such as gradient descent, extra-gradient method, and optimistic gradient
method (Mokhtari et al.] (2020a); [Parikh et al] (2014)). In Section[3] we first validate our theoretical
results using exact PPM under linear objective functions; we then demonstrate the computation cost
reduction by Algorithm[T]equipped with approximate PPMs under nonlinear differentiable objective
functions, where the conditions for our exact results in Theorem|I| no longer hold.

4.3 PROBABILISTIC PERFORMANCE BOUND: RANDOM POLYHEDRON DOMAIN AND
ELLIPSOIDAL UNCERTAINTY SET

To extend the result to more general domains beyond simplex domains. In this subsection, we show
that under ellipsoidal uncertainty sets, the performance (measured by efficiency and robustness) of
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the Pareto efficient robust solutions with random polyhedron domains with constraint coefficients
generated i.i.d. from bounded distributions are bounded between the performance of two sets of
Pareto efficient robust solutions with two simplex domains with a small scaling factor, hence by
Theorem ] between the performance of two proximal point trajectories with high probability.

We denote the Pareto efficient robust solution with domain S and ellipsoidal uncertainty set Z(«) =
{€¢eR: |27V, < a} as

zpp(a, §) = argmin (nax (ap + &, 2),

=arg min(ag, z) + a/(z, Xz).
z€eS
Alternatively, we define

Tpg(v(a),S) =arg min {\/ (x,3x) : {ag,z) <v(a), x € S} ,
where we assume v(«) is chosen such that 2 (v(e), S) = zpe(a, S).
Corollary 1. Consider a random polyhedron X = {z e R} : Az <d- e}, where A e Rmxn
and A;j are ii.d. according to a bounded distribution with support [0,b] and E[A;;] = u for all
i € [m], j € [n]. Define simplex A = {z € R% : (e,z) < 4}. Then for all o € (0, 00),

P <R(IPE(OL,A)) S R(.TPE(OZ,.)E)) S R(IEPE(O[, M(lb—E) . A))) =1- l,

m
where € = Q\/ logm
m n

The proof of Corollary [I]is presented in Appendix [C|

4.4 MULTIPLE UNCERTAIN CONSTRAINTS

In this subsection, we extend the result to robust linear optimization problems with multiple uncer-
tain linear constraints. We show that under uncertain linear constraints, the Pareto efficient robust
solutions can be obtained by solving a set of saddle point problems. Specifically, we study the
following problem

§i€EE;

(RCWUC) min{(ao,x> :osup (a; +&,x) —b; <0, Vie [m], z € A”} )
where =; is the uncertainty set for uncertain parameter &; in constraint 4 for all ¢ € [m]. We assume

the constraints share the same ellipsoidal uncertainty set, i.e., Z;(r) = {£ € R™ : |2~1/2¢||, <
r}, Vi € [m]. Consequently, the Pareto efficient robust solutions are the set

{2pg(B) : B €[0,00)},

where

Tpp(B) = arg min {(co,x> :osup (¢ +&,x)—b; <0, Vi€ [m], xe A"} .
&E€Ei(B)

In general, the conventional approach for solving for a Pareto efficient robust solution requires dual

reformulation of the robust constraints resulting in a computationally harder problem than the deter-

ministic counterpart. Our next result shows for the specific problem setting of (RCWUC), its Pareto

efficient robust solutions can be obtained by solving a set of saddle-point problems via gradient

descent-ascent-like methods.

Proposition 2. {5 (5) : 8 € [0,00)} is equal to a set of saddle-point solutions {zsp(a) : a €
[0,00)} where

sep(a) = ang iy { s (e, 2) + (. Ca) + e} o 50) — (b}

The proof of Proposition [2] is presented in Appendix [C} As a result, a set of approximate Pareto
efficient robust solutions can be obtained by running the following algorithm for a set of « values.
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Algorithm 2 Zgp(a) Oracle

input: o,z =0, A\ =0

fork=0,1,--- ,Tdo
Akt1 < argmaxaery (A, Cwr) + (A, €)@k, Swr) — (A, b)
Tht1 ¢ arg mingean (co + A C, z) + a(Ak, e){x, Xx)

end for

return Zsp(a) = a7

5 PERFORMANCE OF ALGORITHM [I NUMERICAL STUDIES

In this section, we present two experiments testing the empirical performance of generating a set of
approximate efficiency-robustness Pareto efficient robust solutions via Algorithm |I} The code for
all the experiments is included in the supplementary material.

5.1 ROBUST PORTFOLIO OPTIMIZATION

Robust Porfolio: Robust Porfolio: Robust Markowitz++ Porfolio: Robust Markowitz++ Porfolio:
In-Sample Performance Out-of-Sample Performance In-Sample Performance Out-of-Sample Performance
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Figure 1: Robust Portfolio Optimization: The first two figures compare the in-sample and the out-
of-sample performances (as measured by the nominal and worst-case returns) of the exact Pareto
efficient portfolios against our PPM trajectory approximated Pareto efficient portfolios for the ba-
sic robust portfolio problem (RPO); the last two figures are from the same experiment but on the
Markowitz++ problem. The results show Algorithm [T generates closed approximations of Pareto
efficient portfolios measured by both the in-sample and out-of-sample performances.

Robust Portfolio Optimization. In portfolio optimization, we are concerned with constructing a
portfolio as a convex combination of n stocks. The returns of the n stocks are modeled by a random
vector, . We assume that from historical data, we estimated the expectation and the covariance
matrix of r to be x4 and . In the robust approach to the problem, we assume the realization of
the uncertain return lies within an uncertainty set which we design as an ellipsoidal uncertainty set
Ua) = {p+ & e R*: ||712¢||; < a}. Our objective is to choose the portfolio weight that
minimizes the worst-case loss (or equivalently maximizes the worst-case return) under a simplex
domain, leading to the following robust portfolio optimization problem,
(RPO) min max —(r,x).
TEA™ rel (o)

As a consequence of Lemma [I, (RPO) is equivalent to the classic mean-standard deviation risk
measure minimization problem,

(RMM) 'rgiAr}m —(u,x) + ay/(z,Xx).

To further test the performance of algorithm [I] beyond the simplex domain required for our exact
result in Theorem (1| we also consider the extended Markowitz model (Markowitz++) proposed by
Boyd et al.| (2024)) with additional practical constraints and objective terms corresponding to e.g.,
shorting, weight limits, cash holding/borrowing constraints and costs. The detailed formulation of
the Markowitz++ portfolio problem is in Appendix [D]

Experiment design. We first construct portfolios with in-sample historical stock return data, before
testing the nominal and worst-case returns of each portfolio on out-of-sample stock return data.
As the benchmark, we first construct exact Pareto efficient robust portfolios by solving exactly the
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problem (RPO)/Markowitz++ under various levels of o. Then we deploy algorithm [T] to generate
approximate Pareto efficient robust portfolios, i.e., we use the (RPO)/Markowitz++ portfolio with
the largest « to initialize the PPM method for solving the nominal portfolio optimization problem
with o = 0, the PPM trajectory are approximate Pareto efficient robust portfolios. Specifically,
we choose our decision space as 20 stocks from S&P 500 companies. We use the historical daily
return data of the 20 stocks over 3 years (from 2021-01-01 to 2023-12-30) and estimate the moment
information p;, and X, as our in-sample data for constructing portfolios; the assumed unseen future
daily return of the 20 stock for the next 8 months (from 2024-01-01 to 2024-08-01) are used to
estimate f1o,¢ and ., Which serve as our out-of-sample data for evaluating the nominal and worst-
case returns of each portfolio.

Results. The result is shown in figure [T} For the vanilla robust portfolio problem (RPO), although
the assumption ¥~'e € R’ in Theorem [l|is not satisfied in this experiment, the performance
of PPM method generated portfolios matches closely to that of the exact Pareto efficient robust
portfolios. For the Markowitz++ portfolio problem, the domain further deviates from our simplex
requirement for the exact result in Theorem [T} algorithm [I] still produces good approximate Pareto
efficient robust portfolios. The Markowitz++ out-of-sample performance differences are attributed
to two factors: first, despite similar in-sample performances, the numerical stock weights between
the two portfolios under each « have absolute differences up to 10% for some stocks; second, the
in-sample and out-of-sample stock return distributions shifted significantly, with some elements of
the expected returns and the covariance matrix underwent sign changes.

As we discuss in section .2} the robust portfolio problem with a linear objective does not enjoy
computation reduction by using the PPM approach. In the next experiment, we demonstrate for
nonlinear differentiable objectives, the PPM approach equipped with cheap first-order approximate
PPM provides considerable computation cost reduction compared with the traditional approach.
Specifically, we deploy the PPM approach on adversarially robust deep learning with nonconvex-
nonconcave objective functions.

5.2 ADVERSARIALLY ROBUST DEEP LEARNING

—— ExtraFullGD Trajectory Networks —— ExtraSGD Trajectory Networks —— ExtraFullGD Trajectory Networks -~ FullGD Trajectory Networks
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Figure 2: Adversarially Robust Deep Learning: Clean test accuracy and PGD adversarial test
accuracy of Algorithm [I] generated approximate Pareto efficient robust networks v.s. adversarially
trained Pareto efficient robust networks. Four variants of the gradient method are implemented in
Algorithm [T] for standard training with robust parameter initialization. The first two figures show
performance improvement by using the extra gradient, the last two figures show performance im-
provement by using the full gradient. One insight is that the performance of Algorithm [I] can be
improved by improving the gradient method approximation to PPM during standard training. The
best variant: Algorithm[I|with ExtraFullGD generated 100 approximations of Pareto efficient robust
networks in two algorithmic passes.

Adversarial training as robust optimization. The goal in adversarially robust deep learning is to
learn networks that are robust against adversarial attacks (i.e., perturbations on the input examples
that aim to deteriorate the accuracy of classifiers). A common strategy to robustify networks is
adversarial training, which can be formulated as the following robust optimization problem,

rneinE(Ly)ND Igleazxf(fg(m—i—{),y) ) (8)
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Table 1: Computation Cost: Algorithmvs. Adpversarial Training

Method Cost per Pareto efficient ro- Cost to generate [V Pareto ef-
bust network (min) ficient robust networks (min)

Algorithm [T with ExtraFullGD ~ 0.25 (= Ti55;) 15.12 4+ 0.25(N — 1)

FGSM (Wong et al.| (2020)) 15.12 (= Tgrc) 15.12N

where D is the distribution generating pairs of examples x € R and labels y € [c], fo is a neural
network parameterized by 0, £ is the perturbation with perturbation set = , and £ is the lost function.
Typically, the perturbation set is designed as norm-balls, B.; () whose size can be controlled via the
radius parameter, . Naturally, we can apply our framework and define a clean accuracy-adversarial
accuracy Pareto efficient robust networks as networks adversarially trained under different levels of
perturbation set radius, r. The trade-off between clean accuracy and adversarial accuracy in adver-
sarially robust deep learning has been observed empirically Wang et al.|(2020); Su et al.| (2018)) and
studied theoretically Raghunathan et al.|(2020)); Tsipras et al.| (2019); Pang et al.|(2022). In practice,
given the nonconvex-nonconcave loss function, the adversarial training is solved approximately via
iteratively performing the following: first approximately solving the inner maximization problem,
followed by gradient method update on the parameter 6 (Madry et al.|(2018)).

Experiment design. As the benchmark for algorithm [I} we first adversarially train networks un-
der different perturbation set radius, 7 to learn a set of clean accuracy-adversarial accuracy Pareto
efficient robust networks. Then we run Algorithm [T| by performing standard training but with the
key difference of initializing the network parameter with the parameter of the most robust network
(i.e., the adversarially trained network with the largest 7). Finally, the output of Algorithm[I] i.e.,
the standard training parameter sequence with robust parameter initialization, {6y} corresponds to
a set of approximate clean accuracy-adversarial accuracy Pareto efficient robust networks. We use
four variants of approximate PPMs (i.e., stochastic/full vanilla/Extra gradient method). The detailed
experiment setup is presented in Appendix [F]

Solution Quality. The results evaluating the performance of our PPM-based procedure for gener-
ating approximate clean (test) accuracy-adversarial (test) accuracy Pareto efficient robust networks
are shown in Figure[2] The networks generated by our gradient method trajectories initially approx-
imate/surpass both the clean and adversarial accuracy of adversarially trained networks with pertur-
bation set radius, r in {8, 6,4}, before generating networks with both lower clean and adversarial
accuracy that than of adversarially trained network with » = 2. The initial approximation/surpassing
in performance against adversarially trained networks shows our procedure can generate adversari-
ally robust networks as effective as traditional adversarial training. The later drop in performance is
mainly contributed by the low learning rate, although tuning the gradient methods is not the focus
of our paper, it opens up future works for investigating the gradient method designs in Algorithm |
that can improve upon our current approximates using constant learning rates. In Appendix [FI]} we
show this later drop in performance can be overcome by an additional run of algorithm [1} this time
initialized with the adversarially trained network with » = 4. Comparing the performance across the
four trajectories corresponding to the four variants of the approximate PPMs, the ExtraFullGD tra-
jectory generated networks have the best performance. This result is as expected since ExtraFullGD
is the best approximation for PPM.

Computation Cost. The computation cost result in Table |1| shows our PPM-based procedure re-
duces the computation cost of generating N approximate Pareto efficient robust networks from
15.12 x N to 15.12 + 0.25 x (N — 1), where Trc = 15.12 is the cost of a single adversarial
training; T;555; = 0.25 is the cost per approximate PPM (ExtraFullGD) iterate. Specifically, algo-
rithm |I| generates a set of N approximate Pareto efficient robust networks with the cost of a single
pass of adversarial training (costing 15.12 minutes) , plus an algorithmic pass of standard training
with robust parameter initialization for N — 1 epochs, where each epoch of standard training costs
0.25 minutes, and one approximate Pareto efficient robust network is generated per epoch.

10
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A PROOF OF THEOREM 1]

Theorem [I] follows by the combination of Proposition [T} [3|and fi] which together show the notions
of proximal-point sequences, central path, mean-variance risk minimization solutions and Pareto
efficient robust solutions all coincide under simplex domain and ellipsoidal uncertainty set. Here we
present Proposition [3]and ]

Proposition 3 (Correspondence between Mean-Variance Risk Minimization Solutions and the
Central Path). Under simplex domain A™ := {x eERY : (e,x) = 1}, assume the covariance ma-

trix of the returns Y. satisfies ¥ 'e € RY, Let the set of Pareto efficient solutions to the mean-
variance risk measure minimization problem be

{zrMm(a) = argmin {{ag, z) + a{z,Xx) : z € A"} : a € (0,00)}.
Let the central path be
{zcp(w) = argmin {(ap, ) + WDy (@, Tmy) : x € A"} w e (0,00)},

where Dy 52(%, Tmy) = (€ — Tmy, 2(¢ — Tmy)) which is induced by ¢(z) = (z,Xx) and Tuyy is
the minimum variance solution defined as x.,, = argmin {(z, Xz) : © € A"}. Then

zrMm(a) = zop(a), Yo € (0,00).
The proof of Proposition [3]is presented in Appendix [C]

Proposition 4 (Correspondence Between Pareto-Efficiency Robust Solutions and the Central
Path). Under simplex domain A" = {a: €ERY : (e,x) = 1} and ellipsoidal uncertainty set =(a) =
{€ e R ¢ |S7Y2¢||5 < o} where ¥ satisfies " 'e € R, let the Pareto efficient robust solutions
be

{mpE(a) = arg xrgiAI}l g?ﬁ’éﬁ“o +&z): a0, oo)} .

Let the central path be
{icp(w) = arg min <a0,x> + OJD%Z(.T,{KR) Lw e (0, ()O)}
TEA™

where Dy, s (x,xr) = (x — xr,2(x — xr)) which is induced by ¢(v) = (x,Xz) and
TR = argmingean MaXecs(oo)(@o + &, x). Let a(w) be such that arg mingean(ao,z) +
a(w)/{z,Xx) = arg mingean {ag, z) + w(z, Xz). Then

zpe(a(w)) = zcp(w), VYa € (0,00).

The proof of Proposition[4is presented in Appendix [C]

B PROOFS OF RESULTS IN SECTION 3

Proof of Lemma Denote z = X~/ 2,
i )
Iel)r(l Emeazi()é)(ao +&,x)

= i 9 + )
min({ag, x) £§%<5 z)

=min(ag, z) + max (z,2Y%z)
reEX ZEIB”AHQ(O()

:mi£<a0, z) + ay/(x, Bx).
zE
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C PROOFS OF RESULTS IN SECTION 4

Lemma 2. Assume ¥ 'e € R7,

. n 2716
argmln{<x,2x> : JjeA }:m
Proof. By KKT condition,
. Y le
argmin {(z, Xx) : (e,z) =1} = IR
denote T = % we have,

(7,X7) < (x,Xx), Vexe{reR":{(ex)=1}.
Given A" := {z € R} : {e,z) =1} C {x € R": (e, ) = 1}, we have
(7,X7) < (x,Xx), VYxeA™
Finally, by ¥~ le € R%,

hence, arg min {(x,¥z) : z € A"} = (ezz%lf

)

Proof of Proposition For all o € (0, 00) we have
zcop(a) =argmin {{ag, ) + aDy, (T, Tmy) : ¢ € A"}
=argmin {{ag, ) + a(r — Ty, (T — Ty )) : € A"}
=argmin {(ag, ) + a(x, Xz) — 20(Tmy, 1) : € A"}

=arg min {<a07m> + afz, Xz) — %(em) cx € A”}

= arg min {(ao,x> + afx, Xz) — NS A”}

2a
(e, 1e) -
=argmin {(ag, z) + a{x,Xx) : =€ A"}
=zrm(a),

where the fourth equality is by Lemma[2] and the fifth equality is due to z € A™.

Proof of Proposition[4} The result is a direct consequence of Lemma [I]and Proposition [3]

x a(w)) =arg min  max (ag +§&,7
pp(a(w)) —arg min, _max (a0 + &)
a(w) v/ (z, )

=arg mm 1 (ao, z) +
,z) + w(z, )
)+
x) +

=arg min
TEA™"

(a0
=arg mln 1 (ao, ) + wDy x(z, Tmv)
X

=arg mln ag, ) + wDy s (x, zR)

:xcp( )

The second equality is due to Lemmal[I] the fourth equality is by Proposition 3] and finally the fifth
equality follows from LemmalT}

Our performance bound in corollary[I] builds on the following result that a random polyhedron with
constraint coefficients generated i.i.d. according to bounded distributions is sandwiched between
two simplices with high probability.
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Lemma 3 (Theorem 2.1. in [El Housni & Goyal (2017)). Consider a random polyhedron X =
{z e R} : Az <d- e}, where A € R™*" and Aw are i.i.d. according to a bounded distribution
with support [0,b] and E[A;;] = p for all i € [m],j € [n]. Define simplex A = {x € R : {e,x) <
%}. Then

P(Ag)?gbA)ll,
n(l—e)

where € = Q\/M.
m n

Proof of Corollary Denote k = —2— where ¢ = £
u(l—e) I

P(Ag}?gm-A)

=P min (x,Xz) < min V() < min (x, )
z:(ao,z)<v(a), z€L-A z:{ag,z)<v(a), zEX z:(ao,z)<v(a), TEA

=P (\/<x, Yz) |z = 2pg(v(a < (z,3z) |z = zhg(v(a), X) < /(z, 5z) |z = zhg(v(a), A))

=P (R(zpi(v(a), A) < R(zpg(v(a), X)) < R(zpg(v(a), 5 A)))

—P (R(xPE(a, A)) < R(zpr(a, X)) < R(zps(a, & - A))) :

By Lemma [3| we have result.

Proof of Proposition[2} By Proposition I}
Tpp(B) = argmin{(co, s e, ) + B/ {x, By —b; <0, Vi€ [m], x € A”}.

By the monotonicity of 1/ -,
{zsp(a) : a €[0,00)} = {app(B) : B €[0,00)},
where
zgp (o) = argmin {{co, z) : (¢;,x) + a(x,Bz) —b; <0, Vi € [m], x € A"}.

Applying the method of Lagrangian, zgp(«) can reformulated as the solution to the following
saddle-point problem

zgp(a) = arga;rglAnn ){nax Co, @ gj])\ (ci,x) + oz, Xx) — ;)
i€lm

= arg IrénAnn {m%x (co, ) + (N, Cx) + a(\, e}z, Ex) — (A, b)} .

D MARKOWITZ++

The Markowitz++ proposed by Boyd et al| (2024) extends the classical Markowitz Portfolio by
introducing practical constraints and objective terms. In the experiment, we include the option for
shorting, holding limits on each asset, the option for cash holding/borrowing, and the associated
costs. The formulation of the Markowitz++ problem is shown below,

min  — (g, z) + "9 (2, ¢) + a/(z, Za) (14a)
st. {e,x)y+c=1, (14b)
2N < g < M (14¢)

NN <o < M, (14d)
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The decision variables x € R™ are stock weights (x; > 0 for holding, z; < 0 for shorting), ¢ € R
is the cash weight (¢ > 0 denotes diluting the portfolio with cash, ¢ < 0 denotes borrowing).
The objective function now includes the additional term of holding costs, "°'%(x, c) as defined by

equation (5) inBoyd et al.[(2024) and weighted by the parameter v"°9. The first constraint enforces
all weights sum to one, the second constraint corresponds to the maximum shorting position and

maximum holding position on each asset, and the last constraint applies lower and upper limits on
the cash weight. Finally, the nominal and worst-case return trade-off is controlled by adjusting the
parameter, a.

E CLOSED-FORM SOLUTION TO a/(wy,)

In Theorem 1, we wish to find «(wy) such that arg mingean(ag, ) + a(wg)/{z,Xz) =
arg mingean {ag, ) + wg(x, Xx). The following result provide a closed-form solution to a(wy) =
a(wy, xy) as a function of wy, and the current PPM solution xy.

Lemma 4. Under linear objective functions, f(x,a) := (a,x). Let {zpgr(a) : a > 0} be the set of
Fareto efficient robust solutions under simplex domain A™ = {x eERY : (e,x) = 1} and ellipsoidal
uncertainty set Z(cr) = {£ € R" : [|[S71/2¢||y < a} where ¥ satisfies ¥~ 'e € R'}. Let {xy} be
the proximal point sequence w.r.t. Dy (x,y) = (x — y, X(x — y)), associated with sequence {\} }
and starting point T = arg mingex Maxecs(oo) (@0 + &, 7). If the sequence {wy } is defined as

-1

k—1
Wi = ZA;I , fork=1,2,..,
=0
then for
a(wy, z1) = 2w |2 222,
we have
arg min (ao, ) + a(wk, x) v/ (, Xa) = arg min {(ao, x) + wy (2, Xz)
l’e n ze n
and

Tk :l'PE(a(wk-7xk)>7 fork‘: 1527""
Proof. First, by proposition [3|and[T] we have
arg IgiAlanaoa z) + wi(z, Bx) = rrM (W)

= zcp(wi)
= Tk

Given
arg mﬂeﬁAl}l(ao,@ + wi(z, Ez) = zy,

by KKT condition, we have (x, \*, u*) such that

ap + 2w XxE + Ne—pu* =0
(e,zi) = 1.

Assume
arg min (ag, z) + ay/(z, Xx) = z*,
TEA™

by KKT condition, we have (*, k*, v*) such that

Ya* N .
ao+am+n e—v =0
— 2"y =0, —2* <0, v >0 an
(e,x*) = 1.
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If a = 2w || 22212, reduces to

1271222
1212 |,
— W a")y=0, —2* <0, v >0
(e,z") = 1.

ao + 2wy, ¥+ re—1vF =0

(18)

By condition (16), (z* = zy, k* = \*,v* = p*) also satisfy the KKT condition (18).

As aresult, if a = 2wy ||X1/ 222, we have
arg min (ag, z) + an/(x, Xx) = arg min (ag, x) + wi(z, Xx) = =4
TEA™ TEA™

and by Theorem [T}

xx = zpp(a), fork=1,2 ...

F ADVERSARIALLY ROBUST DEEP LEARNING: EXPERIMENT SETUP

We use the CIFAR10 dataset, a PreAct ResNet18 architecture, and the cross entropy loss. The set of
Pareto efficient robust networks are adversarially trained using fast gradient sign method (FGSM)
with random initialization and fast training methods (Wong et al.| (2020)) (shown to be as effective
as projected gradient descent (PGD)-based training but with a much lower cost) and [, norm ball
perturbation sets, By _(r), with 7 in {2, 4,6,8}. The Algorithmis initialized with the parameter
of the adversarially trained network with perturbation sets B\H\m r = 8), after initialization, four
variants of the standard training are performed with the following gradient methods: 1) Vanilla
stochastic gradient descent (SGD); 2) Stochastic extra gradient descent (ExtraSGD); 3) Gradient
descent with the gradient of the full train set (FullGD); 4) Extra gradient descent with the gradient of
the full train set (ExtraFullGD). The implementation for extra gradient descent is adopted from|Gidel
et al| (2019). Each variant can be considered as an approximation to PPM in Algorithm [I] where
ExtraSGD is a better approximation to PPM than SGD, and ExtraFullGD is a better approximation to
PPM than ExtraSGD. SGD and ExtraSGD have a learning rate of 5e — 4; FullGD and ExtraFullGD
have a learning rate of 4e — 4. The four variants of the standard training are each performed for
100 epochs, generating one approximate Pareto efficient robust network per epoch. The trajectories
of four variants of the standard training are each a set of approximate clean accuracy-adversarial
accuracy Pareto efficient robust networks. Finally, all networks’ clean accuracy and adversarial
accuracy are evaluated correspondingly on a clean test set and on an adversarial test set with PGD
attacks.
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F.1 ALGORITHM[IIWITH ADDITIONAL INITIALIZATION
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Figure 3: Adversarially Robust Deep Learning: Algorithm 1 with Additional Initialization:
Clean test accuracy and PGD adversarial test accuracy of Algorithm|I]generated approximate Pareto
efficient robust networks v.s. adversarially trained Pareto efficient robust networks. The red triangles
denote adversarially trained robust networks with perturbation ser radius, r in {8, 6,4, 2}. The black
and green lines denote the FullGD and ExtraFullGD generated robust models initialized with the
adversarially trained robust network with » = 8; The orange and blue lines denote the FullGD
and ExtraFullGD generated robust models initialized with the adversarially trained robust network
with » = 4. The main result is with the extra cost of one adversarial training and one standard
training, algorithm 1 generated models outperformance adversarially trained models across different
perturbation set radius values.
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