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Abstract

A core component of the recent success of self-supervised learning is cropping data augmenta-
tion, which selects sub-regions of an image to be used as positive views in the self-supervised
loss. The underlying assumption is that randomly cropped and resized regions of a given
image share information about the objects of interest, which is captured by the learned
representation. This assumption is mostly satisfied in datasets such as ImageNet where
there is a large, centered object, which is highly likely to be present in random crops of
the full image. However, in other datasets such as Openlmages or COCO, which are more
representative of real world uncurated data, there are typically multiple small objects in
an image. In this work, we show that self-supervised learning based on the usual random
cropping performs poorly on such datasets (measured by the difference from fully-supervised
learning). Instead of using pairs of random crops, we propose to leverage an unsupervised
object proposal technique; the first view is a crop obtained from this algorithm, and the
second view is a dilated version of the first view. This encourages the self-supervised model
to learn both object and scene level semantic representations. Using this approach, which we
call object-aware cropping, results in significant improvements over random scene cropping on
classification and object detection benchmarks. For example, for pre-training on Openlmages,
our approach achieves an improvement of 8.8% mAP over random scene cropping (both meth-
ods using MoCo-v2). We also show significant improvements on COCO and PASCAL-VOC
object detection and segmentation tasks over the state-of-the-art self-supervised learning
approaches. Our approach is efficient, simple and general, and can be used in most existing
contrastive and non-contrastive self-supervised learning frameworks.

1 Introduction

In recent works on self-supervised learning (SSL) of image representations, the most successful approaches
have used data augmentation as a crucial tool (Chen et al.| [2020a; He et al., [2019; |Grill et al., [2020; Tian
et al., [2019; |Caron et al.| |2020b)). Given a randomly chosen image sample, augmentations of the image are
generated using common image transformations such as cropping and resizing a smaller region of the image,
color transformations (hue, saturation, contrast), rotations etc. (Chen et al. |2020a}; |Gidaris et al, [2018)). Of
these augmentations, the use of cropping is clearly the most powerful (see |Chen et al| (2020a), Fig. 5). This
makes intuitive sense: cropping followed by resizing forces the representation to focus on different parts of an
object with varying aspect ratios. This makes the representation robust to such natural transformations as
scale and occlusion. The implicit assumption in this scheme is that the object of interest (classification or
detection target) occupies most of the image and is fairly centered in the image, so that random crops of the
image usually result in (most of) the object still being present in the cropped image. Such an assumption
holds for “iconic” datasets such as ImageNet |Krizhevsky et al.| (2012)). Forcing the resulting representations
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Figure 1: Illustration of object aware cropping. Top-Left: We show the original image with random crops
overlaid. Bottom (red panel): Overlap between random crops tend to miss the object of interest. Top-Right:
We show crops generated from the LOD algorithm and also the dilated object crop. Bottom-
Right (green panel): We use LOD-based object-aware crops. These incorporates both object and scene
information into the MoCo-v2 (or other SSL frameworks).

to be closer together maximizes the mutual information between the crops (also called views)
let al.| (2018)); |Tian et al.| (2019).

However, in the case of “non-iconic” datasets such as Openlmages [Kuznetsova et al| (2020) and COCO
(2014)), the objects of interest are small relative to the image size and rarely centered, see Fig. [I] These
datasets are more representative of real-world uncurated data. We find that the default random cropping
approach (which we call scene cropping) leads to a significant reduction in performance for self-supervised
contrastive learning approaches. For example, using the default pipeline of MoCo-v2 [Chen et al.| (2020D)), we
find that there is a gap of 16.5% mean average precision (mAP) compared to fully supervised learning. Other
state of the art methods such as BYOL |Grill et al. (2020), SwAV |Caron et al] (2020b) and CMC
perform poorly as well (see Table . As we show, the core problem here is that random scene crops
do not contain enough information about (small) objects, causing degraded representation quality.

However, merely switching from scene-level crops to purely object-level crops does not exploit the correlations
that exist between scenes and objects in most natural images. These correlations are helpful for downstream
tasks Xiao et al| (2020). Keeping this in mind, we introduce Object-Aware Cropping(OAC), which applies
a simple pre-processing step using the unsupervised object proposal method LOD . LOD
outputs multiple object proposal rectangles, one of which we pick at random as the first candidate region. We
then expand (dilate) this rectangle to create a second candidate region. We finally employ random cropping
within each of these rectangles to create a final pair of “positive" views that are used for the SSL loss. The use
of random cropping reduces mutual information between the views, thereby making the pretext task harder
for SSL losses, and improving final representation quality. We call this cropping approach “obj-obj+dilate" in
the rest of the paper.

In addition to an SSL loss that uses multiple views, we introduce two additional unsupervised losses which
leverage the LOD proposal introduced above. The first loss, which we call object localization, encourages
the network’s representations to carry information about objectness by predicting which patch features
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Method Dataset ~ mAP
Supervised - 53.26
InsDis(Wu et al. (2018D)) ImageNet  48.82
MoCo( [He et al.| (2020) ) ImageNet  50.51
PCL-v1(Li et al. (2021)) ImageNet  53.93
PCL-v2(Li et al.| (2021))) ImageNet  53.92
MoCo-v2(Chen & He| (2020)) ImageNet  50.67

MoCHI(Kalantidis et al[(2020)) ImageNet —52.61

MMCL(Shah et al. (2021)) ImageNet  50.73
MoCo-v2 + OAC (Ours) ImageNet  53.96
MoCo-v2 (Baseline) OHMS 54.74
MoCo-v2 + OAC (Ours) OHMS  57.13

Table 1: We achieve superior performance on VOC detection when pre-training on our proposed Openlmages
Hard Multi-object Subset OHMS dataset as compared to ImageNet trained models by 6.52mAP. Our
proposed OAC also helps ImageNet (2nd last row), but it helps much more on the proposed OHMS multi-
object dataset. ImageNet baselines has been trained for 100 epochs Shah et al.| (2021) and Openlmages model
have been trained for same 100 ImageNet equivalent epochs.

contain the object (labels are determined by the extent of the LOD proposal). The second loss we add is
the rotation prediction task where given a rotated object and dilated-object, we predict the rotation of the
object. Rotation loss helps is learning better object level representations. Use of these losses leads to further
improvements to downstream performance.

We conduct a number of experiments incorporating object-aware cropping, finding consistent improvements
on state of the art self-supervised methods such as MoCo-v2 Chen et al.| (2020b]), BYOL |Grill et al.| (2020)
and Dense-CL [Wang et al (2021]) across varied datasets and tasks. We also propose Openlmages Hard
Multi-object Subset OHMS, which is a balanced subset of Openlmages and has images with atleast two
different classes. We show by pre-training on the OHMS dataset using our OAC can give superior performance
on object detection task (+6.1mAP, Table [l as compared to pre-training on ImageNet which has been used
extensively in the literature He et al.| (2019)); |[Chen et al.| (2020a)); |Caron et al| (20204).

2 Related Work

Recent progress in self-supervised learning, based on contrastive and non-contrastive approaches, has achieved
excellent performance on various domains, datasets and tasks [He et al| (2019); [Chen et al. (2020bfal); [van denl
[Oord et al| (2018); |Tian et al.| (2019); |Gidaris et al. (2020)); Misra & van der Maaten| (2019); [Tian et al.|
2020)); Wu et al.| (2018a); |Grill et al.| (2020); Gidaris et al.|(2018); Larsson et al|(2017); Noroozi et al.| (2018));
[Pathak et al.| (2016). The top-performing methods have all used related ideas of pulling together “views" of a
sample in representation space. Some of these approaches, in addition, use negative samples to add a “push"
factor, and this is termed contrastive self-supervised learning. Theoretical and empirical studies have been
published to better understand the behavior and limitations of these approaches |Arora et al| (2019); [Xiaol
et al| (2021); Purushwalkam & Guptal (2020)); Tosh et al.| (2021)); [Wang & Isolal (2020)); Yang et al.| (2020);
Chuang et al|(2020); [Liu et al|(2021b); [Kalantidis et al.| (2020); Newell & Deng] (2020); [Cai et al.| (2020)).

A number of papers have observed that the default SSL approaches above (whether contrastive or not)
perform poorly on uncurated datasets such as Openlmages [Kuznetsova et al| (2020]). To address this, recent
works have used different workarounds such as knowledge distillation [Tian et al.| (2021)), clustering |Goyal et al.
(2021), localization [Selvaraju et al| (2020)), unsupervised semantic segmentation masks Hénaff et al.| (2021),
pixel-level pretext tasks Xie et al|(2021)), Instance localization [Yang et al. (2021)) and local contrastive learning
[Liu et al., (2021a)). The common element among top-performing image-based SSL approaches, regardless
of dataset, task or architecture, is their reliance on strong data augmentations such as random cropping,
gaussian blurring, color jittering or rotations. These augmentations create meaningful positive views, and
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other randomly sampled images in the dataset are used to create negative views in the case of contrastive
SSL methods. SSL data augmentation pipelines are adapted from the supervised learning literature |Cubuk
et al.| (2018); |Zoph et al.| (2020)); Krizhevsky et al. (2012); [Simard et al.| (2003); DeVries & Taylor| (2017));
Cubuk et al.| (2018)); |Zhang et al.| (2018]); |Cubuk et al.| (2019); [Wu et al.| (2019); [Yun et al|(2019); Lim et al.
(2019); Hataya et al.| (2019)). |(Chuang et al.| (2022); Peng et al.| (2022) also deal with issues in using random
croping, but they don’t report results by pre-training on multi-object datasets like COCO and Openlmages,
which is our main focus in this paper. Secondly, their improvement on Detection Segmentation are only
+0.3map while our improvement is +1.5 map by just changing the cropping strategy. Also, it’s not very clear
how to extend [Chuang et al.| (2022); [Peng et al.| (2022), since they rely upon bootstrapped models to generate
better positives. And as we saw on Openlmages, bootstrapped models which use random cropping don’t
really perform well.

The closest work to our object cropping work is [Selvaraju et al.| (2020), which introduces a technique to
choose crops around objects based on saliency maps |Selvaraju et al.| (2016]), showing good improvements over
the baseline of random crops for COCO datasets (see Table . As shown in our results, Obj-Obj+Dilate crop
consistently performs better than [Selvaraju et al. (2020) (Table . Our approach is also significantly simpler
to incorporate into existing pipelines, requiring no change to the training, architecture or loss. |Gansbeke
et al.| (2021) show that constrained multi-cropping improves performance of SSL methods: our approach can
be incorporated into their pipeline to further improve performance.

3 Analysis of Self-Supervised Learning methods on the Openlmages Dataset

In this section, we first identify some limitations of state-of-the-art SSL methods such as MoCo-v2 [He et al.
(2019)); |Chen et al.[ (2020b)), SwAV |Caron et al.| (2020b) and BYOL |Grill et al.| (2020) when pretraining on
the Openlmages dataset. These methods have nearly closed the performance gap with supervised learning
methods when pre-trained and linear probed on ImageNet Deng et al.| (2009). However, the performance of
these methods on Openlmages dataset (where images contain multiple small objects) has not been extensively
studied. Openlmages Kuznetsova et al.| (2020]) encompasses images of complex scenes and several objects
(containing, on average, 8 annotated objects per image). It consists of a total of 9.1 million images. To
perform controlled experiments on the effectiveness of cropping on SSL method performance, we construct
a subset of the Openlmages dataset called OHMS Openimages Hard Multi-object Subset. We construct
the dataset as follows: We sample images that have labelled bounding boxes to enable comparisons with
fully supervised learning. Secondly, we sample images with objects from at least 2 distinct classes to create a
dataset that better reflects real-world uncurated data. Finally, we only consider class categories with at least
900 images to mitigate effects of imbalanced class distribution. After this processing, we have 212, 753 images
present across 208 classes and approximately 12 objects per image on average.

We provide further details in the Appendix SecA.

3.1 Performance of SSL methods

We pretrain several SSL methods MoCo-v2, CMC [Tian et al| (2019)), SwAV |Caron et al.| (2020b) and BYOL
Grill et al.| (2020) on OHMS dataset. MoCo-v2, BYOL, and other recent state of the art SSL approaches all
relying on scene-scene cropping of the same image to generate positive samples.

Table [2] shows our results. We see a significant difference in performance between fully supervised training
and SSL approaches on the OHMS dataset, with a gap of 16.3 mAP points on average across the 4 SSL
approaches considered. On ImageNet, the top-1 accuracy gap is considerably smaller with an average gap
of only 8.5, nearly half that of OHMS. The last row shows the significant boost obtained by using our
object-aware cropping approach, which we describe in the next section, with MOCO-v2. The gap between
SSL and supervised training on OHMS is now the same as ImageNet.
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Model OHMS (mAP) ImageNet (Top-1 %)
Supervised Performance 66.3 76.2

CMC [Tian et al.| (2019) 48.7 (-17.6) 60.0 (-16.2)
BYOL [Grill et al] (2020) 50.2 (-16.1) 70.7 (-5.5)
SwAV |Caron et al.| (2020b) 51.3 (-15.0) 72.7 (-3.5)
MoCo-v2 (Scene-Scene crop) 49.8 (-16.5) 67.5 (-8.7)
MoCo-v2 (Object-Object+Dilate crop) (Ours) 58.6 (-7.7) 68.0 (-8.2)

Table 2: Classification results on OHMS and Imagenet. For each SSL method, we show in parentheses the gap
to fully supervised training (same number of epochs). The last row shows that our proposed approach using
obj-obj+dilate cropping reduces the gap on OHMS by nearly half compared to the baselines, improving over
the scene-scene cropping based SSL methods by between 8.8 mAP points. We also observe improvements on
ImageNet as well.

3.2 Analysis and Motivation

We conduct further experiments to better analyze the results seen in Table [2] and to motivate our proposed
approach. Our experiments help to narrow down scene cropping as one main cause of the poor performance
of SSL on OHMS, rather than other differences with ImageNet, such as object size, class distributions or
image resolution.

Object Size: We compare MoCo-v2 performance to that of fully supervised learning, with both methods
using scene-based cropping. Fig. [2] (left) shows that the performance gap between supervised learning and
SSL methods does not vary significantly for objects of different sizes in OHMS. This suggests that once object
sizes are below a threshold where scene cropping tends to ignore object information, MoCo-v2 performance is
mostly independent of object scale.

Long-tail Distribution: Even after selecting at least 900 images per class, our OHMS subset has a significant
variation in the number of images per class (from around 1000 to 60000). Fig. [2f (right) plots the performance
of MoCo-v2 and supervised training as a function of the number of instances in each class. We do not see a
significant change in relative performance as the number of instances in a class changes. This rules out long
tails of the distribution as a cause for the poor absolute performance of MoCo-v2 on OHMS.

Can ImageNet pre-training help? We pre-trained a supervised model on ImageNet and then fine-tuned
the final fully-connected layer on the OHMS dataset. We can see from the second column in Table [3] that
this pre-training does not help to close the performance gap. One of the reasons that ImageNet pre-training
does not help is that OHMS and ImageNet have significantly different class distributions (e.g. see |Li et al.
(2019) for a detailed analysis).

Can resizing the images help? We also experimented with resizing the images in OHMS to the same
approximate size (384 x 384) and aspect ratio as ImageNet. The result is shown in the third column of Table
[3] confirming that controlling for image size does not help to close the gap.

Can cropping on ground truth objects help? We see from column 4 of Table [3] that using random
cropping on ground truth object boxes does not help reduce the performance gap either. As we show later
in Sectiorfd] that learning from both object and context is important for learning semantic information on
multi-object datasets.

Varying the lower scale of random resized crop: MoCo-v2 (Chen et al. (2020b])) used scene crops
whose size was chosen from a uniform distribution ranging from 20% to 100% of the ImageNet image size
(384 x 384). Since OHMS images are bigger and objects generally occupy a smaller fraction compared to
ImageNet, we vary the lower bound for scene crops to measure the impact. The last six columns of Table
shows that varying the range of scene crop is insufficient to close the performance gap.
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Figure 2: Analysis of OHMS data distribution. Left: Performance of supervised and MoCo-v2 pre-training as
a function of the scale of the objects; we plot the log of the average of pixels against the sum of AP for each
class. We see no discernible pattern of performance of MoCo-v2 or supervised learning as a function of object
scale. Right: Performance of supervised learning and MoCo-v2 as a function of the number of instances in a
class; we plot the log number of instances in a class against the sum of AP for that class. We do not see any
discernible pattern of performance difference as a function of class size.

IN Resize to Scene-Scene Crop
Supervised Pretraining (384 x 384) GT-Crop | 0.8-1.0 0.6-1.0 0.4-1.0 0.2-1.0 0.1-1.0 0.05-1.0
66.3 28.3 45.9 45.3 ‘ 26.5 37.6 45.6 49.8 46.1 43.1

Table 3: Linear evaluation on our OHMS dataset with different pre-training strategies with MoCo-v2 (see
Section [3[ for details). Column 1 uses fully supervised learning on OHMS. We see that for self-supervised
pre-training, no specific range of scene crops helps to close the large gap between SSL and supervised training.
However, there is a sweet spot of scene crop range where MoCo-v2 performance is highest.

We conclude that the performance gap between supervised training and SSL training is likely due to the
data augmentation, rather than characteristics of the image distribution. Further analysis experiments are
provided in the appendix (Sec D).

4 Proposed Approach

In this section we first discuss how we add object-awareness to the loss, followed by two new loss functions
which help in learning better object aware representations.

4.1 Object Proposals

To enable object-awareness, we consider an unsupervised object proposal model LOD . LOD
is a large scale unsupervised object proposal method (2021)). The authors suggest a formulation
of unsupervised object discovery as a ranking problem using distributed methods. In our experiments we
use LOD to generate up to 10 proposals per image and select one object randomly among these proposals.
The details of other faster semi supervised object proposals (which use object labels from VOC dataset for
training) are present in appendix Section C. Since, our method is completely Self-Supervised we focus on
using LOD as our object proposal generation method.
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Dilated object proposals (Obj-Obj+Dilate Crop): Scene pixels spatially close to the object are more
likely to have a positive correlation with the object. With this intuition, we generate the second view by
dilating the the randomly selected LOD proposal. We dilate the box by 10% or 20% of the image size, followed
by a random crop. Changing dilation gives us control over how much scene information is incorporated (a
value of 10% works well in most cases). Note that the original and dilated boxes are both followed by a
random crop, ensuring that the first view is not trivially included in the second view. The choice of which
crop to use as query or key is arbitrary and either object or dilated object crops can be used as key and query.

Different projection heads for Object and Dilated Object crops: The projection head, introduced
in [Chen et al,| (2020a)) is an important component of most SSL methods. This is an MLP that maps
representations from the encoder backbone to a lower-dimensional space where the loss function is applied.
SimCLR |Chen et al.| (2020a)) show that projection heads can remove information that may be useful for
the downstream task, such as the color or orientation of objects. They show that by using this MLP, the
last layer of network (i.e layer before mlp) can maintain more information. However |Chen & He| (2020) use
a single projection head is used for both views, since both the views on ImageNet are object crops. We
hypothesize that Object and Scene crops often contain different object orientation and color information;
hence we propose to use different projection heads for scene and objects.

4.2 Loss Objectives
Following He et al.| (2019)), we use a momentum queue and optimize the model using the InfoNCE loss :

exp(q-k" /7) '
exp(g-kt /) + Y exp(q-k=/7)

k—

Lmoco = — log (1)

Here ¢ is a query representation, k™ is a representation of the positive (similar) key sample, and {k~} are
representations of the negative (dissimilar) key samples. 7 is the temperature hyper-parameter. We augment
the standard contrastive loss with two additional losses to learn richer features for both objects and scenes.
Next we describe both these losses in detail.

4.2.1 Rotation task L,

In the standard rotation prediction pretext task |Gidaris et al.| (2018), an image crop is randomly rotated with
an angle in set ¢. An MLP is then tasked at correctly predicting the rotation of a patch given its features
extracted using the feature extractor f. Our object cropping strategy generates an object and a scene crop
from a given image. We modify the standard rotation task to estimate rotation of the object crop wrt the
scene crop. Specifically, we randomly rotate the object crop and extract features z,,;. The scene crop is kept
as is and its features zscene are obtained by feeding the scene crop through feature extractor f. Note that
rotation augmentations are applied to object crop in addition to the standard MoCo-style augmentations.
The rotation prediction MLP takes as input the concatenated features and estimates the relative rotation.
Our rotation loss is L, is a standard cross entropy loss with rotation labels as the targets. Different from the
standard rotation prediction task which estimates absolute rotation, our approach estimates rotation of the
object relative to the scene and complements the contrastive loss. Note that since we deal with in-the-wild
datasets, estimating absolute rotation of a crop is ill-posed since a particular object might occur in a variety
of poses thus leading to incorrect gradients.

4.2.2 Object localization task L.

Since we are working with images coming from non-iconic datasets, the object could potentially occupy a
small region of the image. We propose to add a pretext task of localizing an object inside the scene using
features alone. Specifically in this task, given an image, we predict the spatial location of the object in the
image. Here we take original image and divide the image into p * p patches. We then take an object crop
and mark all the patches where the object is present as 1 and other patches as 0 which we use as our label
Y. Similar to rotation task we first extract features for the object proposals z,p;. For the original image we
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Model Crops Obj-Obj+Dilate  Scene-Scene ~ mAP
Supervised - - - 66.3
MoCo-v2 - - v’ 49.8
BYOL - - v’ 50.2
MoCo-v2 Ground Truth boxes - - 58.9
MoCo-v2 Ground Truth boxes v’ - 60.2
MoCo-v2 LOD crops v’ - 59.1
MoCo-v2 + Rotation + Localization LOD crops v’ - red59.7
BYOL LOD crops v’ - 59.5

Table 4: Crop approaches on OHMS: using LOD crops to generate one view, and a dilated crop for the other
positive, we are able to reduce the difference between SSL and Supervised Learning by close to 50% (compare
the last two rows to the second row). Using ground-truth boxes to generate crops from OHMS improves
the pre-training performance marginally compared to LOD crops. Our Obj-Obj+Dilate outperforms the
Scene-Scene baseline by significant margin on the OHMS dataset.

apply all the same augmentations except random crop (since we want the full image and not the cropped
version of the image). Then we obtain the features for the original image z,i. We then pass the features
through MLP layer. Finally the loss £,; is two-class classification loss on concatenation of object features,
original image features and labels Y.

Why don’t we see degenerate solution for object localization? A natural question is why doesn’t our
model cheat and remember all the object location for all the object proposals. The answer to the question is
the random cropping on the object proposals. Since we are using random crops on the object proposals, the
label Y will change every time according the random crop parameters. Hence the network cannot learn the
object patch location and has to focus on the semantics of objects and scenes to figure out the spatial location
of object in the scene. Exact implementation detail of the object localization task is shown in the appendix.

Final loss function: Our final loss function is
£oac = Emoco + ‘Crot + £ol (2)

We simply combine all the losses and call it Lo, (Object-Aware Cropping) and backpropagate on all of
them.

5 Results

We created a subset of the Openlmages dataset with 212k images, as described in Section [3] We also
experiment with the complete Openlmages (~1.9 million images.) In addition, we perform pre-training on
ImageNet Deng et al.| (2009) and MS-COCO [Lin et al.| (2014). ImageNet (with 1.2M training images) has
been extensively used and is the standard dataset used for benchmarking of SSL methods. MS-COCO has
~ 118k training images and 896k labelled objects which is approximately 7 objects per image. For pre-training
on MoCo-v2, we closely follow the standard protocol described in |Chen et al. (2020b). We randomly select
from 10 object proposals provided by LOD. All our training and evaluation is performed on a ResNet-50
He et al.| (2015)). For our baseline we use standard scene-scene crop, where we take two random crops in
an image and treat them as positive views. This is the default approach used in MoCo-v2 and other SSL
approaches. From our analysis in Section [3] this approach performs poorly on datasets such as OHMS.

As discussed, the Obj-Obj+Dilate uses a random crop on the object proposal or dilated version, to generate
the final views. Since the object proposal itself is a small fraction of the image (e.g. in COCO, an object crop
typically covers about 39% of the image), using the usual default lower value for the random crop range (usually
0.2) works poorly as it results in extremely small crops from the image. Therefore, we set the lower limit such

that it matches the minimum sized crop in case of the usual scene crop (Smin = syerage Objegfproposal —)
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Description AP AP50 AP75 Apg AP[ APm
Supervised (Random Initialization) 328 509 353 299 479 320
Supervised (ImageNet Pre-trained) 39.7 595 433 359 56.6 38.6
MoCo-v2 [Chen et al.| (2020b)) 38.2 58.9 41.6 34.8 55.3 37.8
BYOL [Hénaff et al.| (2021]) 38.8 58.5 42.2 35.0 95.9 38.1
Dense-CL [Wang et al.| (2021) 39.6 59.3 433 357 565 384

CAST |[Selvaraju et al.| (2020) (180K steps) 39.4  60.0 428 358 57.1 376
Self-EMD [Liu et al,| (2021a) (Uses BYOL) 39.8  60.0 43.4 - - -

MoCo-v2 + OAC (Ours) 39.7 60.1 434 36.0 57.3 38.8
Dense-CL + OAC (Ours) 40.4 60.4 44.0 36.6 57.9 39.5
MoCo-v2 + OAC (Using all losses)(Ours) ~ 40.7 60.9 43.9 36.9 58.3 39.6
BYOL + OAC (Using all losses)(Ours) 41.1 61.4 44.2 37.1 59.2 40.1

Dense-CL + OAC (Using all losses)(Ours) 41.4 61.5 44.7 37.5 59.5 40.4

Table 5: Object detection (first 3 columns) and Semantic Segmentation (last 3 columns) results on COCO
dataset. All SSL models have been pre-trained on COCO dataset and then finetuned on COCO. All other
methods are run for 90K, finetuning iterations. For any SSL method, we compare (BYOL, Moco-v2, Dense-CL)
adding Object-Aware-Cropping (OAC) cropping losses improves performance. We see further improvement
by adding the proposed rotation and localization losses(last 3 rows).

Model AP APsg AP
Supervised (ImageNet-pretraining) 56.8 83.2  63.7
MoCo-v2 Scene-Scene crop (Chen et al., [2020b) 51.5 79.4  56.4
MoCo-v2 - Obj-Obj+Dilate crop (§ = 0.1) (Ours) 53.4 80.1 59.1
MoCo-v2 - Obj-Obj+Dilate crop + Rotation (6 = 0.1) (Ours) 53.8 79.6 60.1
MoCo-v2 - Obj-Obj+Dilate crop + Object Localization (§ = 0.1) (Ours) 54.1 80.6 60.2
MoCo-v2 - Combined (§ = 0.1) OAC (Ours) 54.6 81.0 60.6

Table 6: Object detection results on VOC dataset (OHMS pre-training, using LOD proposals). All models
have been pre-trained on OHMS and then fine-tuned on VOC. We can see that all of our proposed components

improve upon the baseline scene scene crop and combining all of them improves upon the baseline by +3.1
mAP.

We evaluate the pre-trained models on classification (linear evaluation), object detection and semantic
segmentation. For VOC object detection, COCO object detection and COCO semantic segmentation, we
closely follow the common protocols listed in Detectron2 [Wu et al.| (2019)). For VOC object detection, we
evaluate on the Faster-RCNN(C4-backbone) Ren et al.| (2015)) detector on VOC trainval07+12 dataset
using the standard 1 x standard protocol. For COCO-Object detection and semantic segmentation, we fine
tune on the MaskRCNN detector (FPN-backbone) He et al.| (2018) on COCO train2017 split (118k images)
with the standard 1 x schedule, evaluating on the COCO 5k val2017 split. We compare to the state of
the art SSL methods, including Self-EMD [Liu et al.| (2021a), DetCon Hénaff et al.| (2021), BYOL Richemond
et al.| (2020]), DenseCL |[Wang et al.| (2021) and the default MoCo-v2 |Chen et al.| (2020b)).

Table 2] and Table [4] shows results on OHMS dataset. We can see that Obj-Obj+Dilate crops outperform
the baseline by 8.2 mAP, closing the gap between supervised learning and MoCo-v2 baseline by almost 50%.
In Obj-Obj+Dilate crops, a dilated object crop would potentially contain the entire object and more scene
information; therefore, the representation from the dilated object-crop contains complementary information
from both the object and the scene. We also show in Table [d an ablation with ground truth bounding
boxes being used to guide the object cropping. This performs marginally better than the use of LOD crop,
suggesting that a tight fit around the object is not necessary for improved representations.
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Description AP APy, APy, AP, AP, AP,
COCO: MoCo-v2 (Scene-Scene crop) 382 589 416 34.8 553 37.8
COCO: MoCo-v2 4+ OAC (Ours) 41.3 61.8 44.7 37.3 585 40.1
VOC: MoCo-v2 (Scene-Scene crop) 56.1  81.3  61.3 - - -
VOC: MoCo-v2 + OAC (Ours) 58.8 83.6 64.9 - - -

Table 7: Object detection (first 3 columns) and semantic segmentation (last 3 columns) results on COCO (first
2 rows) and VOC (last 2 rows). All SSL models have been pre-trained on complete Openlmages dataset(1.9
million images) for 75 epochs and then finetuned on COCO and VOC dataset.

Model ‘ Dataset ‘ Crops ‘ Obj-Obj+Dilate ‘ Scene-Scene ‘ mAP ‘
Supervised Full Openlmages - - - 74.0
MoCo-v2 Full Openlmages - - v’ 50.5
MoCo-v2 + OAC Full Openlmages v’ - - 62.1
Supervised Random Subset Openlmages - - - 74.0
MoCo-v2 Random Subset Openlmages - - v’ 50.5
MoCo-v2 + OAC | Random Subset Openlmages v’ - - 62.1

Table 8: Results on full Openlmages and random subset of Openlmages. On full Openlmages dataset the
difference between supervised learning and MoCo-v2 is still large, showing that random cropping is an issue
not just on OHMS but also on the full dataset.

Table [5| shows results on object detection and semantic segmentation for COCO (by pre-training on COCO
trainval2017 datasets and finetuning on COCO). We train MoCo-v2, BYOL and Dense-CL models. Our
MoCo-v2 Obj-Obj+Dilate cropping outperforms MoCo-v2 Scene-Scene baseline. Our proposed cropping is
agnostic to the pre-training SSL method; we show results by adding our approach to Dense-CL [Wang et al.
(2021). We also outperform the CAST model [Selvaraju et al.| (2020]) which also uses localized crops based on
saliency maps: our approach is simpler and performs better by around 1.4 mAP. Table 1 (appendix) shows
results of object detection on PASCAL-VOC. We pre-train on COCO and then fine-tune on VOC. OAC
cropping outperforms the MoCo-v2 baseline by 3.2 mAP and the BYOL baseline by 2.5 mAP. Improved
results on iconic datasets like Aircraft, Birds and Cars can be found in appendix (Table 4). Additional results
on varying number of proposals used can be found in appendix (Table 6).

In addition to small OHMS dataset we also show results on full Openlmages dataset. Table [7] shows results
on object detection and semantic segmentation for COCO and object-detection on VOC by pre-training
on full Openlmages dataset Kuznetsova et al.| (2020) (all 1.9 million images) for 75 epochs. We show
improved performance over the baseline on both object detection and semantic segmentation tasks by using
Obj-Obj+Dilate crops. Our proposed dilation method works not only for small multi-object datasets like
COCO but also for datasets like Openlmages and performs well under a transfer learning setup.

Results on ADE20K: We also show results on ADE20k following [Chen et al,| (2017). The baseline
MoCo-v2(COCO pre-training) gets 37.5 mloU, while we get 39.2 mIoU. Similar to VOC and COCO, we see
consistent performance improvement on ADE20k as well.

Results on Full Openlmages: We also report classification results on full Openlmages dataset i.e 1.7
million images and on 212k random subset in Table[8] For the full dataset pre-training has been done for 100
epochs and for the random subset the pre-training has been done for 200 epochs. We can see that on the full
dataset, the gap between supervised learning baseline and MoCo-v2 is still large, while the gap on random
subset is not as big.

Results on ImageNet: We also show improved results on ImageNet pre-training using object-aware
cropping (Table 8 appendix) and MoCo-v2. For object detection on VOC2007, we see an improvement of 1.0
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mAP; and a 0.5 mAP improvements for object detection on COCO. Our approach is thus adaptable to the
pre-training dataset and SSL algorithm.

Use of Multiple Projection Heads: The use of different projection heads for each view on Openlmages
classification gives us a boost of 1.1 mAP on Obj-Obj+Dilate crop. Pre-training on COCO and finetuning
on VOC dataset for object-detection task gives a boost of 0.4 mAP. Hence using multiple projection heads
results in a consistent improvement.

Varying Dilation Parameter: Table 3 (appendix) shows the effect of varying the dilation parameter. A
sweet spot exists at a moderate dilation value of § = 0.1 for COCO object detection.

6 Conclusion

We have introduced object-aware cropping, a simple, fast and highly effective data augmentation alternative
to random scene cropping. We conducted numerous experiments to show that object cropping significantly
improves performance over scene cropping for self-supervised pre-training for classification, object detection
and semantic segmentation on a number of datasets. The approach can be incorporated into most self-
supervised learning pipelines in a seamless manner.
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