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ABSTRACT

This paper presents FDNet: a Focal Decomposed Network for efficient, robust
and practical time series forecasting. We break away from conventional deep time
series forecasting formulas which obtain prediction results from universal feature
maps of input sequences. In contrary, FDNet neglects universal correlations of
input elements and only extracts fine-grained local features from input sequence.
We show that: (1) Deep time series forecasting with only fine-grained local fea-
ture maps of input sequence is feasible and competitive upon theoretical basis.
(2) By abandoning global coarse-grained feature maps, FDNet overcomes distri-
bution shift problem caused by changing local dynamics of time series which is
common in real-world applications. (3) FDNet is not dependent on any assump-
tion or priori knowledge of time series except basic auto-regression, which makes
it general and practical. Moreover, we propose focal input sequence decomposi-
tion method which decomposes input sequence in a focal manner for efficient and
robust forecasting when facing LSTI problem. FDNet achieves promising fore-
casting performances on five benchmark datasets and reduces prediction MSE by
38.4% on average compared with other seven SOTA forecasting baselines.

1 INTRODUCTION

Deep time series forecasting develops rapidly in recent years owing to more pressing demands Qu
et al. (2019); Alassafi et al. (2022); Kumar & Susan (2020); Shuvo et al. (2021) of handling com-
plicated non-stationary time series Kim et al. (2022); Woo et al. (2022b). At present, there exist
deep time series forecasting networks in diverse formulas, including networks based on RNN Lai
et al. (2018); Salinas et al. (2020)/CNN Wang et al. (2021); Liu et al. (2021)/Transformer Li et al.
(2019); Liu et al. (2022), networks based on end-to-end Chen et al. (2021); Madhusudhanan et al.
(2021); Cirstea et al. (2022a)/self-supervised Yue et al. (2022); Woo et al. (2022a) forecasting for-
mat, etc. However, they all obey similar forecasting procedures which can be simply divided into
3 steps as shown in Figure 1: (a) Embedding input sequence into latent space; (b) Feature extrac-
tion of input sequence; (c) Project input sequence latent representation into prediction sequence.
Within the second step, nearly all methods have mechanisms to extract universal correlation in-
formation of different input elements to seek universal/global features of input sequences such as
attention mechanism Zhou et al. (2021); Wu et al. (2021); Zhou et al. (2022), dilated convolution
Wang et al. (2021); Liu et al. (2021); Yue et al. (2022), etc. We call them Input Correlation Oriented
Mechanism(s) and ICOM for short. However, time series forecasting task is intended to pursue con-
nections of previous and future sequence instead of only concerning the correlation information
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Figure 1: An overview of the similar forecasting procedure of all deep time series forecasting mod-
els. It contains three steps and ICOM is employed in the second step if needed.

1



Under review as a conference paper at ICLR 2023

 Multi-step
Forecasting

 One-step
Forecasting

 Decomposed
Forecasting

Network

Network

Network

1st step

2st step

Network

 Correlations of prediction 
elements are neglected

 Universal correlations of 
input elements are neglected  prediction elements

 input elements

Figure 2: Connections and differences among three forecasting formulas. Correlations of predic-
tion elements are neglected by one-step forecasting formula while universal correlations of input
elements are further neglected by our proposed decomposed forecasting formula.

or universal features of previous sequences. So here comes the question: Does ICOM necessary
for time series forecasting? We analyze this question from three perspectives in the following Sec-
tion and show that network without ICOM is still capable of doing time series forecasting and even
can do better. Therefore, we propose FDNet, a Focal Decomposed time series forecasting network.
FDNet uses decomposed forecasting formula and its differences with existing multi-step Liu et al.
(2021); Zhou et al. (2021); Woo et al. (2022b) and one-step Lai et al. (2018); Salinas et al. (2020);
Wang et al. (2021) forecasting formulas are illustrated in Figure 2. Built upon one-step forecasting
formula where forecasting processes of prediction elements are decomposed, decomposed forecast-
ing formula further decomposes feature extraction processes of input elements. Hence, FDNet is
composed of basic MLPs to extract local fine-grained feature maps of input sequence and canonical
convolutions to stabilize feature extraction processes when handling outliers of input sequences.

Apart from the necessity of ICOM, currently there also exists another problem which is often ig-
nored, i.e., the Long Sequence Time series Input (LSTI) problem Stoller et al. (2020); Aicher et al.
(2019); Cao & Xu (2020). Though it is believed that networks which are able to extract long-term
dependencies, e.g., Time Series Forecasting Transformers (TSFTs) Zhou et al. (2022); Woo et al.
(2022b); Cirstea et al. (2022a), have already gotten rid of LSTI problem, Shen et al. (2022) points
out that even TSFTs will suffer performance drop if excessively prolonging input sequences over
a certain borderline as the problem of overfitting will overwhelm benefits of obtaining long-term
dependency. Obviously, a qualified forecasting network which can capture potential long-term de-
pendency shall at least not suffer performance drop if prolonging input sequence. Moreover, it is
unacceptably time-consuming and expensive if input sequences are too long for most of forecasting
networks, esp. TSFTs Li et al. (2019); Zhou et al. (2021); Madhusudhanan et al. (2021). Therefore,
a novel input sequence decomposition strategy which not only can deal with LSTI problem but also
can limit parameter explosion with the prolonging of input sequence is needed. Motivated from the
discovery of Shen et al. (2022) that later input sequence elements are more related to prediction
sequences and Focal Transformer Yang et al. (2021), we propose focal input sequence decomposi-
tion method to help networks deal with LSTI problem. Focal input sequence decomposition divides
input sequence into several consecutive sub-sequences in a focal manner according to their temporal
distances with prediction elements. Closer a sub-sequence is to prediction elements, shorter it is and
more feature extraction layers it has. As a result, connections of input and prediction elements will
become weaker and shallower as their temporal distances get farther. Moreover, with the prolonging
of input sequence, extra parameters of extra input sequence will also not suffer parameter explosion
in that they own fewer feature extraction layers.

Our main contributions are summarized as below:

1. We propose a novel decomposed forecasting formula. Built upon one-forward forecast-
ing formula, it decomposes both forecasting processes of prediction elements and feature
extraction processes of input elements.
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2. We propose FDNet which uses decomposed forecasting formula. It is only composed of
basic MLP and CNN, thus its architecture is very simple. However, FDNet is accurate,
efficient and robust in time series forecasting.

3. We propose focal input sequence decomposition method to deal with long-standing LSTI
problem. It gives forecasting networks capability of handling extremely long input se-
quences without suffering overfitting problem, performance drop and parameter explosion.

4. Extensive experiments over 5 benchmark datasets show that FDNet outperforms SOTA
forecasting methods by 37.1%/39.6% for multivariate/univariate forecasting on average.

5. Ablation study of focal input sequence decomposition method demonstrates that it is com-
petitive in dealing with LSTI problems. Moreover, it is general enough to couple with not
only decomposed forecasting formula but also other forecasting formulas owning ICOM.

2 NECESSITY ANALYSIS OF ICOM

Above all, we discuss whether a time series forecasting model is still established if removing its
ICOM from three perspectives to demonstrate the rationality of decomposed forecasting formula.

Time Series Forecasting Definition Time series forecasting is defined as the task of predicting
future time series through current and previous time series. Given input sequence {zi,1:t0}

N
i=1, the

task is to obtain the prediction sequence {zi,t0+1:T }Ni=1. N is the number of variates; t0 denotes the
length of input sequence; (T − t0) refers to the length of prediction sequence. It can be observed
that a time series forecasting model without ICOM is still able to do the forecasting task in that only
the projection of input sequence to prediction sequence, i.e., step 3 in Figure 1, is prerequisite. In
other words, ICOM is only a feature extraction technique of input sequence instead of a necessary
component of a forecasting network though it is widely used.

Network Expression Skills We compare expression skills of forecasting networks with/without
ICOM to check effects of ICOM. As a downstream task of time series analysis, time series forecast-
ing focuses on finding the correlation of input and prediction sequences, as mentioned in the former
perspective. As a result, expression skill here denotes the expression skill of prediction sequences
by input sequences. Expression skills of networks with/without ICOM have different dominant do-
mains in time series forecasting which are determined by whether universal feature map of input
sequence exists or is beneficial for forecasting. However, the existence of universal feature map
relies on the inductive bias or manual assumption of time series properties, esp. those networks
assume the season-trend decomposition of time series Wu et al. (2021); Zhou et al. (2022); Woo
et al. (2022b). Networks with ICOM will leverage from these manual assumptions if time series
dealt with really have supposed properties, otherwise they will suffer from severe forecasting per-
formance turbulence and over-fitting problem. On contrary, networks without ICOM do not leverage
from any assumptions of time series properties except basic auto-regression, making it less specific
but more general and robust, esp. when dealing with real-world time series shown as below.

Real-world Time Series Finally, we show that networks without ICOM are more practical in
dealing with real-world time series. Recent researches Kim et al. (2022); Woo et al. (2022b) have
discovered that non-stationary time series, which most of real-world time series are, have different
statistical properties or dynamics for local windows spanning different time stamps. We also ver-
ify this statement here by Kolmogorov-Smirnov Test Kolmogorov-Smirnov et al. (1933); Smirnov
(1939) on target variates of five real-world benchmark datasets. More details of this experiment are
shown in Appendix C. We randomly select 1000 sub-sequences of length 96 for each dataset and
separately calculate Kolmogorov-Smirnov statistics, i.e., P-values, of the first selected sub-sequence
and the rest. Results are shown in Table 1. Using a 0.05 P-value as margin statistics, it could be
observed that all five datasets have extremely different local dynamics as reject rates are all very
high and standard deviations of P-values are also very big compared with the margin value 0.05.
This means that universal representations for all local windows are formidable or even impossible
to extract for real-world time series. Therefore, networks with ICOM are easier to get stuck at lo-
cal optimum, thus their prediction performances are easily affected by random weight initialization.
When statistical properties or dynamics they extract are suitable for most of local windows, their
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Table 1: Results of KS test

Dataset ETTh1 ETTm2 ECL Traffic weather

Metrics Reject rate Mean Std Reject rate Mean Std Reject rate Mean Std Reject rate Mean Std Reject rate Mean Std

Values 98.2% 0.012 0.103 98.4% 0.009 0.089 66.4% 0.108 0.221 92.2% 0.031 0.118 86.0% 0.045 0.164
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Figure 3: An overview of the architecture of FDNet. It decomposes feature extraction processes of
different input elements and different variates. Its main components are N decomposed feature ex-
tractor layers (blue trapezoid), each containing four 2D convolutional layers. Weight Normalization
Salimans & Kingma (2016), Gelu activation Hendrycks & Gimpel (2016) and res-connection He
et al. (2016) are combined with each convolutional layer. Lin: the length of input sequence; Lout:
the length of prediction sequence; V : the number of variables; D: the dimension of embedding.

forecasting performances will be better in general, otherwise their forecasting performances will be
worse and unstable. Though some advanced methods have been proposed to alleviate this prob-
lem Kim et al. (2022); Shen et al. (2022); Cirstea et al. (2022a), they cannot completely solve this
problem in that they do not change the forecasting formula essentially. However, networks without
ICOM do not have such problems as they abandon the process of extracting global representations
of input sequence, which solves this problem from the source.

From above three perspectives of analysis, it can be inferred that networks without ICOM
are feasible, general, robust and practical so that decomposed forecasting formula is rational.
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Figure 4: The architec-
ture of decomposed fea-
ture extraction layer. B:
batch size; p: padding.

3 MODEL ARCHITECTURE

FDNet without ICOM The architecture of FDNet with decomposed
forecasting formula is mainly composed of MLPs. An overview of it is
shown in Figure 3. The whole network has (N+2) layers where the first
layer is the embedding layer, the last layer is the projection layer and the
rest are N decomposed feature extraction layers. Each feature extrac-
tion layer contains four convolutional layers. Detailed components of
decomposed feature extraction layer are shown in Figure 4. Odd layers
are 1 × 1 convolutional layers which has the same function with Per-
ceptron. We use 2D convolution, where two dimensions respectively
correspond to temporal dimension and variate dimension, instead of
commonly used 1D convolution. The kernel size of the variate dimen-
sion will always be one to make sure that element values of different
variates will not influence each other. This replacement is motivated
by variable-specific forecasting methods Cirstea et al. (2022a; 2021;
2022c); Bai et al. (2020) which treat sequences from different variables
as different instances. They point out that sequences of different vari-
ates will have different properties with each other in reality. However,
employing different projection matrices for different variables is very
expensive for forecasting conditions with hundreds of variates. FDNet
does not mix values of different variates but gives them the same weight matrices through specific 2D
convolution. This is a balance of variable-specific methods which completely splits different vari-
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Figure 5: The architecture of focal input sequence decomposition. Final representations of different
sub-sequences are from temporally close to far; short to long; deep to shallow.

ates and the opposite variable-agnostic methods Wu et al. (2021); Zhou et al. (2021); Kitaev et al.
(2020) which completely mixes different variates during forecasting. Even layers are 3 × 1 con-
volutional layers which is a little contradictory to the concept of decomposed forecasting formula.
However, pure element-wise feature extraction of input elements will make model susceptible to
outliers Ziegler et al. (2019); Wibawa et al. (2022). Convolutional layers used here only have stride
of 1 to enhance the locality and smooth anomalies. It is a tradeoff design between decomposed
forecasting formula and realistic forecasting situations with considerable outliers. Besides, several
convolutions will only make receptive fields of input elements contain few adjacent elements, which
still ensures the local fine-grained feature extraction of input sequences. Consequently, feature ex-
tractions of elements from different variables and time stamps are all decomposed in FDNet. Finally,
a FC layer is used to obtain separate prediction results for separate variates.

Focal Input Sequence Decomposition How focal input sequence decomposition works with fore-
casting networks is depicted in Figure 5. The latest sub-sequence of input sequence has the shortest
length but has the most feature extraction layers. When it goes to farther regions, decomposed sub-
sequence gets longer and feature map extracted from it gets shallower. Proportions of input sequence
comprised by different sub-sequences approximately form a geometric series with common ratio of
0.5. For instance, if input sequence is consecutively splitted into 4 parts by focal decompostion
method like Figure 5, then proportions will be {1/2, 1/4, 1/8, 1/8}. The latest sub-sequence takes the
proportion of 1/8 instead of 1/16 in order to make the sum of proportions be 1. Furthermore, feature
extractions of different sub-sequences and projections of them to output prediction sequence are all
mutually independent. As a result, focal input sequence decomposition method effectively allocates
complexity levels to different input sub-sequence independently according to their temporal dis-
tances with prediction sequence. Networks with focal input sequence decomposition method is now
able to deal with LSTI problem without gaining considerable parameters and suffering performance
drop with prolonging the input sequence length. When combining FDNet with focal input sequence
decomposition, decomposed feature extraction layers in Figure 3 will take formats in Figure 5.

FDNet vs other TCNs As components of FDNet contain convolutional layers, it is necessary
to present differences of FDNets with other Temporal Convolution Networks (TCNs) Wang et al.
(2021); Liu et al. (2021); Yue et al. (2022). The biggest one is that their usages of convolutions are
different. Previous works focus on modifying convolutional layers or combining them with different
other techniques such as representation learning Yue et al. (2022); Woo et al. (2022a), binary tree Liu
et al. (2021), etc, to obtain universal/global feature maps of input sequence. The most well-known
and widely used modification is causal dilated convolution Wang et al. (2021); Yue et al. (2022);
Woo et al. (2022a). In contrary, FDNet only uses the basic function of convolution, i.e., enhancing
locality of neural networks. Determined by its decomposed forecasting formula, FDNet does not
extract global/universal feature maps which is another big difference of it with other TCNs.

Focal with ICOMs Though focal input sequence decomposition method absolutely tallies with
decomposed forecasting formula, it does not mean that it cannot be applied to other forecasting
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formulas owning ICOM. When combining forecasting formulas
with ICOMs and focal input sequence decomposition, ICOMs can
be applied within each sub-sequence to extract universal features of
sub-sequences. We provide a possible application which is shown
in Figure 6 and call this Focal Universal Network (FUNet). Slightly
different from the application of focal input sequence decomposi-
tion in decomposed forecasting formula, farther sub-sequences have
more feature extraction layers. However, the core idea is invariant
in that feature extraction layers here have additional pooling op-
erations1 so that final representations of farther sub-sequences are
more global and coarse-grained. Pooling operations also reduce
the dimension of sequence length, which makes parameter increas-
ing rate controllable with the prolonging of input sequence. As a
result, focal input sequence decomposition can also efficiently ex-
tract hierarchical features maps of input sequence when combined
with other forecasting formulas with ICOM. Concrete architecture
of feature extraction layer in Figure 6 is shown in Figure 7. We
only use the canonical attention mechanism and maxpooling oper-
ation to perform experiments in later sections in order to emphasize
the strength of focal input sequence decomposition.

4 EXPERIMENT

Datasets and Baselines Extensive experiments are performed under five real-world datasets
{ETTh1, ETTm2, ECL, Traffic, weather} 2. More details of them are shown in Appendix D.1.

Seven state-of-the-art time series forecasting models {FEDformer Zhou et al. (2022), Pyraformer
Liu et al. (2022), ETSformer Woo et al. (2022b), Triformer Cirstea et al. (2022a), SCINet Liu et al.
(2021), TS2Vec Yue et al. (2022), CoST Woo et al. (2022a)} are chosen as baselines.

Main Results We perform multivariate/univariate forecasting experiments to compare the fore-
casting capability of FDNet with those of mentioned baselines under five datasets. The prediction
length group is {96, 192, 336, 720}, which follows Zhou et al. (2022); Woo et al. (2022b). Results of
seven baselines are borrowed from their papers if exist, other experiments are performed following
their default settings. Results of FEDformer are average results of its two versions {FEDformer-f,
FEDformer-w}. Input lengths of FDNet are all set to 672 and input sequences are all divided into 5
parts by focal decomposition method. All experiments are repeated 10 times and means of metrics
are used. Other settings are introduced in Appendix D.2. Multivariate/Univariate forecasting results

1Additional pooling operations contain convolutional layers with stride=2 and maxpooling.
2These five datasets were acquired at: https://drive.google.com/drive/folders/

1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy?usp=sharing
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Table 2: Results of multivariate forecasting

Methods FDNet FEDformer Pyraformer ETSformer Triformer SCINet TS2Vec CoST

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h 1
96 0.365 0.397 0.419 0.459 0.662 0.611 0.511 0.487 0.419 0.446 0.531 0.503 0.670 0.588 0.499 0.498
192 0.400 0.419 0.461 0.483 0.791 0.683 0.561 0.513 0.484 0.486 0.535 0.513 0.781 0.651 0.652 0.583
336 0.427 0.438 0.530 0.523 0.902 0.734 0.599 0.529 0.513 0.489 0.584 0.560 0.911 0.718 0.804 0.672
720 0.457 0.482 0.686 0.606 0.974 0.780 0.588 0.541 0.711 0.638 0.685 0.634 1.059 0.794 0.973 0.772

E
T

T
m

2

96 0.168 0.260 0.204 0.288 0.378 0.456 0.189 0.280 0.240 0.326 0.312 0.415 0.360 0.426 0.289 0.399
192 0.237 0.316 0.293 0.346 1.192 0.870 0.253 0.319 0.387 0.449 0.573 0.591 0.534 0.537 0.509 0.536
336 0.310 0.369 0.342 0.377 1.176 1.033 0.314 0.357 0.545 0.532 1.870 1.078 0.833 0.694 0.800 0.686
720 0.417 0.437 0.427 0.424 6.720 2.077 0.414 0.413 1.928 0.924 3.462 1.753 1.906 1.054 1.657 1.000

E
C

L

96 0.142 0.242 0.188 0.303 0.418 0.460 0.187 0.304 — — 0.210 0.333 0.336 0.412 0.163 0.267
192 0.155 0.254 0.198 0.312 0.408 0.454 0.199 0.315 — — 0.234 0.345 0.337 0.415 0.172 0.275
336 0.170 0.271 0.213 0.321 0.410 0.457 0.212 0.329 — — 0.227 0.340 0.350 0.426 0.196 0.296
720 0.204 0.301 0.239 0.349 0.407 0.456 0.233 0.345 — — 0.269 0.373 0.375 0.438 0.232 0.327

Tr
af

fic

96 0.402 0.276 0.575 0.358 0.938 0.490 0.607 0.392 — — 0.581 0.423 0.941 0.550 0.453 0.330
192 0.412 0.280 0.583 0.360 0.939 0.488 0.621 0.399 — — 0.595 0.429 — — 0.459 0.327
336 0.424 0.286 0.596 0.353 0.948 0.488 0.622 0.396 — — — — — — — —
720 0.466 0.306 0.611 0.375 — — 0.632 0.396 — — — — — — — —

w
ea

th
er

96 0.159 0.211 0.222 0.300 0.212 0.296 0.197 0.281 0.174 0.242 0.179 0.255 0.906 0.627 0.355 0.410
192 0.200 0.248 0.286 0.350 0.246 0.321 0.237 0.312 0.219 0.290 0.230 0.299 0.980 0.678 0.501 0.507
336 0.247 0.286 0.360 0.398 0.287 0.349 0.298 0.353 0.272 0.323 0.280 0.331 1.252 0.794 0.654 0.598
720 0.309 0.333 0.414 0.431 0.358 0.400 0.352 0.388 0.357 0.378 0.358 0.392 1.704 0.969 0.884 0.717

Table 3: Results of univariate forecasting

Methods FDNet FEDformer Pyraformer ETSformer Triformer SCINet TS2Vec CoST

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h 1

96 0.067 0.200 0.115 0.266 0.143 0.309 0.060 0.190 0.153 0.324 0.119 0.269 0.098 0.241 0.080 0.214
192 0.084 0.226 0.137 0.292 0.159 0.322 0.081 0.221 0.177 0.347 0.129 0.280 0.153 0.302 0.104 0.247
336 0.099 0.248 0.142 0.295 0.196 0.372 0.098 0.248 0.169 0.336 0.160 0.322 0.169 0.326 0.121 0.268
720 0.167 0.331 0.144 0.302 0.230 0.410 0.119 0.282 0.271 0.453 0.243 0.414 0.164 0.327 0.302 0.485

E
T

T
m

2

96 0.069 0.196 0.068 0.198 0.461 0.527 0.080 0.213 0.083 0.221 0.076 0.210 0.088 0.224 0.076 0.203
192 0.099 0.241 0.106 0.249 0.781 0.683 0.110 0.252 0.124 0.271 0.102 0.248 0.122 0.271 0.112 0.254
336 0.129 0.277 0.139 0.290 1.372 0.913 0.136 0.283 0.157 0.310 0.129 0.280 0.158 0.314 0.145 0.295
720 0.173 0.325 0.199 0.347 5.780 1.878 0.185 0.333 0.269 0.408 0.176 0.328 0.200 0.357 0.216 0.348

E
C

L

96 0.203 0.313 0.258 0.374 0.347 0.432 0.726 0.656 0.358 0.424 0.312 0.411 0.315 0.419 0.208 0.329
192 0.236 0.337 0.299 0.398 0.436 0.493 0.667 0.625 0.360 0.433 0.314 0.416 0.333 0.430 0.233 0.348
336 0.267 0.362 0.354 0.438 0.493 0.526 0.770 0.677 0.399 0.456 0.332 0.427 0.347 0.440 0.289 0.375
720 0.305 0.409 0.435 0.493 0.614 0.605 0.766 0.674 0.446 0.499 0.364 0.451 0.350 0.447 0.327 0.419

Tr
af

fic

96 0.134 0.222 0.189 0.288 0.501 0.512 0.243 0.355 0.285 0.367 0.217 0.330 0.357 0.431 0.156 0.243
192 0.135 0.224 0.189 0.289 0.541 0.532 0.241 0.352 0.284 0.363 0.299 0.397 0.359 0.433 0.158 0.245
336 0.135 0.227 0.199 0.295 0.557 0.541 0.240 0.353 0.308 0.383 0.259 0.365 0.368 0.440 0.163 0.252
720 0.162 0.259 0.216 0.315 0.596 0.561 0.252 0.362 0.405 0.457 0.278 0.379 0.380 0.447 0.182 0.268

w
ea

th
er

96 0.002 0.030 0.005 0.054 0.006 0.061 0.008 0.078 0.004 0.050 0.008 0.068 0.015 0.089 0.010 0.077
192 0.002 0.034 0.006 0.061 0.007 0.068 0.006 0.065 0.006 0.062 0.008 0.069 0.010 0.074 0.009 0.073
336 0.002 0.033 0.006 0.061 0.007 0.070 0.006 0.065 0.006 0.063 0.008 0.070 0.009 0.070 0.009 0.073
720 0.003 0.037 0.010 0.075 0.007 0.072 0.005 0.062 0.007 0.070 0.008 0.071 0.011 0.078 0.009 0.075

are shown in Table 2/3. The lowest MSE/MAE are highlighted in bold and italic. ‘—’ denotes that
models fail for out-of-memory (24GB) even when batch size = 1.

It could be observed from Table 2/3 that FDNet surpasses other baselines in most of situations. When
compared with FEDformer/Pyarformer/ETSformer/Triformer/SCINet/TS2Vec/CoST, FDNet yields
21.7%/51.6%/19.7%/26.1%/34.4%/61.4%/39.4% relative MSE reduction during multivariate fore-
casting and yields 29.7%/64.5%/33.3%/44.5%/36.3%/42.7%/26.2% relative MSE reduction during
univariate forecasting in general, which shows the superior forecasting capability of FDNet.

Universal/Local Feature Extraction Methods Other seven baselines all own ICOMs and intend
to extract universal feature maps of input sequence, however their general performances are worse
than that of FDNet extracting only local features in Table 2/3. It empirically demonstrates that
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Table 4: Results of CoST with different kernel sizes during weather univariate forecasting

Pred 96 192 336 720

Kernel size MSE MAE Rank MSE MAE Rank MSE MAE Rank MSE MAE Rank

{1, 2, 4, 8, 16, 32, 64, 128} 0.010 0.077 7 0.009 0.073 7 0.009 0.073 7 0.009 0.075 6
{1, 2, 4} 0.006 0.061 5 0.006 0.061 3 0.006 0.062 5 0.007 0.065 3

Table 5: MSE of ablation study on focal decomposition method and usage of convolutions

Focal Traffic (Univariate) Traffic (Multivariate)

Methods 96 192 336 720 96 192 336 720

Initial 0.139 0.138 0.149 0.173 0.418 0.430 0.442 0.473
Focal 0.133 0.135 0.135 0.162 0.402 0.412 0.424 0.466

Pyramid 0.134 0.135 0.136 0.162 0.418 0.430 0.441 0.476
Patch 0.138 0.138 0.142 0.165 0.406 0.415 0.428 0.470

Conv weather (Univariate) weather (Multivariate)

Methods 96 192 336 720 96 192 336 720

Conv 1.8e-3 2.2e-3 2.1e-3 2.6e-3 0.159 0.200 0.247 0.309
MLP 2.4e-3 2.5e-3 2.7e-3 3.0e-3 0.160 0.201 0.248 0.310

decomposed forecasting formula is more suitable for real-world forecasting conditions. In other
words, local feature extraction method seems more practical than the universal one in time series
forecasting networks. Specially, CoST Woo et al. (2022a) extracts global-local feature maps of
input sequence through a mixture of experts owning different convolution kernel sizes within {1,
2, 4, 8, 16, 32, 64, 128}. However, its performance is still worse than that of FDNet, indicating
that universal feature maps might bring pernicious effects. To validate this statement, we use a
smaller convolution group within {1, 2, 4} and remove its dilated convolution architecture to redo
univariate forecasting experiment under weather dataset. Results are shown in Table 4. It could be
observed that the forecasting accuracy of CoST rises a lot and its forecasting rank rises among all
eight methods after our transformation. This result once more demonstrates that extracting local
fine-grained features is more practical and useful for time series forecasting task.

Ablation Study We perform ablation study on focal decomposition method and 3 × 1 convolu-
tional layer used in decomposed feature extraction layer to verify their corresponding functions.

As for focal decomposition method, four ablation variants are tested under Traffic dataset: (1) Initial:
FDNet without any decomposition method; (2) Focal: FDNet with focal decomposition method;
(3) Pyramid: FDNet with pyramid decomposition method Shen et al. (2022); (4) Patch: FDNet
with patch decomposition method Cirstea et al. (2022a). Number of pyramids/patches are set as
3/4 following their default settings. Experiment results are shown in the upper part of Table 5.
It could be observed that all three decomposition methods improve forecasting performances of
FDNet. However, focal decomposition method behaves better in every single experiment compared
with other two decomposition methods, showing that it is more competitive in forecasting tasks.

As for the usage of convolutions, two variants are tested under weather dataset: (1) Conv: Initial
FDNet in Figure 3; (2) MLP: FDNet with decomposed feature extractor layers containing only
1× 1 convolutional layers. Experiment results are shown in the bottom part of Table 5. It could be
observed that forecasting performances of FDNet drop obviously without the usage of convolutions,
demonstrating the function of convolutions used in decomposed feature extraction layers.

Focal with ICOM We perform experiments on FUNet shown in Figure 6 to validate that focal
input sequence decomposition method with ICOM can compensate the shortcoming of FDNet when
global feature maps exist and are beneficial. Experiments are conducted under univariate forecasting
of ETTh1 where FDNet is not so competitive with some selected baselines, e.g., ETSformer and
FEDformer. Results are shown in Table 6. Bold and italic MSEs mean that they are lower than
those of all other baselines in Table 2. It shows that under those rare occasions where universal
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Table 6: MSE of FUNet under ETTh1

Methods ETTh1 (Univariate) ETTh1 (Multivariate)

96 192 336 720 96 192 336 720

FUNet 0.059 0.071 0.088 0.112 0.402 0.458 0.501 0.582
FDNet 0.067 0.084 0.099 0.167 0.365 0.400 0.427 0.457

feature maps are needed, focal input sequence de-
composed method could transform FDNet to FU-
Net to outperform those SOTA forecasting meth-
ods with elaborately designed ICOMs even only
using the most basic ICOMs including canonical
attention and convolution. We additionally sup-
ply multivariate forecasting results of FUNet in
Table 6. MSEs with underline mean that they are
higher than MSEs of FDNet but lower than MSEs
of other baselines in Table 3. It could be inferred that though FUNet performs better than other base-
lines, it fails to challenge FDNet in general. This once more illustrates that local feature extraction
methods are more practical and general for time series forecasting and the outstanding forecasting
capability of FDNet architecture regardless of armed with ICOM or not.

LSTI Problem Handling Capability To verify that FDNet is more accurate, efficient and ro-
bust in handling LSTI problems. We conduct experiments under univariate forecasting of ECL.
FEDformer-w and ETSformer are chosen as baselines due to their generally outstanding perfor-
mances in Table 2/3. Input sequence lengths are chosen within {96, 672, 1344} and prediction
sequence is set to 96. Input sequences of FDNet are respectively divided into {4, 5, 6} parts by focal
decomposition method. Each sub-experiment is done for 20 times. Means and standard deviations
(Stds) of all forecasting MSEs are shown in Table 7, together with their GPU memory occupations
(GPU), average training time per epoch (ATPE) and total inference time (TIT). Best results are
highlighted in bold and italic. It could be observed from Table 7 that FDNet performs worse than
FEDformer-w when it comes to the shortest input sequence condition. However, it performs better
than other two baselines in the rest of conditions proving that FDNet is better at handling LSTI prob-
lem and more accurate. Specially, forecasting MSEs of FDNet with input sequence lengths 672 or
1344 are only slightly different while MSE of FEDformer-w grows apparently when input sequence
length changes from 672 to 1344. Moreover, Stds of FDNet are much lower than those of other two
baselines in any forecasting condition, demonstrating the robustness of FDNet. What’s more, except
the shortest input sequence condition where ATPE of FDNet is bigger than that of ETSformer, all
GPU/ATPE/TIT of FDNet is smaller than those of other baselines, illustrating better computation
efficiency of FDNet. In conclusion, FDNet is a more accurate, efficient and robust method in dealing
with LSTI problems even compared with those state-of-the-art.

Table 7: Results on LSTI problem handling capability under ETTh1

Input length Methods Mean Std GPU/MB ATPE/s TIT/s

96
FDNet 0.391 1.0e-3 1516 35.217 1.986

ETSformer 0.726 1.7e-3 2252 26.317 3.381
FEDformer-w 0.268 1.8e-3 6445 444.031 19.483

672
FDNet 0.204 1.3e-3 1535 65.262 4.991

ETSformer 0.891 2.0e-3 3506 68.338 5.736
FEDformer-w 0.294 1.9e-3 7885 583.146 25.572

1344
FDNet 0.209 1.5e-3 1551 84.495 6.579

ETSformer 0.893 3.9e-3 4954 92.695 9.006
FEDformer-w 0.323 11e-3 10059 697.448 30.584

5 CONCLUSION

In this paper, we propose FDNet whose core ideas contain decomposed forecasting formula and
focal input sequence decomposition method. Built upon decomposed forecasting formula, FDNet
is designed to only extract local fine-grained feature maps of input sequence, which is proved to be
effective and feasible both theoretically and empirically. In addition, focal input sequence decom-
position method solves long-standing LSTI problem by consecutively splitting and processing input
sequence in a focal manner. Extensive experiments demonstrate that FDNet is simple but accurate,
efficient, robust and practical for real-world time series forecasting.
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A MEANINGS OF ABBREVIATIONS AND PHRASES

Meanings of mentioned abbreviations and phrases are shown in Table 8.

Table 8: Meanings of abbreviations and phrases

Abbr./Phrase Meaning

LSTI Long Sequence Time series Input
ICOM Input Correlation Oriented Mechanism

B RELATED WORKS

Deep Time Series Forecasting Time series forecasting has wide application in various domains:
e.g., electricity prediction Khan et al. (2019), traffic forecasting Shuvo et al. (2021); Cirstea et al.
(2022b); Qu et al. (2019), sensor-based recognition Ahmad et al. (2019) and COVID-19 pandemic
analysis Kumar & Susan (2020); Zhao et al. (2021). In order to handling long-term and complicated
time series, machine learning techniques including neural networks are applied to time series fore-
casting gradually dominant the research direction. Time series forecasting networks are normally
categorized by their network architectures (RNN Salinas et al. (2020); Lai et al. (2018), CNN Wang
et al. (2021); Liu et al. (2021), Transformer Wu et al. (2021); Zhou et al. (2021); Woo et al. (2022b),
GNN Cao et al. (2020); Wu et al. (2020), etc.) or learning algorithm (supervised end-to-end Liu
et al. (2022); Zhou et al. (2022) or self-supervised representation learning Yue et al. (2022); Woo
et al. (2022a)). However, we categorize them by three different criteria as shown below to discuss
time series forecasting from other perspectives.

Multi-/One-step Forecasting Formula It is believed that time series forecasting starts from multi-
step forecasting. Traditional models like ARIMA Box & Jenkins (1968); Box et al. (2015), State
Space Estimation Durbin & Koopman (2012), ES Hyndman et al. (2008) are all multi-step forecast-
ing models. Given input sequence {zi,1:t0}Ni=1, the prediction sequence {zi,t0+1:T }Ni=1 is obtained
by rolling forecasting strategy which predicts the prediction sequence through (T − t0) steps. How-
ever, in virtue of the end-to-end property of neural network, deep time series forecasting network
has another option, i.e., one-step forecasting formula Zhou et al. (2021); Liu et al. (2021); Wu et al.
(2021). Given input sequence {zi,1:t0}Ni=1, the prediction sequence {zi,t0+1:T }Ni=1 is obtained by
one-forward strategy which predicts the entire prediction sequence in one step. Comparing these
two forecasting formulas, it can be deduced that one-step forecasting formula is more efficient in
that it only needs one forward propagation process to obtain the entire prediction sequence. So
one-step forecasting formula is also named one-forward forecasting formula. Moreover, inputs of
one-step forecasting models are all known and definite while inputs of multi-step forecasting mod-
els are partially unknown and inferred from known inputs and models themselves. It is obvious that
one-step forecasting models theoretically suffer slighter error accumulation so that one-step fore-
casting formula is more preferred and common in recent researches Lai et al. (2018); Zhou et al.
(2022); Liu et al. (2021). Here we make specific explanations for one-step Time Series Forecast-
ing Transformer (TSFT) Wu et al. (2021); Zhou et al. (2021); Li et al. (2019) as they own masked
self-attention mechanisms which seems like inferring prediction elements from themselves and con-
tradicts to our saying that one-step forecasting formula makes inference processes of different pre-
diction elements decomposed and independent from each other. However, notice that inputs of their
mask self-attention mechanisms are either zero-padded units Zhou et al. (2021); Li et al. (2019) or
decomposed parts of input sequences Zhou et al. (2022); Woo et al. (2022b). Neither of these inputs
can reflect essential relationships insider prediction sequences. Some state-of-the-art TSFTs Zhou
et al. (2022); Woo et al. (2022b) also notice this phenomenon, thus they do not employ masked self-
attention mechanisms within their networks but still achieve promising forecasting performances.

Variable-agnostic/-specific Forecasting Formula Multivariate forecasting starts to be practical
after the involvement of machine learning. It has two multivariate oriented forecasting formulas cat-
egorized by Cirstea et al. (2022a), i.e., Variable-agnostic and Variable-specific forecasting formula.
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Models with variable-agnostic forecasting formula Wu et al. (2021); Zhou et al. (2021); Kitaev et al.
(2020) have the same projection matrices for all variables while models with variable-specific fore-
casting formula Cirstea et al. (2021; 2022c); Bai et al. (2020) have distinct (decomposed) projection
matrices for them. In other words, variable-agnostic formula assumes that variables are closely re-
lated to each other and have the same statistical properties and variable-specific formula assumes the
opposite. RTNet Shen et al. (2022) also points out that variable-agnostic formula only works if we
have priori knowledge that variables are closely relevant throughout the whole time span otherwise
this formula will make models suffer heavy over-fitting problem. Consequently, experiment results
of variable-specific models Shen et al. (2022); Cirstea et al. (2022a) show that variable-specific
formula behaves better in most of benchmark datasets/real-world applications.

Compound/Decomposed Forecasting Formula Time series forecasting networks can also be cat-
egorized by their input sequence feature extraction methods. Those methods which own ICOM
belong to compound forecasting methods. Traditional forecasting methods Box & Jenkins (1968);
Box et al. (2015); Durbin & Koopman (2012) and most of deep time series forecasting networks
are compound forecasting methods. For instance, classical RNN forecasting networks including
DeepAR Salinas et al. (2020), LSTNet Lai et al. (2018), CNN forecasting networks including TCN
Wang et al. (2021), TS2Vec Yue et al. (2022) and TSFTs including Informer Zhou et al. (2021),
LogTrans Li et al. (2019) are all compound forecasting methods. They may own hierarchical fea-
ture extraction mechanisms or pyramid networks which only extract feature maps from partial input
sequence, i.e., ICOMs. However, they all have partial networks extracting universal feature maps
from the whole input sequence. Recently, some researches point out that decomposing input se-
quence into season and trend Zhou et al. (2022) or even season, level and growth Woo et al. (2022b)
gives networks more competitive forecasting performances. Obviously, these researches propose
their methods based on inductive bias that time series can be decomposed like this, which means
that their decompositions are beneficial under limited occasions. At least, non-stationary time se-
ries which are more common in real-world applications cannot easily be described like this so that
these methods are not very practical. We have analyzed above statement in Section 2 of the main
text. Moreover, their decompositions do not get rid of universal coarse-grained feature extraction.
Though season and trend terms are decomposed from time series, they are still universal represen-
tations of specific properties of time series, i.e., these kinds of networks still own ICOM and belong
to compound forecasting methods. As a result, a practical decomposition implementation form not
limited in season-trend decompositions is needed, which is the motivation of this paper.

C SUPPLEMENTARY OF KS TEST

To examine whether extracting universal representations is possible for time series forecasting mod-
els under real-world time series forecasting tasks, we introduce Kolmogorov-Smirnov (KS) Test.

KS test is a nonparametric test to depict agreements between distributions of each two sequences.
In essence, KS test describes the probability that they come from the same (but unknown) probabil-
ity distribution. The Kolmogorov–Smirnov statistic measures a distance D between the empirical
distribution function of them and the value of D is calculated as Equation 1.

D = sup
x

|F ({xi}m+m1
i=m )− F ({xi}n+n1

i=n )| (1)

Where {xi}m+m1
i=m /{xi}n+n1

i=n refers to the sequence within timespan [m,m+m1]/[n, n+ n1], F (·)
is the empirical distribution function and sup denotes the supremum function. For large samples, the
null hypothesis is rejected at level α if the calculated value D satisfies Inequality 2 so that P-value
is smaller than level α as Equation 3 shows. It means that if P-value is small, the null hypothesis is
more likely to be rejected, i.e., these two distributions are more likely to be different.

D >

√
−1

2
ln

α

2
×

√
m1 + n1

m1 · n1
(2)

P − value = 2e−2D2 m1·n1
m1+n1 < α (3)
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Figure 8: Distributions of two instances when experimenting with ETTm2/ECL. Distributions of
target and these two instances are quite different esp. in ETTm2.

It can be deduced that if there exist universal properties of input sequences, statistical properties or
dynamics of local input sequences will be similar to each other so that their P-values will be bigger
compared with the margin P-value.

We perform KS test under five real-world time series benchmark datasets in Section 2 in the main
text. We randomly select 1000 sub-sequences of length 96 for each dataset and separately calculate
Kolmogorov-Smirnov statistics, i.e., P-values, of the first selected sub-sequence and the rest. There-
fore, m1, n1 in Equation 1, 2 are all 96 and we take 0.05 as the margin P-value. Results in Table
1 of the main text has shown that universal representations for all local windows are formidable
or even impossible to extract. To further examine this, we visualize distributions of two instances
when experimenting with ETTm2/ECL, which own highest/lowest reject rate, respectively as shown
in Figure 8. Curves in Figure 8 clearly illustrate that different sub-sequences of both two datasets
have different statistical properties or dynamics, which is identical to our aforementioned discovery
that extracting universal representations is not necessary for time series forecasting models. Notice
that even though the second instance of ECL owns P-value over the margin 0.05, distributions of
these two curves have distinct differences.

D SUPPLEMENTARY EXPERIMENT

D.1 BRIEF INTRODUCTIONS OF DATASETS

ETT (Electricity Transformer Temperature) dataset, which consists of two versions subsets: 1-
hour-level datasets {ETTh1, ETTh2} and 15-min-level datasets {ETTm1, ETTm2}, is composed of
2-years data of two separated electric stations in China. ‘OT’ (oil temperature) is the target value.
For averting unnecessary experiments, we perform experiments on ETTh1, a 1-hour-level subset,
and ETTm2, one 15-min-level subset, among these four subsets. The train/val/test is 12/4/4 months.

ECL (Electricity Consuming Load) dataset contains the electricity consumption (Kwh) of 321
clients lasting for almost 2 years. It is converted into 2 years by informer Zhou et al. (2021).
‘MT 321’ is set as the target value following the settings of FEDformer Zhou et al. (2022), ETS-
former Woo et al. (2022b), etc. The train/val/test is 70%/10%/20%.

Traffic dataset consists of road occupation rates in San Francisco Bay area freeways lasting for
two years. It is collected hourly. The target is ‘Sensor 861’ and the train/val/test is 70%/10%/20%.

weather dataset is a 10-min-level dataset which describes 21 meteorological indicators in Ger-
many during 2020. The target variate name is set to ‘OT’ following FEDformer,ETSformer Zhou
et al. (2022); Woo et al. (2022b). The train/val/test is 70%/10%/20%.
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Exchange 3 consists of daily exchange rates in eight countries from 1990 to 2016. The target is
set to ‘Singapore’ and the train/val/test is 70%/10%/20%.

Numeral details of these datasets are shown in Table 9.

Table 9: Details of six datasets

Dataset Size Dimension Frequency

ETTh1 17420 7 1h
ETTm2 69680 7 15min

ECL 26304 321 1h
Traffic 17544 862 1h

weather 52696 21 10min
Exchange 7588 8 1day

D.2 EXPERIMENT DETAILS

Hyper-parameter/Setting details of FDNet are shown in Table 10. MSE (
∑n

i=1 (xi − x̂i)
2
/n) and

MAE (
∑n

i=1 |xi − x̂i|/n) are chosen as metrics. All experiments are repeated 10 times and means
of metrics are used. Results of other baselines are directly borrowed from their papers if exist. We
do their rest experiments according to their default settings.

Table 10: Details of hyper-parameters/settings

Hyper-parameters/Settings Values/Mechanisms

Input length 672
The number of input sub-sequences divided by

focal input sequence decomposition method 5

The number of decomposed feature extraction layers 5
Embedding dimension 8

The kernel size of Conv layers {1× 1 (odd), 3× 1 (even)}
Standardization Z-score

Loss function of the second stage MSE
Optimizer Adam
Activation Gelu
Dropout 0.1

Learning rate 1e-4
Learning rate decreasing rate Half per epoch

Batch size 16
Random seed 4321 (if used)

Platform Python 3.8.0 Pytorch 1.11.0

Device A single NVIDIA GeForce
RTX 3090 24GB GPU

D.3 SUPPLEMENTARY OF EXPERIMENT RESULTS

Main Results under Exchange We extra perform multivariate/univariate forecasting experiments
under Exchange dataset for more comprehensive comparison and results are shown in Table 11/12.

3It was acquired at: https://drive.google.com/drive/folders/1ZOYpTUa82_
jCcxIdTmyr0LXQfvaM9vIy?usp=sharing
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The lowest MSE/MAE are highlighted in bold and italic. It could be observed that forecasting per-
formances of ETSformer and CoST could challenge that of FDNet over half of situations under
Exchange dataset. However, when compared with ETSformer/CoST, FDNet yields 16.4%/41.7%
relative MSE reduction during univariate forecasting and yields 28.6%/22.1% relative MSE reduc-
tion during univariate forecasting in general under all six datasets. It illustrates that FDNet is more
general when compared with ETSformer/CoST.

Table 11: Results of multivariate forecasting under Exchange

Methods FDNet FEDformer-f FEDformer-w Pyraformer ETSformer Triformer SCINet TS2Vec CoST

Pred MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.095 0.226 0.148 0.278 0.139 0.276 1.489 1.018 0.085 0.204 0.330 0.406 0.221 0.365 0.184 0.315 0.259 0.383
192 0.184 0.322 0.271 0.380 0.256 0.369 1.642 1.075 0.182 0.303 0.750 0.611 0.323 0.442 0.373 0.452 0.467 0.514
336 0.381 0.465 0.460 0.500 0.426 0.464 1.744 1.107 0.348 0.428 1.776 0.966 0.661 0.564 0.666 0.612 0.853 0.688
720 0.806 0.679 1.195 0.841 1.090 0.800 2.080 1.197 1.025 0.774 1.844 0.986 2.691 1.320 2.941 1.313 1.124 0.879

Table 12: Results of univariate forecasting under Exchange

Methods FDNet FEDformer-f FEDformer-w Pyraformer ETSformer Triformer SCINet TS2Vec CoST

Pred MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.109 0.264 0.154 0.304 0.131 0.284 0.627 0.639 0.100 0.252 0.393 0.505 0.209 0.366 0.184 0.315 0.107 0.263
192 0.225 0.388 0.286 0.420 0.277 0.420 1.010 0.820 0.226 0.353 1.255 0.927 0.347 0.475 0.373 0.452 0.225 0.381
336 0.439 0.525 0.511 0.555 0.426 0.511 1.227 0.915 0.434 0.500 2.025 1.194 0.575 0.604 0.666 0.612 0.431 0.512
720 0.702 0.655 1.301 0.879 1.162 0.832 1.742 1.134 0.990 0.821 2.074 1.105 1.378 0.939 2.941 1.313 0.778 0.682

Full Results of FEDformer Here we present full results of FEDformer in its two ver-
sions: {FEDformer-f using Fourier basis, FEDformer-w using Wavelet basis}. Their multivari-
ate/univariate forecasting results are shown in 13/14. Results with underline mean that they are
lower than corresponding results of FDNet. Obviously, only in one condition which is the univaritae
forecasting under ETTm2 with the prediction length of 96, FEDformer-w could outperform FDNet.

Table 13: Results of FEDformer during multivariate forecasting

Formats Metrics
ETTh1 ETTm2 ECL Traffic Weather

96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Fourier
MSE 0.415 0.474 0.535 0.680 0.203 0.269 0.325 0.421 0.193 0.201 0.214 0.246 0.587 0.604 0.621 0.626 0.217 0.276 0.339 0.403
MAE 0.453 0.493 0.524 0.593 0.287 0.328 0.366 0.415 0.308 0.315 0.329 0.355 0.366 0.373 0.383 0.382 0.296 0.336 0.380 0.428

Wavelet
MSE 0.423 0.448 0.525 0.691 0.204 0.316 0.359 0.433 0.183 0.195 0.212 0.231 0.562 0.562 0.570 0.596 0.227 0.295 0.381 0.424
MAE 0.464 0.473 0.522 0.618 0.288 0.363 0.387 0.432 0.297 0.308 0.313 0.343 0.349 0.346 0.323 0.368 0.304 0.363 0.416 0.434

Table 14: Results of FEDformer during univariate forecasting

Formats Metrics
ETTh1 ETTm2 ECL Traffic Weather

96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Fourier
MSE 0.103 0.129 0.132 0.134 0.072 0.102 0.130 0.178 0.253 0.282 0.346 0.422 0.207 0.205 0.219 0.244 0.006 0.006 0.004 0.006
MAE 0.252 0.285 0.291 0.293 0.206 0.245 0.279 0.325 0.370 0.386 0.431 0.484 0.312 0.312 0.323 0.344 0.062 0.062 0.050 0.059

Wavelet
MSE 0.126 0.144 0.151 0.154 0.063 0.110 0.147 0.219 0.262 0.316 0.361 0.448 0.170 0.173 0.178 0.187 0.004 0.005 0.008 0.015
MAE 0.279 0.298 0.299 0.311 0.189 0.252 0.301 0.368 0.378 0.410 0.445 0.501 0.263 0.265 0.266 0.286 0.046 0.059 0.072 0.091

MAE of Ablation Study Additional MAEs of ablation study results are shown in Table 15. The
lowest MAE is highlighted in bold and italic.
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MAE of FUNet Additional MAEs of FUNet under ETTh1 are shown in Table 16. Bold and italic
MAEs mean that they are lower than those of all other selected baselines in Table 2/3. MAEs with
underline in the right part mean that they are higher than corresponding MAEs of FDNet but lower
than those of other selected baselines.

LSTI Problem Handling Capability Additional MAEs on LSTI problem handling capability
under ETTh1 is shown in Table 17.

It could be observed from table 15/16/17 that conclusions and discovery drawn in the main text will
not change though considering both MSE and MAE.

Table 15: MAE of ablation study

Focal Traffic (Univariate) Traffic (Multivariate)

Methods 96 192 336 720 96 192 336 720

Initial 0.229 0.228 0.241 0.260 0.288 0.293 0.300 0.317
Focal 0.222 0.224 0.227 0.259 0.276 0.280 0.286 0.306

Pyramid 0.215 0.218 0.225 0.256 0.279 0.284 0.288 0.306
Patch 0.230 0.228 0.235 0.261 0.279 0.282 0.288 0.308

Conv weather (Univariate) weather (Multivariate)

Methods 96 192 336 720 96 192 336 720

Conv 0.030 0.034 0.033 0.037 0.211 0.248 0.286 0.333
MLP 0.036 0.037 0.039 0.040 0.213 0.248 0.287 0.334

Table 16: MAE of FUNet under ETTh1

Methods ETTh1 (Univariate) ETTh1 (Multivariate)

96 192 336 720 96 192 336 720

FUNet 0.190 0.202 0.230 0.263 0.416 0.448 0.473 0.550
FDNet 0.200 0.226 0.248 0.331 0.397 0.419 0.438 0.482

Table 17: MAE on LSTI problem handling capability under ETTh1

Methods FDNet ETSformer FEDformer-w

Input length Mean Std Mean Std Mean Std

96 0.453 1.1e-3 0.656 2.8e-3 0.377 1.3e-3
672 0.314 1.2e-3 0.765 3.0e-3 0.408 1.2e-3

1344 0.324 1.0e-3 0.770 3.9e-3 0.432 9.4e-3

D.4 VISUALIZATION OF FINAL REPRESENTATION BY T-SNE

FDNet with focal input sequence decomposition method have two expectations for final representa-
tions of each input sequence. The first one aims to independently extract representations of different
input sub-sequences. It means that final representations of different input sub-sequences shall be
distant from each other. Moreover, when the sub-sequence is closer to prediction sequence, the
number of feature extraction layers increases so that the number of convolutional layers increases.
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Figure 9: The visualization of final representations of elements in an input sequence by T-SNE under
ETTm2 univariate forecasting. The input sequence length is set to 672.

It means that if the sub-sequence is closer to prediction sequence, final representations of its input
elements shall be relatively closed to each other.

To verify whether these are established in real-world applications, we visualize final representations
of elements in an input sequence with length of 672 via T-SNE under ETTm2 univariate forecasting
as Figure 9 shows. This input sequence is randomly selected in the test dataset and it is divided
into 5 sub-sequences by focal input sequence decomposition method. The prediction length is set to
96. Each data point in Figure 9 denotes the final representation of corresponding input element and
its label Ri refers to the i-th input sub-sequence it belongs to. The number of label increases with
temporal distances between the input sequence it represents and prediction elements getting farther.

It is obvious from Figure 9 that data points with different colors are distant from each other. It
illustrates that feature maps of different sub-sequences are independent with each other, which fits
the first expectation. Meanwhile, data points of certain sub-sequence become more sparse as the
sub-sequence gets longer and farther from prediction elements, which fits the second expectation.
Therefore, two expectations of final representations of FDNet with focal input sequence decompo-
sition method are all achieved, proving the rationality of its design.

E AN OVERVIEW OF FDNET ARCHITECTURE IN DETAILS

An overview of FDNet/FUNet architecture in details is shown in Table 18/20. ‘DFE-ICOM’/‘DFE-
initial’ refers to decomposed feature extraction layer with/without ICOM and their detailed archi-
tectures are shown in Table 19/21 separately.
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Table 18: An overview of FDNet architecture in details

Output sequence

Add

FC5 FC4 FC3 FC2 FC1

DFE-initial×1 DFE-initial×2 DFE-initial×3 DFE-initial×4 DFE-initial×5

Embedding5 Embedding4 Embedding3 Embedding2 Embedding1

input5 input4 input3 input2 input1

1/2 1/4 1/8 1/16 1/16

Split

Input sequence ({xi,1:t0}Ni=1)

Table 19: DFE-initial components in details

Input feature map

1× 1 Conv

WN, Dropout (p = 0.1), Gelu

3× 1 Conv padding=(1,0)

Add, WN, Dropout (p = 0.1), Gelu

1× 1 Conv

WN, Dropout (p = 0.1), Gelu

3× 1 Conv padding=(1,0)

Add, WN, Dropout (p = 0.1), Gelu

Output feature map

Table 20: An overview of FUNet architecture in details

Output sequence

Add

FC5 FC4 FC3 FC2 FC1

DFE-ICOM×4 DFE-ICOM×3 DFE-ICOM×2 DFE-ICOM×1 DFE-ICOM×1

Embedding5 Embedding4 Embedding3 Embedding2 Embedding1

input5 input4 input3 input2 input1

1/2 1/4 1/8 1/16 1/16

Split

Input sequence ({xi,1:t0}Ni=1)
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Table 21: DFE-ICOM components in details

Input feature map

Multi-head full attention (d = 8, h = N )

1× 1 Conv

Add, WN, Dropout (p = 0.1), Gelu

3× 1 Conv stride=(2,1), padding=(1,0)

3× 1 Maxpooling stride=(2,1), padding=(1,0)WN, Dropout (p = 0.1), Gelu

3× 1 Conv padding=(1,0)

WN, Dropout (p = 0.1), Gelu

Add

Output feature map
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