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ABSTRACT

Collaborative software development is an integral part of the modern software
development life cycle, essential to the success of large-scale software projects.
When multiple developers make concurrent changes around the same lines of
code, a merge conflict may occur. Such conflicts stall pull requests and contin-
uous integration pipelines for hours to several days, seriously hurting developer
productivity.

In this paper, we introduce MergeBERT, a novel neural program merge framework
based on the token-level three-way differencing and a transformer encoder model.
Exploiting restricted nature of merge conflict resolutions, we reformulate the task
of generating the resolution sequence as a classification task over a set of primitive
merge patterns extracted from real-world merge commit data.

Our model achieves 63—-68% accuracy of merge resolution synthesis, yielding
nearly a 3x performance improvement over existing structured, and 2 x improve-
ment over neural program merge tools. Finally, we demonstrate that MergeBERT is
sufficiently flexible to work with source code files in Java, JavaScript, TypeScript,
and C# programming languages, and can generalize zero-shot to unseen languages.

1 INTRODUCTION

Collaborative software development relies on version control systems such as git to track changes
across files. In most projects, developers work primarily in a branch of a software repository,
periodically synchronizing their code changes with the main branch via pull requests (Gousios et al.|
2016). When multiple developers make concurrent changes to the same line of code, a merge conflict
may occur. According to an empirical study of four large software projects by [Zimmermann| (2007)
up to 46% of all merge commits result in conflicts. Resolving merge conflicts is a time-consuming,
complicated, and error-prone activity that requires understanding both the syntax and program
semantics, often taking more time than developing a code feature itself (Bird & Zimmermann) [2012)).

Modern version control systems such as git utilize the di £ £ 3 algorithm for performing unstructured
line-based three-way merge of input files (Smith, |1998)). This algorithm aligns the two-way diffs of
two versions of the code A and B over the common base O into a sequence of diff “slots”. At each
slot, a change from either A or B is selected. If both program versions introduce a change at the same
slot, a merge conflict is produced, and manual resolution of the conflicting modifications is required.

A versatile, production-level merge conflict resolution system should be aware of programming
language syntax and semantics yet be sufficiently flexible to work with any source code files,
irrespective of the programming language. It should generalize to a wide variety of real-world merge
conflicts beyond a specific merge type or a domain of software artifacts.

Inspired by the exceptional performance of transformer models and self-supervised pretraining in
natural language understanding and generation tasks (Devlin et al., 2019; Radford et al., [2019;
Liu et al |2019; Lewis et al., 2019; Raffel et al., |2020) as well as in the programming language
domain (Feng et al.,2020; [Svyatkovskiy et al.,[2020; |Clement et al.,[2020; Tufano et al.,2020;|Ahmad
et al., 2021)), we introduce MergeBERT: a neural program merge framework based on token-level
three-way differencing and transfer learning. We select a bidirectional transformer encoder (BERT)
as our encoder implementation. As a bidirectional encoder, BERT allows to attend to code context
surrounding the conflicting chunks, which is a key advantage over left-to-right language models. To



Under review as a conference paper at ICLR 2022

endow our model with a basic knowledge of programming language syntax and semantics, we adopt
a two-step training procedure: (1) unsupervised masked language model pretraining on a massively
multilingual source code corpus, (2) supervised finetuning for the sequence classification task. We
transfer weights of the pretrained encoder into a multi-input model architecture that encodes all inputs
that a standard dif£3 algorithm takes (two two-way diffs of input programs) as well as the edit
sequence information, then aggregate them for learning. While MergeBERT utilizes BERT, other
encoder architectures such as LSTM (Hochreiter & Schmidhuber, [1997)), or efficient transformer
variants like Poolingformer (Zhang et al., 2021) could also be utilized for this task.

The paper contributions are as follows: (1) we introduce MergeBERT a novel transformer-based
program merge framework that leverages token-level three-way differencing and formulates the task
of generating the resolution sequence as a classification task over a set of primitive merge patterns
extracted from real-world merge commit data, (2) we effectively transfer knowledge about program
syntax and types of source code identifiers from millions of software programs to downstream
sequence classification task of merge conflict resolution by using self-supervised pretraining (see
section [3), which also makes this approach computationally more feasible, (3) we overcome several
limitations of the existing neural program merge models Dinella et al.|(2021) and semi-structured
program merge tools like jsSFSTMerge and JDime to improve upon the state-of-the-art by 2-3x
(see sections [7]and[8)), and finally, (4) we demonstrate that multilingual MergeBERT is sufficiently
versatile to work with programs in Java, JavaScript, TypeScript, and C#, and can generalize to unseen
languages without retraining.

1.1 RELATED WORK

There have been multiple attempts to improve merge algorithms by restricting the them to a particular
programming language or a specific type of applications (Mens|, 2002)). Typically, such attempts
result in algorithms that do not scale well or have a low coverage.

Syntactic merge algorithms improve upon diff3 by verifying the syntactic correctness of the
merged programs. Several syntactic program merge techniques have been proposed (Westfechtel,
1991} |Asklund, [1999) which are based on parse trees or abstract syntax trees and graphs.

Apel et al. noted that structured and unstructured merge each has strengths and weaknesses. They
developed a semi-structured merge tool, FSTMERGE, which switches between approaches (Apel et al.|
2010). They later introduced JDIME, an approach that automatically tunes a mixture of structured
and unstructured merge based conflict locations (Apel et al.| 2012)). AUTOMERGE tool (Zhu & He,
2018) improves upon the JDIME by adding a built-in matcher to check output resolutions for the
merges performed by JDIME. AUTOMERGE synthesizes resolutions only when the structured merge
algorithm fails to complete a merge. [Trindade Tavares et al.|(2019) later implemented jsSFSTMerge
by adapting an off-the-shelf grammar for JavaScript and modifying the FSTMerge algorithm itself to
address JavaScript specific issues.

In addition, |Pan et al.| (2021) explore using program synthesis to learn repeated merge resolutions
within a project. However, the approach is limited to a single C++ project, and only deals with
restricted cases of import statements. |Sousa et al.| (2018)) explore the use of program verification to
certify that a merge obeys a semantic correctness criteria, but does not help resolve merge conflicts.

2  MOTIVATING EXAMPLE

In this section, we formulate the traditional line-level merge conflict resolution problem as a classifi-
cation task and show how token-level formulation of di £ £3 helps to localize the merge conflicts.
Fig. [[| provides an example merge conflict in JavaScript. Fig.[I(a) on the left shows the standard
diff£3 markers “<<<<<<< A.js”, “llll O.js”, “======="and “>>>>>>> B.js”, which denote the
conflicting regions introduced by programs 4, base O, and B respectively. Here, O represents the
most common ancestor of programs .4 and 5 in the version control history. We denote the program
text of d1f£3 conflicting regions as A;, B;, O;, where j is a conflict index. The conflict index may
be omitted when referring to programs consisting of a single conflict only. We refer to the program
text outside the conflicting chunks, common to all merged programs versions, as a prefix and suffix,
and denote it respectively as Pref and Suf f throughout the paper. First, MergeBERT represents
each line-level merge conflict instance at token level (Fig. [I(b)) which localizes conflicting regions,
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yieldinga C A, b C B, o C O, and then it invokes the neural model to predict a resolution via
classification (Fig.[I|c)). Here, and throughout the paper we will use lower case notations to refer
to attributes of token-level differencing (e.g. a, b, and o are conflict regions produced by diff3 of
token granularity). Intuitively, token di £ £3 first turns the line-structured text into a list of tokens
(including space and line delimiters), applies standard di f £ 3 algorithm to the resulting documents,
and reconstructs the merged document at line level. As a result of token-level merge, the whole
“let x = max (y,” string is cleanly merged, becoming a part of the program prefix, and ) ” is
prepended to the program suffix.

Token-level diff3 is a syntactic merge algorithm. As such, it does not guarantee semantic cor-
rectness of the merged program. In most cases (82%), however, token merge matches the user
resolution.

Observe, that the resolution does not consist of any single line from either A or B since both edits mod-
ify a common line present in the base. Hence, earlier neural approaches such as DeepMerge (Dinella
et al., |2021) would not be able to synthesize the resolution. On the other hand, structured merge
techniques (such as jsFSTMergeby [Trindade Tavares et al.|(2019)) cannot resolve the conflict as
the conflict appears on a program statement, which leads to side effects (e.g. syntactically incorrect
code).

A token-level merge can interleave edits within lines (i.e., tokens in which one edit does not conflict
with another are trivially merged). Consider A’s edit of the var to let keyword. Such non-
conflicting edits suffice to demonstrate the above. Likewise, consider the token-level conflict for
the arguments to the max function: an appropriate model trained on JavaScript should be able to
easily deduce that taking the edit from B (i.e., "11, z") captures the behavior of A’s edit as well. The
suggested resolution gives an intuitive demonstration for how MergeBERT turns a complex line-level
resolution into a simpler token-level classification problem.

MergeBERT can deal with non-trivial real-world merges composed of multiple conflicting chunks.
We include a complete example of such a merge conflict in the Appendix.
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(a) Line-level conflict (b) Token-level conflict (c) Resolved merge

Figure 1: Example merge conflict represented through standard di £ £3 (left) and token-level dif£3
(center), and the user resolution (right). The merge conflict resolution takes the token-level edit b.

3 BACKGROUND: DATA-DRIVEN MERGE

Dinella et al.[(2021)) introduced the data-driven program merge problem as a supervised machine
learning problem. A program merge consists of a 4-tuple of programs (A, B, O, M), where

1. The base program O is the most common ancestor in the version history for programs A
and B,

2. diff£3 produces an unstructured line-level conflict when applied to (A, B, O), and

3. M is the program with the developer resolution, having no conflicts.

Given a set of such programs and merges (A, B, O, M), the goal of a data-driven merge is to learn
a function, merge, that maximizes the set of examples where merge(A, B, O) = M. Moreover,
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since a program may have multiple unstructured conflicts (A;, B;, O;, M;), j=0...N, the data-driven
merge considers the different merge tuples corresponding to the conflicting regions independently,
and poses the learning problem over all the merge tuples present in (A, B, O, M). Dinella et al.
(2021)) also provide an algorithm for extracting the exact resolution regions for each merge tuple and
define a dataset that corresponds to non-trivial resolutions where the developer does not drop one of
the changes in the resolution. Further, they provide a sequence-to-sequence encoder-decoder based
architecture, where a bi-directional gated recurrent unit (GRU) is used for encoding the merge inputs
comprising of (A4, B, O) segments of a merge tuple, and a pointer mechanism is used to restrict the
output to only choose from line segments present in the input. Given the restriction on copying
only lines from inputs, the dataset defined in the paper did not consider merges where the resolution
required token-level interleaving, such as the conflict in Figurem And, lastly, the dataset consists
of merge conflicts in a single language, JavaScript. In contrast, our paper addresses both of these
limitations.

4 MERGE CONFLICT RESOLUTION AS A CLASSIFICATION TASK

In this work, we demonstrate how to exploit the restricted nature of merge conflict resolutions
(compared to an arbitrary program repair) to leverage discriminative models to perform the task of
generating the resolution sequence. We have empirically observed that a di £ £3 of token granularity
enjoys two useful properties over its line-level counterpart: (i) it helps localize the merge conflicts to
small program segments, effectively reducing the size of conflicting regions, and (ii) most resolutions
of merge conflicts produced by token diff3 consist entirely of changes from a or b or o or a
sequential composition of a followed by b or vice versa. On the flip side, a token-level merge has
the potential to introduce many small conflicts. To balance the trade-off, we start with the line-level
conflicts as produced by the standard di £ £3 and perform a token-level merge of only the segments
present in the line-level conflict. There are several potential outcomes for such a two-level merge at
the line-level:

* A conflict-free token-level merge: For example, the edit from A about 1et is merged since
B does not edit that slot as shown in Fig. [T{b).

* A single localized token-level merge conflict: For example, the edit from both A and B for
the arguments of max yields a single conflict as shown in Fig.[T[b).

e Multiple token-level conflicts: Such a case (not illustrated above) can result in several
token-level conflicts.

Token-level dif£3 applied to a merge tuple (A, B, O, M), would generally result in a set of
localized conflicting regions and resolutions (a;, b;, 05, 7;);. We empirically observe that majority
of such r; are comprised entirely of () a;, (i%) b;, (i7) 04, concatenating (iv) a;, b; or (v) b;, a;, and
variants of (tv—v) having the lines present in the base excluded, comprising a total of nine primitive
merge resolution patterns (see section|[I0.1]in Appendix for more details about the primitive merge
patterns).

We, therefore, can treat the problem of constructing 7; as a classification task to predict between these
possibilities. It is important to note that although we are predicting simple resolution strategies at
token-level, they translate to complex interleavings at line-level. Of course, not all line-level conflicts
are resolved by breaking that conflict to tokens—some resolutions which are complex line-based
interleavings are not expressible as a choice at the token-level.

The key practical advantage of formulating merge conflict resolution as a classification task is a
significant reduction in total FLOPS required to decode a resolution region, as compared to generative
models, making this approach an appealing candidate for deployment in IDEs (see section[TT.T).

5 MERGEBERT: NEURAL PROGRAM MERGE FRAMEWORK

MergeBERT is a textual program merge model based on the bidirectional transformer encoder (BERT)
model. It approaches merge conflict resolution as a sequence classification task given conflicting
regions extracted with token-level differencing and surrounding code as context. The key technical
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Figure 2: An overview of the MergeBERT architecture. From left to right: given conflicting
programs A, B and O token-level differencing is performed first, next, programs are tokenized and
the corresponding sequences are aligned (a|, and o|q, b|,, and o|;). We extract edit steps for each
pair of token sequences (A, and Ap,). Four aligned token sequences are fed to the multi-input
encoder neural network, while edit sequences are consumed as type embeddings. Finally, encoded
token sequences are summarized into a hidden state which serves as input to classification layer. See
Algorithm [1|for details about merge resolution decoding. Parts of the neural networks colored in blue
are finetuned, the rest are transferred from pretrained encoder and frozen.

innovation to MergeBERT lies in how it breaks program text into an input representation amenable to
training with a transformer encoder and how it aggregates various input encodings for classification.

MergeBERT exploits the traditional two-step pretraining and finetuning training procedure. We use
self-supervised masked language modeling (MLM) pretraining on a massively multilingual source
code corpus followed by supervised finetuning for a classification task (section [IT.4] provides details
about the implementation). For finetuning, we construct a multi-input model architecture that encodes
pair-wise aligned token sequences of conflicting programs A and B with respect to original program
O, as well as corresponding edit sequence steps, then aggregate them for learning. An overview of
MergeBERT model architecture is shown in Fig. [2]

Given a merge tuple (A, B, O, M) with token-level conflicting chunks a;, b;, 0;, MergeBERT models
the following conditional probability distribution:

p(rjla;,bj,05), (D
and consequently, for entire programs:
N
p(R|A, B,0) = [ [ p(rla;, b, 0;) 2)
j=1

where N is the number of token-level conflicts in the merge tuple (A, B, O, M).

Treating token-level conflicts independently is a simplifying assumption. However, data shows that
only 5% of merge conflicts result in more than 1 token-level conflict per line-level conflict.

5.1 REPRESENTING MERGE CONFLICTS

As shown by |Dinella et al.| (2021), an effective merge representation needs to be “edit aware” to
provide an indication that A and B are edits of the original program O. Prior work on distributed
representations of edits (Yin et al.,[2019) describes how to compute a two-way diff using a standard
deterministic diffing algorithm and represent the resulting pair-wise alignment as a vector consumable
by machine learning models.

Given a merge tuple (A, B, O, M), MergeBERT first calculates two two-way alignments between
the sequence of tokens of conflicting regions a (respectively b) with respect to that of the original
program o. For each pair of aligned token sequence we extract an “edit sequence” that represents how
to turn the second sequence into the first. These edit sequences — A, and Ay, — are comprised of
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the following editing actions (kinds of edits): = represents equivalent tokens, + represents insertions,
- represents deletions, <+ represents a replacement, and ) is used as a padding token. Overall, this
produces four token sequences and two edit sequences: (a|,, 0|4, and Ay,) and (b,, 0|y, and Ay,).
Each token sequence covers the corresponding conflicting region and, potentially, surrounding code
tokens. Fig.2]shows an example of edit sequence.

5.2 CONTEXT ENCODING

We pretrain a BERT model £ following the masked language modeling objective on a multilingual
dataset of source code files. In each source code file, a set of tokens is sampled at random uniform
and replaced with [MASK] symbols, and the model aims to reconstruct the original sequence. We
make use of a Byte-Pair Encoding (BPE) unsupervised tokenization procedure to avoid a blowup
in the vocabulary size given the sparse nature of code identifiers Karampatsis et al.|(2020). Besides
code tokens, the vocabulary includes the special symbols representing editing steps and the [MASK]
symbol.

During finetuning, we introduce an edit type embedding combining it with token and position
embeddings via addition: S = S5 + Sp + Sg. Edit type embedding helps the model recognize the
edit steps, which are not supplied during pretraining. See Fig.[6]in the Appendix for details.

As shown in Fig. 2] we utilize pretrained encoder model to independently encode each of the four
token sequences (al,, 0|4, b|o, and o|p) of merged programs, passing edit sequences (A, and Ay,)
as type embedding indices.

5.3 MERGE TUPLE SUMMARIZATION

In standard sequence learning tasks there is one input and one output sequence. In merge conflict
resolution setting, there are multiple input programs and one resolution. To facilitate learning in this
setting, we construct MergeBERT as a multi-input encoder neural network, which first encodes token
sequences a,, 0|4, b|,, and 0|y, and then aggregates them into a single hidden summarization state:

o= Y @A) ®)

z:€(alo,0]a,blo,0b)

where & is the context encoder and & (x;, A) are the embedding tensors for each of the sequences
x; € (alo, 0|asblo, 0|p). After encoding and aggregation a linear classification layer with softmax
is applied:

p(rjlaj,bj,05) = softmax(W - hy, + b) 4)

The resulting line-level resolution region is obtained by concatenating the prefix pre f, predicted
token-level resolution 7, and the suffix suf £. Finally, in the case of a one-to-many correspondence
between the original line-level and the token-level conflicts (see[TT.5]in the Appendix for an example
and [TT] for pseudocode), MergeBERT uses a standard beam-search to decode the most promising
predictions.

6 DATASET

To create a dataset for pretraining, we clone all non-fork repositories with more than 20 stars in
GitHub that have C, C++, C#, Python, Java, JavaScript, TypeScript, PHP, Go, and Ruby as their top
language. The resulting dataset comprises over 64 million source code files.

The finetuning dataset is mined from over 100 thousand open source software repositories in multiple
programming languages with merge conflicts. It contains commits from git histories with exactly
two parents, which resulted in a merge conflict. We replay git merge on the two parents to see
if it generates any conflicts. Otherwise, we ignore the merge from our dataset. We follow |Dinella
et al. (2021) to extract resolution regions—however, we do not restrict ourselves to conflicts with less
than 30 lines only. Lastly, we extract token-level conflicts and labels from line-level conflicts and
resolutions. Tab. 4] provides a summary of the finetuning dataset.
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7 BASELINE MODELS

7.1 LANGUAGE MODEL BASELINE

Neural language models (LMs) have shown great performance in natural language generation (Rad+
ford et al., 2019} |Sellam et al.| [2020), and have been successfully applied to the domain of source
code (Hindle et al., [2012; |Svyatkovskiy et al.l 2020; Feng et al.l 2020). We consider the gener-
ative pretrained transformer language model for code (GPT-C) and appeal to the naturalness of
software (Allamanis et al., 2018)) to construct our baseline approach for the merge resolution synthesis
task. We establish the following baseline: given an unstructured line-level conflict produced by
dif£3, we take the common source code prefix Pref acting as user intent for program merge. We
attempt to generate an entire resolution region token-by-token using beam search. As an ablation
experiment, we repeat this for the conflicts produced with the token-level differencing algorithm
(Fig.|l{shows details about prefix and conflicting regions).

7.2 DEEPMERGE: NEURAL MODEL FOR INTERLEAVINGS

Next, we consider DeepMerge (Dinella et al.| 2021)): a sequence-to-sequence model based on the
bidirectional GRU summarized in section 3] It learns to generate a resolution region by choosing
from line segments present in the input (line interleavings) with a pointer mechanism. We retrain the
DeepMerge model on our TypeScript dataset.

7.3 JDIME

Looking for a stronger baseline, we consider JDIME, a Java-specific merge tool that automatically
tunes the merging process by switching between structured and unstructured merge algorithms (Apel
et al.l[2012). Structured merge is abstract syntax tree (AST) aware and leverages syntactic information
to improve matching precision of conflicting nodes. To compare the accuracy of JDIME to that of
MergeBERT, we use the Java test and complete the following evaluation steps: first, we identify the
set of merge conflict scenarios where JDIME did not report a merge conflict, and the standard di££3
algorithm did. Second, we compare the JDIME output to the version of the code where the merge
conflict is resolved. Third, we calculate]JDIME accuracy by identifying the number of merges where
JDIME output file correctly matches the resolved conflict file.

As aresult of its AST matching approach, code generated by JDime is reformatted, and the original
order of statements is not always preserved. In addition, source code comments that are part of
conflicting code chunks are not merged.

A simple syntactic comparison is too restrictive, and JDime merge output can still be semantically
correct. To accurately identify semantically equivalent merges, we use GumTree [Falleri et al.
(2014)), an AST differencing tool, to compute fine grained edit scripts between the two merge files.
By ignoring semantically equivalent differences computed by GumTree (such as moved method
declarations) we have a more accurate baseline comparison between the number of semantically
equivalent merges generated by JDime and MergeBERT.

7.4 JSFSTMERGE

Apel et al.| (2011) introduced FSTMerge, a semi-structured merge engine using an approach similar
to JDIME, but that that allows a user to provide an annotated language grammar specification for
any language. Trindade Tavares et al.|(2019) implemented jsSFSTMerge by adapting an off-the-shelf
grammar for JavaScript to address shortcomings of FSTMerge and also modifying the FSTMerge
algorithm itself. For example, statements can be intermingled with function declarations at the same
syntactic level, and statement order must be preserved while function order does not. jsSFSTMerge
allows for certain types of nodes to maintain their relative order (e.g., statements) while others may
be order independent (e.g., function declarations) even if they share the same parent node.

For cases where jsFSTMerge produces a resolution that does not match the user resolution, we
manually inspect the output for semantic equivalence (e.g., reordered import statements).
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8 EVALUATION

We evaluate MergeBERT’s accuracy of resolution synthesis. Our evaluation metrics are precision and
recall of verbatim string match (modulo whitespaces or indentation) of the decoded predictions to the
user resolution extracted from real-world merge resolutions. This definition is rather restrictive as
a predicted resolution might differ from the true user resolution by, for instance, only the order of
statements, being semantically equivalent otherwise. As such, this evaluation approach gives a lower
bound of the MergeBERT model performance.

In addition to the precision and recall, we estimate the fraction of syntactically correct (or parseable)
source code suggestions to filter out merge resolutions with syntax errors.

8.1 BASELINE MODEL EVALUATIONS

Table 1: Evaluation results for MergeBERT and various neural baselines calculated for merge conflicts
in TypeScript programming language test set. The table shows top-1 precision, recall, and F-score
metrics.

Approach Granularity Precision Recall F-score
LM Line 3.6 3.1 33
DeepMerge  Line 55.0 35.1 453
diff3 Token 824 36.1 50.2
LM Token 49.7 48.1 48.9
DeepMerge  Token 64.5 42.7 51.4
MergeBERT  Token 69.1 68.2 68.7

As seen in Tab. [T} performance of language model baselines on the task of merge resolution synthesis
is relatively low, suggesting that the naturalness hypothesis is insufficient to capture the developer
intent when merging programs. This is perhaps not surprising given the notion of precision that does
not tolerate even a single token mismatch.

MergeBERT tool is based on two core components: token-level di f£3 and a multi-input neural
transformer model. The token-level differencing algorithm alone gives a high top-1 precision of
82.4%, with a relatively low recall of only 36.1%. Combined with the neural transformer model, the
recall is increased to a total of 68.2%. Note, as a deterministic algorithm token-level di f £3 can only
provide a single suggestion.

DeepMerge precision of merge resolution synthesis is quite admirable, showing 55.0% top-1 precision.
However, it was only able to produce accurate predictions for 63.8% of the test conflicts, failing
to generate predictions for merge conflicts which are not representable as a line interleaving. This
type of merge conflicts comprises almost a third of the test set, resulting in a recall of 35.1% which
significantly lower than MergeBERT, and 50% lower F-score.

Ablation Study

We conduct two ablation experiments to carry out a more precise comparison against the DeepMerge
baseline.

First, we evaluate DeepMerge model in combination with the token-level di ££3. As seen in Tab.[T]
overall performance improves, resulting in a 13% higher F-score, but still falling short of MergeBERT
by 34% F-score (7% lower precision and 60% lower recall). Second, since DeepMerge is not able to
produce accurate predictions for merge conflicts which are not representable as a line interleaving, we
restrict our test set to this type of merge conflicts only. Overall, MergeBERT yields 70.6% (78.6%)
top-1 (top-3) precision compared to 55.0% (59.1%) for DeepMerge, showing that MergeBERT
performance on this merge type is comparable to that on the entire test set.

Semi-structured Program Merge Baselines

As can be seen from Tab. [2] jsFSTMerge is only able to produce a resolution for 22.8% of conflicts,
and the produced resolution is correct only 15.8% of the time. This is in line with the conclusions
of the creators of jsFSTMerge that semi-structured merge approaches may not be as advantageous
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Table 2: Comparison of MergeBERT to JDime and jsFSTMerge semi-structured merge tools. The
table shows top-1 precision, recall, F-score of merge resolution synthesis, fraction of merge conflicts
an approach generated resolutions for, and percentage of syntactically correct predictions. JDime
evaluation is on a Java data set and jsSESTMerge is on a JavaScript data set.

Approach Language Precision Recall F-score Syntax (%)

JDime Java 26.3 21.6 23.7 90.9
MergeBERT  Java 63.9 63.2 63.5 98.3
jsFSTMerge  JavaScript  15.8 3.6 5.9 94.4
MergeBERT  JavaScript  66.9 65.6 66.2 974

Table 3: Detailed evaluation results for monolingual and multilingual MergeBERT models, as well as
zero-shot performance on an unseen language. The table shows precision, recall, F-score of merge
resolution synthesis, and percentage of syntactically correct predictions. Top: monolingual models,
bottom: multilingual.

Test (Train) Languages Precision Recall F-score Syntax (%)
Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

JavaScript (JS) 66.9 75.4 65.6 73.9 66.2 74.6 97.4

TypeScript (TS) 69.1 76.6 68.2 75.6 68.7 76.1 97.0

Java (Java) 63.9 76.1 63.2 75.2 63.5 75.6 98.3

C# (C#) 68.7 76.4 67.3 74.8 68.0 75.6 98.3

JavaScript (JS, TS, C#, Java)  66.6 75.2 65.3 73.8 65.9 74.5 97.4
TypeScript (JS, TS, C#, Java)  68.5 76.8 67.6 75.8 68.0 76.3 96.9

Java (JS, TS, C#, Java) 63.6 76.0 62.9 75.1 63.2 75.6 98.2
C# (IS, TS, C#, Java) 66.3 76.2 65.1 74.8 65.7 75.5 98.3
Scala (JS, TS, C#, Java) 57.8 64.8 56.5 63.3 57.1 64.1 97.9

for dynamic scripting languages (Trindade Tavares et al., 2019). Because jsFSTMerge may produce
reformatted code, we manually examined cases where a resolution was produced but did not match
the user resolution (our oracle). If the produced resolution was semantically equivalent to the user
resolution, we classified it as correct.

Tab. [3] shows the detailed evaluation results of the MergeBERT. As seen, multilingual variant
of MergeBERT yields 63.6 — 68.5% top-1 and 75.2 — 76.8% top-3 precision of verbatim match
and relatively high recall values. Overall, the multilingual variant of the model generates results
comparable to the monolingual versions on the languages present in the training set and shows the
potential for zero-shot generalization to unseen languages. We test the zero-shot generalization
property on merge conflicts in Scal{] programming language and obtain an encouraging 64.8% top-3
precision of merge resolution synthesis.

9 CONCLUSION

This paper introduces MergeBERT, a transformer-based program merge framework that leverages
token-level differencing and reformulates the task of generating the resolution sequence as a clas-
sification task over a set of primitive merge patterns extracted from real-world merge commit data.
MergeBERT exploits pretraining over massive amounts of code and then finetuning on specific pro-
gramming languages, achieving 64—69% precision and 63—68% recall of merge resolution synthesis.
Lastly, MergeBERT is flexible and effective, capable of resolving more conflicts than the existing
tools in multiple programming languages.

Our work focuses on helping software developers resolve merge conflicts and improve their produc-
tivity. The lightweight finetuning approach that lies at the core of this tool promotes the re-usability
of pretrained transformer models for software engineering tasks.

'https://www.scala-lang.org/
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10 APPENDIX

10.1 PRIMITIVE MERGE RESOLUTION TYPES

Given a merge tuple (A, B, O, M) with line-level conflicting regions A;, B;, O;, i=0...N, and token-

level conflicting regions a7, b%, 02- corresponding to a line-level conflict ¢, we define following nine
basic merge resolution types which serve as labels for supervised classification task:

1. Take changes a;’- proposed in program A (developer branch A) as resolution,

. Take changes b; proposed in program B as resolution,

2

3. Take changes oé in the base reference program O as resolution,
4. Take a string concatenation of changes in a;- and b;- as resolution,
5

. Take a string concatenation of changes in b; and aé as resolution (reverse order as compared
to the previous),

6. Take changes aj» proposed in program .4, excluding the lines also present in the base
reference program O, as resolution,

7. Take changes b; proposed in program B, excluding the lines present in the base, as resolution,

8. Take a string concatenation of changes in a§ and b;, excluding the lines present in the base,
as resolution,

9. Take a string concatenation of changes in b; and a§, excluding the lines present in the base,
as resolution (reverse order as compared to the previous),

12


https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://arxiv.org/abs/2009.05617
https://arxiv.org/abs/2009.05617
https://arxiv.org/abs/2105.04371
https://doi.org/10.1145/3276536
https://doi.org/10.1145/3276536
https://doi.org/10.1109/MSR.2007.22
https://doi.org/10.1109/MSR.2007.22

Under review as a conference paper at ICLR 2022

A-2578%

B-2472%

Failed to Label - 21.64 %
Other - 16.16 %
Remove base - 6.39 %
AB-3.93%

BA - 1.08 %

Base - 0.31 %

Figure 3: Summary of merge conflict resolution labels in our dataset for TypeScript: label distribution
for merge conflicts extracted with the standard (line-level) diff3 algorithm, right.

While the above 9 primitive merge patterns are defined for token-level conflicting chunks, same

definition could be applied at line-level, substituting a’, b%, o} chunks with A;, B;, O;.

We use a data-driven approach to identify these 9 primitive merge resolution patterns based on the
analysis of the real-world merge conflict resolutions from GitHub. Our analysis shows that over 99%
of all the merge conflicts can be represented using these labels. While the above nine resolution types
are primitive, they form a basis sufficient to cover a large class of real-world merge resolutions in
modern version control systems, including arbitrary combinations or interleavings of lines.

Fig. [3|shows the label distribution obtained for the standard (line-level) diff3 conflicting regions in
our dataset for TypeScript programming language. As seen, nearly 50% of all cases are trivial — take
changes from branch A or B. Arguably, these cases can be resolved without machine learning and are
easily addressed by take ours or take theirs merge resolution strategies. The “Remove base” category
combines the four primitive merge patterns that remove the lines present in the base branch from the
resolution (e.g. take changes proposed in one program and exclude the lines present in base). The
“Other” category consists of arbitrary line-interleavings.

Fig. @] shows the label distribution obtained for token-level differencing algorithm. It excludes trivial
(take A or take B) merge resolutions at line-level. Note, that “take A” merge resolution at token-level
does not correspond to “take ours” or “take theirs” merge resolution strategy, and can map to any
label at line-level, thus representing a non-trivial merge scenario stimulating for machine learning
studies.

It is important to stress, these primitive merge resolution types at token-level are not strictly defined
templates dictating which syntactic structures should be selected from input programs. For instance,
a label “take changes proposed in program A can correspond to a single code token as well as an
entire method signature or body. As such, the merge types are not restrictive in their representation
power of merge conflicts.

10.2 SUMMARY OF THE FINETUNING DATASET

Tab. @] shows the summary of the finetuning merge conflict resolution dataset. The finetuning dataset
is split into development and test set in the proportion 80/20 at random at file-level. The development
set is further split into train and validation set in 80/20 proportion at the merge conflict level.
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A-3923%

B-34.68 %

AB-19.90 %

BA - 3.96 %

Remove base - 1.78 %
Base - 0.38 %

Failed to Label - 0.06 %

Figure 4: Summary of merge conflict resolution labels in our dataset for TypeScript: label distribution
for merge conflicts extracted with token-level differencing algorithm.

Table 4: Number of merge conflicts in the dataset.

Programming language Development set Test set

C# 27874 6969
JavaScript 66573 16644
TypeScript 22422 5606
Java 103065 25767
Scala 389

11 MERGE RESOLUTION DECODING

Each model prediction yields a probability distribution p(r;|a;, b;, 0;) over primitive merge patterns
given a token-level conflict. In case of a one-to-many correspondence between original line-level
and the token-level conflicts (see, for instance, Fig. [8]) to approximate the original p(R|A, B, O) we
decode the most promising combination from the predicted solution space. This can be conceptualized
as a maximum cost path search on a matrix, which we approach via a beam search algorithm.

Algorithm 1 Merge conflict resolution decoding algorithm (beam search) with MergeBERT

b« {ro,0} > Initialize beam {state, logprob}
{a;,b5,05,7;}j—0..N < token_diff3(A,B,0, M), v Perform token-level differencing
for j < 0 to N do

ifaj =0Ab; =0Ao0; =0 then > In case token-level merge results in a clean merge
return pref; ;1 r; o suf f;
else

for (r;-“,p?) € TopK(mergebert(r;la;,bj,0;)) do
b bU{r+pref; = rf wsuffip+ pf} > Update beam for each token-level
conflict j

end for
b + TopM(d) > Prune candidates to keep top-M
end if
end for
R« b[0] > Get resolution region string
return R

14
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As a result, the model prediction for each line-level conflict consists of either a label for a token-level
conflict or a combination of labels for multiple token-level conflicts representing the best prediction
for each token-level conflict within the line-level conflict. Given these labels for each line-level
conflict and the contents of the merged file, MergeBERT generates the code corresponding to the
resolution region. The contents of the merged file includes the conflict in question and its surrounding
regions. Therefore, for each conflicting line, MergeBERT chooses between the versions of code
based on the labels the model produced and generates the resolution code by concatenating them.
Afterwards, MergeBERT checks the syntax of the generated resolved code, and in case of correctness,
outputs it as the candidate merge conflict resolution.

In case of multiple line-level conflicts in the merged file, MergeBERT refines the contents of the
merged file that serves as the surrounding region of the conflict. More specifically, for each line-level
conflict, MergeBERT replaces the other conflicts in the the merged file contents with the code
it previously generated as their predicted resolutions. For this purpose, MergeBERT updates the
contents of the merged file after resolving each line-level conflict with the code it generates as the
conflict resolution based on the model prediction.

11.1 INFERENCE COST

Computational efficiency is an important constraint influencing machine learning design decisions
in production environments (e.g. deployment in IDE, GitHub action). In the following, we discuss
inference costs and floating point operations per second (FLOPs) of MergeBERT as compared to the
language model baseline.

In this paper, we reformulate the task of merge conflict region as a classification problem. This
provides a major speedup during inference, due to a smaller number of inference calls necessary
to decode a resolution. Indeed, in most cases MergeBERT requires only 1 inference call to resolve
a merge conflict, with up to 3 calls in the worst case, based on our dataset. The cost of a single
inference call on a 16GB Tesla V100 GPU is 60 ms. The end-to-end time to resolve a merge conflict
(including tokenization, alignment, and edit sequence extraction) is 105 ms on average, and up to 500
ms in the worst case.

With GPT-C language model, the resolution region is decoded token-by-token via the beam search
algorithm. The average time to decode a single token (in our experiments we use beam width of 5,
and 1024 tokens context length, with past hidden state caching optimization enabled) on a 16GB
Tesla V100 GPU is about 15 ms. With token-level differencing, the resolution size is 70 tokens on
average (up to 1584 tokens maximum, in our dataset), which yields 1.1 seconds on average and up to
23.8 seconds in the worst case (the largest conflict) to generate resolution token sequence. Overall,
end-to-end inference time required to resolve a merge conflict (including parsing and tokenization)
is 2.3 seconds on average and up to 48.5 seconds for the largest conflict. From the user experience
prospective in IDE, inference times of over 10 seconds are prohibitively slow.

11.1.1 FLOATING POINT OPERATIONS PER SECOND

In the following, we identify main operations in the transformer encoder, for the multi-input Merge-
BERT architecture (see Fig. [2] for reference):

* Self-attention: 600 MFLOPs x 4 inputs (encoder weights are shared for all inputs),
* Feed-forward layer: 1200 MFLOPs x 4 inputs.

Contribution of the lightweight pooling (aggregation) and classification layers are negligibly small.
With a total of 6 transformer encoder layers this yields: 43200 MFLOPs per forward pass.

For the GPT-C transformer decoder-only model we get:

 Self-attention: 600 MFLOPs
* Feed-forward layer: 1200 MFLOPs

with a total of 12 encoder layers this yields: 21600 MFLOPs per inference call, and for 6 encoder
layers: 10800 MFLOPs.
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With larger FLOPs per a single forward pass as compared to generative approach, with MergeBERT
we gain a significant reduction in total FLOPS required to decode resolution region as a result of
needing to performing orders of magnitude less calls (1-3 calls with MergeBERT as compared to
70-1584 with a language model), making this approach an appealing candidate for deployment in
IDE.

11.2 IMPACT OF PRETRAINING DETAILS

The effect of self-supervised pretraining is two-fold: (1) it speeds up the time to solution as a result of
faster model convergence — we observe a 20% higher F-score after 5 training epochs — and 32 times
larger finetuning training throughput, and (2) it yields 14% overall higher F-score as compared to a
model trained from scratch.

While experiments with various pretraining objectives (Guo et al.l 2021} Roziere et al., 2021) is
outside of the scope of this work, as a baseline, we utilized the CodeBERT public checkpoint for a
downstream task of merge conflict resolution which utilizes a similar pretraining objective as ours.
The resulting model showed a comparable F-score, and a likely explanation for the difference is
that the CodeBERT is pretrained on the CodeSearchNet dataset, which does not include C# and
TypeScript programming languages used in this study.

70.0
67.5
65.0
[
5 62.5
U
(7]
o 60.0
57.5
—— Train (random init.)
55.04 —— Finetune (CodeBERT ckpt.)
—— Finetune (DeepDev ckpt)
525 T T T T T T T
0 50 100 150 200 250 300
Epoch

Figure 5: MergeBERT model trained from scratch as compared to finetuning training for sequence
classification downstream task with the encoder weights transferred and frozen during finetuning.
The F-scores of merge resolution synthesis are quoted for TypeScript test set as a function of epoch.
Finetuning performance with CodeBERT—baseﬂ)ublicly available checkpoint is quoted for reference.

11.3 CONTEXT ENCODING DETAILS

Fig. [6illustrates how input representations are extracted.

We conduct an ablation study on the edit type embedding to understand the impact of edit-awareness
of encoding on the model performance. As shown in Tab. 5] edit type embedding information could
improve MergeBERT F-score by 7%.

Table 5: Evaluation results for MergeBERT and the model variant without edit-type embedding for
merge conflicts in TypeScript programming language test set. The table shows top-1 precision, recall,
and F-score metrics.

Approach Precision Recall F-score
w/o type embedding  65.2 63.1 64.1
MergeBERT 69.1 68.2 68.7

“https://huggingface.co/microsoft/codebert-base
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Figure 6: MergeBERT input representation. The input embeddings are a sum of the token embeddings,
the type embeddings and the position embeddings. Type embeddings are extracted from the edit
sequence step that represent how to turn the a, sequence into the o,

11.4 IMPLEMENTATION DETAILS

We pretrain a BERT model with 6 encoder layers, 12 attention heads, and a hidden state size of
768. The vocabulary is constructed using byte-pair encoding method (Sennrich et al., [2016) and
the vocabulary size is 50000. We set the maximum sequence length to 512. Input sequences cover
conflicting regions and surrounding code (i.e., fragments of Pref and Suff) up to a maximum
length of 512 BPE tokens. The backbone of our implementation is HuggingFace’s RobertaModel
and RobertaForSequenceClassification classes in PyTorch, which are modified to turn
the model into a multi-input architecture shown in Fig.

We train the model with Adam stochastic optimizer with weight decay fix using a learning rate of Se-5
512 batch size and 8 backward passes per allreduce on 64M files in C, C++, C#, Python, Java,
JavaScript, TypeScript, PHP, Go and Ruby programming languages. The training was performed on
64 NVIDIA Tesla V100 with 32GB memory for 21 days; we utilized mixed precision. Finetuning
was performed on 4 NVIDIA Tesla V100 GPUs with 16GB memory for 6 hours.

In the inference phase, the model prediction for each line-level conflict consists of one or more token-
level predictions. Given the token-level predictions and the contents of the merged file, MergeBERT
generates the code corresponding to the resolution region. The contents of the merged file include the
conflict in question and its surrounding regions. Afterward, MergeBERT checks the syntax of the
generated code with tree- sntelﬂ parser and outputs it as the candidate merge conflict resolution only
in case of correctness.

The model prediction for each line-level conflict consists of either a label for a token-level conflict or
a combination of labels for multiple token-level conflicts representing the best prediction for each
token-level conflict within the line-level conflict. Given these labels for each line-level conflict and
the contents of the merged file, MergeBERT generates the code corresponding to the resolution
region. The contents of the merged file includes the conflict in question and its surrounding regions.
Therefore, MergeBERT, for each conflicting line, chooses between the versions of code based on
the labels the model produced and generates the resolution code by concatenating them. Afterwards,
MergeBERT checks the syntax of the generated resolved code, and in case of correctness, outputs it
as the candidate merge conflict resolution.

In case of multiple line-level conflicts in the merged file, MergeBERT refines the contents of the
merged file that serves as the surrounding region of the conflict. More specifically, MergeBERT
replaces the other conflicts in the the merged file contents with the code it previously generated as
their predicted resolutions. For this purpose, as shown in Fig. |7} MergeBERT updates the contents
of the merged file after resolving each line-level conflict with the code it generates as the conflict
resolution based on the model prediction.

11.5 MULTIPLE CONFLICTING REGIONS

MergeBERT can deal with non-trivial real-world merges, composed of multiple conflicting chunks.
To provide an example of such a merge conflict, we include Fig. 8| MergeBERT correctly predicts

3https://tree-sitter.github.io/tree-sitter/
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some code: 1

// [CONFLICT 1] - start
<<<<<<< Current Change (A)

code of conflict 1 version A
1111111 Base

code of conflict 1 version
Base

Prefix for conflict 1

code of conflict 1 version B
>>>>>>> Incoming Change (B)
// [CONFLICT 1] - end

some code: 2

// [CONFLICT 2] - start
<<<<<<< Current Change (A)

code of conflict 2 version A
I Base

code of conflict 2 version
Base

code of conflict 2 version B
>>>>>>> Incoming Change (B) //
[CONFLICT 2] - end

(a) Resolving conflict 1

some code: 1
code of predicted resolution

some code: 2

Prefix for conflict 2

// [CONFLICT 2] - start
<<<<<<< Current Change (A7)

code for conflict 2 version A
I Base

code for conflict 2 version
Base

code for conflict 2 version B
>>>>>>> Incoming Change (B) //
[CONFLICT 2] - end

(b) Resolving conflict 2

Figure 7: An example of a file with multiple conflicting regions.

a concatenation of changes proposed by developers A and B for the first token-level chunk and a
concatenation of changes proposed by developers B and A (in the reverse order) for the second chunk.
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Var form = $(this);
settings.dom.bind(settings.event, function() {
var status = false;
var data = form.serialize();
if (settings. fields) {
<<<<K<kk< A.js
data += '&’ + $.param(('fields':settings.fields));
11111 Base.js
params.fields = settings.fields;
data += $.param({fields:settings.fields});
>>>>>>> B.js
}
if (status && settings.submitHandler) {
return settings.submitHandler.apply(this);
}
Return status;

b

(a) Line-level conflict

var form = $(this);
settings.dom.bind (settings.event, function() {
var status = false;
var data = form.serialize();
if (settings.fields) {
data += '
<<<<<<< A.js
data += '&' + $
1111111 Base.js
params

data += §
>>>>>>> B.js
<<<<<<< A.js

param({'fields':
1111111 Base.js

fields =

param({fields:
>>>>>>> B.js
settings.fields});
if (status && settings.submitHandler) ({
return settings.submitHandler.apply (this);
}
return status;

i

(b) Token-level conflicts

Var form = $(this);
settings.dom.bind(settings.event, function() {
var status = false;
var data = form.serialize();
if (settings. fields) {
data += $.param({'fields':settings.fields});
}
if (status && settings.submitHandler) {
return settings.submitHandler.apply (this);
}
Return status;

});

(c) Resolved merge
Figure 8: Example real-world merge conflict resolved by MergeBERT. (Top) merge conflict repre-

sented through the standard di £ £3, (middle) corresponding token-level conflicts, and (bottom) the
user resolution.
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