
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COORDINATED SEARCH FOR SYMBOLIC FORMULAS OF
COMPLEX NETWORK DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Distilling the dynamics of complex networks into symbolic formulas is a fundamen-
tal goal in science. However, existing neural symbolic regression methods often
search for node (self-evolution) and edge (interaction) dynamics independently.
This can lead to overfitting, where errors in one component are compensated for
by an overly complex expression for the other, yielding uninterpretable and non-
generalizable models. We introduce Coordinated Genetic Search (CGS), a novel
algorithm that discovers these symbolic expressions cooperatively. CGS first trains
a disentangled neural proxy model to provide reliable references and denoised,
interpolated trajectories. It then co-evolves two populations of symbolic expres-
sions—one for node and one for edge dynamics—by strategically prioritizing the
evolution of the population that deviates most from its neural reference. This
coordinated process prevents overfitting and steers the search toward a balanced,
accurate solution. Evaluated on synthetic dynamics and a real-world disease spread-
ing dataset, CGS significantly surpasses previous approaches in formula recovery
and prediction accuracy, consistently discovering simpler, more generalizable, and
more physically faithful symbolic models.

1 INTRODUCTION

Table 1: CGS produces simpler expressions with
better generalization for SIS dynamics.

Overfitted Expression

SymDL (Search Separately): ẋv(t) =
−0.6017xv(t) sin(cos(xv(t) − 0.5178)) +∑

u∈Nv
[(0.9966 − 1.1798xv(t) +

0.1984 sin(xv(t)))xu(t)]

Our Expression (CGS: Search Together)

ẋv(t) = −0.48540xv(t) +
∑

u∈Nv
(1 −

xv(t))xu(t)

Complex networks (Gerstner et al., 2014; Gao
et al., 2016; Bashan et al., 2016; Newman et al.,
2011) are the fabric of our interconnected world,
from the intricate web of social interactions (Kit-
sak et al., 2010) and the pathways of global pan-
demics (Pastor-Satorras & Vespignani, 2001) to
the complex wiring of the human brain (Lau-
rence et al., 2019; Wilson & Cowan, 1972). Un-
derstanding how these networks evolve is a cen-
tral challenge in modern science (Zang & Wang,
2020; Murphy et al., 2021; Gao & Yan, 2022).
The ultimate goal is not just to observe their
dynamics, but to distill them into concise, sym-
bolic formulas (Pastor-Satorras et al., 2015; MacArthur, 1970; Kuramoto & Kuramoto, 1984; Gaucel
et al., 2014; Kronberger et al., 2020; Brunton et al., 2016; Qian et al., 2022; d’Ascoli et al., 2024),
i.e., the fundamental laws that govern their behavior. Like elegant physical equations, these symbolic
expressions offer a clear window into the underlying mechanisms of a system, enabling us to predict
its future and understand its core principles (Schmidt & Lipson, 2009; Petersen et al., 2019; Cranmer
et al., 2020; Shi et al., 2023).

A promising approach is neural symbolic regression (Cranmer et al., 2020; Shi et al., 2023; Qian
et al., 2022), which leverages deep learning models with inductive biases to discover symbolic laws.
These methods are robust to noise and irregular sampling, making them more suitable for real-world
data than traditional genetic programming (Gaucel et al., 2014; Kronberger et al., 2020) or sparse
regression techniques (Brunton et al., 2016; Gao & Yan, 2022). However, a critical challenge remains.
By incorporating the inductive bias, the neural network dynamics of a node in a complex network are
a composite of two distinct processes: neural node dynamics (how a node acts on its own) and neural
edge dynamics (how it interacts with its neighbors) (Liu et al., 2023). Existing methods often search

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝐱!(𝑡) 𝐱"(𝑡)

𝝓𝒏
𝝓𝒆𝝓𝒆

𝐱#∘̇(𝑡)𝐱!∘̇(𝑡) 𝐱"∘̇(𝑡)

𝝓𝒏
𝐹"

Neural Proxy Model Trajectories and Neural Reference

𝐱#(𝑡)

𝐹"(𝐱! 𝑡)
𝐺"(𝐱! 𝑡 ,
𝐱" 𝑡)

𝐺"(𝐱! 𝑡 ,
𝐱# 𝑡)

𝐗(0)

𝐗̇(𝑡) 		" 	
!!

"
𝐗(𝑡%)

𝐱𝒗(𝑡) 𝐹)(𝐱' 𝑡)

𝝓𝒆
𝐺"

Reference

𝐱𝒗(𝑡)

𝐱𝒖(𝑡)
𝐺)(𝐱# 𝑡 ,𝐱" 𝑡)

Edge dynamic reference

Node dynamic reference

… …

𝐱!(𝑡)

𝐱"(𝑡)

𝐱#(𝑡)

𝐱(!(𝑡)

𝐱("(𝑡)

𝐱(#(𝑡)

Observed states
Interpolated and denoised trajectories

Fitness
evaluation

⋮

Fitness 𝐟!

𝐹,

Population ℱ

𝐺,

𝑑(𝐹)	

𝑑(𝐺)	

𝑑(𝐹) > 𝑑(𝐺)	

𝑑 𝐹 ≤ 𝑑(𝐺)	
Fitness 𝐟!

∫ 𝐹+Σ𝐺−𝐗'

Nex
t ge

ner
atio

n

Next generation

Population 𝒢

Node dynamics evolution

Edge dynamics evolution

Coordinated Genetic Search

Training

Figure 1: Overview of Coordinated Genetic Search (CGS). A neural proxy model provides references
(F̂ , Ĝ) and trajectories (X̂) to guide the co-evolution of symbolic populations for node and edge
dynamics. The search prioritizes the population deviating most from its reference to find accurate
symbolic expressions (F ∗, G∗).

for these components’ formulas independently (Cranmer et al., 2020; Shi et al., 2023), which can
lead to a critical form of overfitting: errors in one component are compensated for by an inaccurate
expression for the other. This results in models that are neither interpretable nor generalizable, as
illustrated in Table 1.

To address this, we introduce Coordinated Genetic Search (CGS), a novel search algorithm that
co-evolves symbolic expressions for both node and edge dynamics. CGS operates on the principle
that these components must be discovered cooperatively to avoid overfitting, where errors in one
component are compensated for by an overly complex expression for the other. The algorithm first
trains a disentangled neural proxy model to generate reliable references for each neural dynamics
component and to provide denoised, interpolated trajectories for fitness evaluation. It then main-
tains two distinct populations of symbolic expressions—one for node dynamics and one for edge
dynamics—and coordinates their evolution by strategically prioritizing the population that deviates
most from its neural reference. This coordinated process, guided by neural references and evaluated
against the interpolated trajectories, steers the search toward simpler, more generalizable, and more
faithful symbolic models. We evaluate CGS on various synthetic dynamics and a real-world disease
spreading dataset, demonstrating that it significantly surpasses previous approaches in both formula
recovery and prediction accuracy.

Notations Matrix, vector, and scalar are denoted as bold capital letters X, bold lowercase letters
x, and lowercase letters x, respectively. The element in i-th row and j-th column of matrix X
is denoted as Xij . The v-th row of matrix X is denoted as xv. A complex network is denoted
as G = (G,X(t), t ∈ T). G = (V,E) denotes a network with node set V and edge set E.
X(t) = [x1(t)

⊤, · · · ,xN (t)⊤]⊤∈ RN×d is a d-dimensional node states of N nodes at the timestamp
t, and T = {t0, t1, · · · , tK−1} is the set of K timestamps of complex network observations. ẋ(t)
represents the time derivatives of x(t).

2 COORDINATED GENETIC SEARCH FOR SYMBOLIC REGRESSION

This section details our Coordinated Genetic Search (CGS) algorithm. We begin in Section 2.1 by
introducing a neural proxy model that provides reliable references for node and edge dynamics, along
with denoised and interpolated trajectories. Section 2.2 then explains how these neural references are
used to coordinate the search, and Section 2.3 describes the fitness evaluation and evolution process.
Finally, we compare CGS with existing methods in Section 2.4.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 NEURAL PROXY MODEL

Inductive Bias of Complex Network Dynamics The complex network dynamics is defined by the
following differential ordinary equation:

ẋv(t) = F (xv(t)) +
∑

u∈Nv

avuG (xv(t),xu(t)) , (1)

In (1), ẋv(t) denotes the time derivative of xv(t), F (xv(t)) denotes the node dynamics term of node
v, which includes processes like influx, degradation, or reproduction. G(xv(t),xu(t)) is the edge
dynamics describing the interactions between node v and node u, accounting for processes such as
spreading and competition. G is shared across all edges in the network because of the universality in
network dynamics (Barzel & Barabási, 2013; Gao et al., 2016). avu is the weight of the edge between
node v and node u, and Nv is the set of neighbors of node v. Given observations of the node states
{X(t)|t ∈ T }, the symbolic regression of complex network dynamics (Gao & Yan, 2022) aims to
find the symbolic expressions of function F and G in (1).

Neural Proxy Model with Inductive Bias We follow the inductive bias from (1) to design a neural
proxy model and train the model based on the observed trajectory. In the designed neural proxy, a
graph neural network calculates the time derivative of the node state ẋ◦

v(t). An ODESolver then
integrates this derivative to generate the full trajectory. Based on DNND (Liu et al., 2023), the time
derivative ẋ◦

v(t) for node v is designed as an encoder-decoder free architecture:
ẋ◦
v(t) = F̂ (xv(t)) +

∑
u∈Nv

Ĝ (xv(t),xu(t)) (2)

where F̂ (xv(t))=ϕ
n(xv(t), t) , Ĝ (xv(t),xu(t))=ϕ

e(xv(t),xu(t), t) . (3)

where ϕn and ϕe are two MLPs aligning with the node dynamics and edge dynamics in (1), re-
spectively. In (2), the neural node dynamics ϕn captures the evolution of nodes influenced by their
properties, and the neural edge dynamics ϕe captures the interactions between two end nodes of an
edge. Therefore, proxy model of node v is written as

fθ(G,X(t0), t)v = ODESolver(ẋ◦
v(t),X(t0), t0, t). (4)

The alignment between neural dynamics (4) and dynamics formulation (1) enables better
learning of complex network dynamics. To train the neural dynamics, we minimize the er-
ror between fθ(G,X(t0), t)v,∀v ∈ V and the observed trajectories {X(t)|t ∈ T }, i.e.,
minθ

∑
v∈V,t∈T ∥fθ(G,X(t0), t)v − xv(t)∥1, with standard deep learning optimization techniques.

After the training, we will use the estimated node dynamics and edge dynamics as references for the
coordinated search and use the interpolated trajectory X̂(t) from fθ(G,X(t0), t)v,∀v ∈ V as the
signal for fitness evaluation.

2.2 COORDINATION VIA NEURAL REFERENCES

Although the neural proxy model provides disentangled estimates for node dynamics (F̂) and
edge dynamics (Ĝ), these components are not perfectly accurate. During training, errors in one
component can be compensated for by the other, resulting in a model that fits the overall trajectory
but misrepresents the individual dynamics. Therefore, using these neural components for direct
supervision in separate searches for symbolic F and G would risk replicating this overfitting. Instead,
CGS uses them as references to coordinate the evolution of two symbolic populations, ensuring a
balanced search.

CGS maintains two populations of symbolic expressions: F for node dynamics and G for edge
dynamics. To prevent one population from overfitting to compensate for inaccuracies in the other,
their evolution is coordinated. At each step, CGS measures the deviation of each population from its
respective neural reference:

d(F) =
∑

F∈F
|F − F̂ |2, d(G) =

∑
G∈G

|G− Ĝ|2, (5)

where | · | is the average absolute error between two functions on randomly sampled points. The
algorithm then prioritizes the evolution of the population with the larger distance to its reference. For
instance, if d(F) > d(G), only the node dynamics population F is evolved. This strategy ensures a
balanced search, preventing overfitting and improving the quality of the final symbolic expressions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 FITNESS EVALUATION AND EVOLUTION

While neural dynamics provide references for coordination, they are not precise enough for direct
fitness calculation. Instead, CGS uses the denoised and interpolated trajectories from the proxy model
as the ground truth for fitness evaluation.

To evolve the selected population, we assess the fitness of each candidate expression. The fitness of a
symbolic node dynamics F ∈ F or a symbolic edge dynamics G ∈ G is calculated by pairing it with
expressions from the other population and measuring the error against the interpolated trajectory:

fF = Mean ◦ BigK
{∑

v∈V,t∈T
−e

(
fv,t
F,G, f

v,t
θ

)∣∣∣G ∈ G
}
, (6)

fG = Mean ◦ BigK
{∑

v∈V,t∈T
−e

(
fv,t
F,G, f

v,t
θ

)∣∣∣F ∈ F
}
, (7)

where fv,t
F,G =

∫ t

0

(
F (xv) +

∑
u∈Nv

G(xv,xu)
)
dt, fv,t

θ = fθ
(
G,X(t0), t

)
v

(8)

Here, e(·, ·) is the error function, T is the set of interpolated timestamps, BigK selects the K best-
performing pairs, and Mean averages their errors. A higher fitness value (lower error) indicates
a better symbolic expression. The expressions in the selected population then undergo selection,
crossover, and mutation to generate the next generation.

The complete CGS algorithm is detailed in Algorithm 1. The process begins by initializing populations
F (0) and G(0). In each iteration, the algorithm decides which population to evolve based on (5). It
then calculates fitness, checks for convergence, and applies genetic operators. The search terminates
when a satisfactory solution is found or the maximum number of iterations is reached, returning the
best-fit symbolic expressions F ∗ and G∗.

Algorithm 1 Coordinated Genetic Search for SR

Require: Neural dynamics fθ , node dynamics reference F̂ , edge dynamics reference Ĝ, K for calculating
fitness, maximum iteration M , threshold ϵ.

1: Initialize the node dynamics population F (0) and edge dynamics population G(0) with random symbolic
expressions;

2: for i = 1, 2, · · · ,M do
3: Compute d(F (i−1)) and d(G(i−1)) using (5);
4: if d(F (i−1)) > d(G(i−1)) then
5: Calculate the fitness fF of each expression F in F (i−1) using (6);
6: if ∃F ∈ F (i−1), fF ≤ ϵ, break;
7: Select, cross, and mutate the expressions in F (i−1) to generate the next population F (i);
8: G(i) = G(i−1);
9: else

10: Calculate the fitness fG of each expression G in G(i−1) using (7);
11: if ∃G ∈ G(i−1), fG ≤ ϵ, break;
12: Select, cross, and mutate the expressions in G(i−1) to generate the next population G(i);
13: F (i) = F (i−1);
14: end if
15: end for
16: F ∗ = argminF∈F(i) fF ;
17: G∗ = argminG∈G(i) fG;
18: return F ∗, G∗.

2.4 COMPARISON

We compare SymDL (Cranmer et al., 2020), NASSymDL (Shi et al., 2023), D-CODE (Qian et al.,
2022), TP-SINDy (Gao & Yan, 2022) and CGS in Table 3. These methods cater to different problem
settings, utilizing distinct forms of input and output. SymDL and NASSymDL perform general
symbolic regression, finding a function y = f(x) from input-output pairs (xi, yi)

N
i=1. D-CODE

focuses on symbolic regression of dynamics, taking a single trajectory {x(t)|t ∈ T } to output the
governing ODE ẋ = dx/dt. TP-SINDy and CGS target symbolic regression of complex network
dynamics, using multiple trajectories {X(t)|t ∈ T } to output symbolic network dynamics F and G.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We compare these algorithms in two aspects: proxy models and formula regression. Proxy models are
trained to fit data and serve as a basis for deriving symbolic expressions. Formula regression directly
extracts symbolic expressions from raw data or proxy models. For proxy model, SymDL uses graph
networks (GN) with inductive bias, and NASSymDL employs neural architecture search (NAS) for
skeleton search. D-CODE can incorporate any suitable regressor. CGS fits multiple trajectories using
proxy, a graph neural ODE aligned with network dynamics for better generalization. SymDL and
NASSymDL rely on potentially noisy estimated derivatives for dynamics fitting, whereas D-CODE
and CGS train directly on raw observations for improved accuracy. TP-SINDy needs no proxy model.

In formula regression, methods using genetic search employ elementary operations (e.g.,
+,−,×,÷, sin, exp) to represent formula, offering more flexibility and requiring less prior knowl-
edge than TP-SINDy’s linear combination of functions in predefined function library. SymDL and
NASSymDL use the internal functions (Cranmer et al., 2020) from the proxy models as supervision
to compute fitness in genetic search. D-CODE uses the interpolated trajectories as supervision.
TP-SINDy is based on sparse regression and uses estimated derivatives for symbolic regression,
which can be noisy and inaccurate over large time intervals. CGS uses (3) from proxy model as
references for search coordination and interpolated trajectories for fitness evaluation.

While our method co-evolves separate populations, it is fundamentally distinct from general-purpose
techniques like the Cooperative Co-evolutionary Genetic Algorithm (CCGA) (Potter & De Jong,
1994). CCGA is a generic optimization framework that decomposes a problem and evolves sub-
populations in a fixed, round-robin schedule, agnostic to the individual performance of each com-
ponent. In stark contrast, CGS is specifically designed to solve the critical problem of symbolic
overfitting in network dynamics. Its core innovation is an adaptive, reference-guided coordination
strategy. Instead of following a blind, fixed schedule, CGS strategically prioritizes the evolution of
the dynamic component (node or edge) that deviates most from a reliable neural reference. This tar-
geted approach is crucial for discovering independently correct and physically meaningful governing
equations—a challenge that CCGA’s undirected, general-purpose search is not designed to address.

2.5 THEORETICAL ANALYSIS

Our theoretical analysis (see full proof in Appendix C) clarifies why CGS is more robust than a
Separate Search (SS) baseline such as SymDL. We show that for SS to succeed, it requires a much
stronger condition: the neural proxy must have small component-wise errors for both node and edge
dynamics. In contrast, CGS only requires the overall trajectory error of the proxy to be small. This
distinction aligns with the central motivation of our paper: CGS is resilient to the kind of overfitting
where errors in the proxy’s components compensate for each other, while SS is not. This is formalized
in the following theorem.

Theorem 1 (Error Bounds for CGS vs. SS). Let Xgt(t) be the ground-truth trajectory. Under
Assumption 2 (see Appendix C), the ground-truth fitting errors for CGS (ECGS) and Separate Search
(ESS) are bounded as follows:

ECGS = ∥XFCGS ,GCGS
(t)−Xgt(t)∥ ≤ δCGS + ϵproxy (9)

ESS = ∥XFSS ,GSS
(t)−Xgt(t)∥ ≤ LF (δF + ϵF) + LG(δG + ϵG) (10)

where ϵproxy is the neural proxy’s overall trajectory error, while ϵF and ϵG are the errors of its
individual node and edge dynamic components. The δ terms represent search algorithm errors, and
LF , LG are Lipschitz constants that reflect the sensitivity of the system to changes in F and G.

Implication of the Theorem. The theorem highlights a key difference: for SS to achieve a small
error, it requires both ϵF and ϵG to be small—a much stronger condition than simply requiring a
small ϵproxy as in CGS. In practice, overfitting often leads to large component-wise errors that could
cancel out in the overall trajectory, so the SS bound can be much looser than the CGS bound. Thus,
CGS is more robust to this type of overfitting, which is central to the motivation of our approach. See
details of assumptions (and its Justification), theorem proof, and implications in Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

3.1 EXPERIMENTS ON SYNTHETIC DATASET

Baseline We compare our method with baselines SymDL (Cranmer et al., 2020), SINDy (Brunton
et al., 2016) and Two-Phase SINDy (TP-SINDy)(Gao & Yan, 2022). SymDL uses our proxy model
and search the formulas of node and edge dynamics separately. SINDy (Brunton et al., 2016) is
a sparse regression methods to find symbolic dynamics. SINDy here first numerically estimates
the derivative of each node’s activity through the five-point approximation (Sauer, 2011) and then
optimizes the coefficients of the linear combination of predefined candidate functions. TP-SINDy is
an improved version of it, which contains more elementary functions and an extra finetuning phase to
remove terms with small coefficients. NASSymDL (Shi et al., 2023) is not included in the comparison
because we leverage known inductive biases, negating the need for neural architecture search for the
proxy model. We also do not compare against D-CODE (Qian et al., 2022) because it does not have a
natural extension to the dynamics regression of multiple trajectories.

Dataset We investigate the following four network dynamics in experiments, i.e., Susceptible-
Infected-Susceptible (SIS) Epidemics Dynamics (Pastor-Satorras et al., 2015), Lotka-Volterra (LV)
Population Dynamics (MacArthur, 1970), Wilson-Cowan Neural Firing Dynamic (Laurence et al.,
2019; Wilson & Cowan, 1972) and Kuramoto Oscillators(KUR) model (Kuramoto & Kuramoto, 1984).
Their dynamics are shown in Table 4. We conduct experiments on two complex network structures,
i.e., Erdős-Rényi (ER) graph (Erdos & Renyi, 1959) and Barabási-Albert (BA) graph (Barabási &
Albert, 1999) with 200 nodes.

We randomly initialize the state of all nodes and regularly sample K timestamps t0, t1, · · · , tK−1

from the range [0, T] because all other baselines rely on the equal time interval to estimated time
derivatives. Then we simulate the whole dynamics to get the node states [X(t0),X(t1), ...,X(tK−1)].
The edge weight avu is set to binary values, i.e., avu = 1 if there is an edge between node v and node
u, otherwise avu = 0.

Evaluation metrics The performance is evaluated by two metrics. (a) The recovery probability
(Rec. Prob.) of formulas with correct skeletons. (See Appendix A for computation details). (b)
The mean squared error (MSE) between the simulated trajectories using the recovered symbolic
expression of dynamics and the ground truth observations. To ensure a fair evaluation, we only
compute MSE for the symbolic expressions with correct skeletons.

Results The comparison results are shown in Table 2. The proposed CGS generally has a higher
recovery probability. For SIS and LV dynamics, TP-SINDy is not stable enough to recover the
formula with the correct skeleton. This instability may stem from the numerical derivative estimation
and a failure to effectively narrow down the model space. The latter can be exacerbated by data
normalization, which may lead to overfitting candidate functions. For the WC dynamics, the TP-
SINDy always fails to regress the correct skeleton, this is because the edge dynamics evolves a
parametric function that cannot be represented by a linear combination of predefined functions. For
the KUR dynamics, both TP-SINDy and CGS succeed with recovery probability 1. SINDy does not
contain the finetuning phase which TP-SINDy has. As a result, it exhibits a lower recovery probability
compared to TP-SINDy. SymDL’s symbolic regression process relies solely on the proxy model while
CGS utilizes two reference and interpolated trajectories for searching. As a result, CGS achieves
the highest recovery probability. Refer to Appendix B.6 for additional results on multi-dimensional
dynamics.

3.2 EXPERIMENTS ON REAL DATASET

Dataset We demonstrate the effectiveness of CGS on the real epidemic network using the same
influenza A (H1N1) spreading dataset as (Gao & Yan, 2022). In this dataset, each node represents
a country or region, with the daily counts of newly reported cases as node states. The edges of the
complex network are defined by the global aviation routes, depicting human mobility between regions.
Our goal is to uncover the dynamics that govern the spread of the disease. For a fair comparison, we
employed the same data preprocessing procedures as (Gao & Yan, 2022), such as constructing the
adjacency matrix and data cleaning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on synthetic datasets. MSE values are scaled by 10−2 and multiply
by 10−2 to obtain the actual values. (TP: TP-SINDy, PI: CGS, NA: MSE is not applicable because of
failure of the correct skeleton recovery.)

Graphs Dynamics Rec. Prob.↑ MSE↓ (10−2)

SymDL SINDy TP PI SymDL SINDy TP PI

BA

SIS 0.35 0.11 0.15 1.00 0.979±0.173 0.484±0.056 0.434±0.052 0.312±0.012
LV 0.16 0.12 0.20 1.00 2.075±0.303 1.170±0.049 0.875±0.057 0.136±0.008

KUR 0.80 0.87 1.00 1.00 0.064±0.018 0.175±0.016 0.040±0.003 0.007±0.001
WC 0.56 0.00 0.00 1.00 0.362±0.057 NA NA 0.092±0.004

ER

SIS 0.31 0.11 0.17 1.00 1.173±0.095 0.468±0.059 0.386±0.051 0.119±0.025
LV 0.15 0.09 0.19 1.00 1.784±0.236 0.941±0.041 0.763±0.077 0.251±0.007

KUR 0.87 0.78 1.00 1.00 0.071±0.018 0.087±0.022 0.069±0.019 0.017±0.001
WC 0.40 0.00 0.00 1.00 0.266±0.047 NA NA 0.044±0.003

0 10 20 30 40
Days

0

200

400

600

800

Nu
m

be
r o

f C
as

es

Finland
TP-SINDy
SymDL
CGS
Real Data

0 10 20 30 40
Days

0

50

100

150

200

250

Nu
m

be
r o

f C
as

es

Saint Pierre and Miquelon
TP-SINDy
SymDL
CGS
Real Data

Figure 2: Visualizing the predicted number of
newly reported cases in two regions using sym-
bolic expressions from TP-SINDy and CGS.

Results We use CGS, SymDL, and TP-SINDy
to regress the symbolic expression of influenza
A spread dynamics. The result of CGS is

ẋv(t) = axv(t)+
∑

u∈Nv

b

1 + exp− (mxv(t) + c)
xu(t),

(11)
where a = 0.0740, b = 0.0015, m = −0.0041
and c = 9.9643. Node dynamics in (11) is a
linear function, aligning with the exponential
growth of the epidemic. Edge dynamics in (11)
is proportional to the neighboring region’s state, which is consistent with the fact that the epidemic
spreads increases with the number of infected cases in neighboring regions. The other factor of edge
dynamics consists of a composition of a linear transformation followed by a sigmoid activation. This
suggests that the rate of new infections from neighbors is modulated by the local infection level,
possibly due to factors like population saturation or implemented control measures. This trend may
be caused by the reduction of the willingness of people to travel to epidemic areas or the decrease of
basic reproduction number (R0) under high infected density.

The symbolic expression regressed by TP-SINDy and SymDL are

ẋv(t) =a′xv(t) +
∑
u∈Nv

b′

1 + exp− (xv(t)− xu(t))
, (12)

ẋv(t) =a′′xv(t)
2 +

∑
u∈Nv

b′′

1 + exp− (xv(t)− xu(t))
xu(t) (13)

where a′ = 0.074, b′ = 7.130, a′′ = 0.0742, b′′ = 0.0012. (12) fails to accurately model epidemic
spreading, as it predicts a non-zero growth rate even without infected cases, which is physically
unreasonable. In contrast, (11) correctly yields a zero growth rate in such scenarios, aligning with
the fact that epidemics cannot spread without infected individuals. Compare with (13) from SymDL,
(11) has a simpler node dynamics and edge dynamics, indicating that CGS can find more concise
symbolic expressions.

We compare the trajectories of symbolic expressions in (11), (12) and (13) with the real infected
cases. Fig. 2 visualizes the simulation results of inferred dynamics in two regions, i.e., “Finland” and
“Saint Pierre and Miquelon”. The trajectories of the infected cases in the two regions inferred by CGS
are consistent with the ground truth, while the trajectories inferred by TP-SINDy and SymDL deviate
from the ground truth.

We evaluate the errors of regressed dynamics. As the scale of infected cases varies across different
regions, we normalize the infected cases to the range of [0, 1] by the maximal value of each region.
TP-SINDy’s MSE (0.9028) exceeds CGS’s (0.8261), demonstrating its superior fit to real data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

30 40 50 60 70
Noise SNR (dB)

0.00

0.25

0.50

0.75

1.00

Re
c.

 P
ro

b.
TP-SINDy
CGS

(a) Recovery probability versus noise level

30 40 50 60 70
Noise SNR (dB)

0.000

0.025

0.050

0.075

M
SE

TP-SINDy
CGS

(b) MSE versus noise level

10 2 10 1 100

t

0.00

0.25

0.50

0.75

1.00

Re
c.

 P
ro

b.

TP-SINDy
CGS

(c) Recovery probability versus time interval

10 2 10 1 100

t

0.00

0.02

0.04

0.06

M
SE

TP-SINDy
CGS

(d) MSE versus time interval

Figure 3: Evaluation of robustness. Shaded areas correspond to 95% confidence interval. (a) and
(b) show the recovery probability and MSE when adding noise to observations. (c) and (d) show the
recovery probability and MSE when increasing the time interval between observations.

3.3 ROBUSTNESS ON CGS AND TP-SINDY

We evaluate the robustness of CGS and TP-SINDy with the KUR dynamics, highlighting the
advantages of the neural-symbolic approach over methods based on numerical derivatives (as stated
in the introduction). We focus on performance under noisy observations and with large time intervals.

We add Gaussian noise to node states to assess performance under noise, with noise magnitude
measured by the signal-to-noise ratio (SNR). As shown in Fig. 3(a), our method maintains a 100%
recovery rate even as the SNR drops from 70 dB to 25 dB, while TP-SINDY’s recovery rate falls to 0%
at 30 dB. In Fig. 3(b), CGS consistently produces more accurate symbolic expressions that have lower
MSE. This occurs because TP-SINDy relies on numerically estimating time derivatives that are noisy
and inaccurate, whereas our method uses neural dynamics to denoise and interpolate observations
directly. Deep neural networks excel at handling noisy data by learning meaningful patterns from
large amounts of data, even when the data contains significant noise. Using the accurately denoised
observations, CGS predicts constants in the formula better and produce a more accurate trajectory
when noise exists.

TP-SINDy relies on the equal time interval to estimate time derivatives. So we increase the interval
size to compare the performances of TP-SINDy and CGS. Sampling timestamps from [0, 100] with
different intervals ∆t, Fig. 3(c) shows that our model maintains a 100% recovery rate, while TP-
SINDy fails with larger intervals. Fig. 3(d) shows that CGS always produces more accurate results
when both methods produce the correct skeleton of dynamics. This is because the interpolated
observations in CGS are better suited when the time interval is large compared to the estimated
time derivatives used by TP-SINDy. Visualization of interpolated trajectories and estimated time
derivatives are shown in Fig. 4 of the appendix.

4 RELATED WORK

4.1 SYMBOLIC REGRESSION

Throughout the history of physics, extracting elegant symbolic expressions from extensive experi-
mental data has been a fundamental approach to uncovering new formulas and validating hypotheses.
Symbolic Regression (SR) is a notable topic in this context (Schmidt & Lipson, 2009; Petersen et al.,
2019; Cranmer et al., 2020; Kamienny et al., 2022), aiming to mimic the process of deriving an
explicit symbolic model that accurately maps input X to output y while ensuring the model remains
concise. Traditional methods for deriving formulas from data have predominantly relied on genetic
programming (GP) (Schmidt & Lipson, 2009; Koza, 1994; Worm & Chiu, 2013), a technique inspired

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

by biological evolution that iteratively evolves populations of candidate solutions to discover the
most effective mathematical representations.

More recently, due to the remarkable accomplishments of neural networks across diverse domains,
there has been an increasing interest in leveraging deep learning for symbolic regression. Specif-
ically, some recent works (Cranmer et al., 2020; Chen et al., 2021; Qian et al., 2022; Udrescu &
Tegmark, 2020; Martius & Lampert, 2016; Mundhenk et al., 2021; Shi et al., 2023) have explored
guiding genetic programming with the output of neural networks to improve the efficiency and
accuracy of symbolic regression. This approach takes advantage of the powerful pattern recognition
and generalization capabilities of neural networks to inform the evolutionary processes of genetic
programming, resulting in more effective and efficient discovery of symbolic expressions. Another
line of works (Kamienny et al., 2022; Biggio et al., 2021; Valipour et al., 2021; d’Ascoli et al.,
2024) applies Transformer to symbolic regression and achieves comparable performance to GP-based
methods.

4.2 COMPLEX NETWORK DYNAMICS LEARNING

Learning complex network dynamics from data has largely followed two paths: neural network-based
approaches and symbolic regression.

Neural network-based methods often utilize an encode-process-decode paradigm (Hamrick et al.,
2018; Zang & Wang, 2020), where initial node states are encoded, processed by a Graph Neural
Network (GNN) to model evolution and interaction, and then decoded. For example, Murphy et al.
(2021) used GNNs for regularly sampled observations, while NDCN (Zang & Wang, 2020) integrated
graph neural ODEs (Chen et al., 2018) for continuous dynamics. While powerful, these models are
typically black-boxes, limiting interpretability. Notably, Liu et al. (2023) recently achieved improved
long-term prediction by dropping the encode-process-decode paradigm.

Symbolic regression aims for interpretable symbolic expressions. TP-SINDy (Gao & Yan, 2022),
an extension of SINDy (Brunton et al., 2016), employs a broader function library and a two-phase
regression. However, it relies on accurate time derivative estimates and is restricted to its predefined
function library. Our work differentiates itself by using genetic programming, guided by supervision
from neural dynamics, to discover symbolic expressions for complex network dynamics.

5 CONCLUSION

We introduced Coordinated Genetic Search (CGS), a novel algorithm that addresses the overfitting
problem in symbolic regression of complex network dynamics, which often arises from searching
for node and edge dynamics independently. CGS trains a neural proxy model to provide reliable
references and then co-evolves two symbolic populations, coordinating their search by prioritizing
the population that deviates more from its neural reference. This cooperative process steers the
search toward a balanced, accurate solution. Evaluations on synthetic and real-world data show CGS
significantly outperforms existing methods in formula recovery, prediction accuracy, and robustness,
yielding simpler, more generalizable, and physically faithful models.

Limitations Our method has several limitations:

• CGS cannot successfully recover symbolic expressions when the formulations are highly complex
or the dimension of node states is high. The highly complex formulations indicate a large search
space for the genetic algorithm. Therefore, there should be a large population size and a large
number of generations for the genetic algorithm to find the symbolic expressions. Since the fitness
of our method is calculated based on the pairwise combination of node and edge dynamics, the
fitness evaluation is computationally expensive and memory-consuming.

• CGS cannot deal with the complex network dynamics when some variables are missing in the
observations. In some complex systems, it is difficult to observe all variables at the same time.
In this case, the prediction accuracy of neural dynamics (4) may not be high enough to provide
high-quality supervision data for symbolic regression.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Baruch Barzel and Albert-László Barabási. Universality in network dynamics. Nature physics, 9(10):
673–681, 2013.

Amir Bashan, Travis E Gibson, Jonathan Friedman, Vincent J Carey, Scott T Weiss, Elizabeth L
Hohmann, and Yang-Yu Liu. Universality of human microbial dynamics. Nature, 534(7606):
259–262, 2016.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In International Conference on Machine Learning, pp.
936–945. Pmlr, 2021.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Zhao Chen, Yang Liu, and Hao Sun. Physics-informed learning of governing equations from scarce
data. Nature communications, 12(1):6136, 2021.

Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models from deep learning with inductive biases. Advances
in Neural Information Processing Systems, 33:17429–17442, 2020.

Stéphane d’Ascoli, Sören Becker, Philippe Schwaller, Alexander Mathis, and Niki Kilbertus. ODE-
Former: Symbolic regression of dynamical systems with transformers. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=TzoHLiGVMo.

P Erdos and A Renyi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Jianxi Gao, Baruch Barzel, and Albert-László Barabási. Universal resilience patterns in complex
networks. Nature, 530(7590):307–312, 2016.

Ting-Ting Gao and Gang Yan. Autonomous inference of complex network dynamics from incomplete
and noisy data. Nature Computational Science, 2(3):160–168, 2022.

Sébastien Gaucel, Maarten Keijzer, Evelyne Lutton, and Alberto Tonda. Learning dynamical systems
using standard symbolic regression. In Genetic Programming: 17th European Conference, EuroGP
2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers 17, pp. 25–36. Springer, 2014.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee, Joshua B Tenenbaum,
and Peter W Battaglia. Relational inductive bias for physical construction in humans and machines.
arXiv preprint arXiv:1806.01203, 2018.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269–10281, 2022.

Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H Eugene Stanley,
and Hernán A Makse. Identification of influential spreaders in complex networks. Nature physics,
6(11):888–893, 2010.

10

https://openreview.net/forum?id=TzoHLiGVMo
https://openreview.net/forum?id=TzoHLiGVMo

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John R Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and computing, 4:87–112, 1994.

Gabriel Kronberger, Lukas Kammerer, and Michael Kommenda. Identification of dynamical systems
using symbolic regression. In Computer Aided Systems Theory–EUROCAST 2019: 17th Interna-
tional Conference, Las Palmas de Gran Canaria, Spain, February 17–22, 2019, Revised Selected
Papers, Part I 17, pp. 370–377. Springer, 2020.

Yoshiki Kuramoto and Yoshiki Kuramoto. Chemical turbulence. Springer, 1984.

Edward Laurence, Nicolas Doyon, Louis J Dubé, and Patrick Desrosiers. Spectral dimension
reduction of complex dynamical networks. Physical Review X, 9(1):011042, 2019.

Bing Liu, Wei Luo, Gang Li, Jing Huang, and Bo Yang. Do we need an encoder-decoder to model
dynamical systems on networks? arXiv preprint arXiv:2305.12185, 2023.

Robert MacArthur. Species packing and competitive equilibrium for many species. Theoretical
population biology, 1(1):1–11, 1970.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

Terrell Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Brenden K Petersen, et al.
Symbolic regression via deep reinforcement learning enhanced genetic programming seeding.
Advances in Neural Information Processing Systems, 34:24912–24923, 2021.

Charles Murphy, Edward Laurence, and Antoine Allard. Deep learning of contagion dynamics on
complex networks. Nature Communications, 12(1):4720, 2021.

Mark Newman, Albert-László Barabási, and Duncan J Watts. The structure and dynamics of networks.
Princeton university press, 2011.

Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in scale-free networks.
Physical review letters, 86(14):3200, 2001.

Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani.
Epidemic processes in complex networks. Reviews of modern physics, 87(3):925, 2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Mitchell A Potter and Kenneth A De Jong. A cooperative coevolutionary approach to function
optimization. In International conference on parallel problem solving from nature, pp. 249–257.
Springer, 1994.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-code: Discovering closed-form
odes from observed trajectories. In International Conference on Learning Representations, 2022.

Mikhail I Rabinovich, Pablo Varona, Allen I Selverston, and Henry DI Abarbanel. Dynamical
principles in neuroscience. Reviews of modern physics, 78(4):1213–1265, 2006.

Günter Rudolph. Convergence analysis of canonical genetic algorithms. IEEE transactions on neural
networks, 5(1):96–101, 1994.

Timothy Sauer. Numerical solution of stochastic differential equations in finance. In Handbook of
computational finance, pp. 529–550. Springer, 2011.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hongzhi Shi, Jingtao Ding, Yufan Cao, Li Liu, Yong Li, et al. Learning symbolic models for
graph-structured physical mechanism. In The Eleventh International Conference on Learning
Representations, 2023.

Trevor Stephens. gplearn: Genetic programming in python, 2015. URL https://gplearn.
readthedocs.io/. Accessed: 2024-05-21.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative trans-
former model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

Hugh R Wilson and Jack D Cowan. Excitatory and inhibitory interactions in localized populations of
model neurons. Biophysical journal, 12(1):1–24, 1972.

Tony Worm and Kenneth Chiu. Prioritized grammar enumeration: symbolic regression by dy-
namic programming. In Proceedings of the 15th annual conference on Genetic and evolutionary
computation, pp. 1021–1028, 2013.

Chengxi Zang and Fei Wang. Neural dynamics on complex networks. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20, pp. 892–
902, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984.
doi: 10.1145/3394486.3403132. URL https://doi.org/10.1145/3394486.3403132.

12

https://gplearn.readthedocs.io/
https://gplearn.readthedocs.io/
https://doi.org/10.1145/3394486.3403132

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 3: Comparison with different methods for symbolic regression. (GN: graph network, NAS:
neural architecture search, GS: genetic search)

Category Design SymDL NASSymDL D-CODE TP-SINDy CGS

Input input-output
pairs

input-output
pairs

single
trajectory

multiple
trajectories

multiple
trajectories

Proxy
model

Model design GN w/
inductive bias NAS any regressor – GN w/

inductive bias

Dynamics
fitting data

estimated
derivatives

estimated
derivatives

raw
observations – raw

observations

Formula
regression

Prior
knowledge

elementary
operation

elementary
operation

elementary
operation

function
library

elementary
operation

Method GS GS GS sparse
regression

coordinated
GS

Supervision internal
functions

internal
functions

interpolated
trajectory

estimated
derivatives

network ref &
interp. trajectories

Output input-output
mapping

input-output
mapping ODE Graph

ODE
Graph
ODE

A DETAILS ON EXPERIMENTS

All experiments are implemented with PyTorch (Paszke et al., 2019), PyTorch Geometric (Fey &
Lenssen, 2019), and gplearn (Stephens, 2015) in NVIDIA GeForce RTX 4090 GPUs and AMD
EPYC 7763 Processors.

A.1 DATASET STATISTICS

The BA graph is generated with 200 nodes and the initial degree of each node is set to 3. The ER
graph is generated with 200 nodes and the probability for edge creation is set to 0.02. The initial
states of SIS, LV, and WC dynamics are generated by randomly sampling from [0, 1]. For KUR
dynamics, the initial states are generated by randomly sampling from [0, 2π]. For SIS dynamics, we
set δ = 0.5. For LV dynamics, we set α = 0.75, θ = 0.5,. For KUR dynamics, we set ω = 0.75.
For WC dynamics, we set τ = 0.75, µ = 0.5. We regularly sample 100 timestamps from [0, 1] and
simulate the dynamics to generate the observation data.

Table 4: Dynamics for generating synthetic dataset.

node dynamics edge dynamics

SIS −δxi(t) (1− xi(t))xj(t)
LV xi(t)(α− θxi(t)) −xi(t)xj(t)
WC −xi(t) (1 + exp(−τ(xj(t)− µ)))−1

KUR ω sin(xi(t)− xj(t))

A.2 DETAILS FOR NETWORK TRAINING

We split the timestamps randomly into training, validation, and testing sets with a ratio of 0.8, 0.2, 0.1
to train the NeuralODE. We train the neural dynamics for 1000 epochs using optimizer AdamW. The
learning rate is searched in the range of [1e− 3, 1e− 2], the weight decay is set to 0.001. We use
MLPs as the encoder and decoder of neural dynamics. The hidden dimension of the neural dynamics
is set to 10. The details of the network structure are shown in Table 5.

A.3 DETAILS OF GENETIC SEARCH

We implement the coordinated genetic search based on gplearn (Stephens, 2015). gplearn (Stephens,
2015) represent the symbolic expressions as a syntax tree, where the functions are interior nodes,
and the variables and constants make up the leaves. Evolution such as crossover, mutation, and
reproduction are performed on the syntax tree. The population size of F and G are set to 200. The
maximum generation of the genetic search M is set to 50 and the stopping threshold ϵ = 10−5.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Details of network structure for different dynamics.

SIS LV KUR WC real dataset

Hidden dimension 10 10 10 10 10
Activation of ϕn ReLU ReLU ReLU ReLU Sigmoid
Activation of ϕe ReLU Tanh Tanh Sigmoid Sigmoid

Activation of Encoder ReLU Tanh Tanh ReLU Tanh
Activation of Decoder ReLU Tanh Tanh ReLU Tanh

Layer of ϕn 2 2 1 1 2
Layer of ϕe 2 2 3 2 3

The K in Algorithm 1 equals to 20. The function set includes addition, subtraction, multiplication,
division, sine, cosine, and exponential. The constants are constrained in the range [−1, 1]. Other hy-
perparameters of gplearn are set as: p crossover=0.6, p subtree mutation=0.1, p hoist mutation=0.05,
p point mutation=0.1, parsimony coefficient=0.01. We conduct the genetic search in 256 parallel
threads to speed up the search process. Our CPUs are two AMD EPYC 7763 Processors.

A.4 COMPUTATIONAL DETAILS OF REC. PROB.

The recovery probability is calculated as the ratio of the number of successful recovery of formula
skeletons to the total number of experiments. We automatically check the correctness of the recovered
formula skeletons using the method for verifying skeletons provided in Qian et al. (2022). Basically,
we replace the constants in the formulas with placeholders and use the simplify(f ′ − f) == 0
criterion from the Sympy package to determine if the skeleton is correct.

A.5 DISCUSSIONS ON THE CHOICE OF METRICS

Compute MSE between trajectories instead of the constants. We do not directly compute the
MSE between predicted and true constants. This is because our goal is to evaluate how well the
obtained symbolic expressions predict trajectories, which is crucial for real-world scenarios like
epidemic forecasting. Directly computing constant errors is insufficient, as different constants impact
the trajectory differently. Some constants require high precision, with small deviations causing
significant errors, while others are less critical and can tolerate some errors.

Compute MSE for formulas with correct skeletons. For simulated datasets, we choose MSE
restricted to correctly recovered skeletons because the baseline methods often exhibit large MSE
when recovering incorrect skeletons. Filtering out these formulas allows the baselines to achieve
comparable performance. For real datasets, since the true dynamics skeleton is unknown, we directly
compare the MSE of the trajectories without filtering by the skeletons.

B ADDITIONAL RESULTS

B.1 ABLATION STUDY

We conduct ablation studies to demonstrate the importance of interpolated trajectories in CGS. So,
we test a variant of CGS which uses the original observations instead of interpolated and denoised
trajectory when calculating the fitness. (CGS without Interp.).

Table 6 shows the results of SIS and LV dynamics in the BA graph. Without the interpolated and
denoised observations, both the recovery probability and the accuracy of CGS drop. This indicates
that the interpolated and denoised trajectories can provide high-quality fitness evaluation for symbolic
regression.

We also experiment on the robustness of the ablation variants. Table 7 shows the results of KUR
dynamics in the BA graph when the observations are noisy or the time interval is large. Different
from the results in Table 6, the success Prob. significantly drop when removing the interpolation part.
This proves the effectiveness of neural dynamics in denoising and augmenting trajectories.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Ablation study with experiment results on SIS and LV dynamics in BA graph.

Model SIS LV

Rec. Prob.↑ MSE↓ (10−2) Rec. Prob.↑ MSE↓ (10−2)

CGS 1 0.312±0.012 1 0.136±0.008
CGS w/o Interp. 0.81 0.408±0.027 0.86 0.588±0.028

Table 7: The robustness of two variants compared with full method on KUR dynamics in BA graph.

Models Noise (SNR=35dB) Time interval (∆t = 1.28)

Rec. Pro.↑ MSE↓ (10−2) Rec. Pro.↑ MSE↓ (10−2)

CGS 1 0.478±0.103 1 0.454±0.213

CGS w/o Interp 0.84 6.970±1.870 0.78 2.645±1.138

B.2 RUNTIME

In Table 8, CGS saves 30.1% running time on SIS dynamics and 39.0% running time on LV dynamics
compared with CGS w/o Coord. (SymDL). The results show that the coordinated genetic search can
significantly reduce the search space and improve the efficiency of the search process.

Table 8: The runtime (minutes) of CGS and CGS(w/o Coord.).

Model SIS LV

CGS 61.5 50.9
CGS w/o Coord. (SymDL) 88.0 83.4

B.3 EXAMPLES OF EXPRESSIONS FROM SYMBOLIC EXPRESSIONS

In this section, we provide examples of symbolic expressions of CGS, TP-SINDy (Rec.), TP-SINDy
(Fail), SymDL (Rec.) and SymDL (Fail) on SIS, LV, KUR, and WC dynamics in the BA graph. TP-
SINDy (Rec.) represents the symbolic expressions of TP-SINDy when the skeleton of the dynamics
is successfully recovered, while TP-SINDy (Fail) represents the symbolic expressions of TP-SINDy
when the skeleton of the dynamics is not successfully recovered. SymDL (Rec.) and SymDL (Fail)
are the results of SymDL with correct/incorrect skeletons. The expressions are shown in Table 9.

B.4 EXAMPLE OF OVERFITTING

Take the SIS dynamics in the BA graph as an example. The symbolic expressions of CGS, TP-SINDy
(Rec.), TP-SINDy (Fail), SymDL (Rec.) and SymDL (Fail) are shown in Table 9. We compute the
MSE of the predicted trajectories under interpolated and extrapolated settings. The results are shown
in Table 10. Although the symbolic expressions from baseline methods have relatively low MSE
values under the interpolated setting, their MSE values are much higher under the extrapolated setting.
This indicates that the symbolic expressions are overfitted and cannot generalize well to extrapolated
setting. We double the time range from [0, 1] to [0, 2] to evaluate the extrapolation performance.

Note that all failure cases in Table 9 can also be viewed as examples of overfitting. The symbolic
expressions of CGS are more interpretable and simpler while the overfitted symbolic expressions of
TP-SINDy/SymDL are more complex and contain more terms.

B.5 VISUALIZATION OF NEURAL DYNAMICS

When observations are noisy or time interval is large, the neural dynamics can denoise and interpolate
the observations to provide high-quality supervision data for symbolic regression. On the other hand,
the numerical estimation is sensitive to noise and needs the sample interval to be small enough. We

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Symbolic regressions of CGS, TP-SINDy (Rec.), TP-SINDy (Fail) , SymDL (Rec.) and
SymDL (Fail) on SIS, LV, KUR, and WC dynamics in the BA graph.

Dynamics Models Node dynamics Edge dynamics

SIS

GT −0.5xi(t) (1 − xi(t))xj(t)

CGS −0.48540xi(t) (1 − xi(t))xj(t)

TP-SINDy (Rec.) −0.46640xi(t) (0.99119 − 1.09637xi(t))xj(t)

TP-SINDy (Fail) −0.47256x2
i (t) − 0.12596

0.10860sigmoid(xj(t) − xi(t))+

0.18835(xj(t) − x2
i (t))

0.19917(xj(t) − xi(t)) + 0.35416 sin(xj(t))

SymDL (Rec.) −0.54827xi(t) (1.03945 − 0.92538xi(t))xj(t)

SymDL (Fail) −0.6017xi(t) sin(cos(xi(t) − 0.5178)) (0.9966 − 1.1798xi(t) + 0.1984 sin(xi(t)))xj(t)

LV

GT xi(t)(0.75 − 0.5xi(t)) −xi(t)xj(t)

CGS xi(t)(0.75034 − 0.48812xi(t)) −0.99428xi(t)xj(t)

TP-SINDy (Rec.) xi(t)(0.69882 − 0.41853xi(t)) −0.91701xi(t)xj(t)

TP-SINDy (Fail) 0.03984 + 0.36330 ∗ sin(xi(t)) −0.945810xi(t)xj(t) − 0.11895xi(t)x
2
j (t)

SymDL (Rec.) xi(t)(0.703971 − 0.54885xi(t)) −1.11962xi(t)xj(t)

SymDL (Fail) (xi(t) − 0.027459) ∗ exp(−1.2791xi(t)) −1.006(xi(t) − 0.0031034)xj(t)

KUR

GT 0.75 sin(xi(t) − xj(t))

CGS 0.75002 sin(1.0001xi(t) − xj(t))

TP-SINDy (Rec.) 0.75014 0.99899 sin(xi(t) − xj(t))

TP-SINDy (Fail) NA NA

SymDL (Rec.) 0.74777 0.99037 sin(xi(t) − xj(t))

SymDL (Fail) xi(t) ∗ 0.00815 + 0.74624 0.99725 sin(xi(t) − 1.003xj(t) + 0.0013507)

WC

GT −xi(t) sigmoid(−0.75(xj(t) − 0.5))

CGS −xi(t) sigmoid(−0.74503(xj(t) − 0.49128))

TP-SINDy (Rec.) NA NA

TP-SINDy (Fail) −0.82267xi(t)
0.08513sigmoid(xj(t) − xi(t))

+0.68484sigmoid(xj(t))

SymDL (Rec.) −1.0132xi(t) sigmoid(−0.78165(xj(t) − 0.47162))

SymDL (Fail) −1.0953xi(t) − 0.00437 sigmoid(sigmoid((xi(t) + 0.7432) ∗ xi(t)) − 0.046806

Table 10: The MSE of CGS, TP-SINDy (Rec.), TP-SINDy (Fail.) , SymDL (Rec.) and SymDL (Fail)
under interpolated and extrapolated settings on SIS dynamics in the BA graph.

CGS TP-SINDy (Rec.) TP-SINDy (Fail.) SymDL (Rec.) SymDL (Fail.)

Interpolation 3.2× 10−3 5.2× 10−3 147.2× 10−3 6.3× 10−3 244.6× 10−3

Extrapolation 3.9× 10−3 46.9× 10−3 697.0× 10−3 122.4× 10−3 1678.6× 10−3

visualize the interpolate trajectories and the estimated time derivatives in Fig. 4, which is consistent
with our contributions.

B.6 RESULTS FOR MULTI-DIMENSIONAL DYNAMICS

The proposed method can be applied to multi-dimensional dynamics. We test the performance of
CGS on the FitzHugh–Nagumo (FHN) dynamics which are proposed to model the activity of neural
systems (Rabinovich et al., 2006). The formula is shown in Table 11. The dimension 1 represents the
membrane voltage and dimension 2 represents the recovery variable.

Table 11: Dynamics for FitzHugh-Nagumo dynamics.

node dynamics edge dynamics

dimension 1 xi,1(t)− xi,2(t)− 1
3xi,1(t)

3 xj,1(t)− xi,1(t)
dimension 2 axi,1(t) + bxi,2(t) + c 0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Interpolated trajectory with noisy observation. (b) Estimated time derivative with noisy observa-
tion.

(c) Interpolated observations with large sample
time interval.

(d) Estimated time derivative with large sample
time interval.

Figure 4: Visualization of interpolated and denoised observations and the estimated time derivative.
(a) The interpolated observations are very close to the ground truth when noise exists. (b) The
estimated time derivative is inaccurate with noisy observation. (c) The interpolated observations
are close to the ground truth with a large time interval (0.1). (d) The estimated time derivative is
inaccurate when the sample time interval is large.

The neural network can be directly applied to multi-dimensional dynamics by extending its input
dimensions. For the genetic search component, we adapt the existing package to support vector-valued
functions. Gplearn (Stephens, 2015) represents scalar-valued functions using a syntax tree. In our
approach, vector-valued functions are represented as a ”syntax forest,” which is a collection of syntax
trees. Mutation and crossover operations are conducted independently for each dimension. This
coordinated genetic search framework seamlessly extends to handle multi-dimensional dynamics.

We evaluate the performance of CGS on the FHN dynamics within a BA graph. CGS successfully
reconstructs the dynamics’ skeleton with a success probability of 1. Furthermore, it achieves a mean
squared error (MSE) of 0.182 × 10−2, outperforming TP-SINDy, which yields a higher MSE of
0.454× 10−2.

C PROOF OF THEORY

Assumption 2. 1. Bounded Neural Proxy Error:
∥∥∥X̂(t)−Xgt(t)

∥∥∥ ≤ ϵproxy , d(F̂ , Fgt) ≤
ϵF , and d(Ĝ,Ggt) ≤ ϵG for small positive constants ϵproxy, ϵF , ϵG.

2. Lipschitz Continuity of Dynamics: There exist constants LF , LG > 0 such that for any
two pairs of dynamics (F1, G1) and (F2, G2),

∥XF1,G1
(t)−XF2,G2

(t)∥ ≤ LF d(F1, F2) + LGd(G1, G2)

Here, d(f1, f2) denotes the average absolute error |f1 − f2| between two functions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

3. Bounded Search Error:
∥∥∥XFCGS ,GCGS

(t)− X̂(t)
∥∥∥ ≤ δCGS , d(FSS , F̂) ≤ δF , and

d(GSS , Ĝ) ≤ δG for small positive constants δCGS , δF , δG.

Justification of Assumption 2

• Bounded Neural Proxy Error: This assumption is standard in neural symbolic regression.
It states that the neural proxy model provides a reasonably accurate approximation of the true
dynamics, both in terms of the overall trajectory and the individual components. Importantly,
our main theorem shows that CGS only requires the overall trajectory error ϵproxy to be
small, while SS requires the much stronger condition that both ϵF and ϵG are small.

• Lipschitz Continuity of Dynamics: This assumption is common in the analysis of dy-
namical systems. The Lipschitz constants LF and LG quantify how sensitive the system’s
trajectory is to changes in the node and edge dynamics, respectively. If these constants are
large, the error bounds become looser, meaning that small errors in F or G can lead to larger
deviations in the trajectory.

• Bounded Search Error: This assumption is justified by the convergence properties of
genetic algorithms (Rudolph, 1994), which shows that variations of the genetic algorithms
that ensure the best solution in the population is always preserved are guaranteed to converge
to the global optimum. As we ensure the best solution in the population is always preserved
in CGS, such an assumption is reasonable.

Theorem 3. Let the ground-truth dynamics of a complex network be described by ẋv(t) =
Fgt(xv(t)) +

∑
u∈Nv

Ggt(xv(t),xu(t)), which produces a ground-truth trajectory Xgt(t). Let
a neural proxy model fθ be trained on observed data, producing neural references F̂ and Ĝ, and a
denoised, interpolated trajectory X̂(t).

We define two search strategies to find symbolic expressions (F,G):

1. Separate Search (SS): A baseline approach like SymDL that finds expressions
(FSS , GSS) by independently minimizing the distance to the neural references: FSS =

argminF∈F d(F, F̂) and GSS = argminG∈G d(G, Ĝ).

2. Coordinated Genetic Search (CGS): Finds expressions (FCGS , GCGS) by mini-
mizing the trajectory error against the denoised trajectory: (FCGS , GCGS) =

argmin(F,G)∈F×G

∥∥∥XF,G(t)− X̂(t)
∥∥∥, where XF,G(t) is the trajectory simulated using

(F,G).

Under Assumption 2, the ground-truth fitting error for CGS, ECGS = ∥XFCGS ,GCGS
(t)−Xgt(t)∥,

is bounded by ECGS ≤ δCGS + ϵproxy. The error for SS, ESS = ∥XFSS ,GSS
(t)−Xgt(t)∥, is

bounded by ESS ≤ LF (δF + ϵF) + LG(δG + ϵG).

Proof. We aim to establish upper bounds for the true fitting error E = ∥XF,G(t)−Xgt(t)∥ for both
CGS and SS.

Part 1: Bounding the Error of CGS (ECGS) The fitting error for the solution found by CGS is
ECGS = ∥XFCGS ,GCGS

(t)−Xgt(t)∥. Using the triangle inequality, we can introduce the denoised
trajectory X̂(t) from the neural proxy:

ECGS ≤
∥∥∥XFCGS ,GCGS

(t)− X̂(t)
∥∥∥+

∥∥∥X̂(t)−Xgt(t)
∥∥∥ (14)

By Assumption 2.3, the first term is the error minimized by the CGS algorithm, which is bounded by
δCGS . By Assumption 2.1, the second term is the trajectory error of the neural proxy model, which is
bounded by ϵproxy . Substituting these bounds into the inequality, we get:

ECGS ≤ δCGS + ϵproxy (15)

This bound depends on the quality of the CGS search (δCGS) and the overall accuracy of the neural
proxy’s integrated trajectory (ϵproxy).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Part 2: Bounding the Error of SS (ESS) The fitting error for the solution found by SS is
ESS = ∥XFSS ,GSS

(t)−Xgt(t)∥. Since the ground-truth trajectory is generated by the true dynamics
(Fgt, Ggt), we can write Xgt(t) = XFgt,Ggt

(t). Thus, the error is:

ESS =
∥∥XFSS ,GSS

(t)−XFgt,Ggt
(t)

∥∥ (16)

Using the Lipschitz continuity from Assumption 2.2, we can bound this trajectory error by the
distance between the symbolic component functions:

ESS ≤ LF d(FSS , Fgt) + LGd(GSS , Ggt) (17)

Now, for each component, we use the triangle inequality to introduce the neural references F̂ and Ĝ:

d(FSS , Fgt) ≤ d(FSS , F̂) + d(F̂ , Fgt) (18)

d(GSS , Ggt) ≤ d(GSS , Ĝ) + d(Ĝ,Ggt) (19)

Substituting these back into the inequality for ESS :

ESS ≤ LF (d(FSS , F̂) + d(F̂ , Fgt)) + LG(d(GSS , Ĝ) + d(Ĝ,Ggt)) (20)

By Assumption 2.3, the terms d(FSS , F̂) and d(GSS , Ĝ) represent the errors of the separate search
process, bounded by δF and δG respectively. By Assumption 2.1, the terms d(F̂ , Fgt) and d(Ĝ,Ggt)
represent the component-wise errors of the neural proxy, bounded by ϵF and ϵG. This gives the final
bound:

ESS ≤ LF (δF + ϵF) + LG(δG + ϵG) (21)
This bound depends on the quality of the separate search for each component (δF , δG) and accumulates
the individual component errors from the neural proxy (ϵF , ϵG).

Implication of the Theory The derived bounds show a fundamental difference. The CGS error
is limited by the neural proxy’s ability to denoise and predict the overall trajectory. The SS error
is limited by the proxy’s ability to accurately disentangle and identify the individual dynamic
components.

As argued in the paper, a critical form of overfitting occurs when errors in the neural components, ϵF
and ϵG, are large but compensate for one another during integration, resulting in a small trajectory
error ϵproxy. In such a scenario, LF ϵF + LGϵG ≫ ϵproxy. Consequently, the upper bound on the
error for SS (ESS) becomes significantly larger than that for CGS (ECGS), formally demonstrating
that the cooperative search strategy has a better fitting performance by avoiding the accumulation of
component-wise errors.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used to assist with manuscript preparation and code imple-
mentation. All LLM-generated content was reviewed and edited by the authors to ensure accuracy.

19

	Introduction
	Coordinated Genetic Search for Symbolic Regression
	Neural Proxy Model
	Coordination via Neural References
	Fitness Evaluation and Evolution
	Comparison
	Theoretical Analysis

	Experiments
	Experiments on Synthetic Dataset
	Experiments on Real Dataset
	Robustness on CGS and TP-SINDy

	Related work
	Symbolic Regression
	Complex Network Dynamics Learning

	Conclusion
	Details on Experiments
	Dataset Statistics
	Details for Network Training
	Details of Genetic Search
	Computational Details of Rec. Prob.
	Discussions on the Choice of Metrics

	Additional Results
	Ablation Study
	Runtime
	Examples of Expressions from Symbolic Expressions
	Example of Overfitting
	Visualization of Neural Dynamics
	Results for Multi-Dimensional Dynamics

	Proof of Theory

