
Under review as a conference paper at ICLR 2022

LOGIT ATTENUATING WEIGHT NORMALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Over-parameterized deep networks trained using gradient-based optimizers is a
popular way of solving classification and ranking problems. Without appropriately
tuned regularization, such networks have the tendency to make output scores
(logits) and network weights large, causing training loss to become too small and
the network to lose its adaptivity (ability to move around and escape regions of
poor generalization) in the weight space. Adaptive optimizers like Adam, being
aggressive at optimizing the train loss, are particularly affected by this. It is well
known that, even with weight decay (WD) and normal hyper-parameter tuning,
adaptive optimizers lag behind SGD a lot in terms of generalization performance,
mainly in the image classification domain.
An alternative to WD for improving a network’s adaptivity is to directly control
the magnitude of the weights and hence the logits. We propose a method
called Logit Attenuating Weight Normalization (LAWN), that can be stacked
onto any gradient-based optimizer. LAWN initially starts off training in a free
(unregularized) mode and, after some initial epochs, it constrains the weight norms
of layers, thereby controlling the logits and improving adaptivity. This is a new
regularization approach that does not use WD anywhere; instead, the number of
initial free epochs becomes the new hyper-parameter. The resulting LAWN variant
of adaptive optimizers gives a solid lift to generalization performance, making
their performance equal or even exceed SGD’s performance on benchmark image
classification and recommender datasets. Another important feature is that LAWN
also greatly improves the adaptive optimizers when used with large batch sizes.

1 INTRODUCTION

The advent of large scale deep models with tens of millions to billions of parameters has resulted in
three trends in the community: (1) State-of-the-art performance via over-parameterized networks for
problems like image classification, language modeling, machine translation, text classification and
recommender systems. (2) Development of optimizers like Stochastic Gradient Descent (SGD) with
heavy-ball momentum (Qian, 1999), Adam (Kingma & Ba, 2017), AdamW (Loshchilov & Hutter,
2019), LAMB (You et al., 2020) and their extensions with weight decay/`2 regularization to improve
generalization performance. (3) Increased emphasis on theory to understand the optimizer landscape,
especially how to tune different hyperparameters well to escape poor minima for both large and small
batch sizes. In this work, inspired by all three trends, we propose a new training method, explain why
it works, and show vastly improved performance over the weight decay method when applied with
adaptive optimizers across a wide range of batch sizes for classification and ranking tasks.

Complex deep networks can easily learn to classify a large fraction of examples correctly as
training progresses. These networks have two characteristics: (a) they have one or more contiguous
homogeneous

1 layers at the end forming the end homogeneous sub-network, and, (b) they are trained
with exponential-type loss functions like logistic loss and cross entropy that asymptotically attain
their least value of zero when the network score goes to infinity. Let us collectively refer to this
network score as logit. After the network has learned to correctly classify a large fraction of training
examples, the weights of the end homogeneous layers and the logits grow to make the training loss
(and hence its gradient) very small. This, seen in optimizers when used with no (or mild) weight
decay/`2 regularization, leads to loss flattening (loss and gradient taking very small values) (see
Appendix A). This further leads to loss of adaptivity of the network (Szegedy et al., 2015), causing
training to stall in regions of sub-optimal generalization (see §2).

1A layer is homogeneous if the activation function of each unit of the layer satisfies �(↵x) = ↵�(x). Linear
and ReLU are examples of such activation functions.

1

Under review as a conference paper at ICLR 2022

Figure 1 shows the generalization performance (Test HR@10) of Adam without weight decay (green
dotted line) applied to a fully homogeneous network on a classification task. After about 115 epochs,
Margin p50 (median margin over the training examples; blue dotted line) becomes large and the
training gets stuck in the basin of a sub-optimally generalizing minimum. The minimum is also
overfitting due to the tussle between good and noisy examples.

Figure 1: Adam with (continuous lines) and without (dotted
lines) logit attenuation on MovieLens classification. Adam: after
115 epochs (vertical dotted black line), loss flattening sets in,
Test HR@10 is sub-optimal, with overfitting. Adam with logits

attenuation: The introduction of ↵ factor after the 115th epoch
reduces Margin p50 but keeps Test HR@10 the same. Though
Test HR@10 then drops initially, with further constrained weight
training Adam with logit attenuation eventually achieves a higher
Test HR@10 than vanilla Adam.

Optimizer Batch Size
256 16k

SGD 76.00 (0.04) 74.48 (0.06)

Adam 71.16 (0.05) 70.60 (0.02)
Adam-L 76.18 (0.03) 76.07 (0.08)

LAMB+ 74.30 (0.01) 73.43 (0.03)
LAMB-L 76.48 (0.05) 75.93 (0.02)

Table 1: ImageNet validation accuracy.
Comparison of SGD, Adam and LAMB (all
with WD) and LAWN variants (*-L) of Adam
and LAMB+ a on the ImageNet validation
set. LAWN enables Adam to work on image
classification tasks with very little drop in
performance at large batch sizes. Current
optimizers have a much steeper drop-off in
performance as batch size increases. Standard
error is mentioned in parentheses.

aLAMB+ is a modification of the LAMB
algorithm. More details can be found in
Appendix B.3.3.

Adaptive gradient algorithms like ADAM are particularly severely affected by loss flattening. These
algorithms are based on tracking the local loss behavior at each individual weight level and hence
they achieve fast convergence. However, in domains such as image classification, their generalization
performance quickly plateaus to a value that is much worse than the performance finally achieved by
SGD. This gap is usually attributed to the inability of adaptive gradient algorithms to escape the basin
of a sharp minimum that has large curvature and possibly poor generalization. While weight decay
helps improve adaptive optimizers, it is still not sufficient to close the gap with SGD. The training
method proposed in this paper closes the gap.

To motivate the method, let us return to the experiment of Figure 1. Consider that training has reached
a point where logits are starting to become large. Attenuation of the logit values can be done using
the following two ideas: (a) multiply the logits by a factor, 0 < ↵ < 1 and use this factor for the rest
of the training; (b) constrain the norms of layer weights for the rest of the training. Specifically, in the
experiment of Figure 1, after epoch 115 we shrink the logits to one-fifth, and then continue training
while keeping the weight norms of each layer fixed. This leads to superior generalization with no
overfitting (see the continuous lines in the figure). It turns out that idea (a) alone is not sufficient since
further training will increase the logits again to reduce the training loss; so, idea (b) is very important.
Also, in order to control the logit magnitudes, instead of idea (a) (waiting till 115 epochs and then
reducing the logits by a factor ↵ = 0.2) we could simply start using idea (b) without applying an ↵

factor, at an earlier point, say, after just 5 epochs.

This lays the base for our method, Logit Attenuating Weight Normalization (LAWN). It can be used
with any gradient-based base optimizer, though our aim is mainly to improve adaptive optimizers.
LAWN begins with normal, unconstrained training in the initial phase and then constrains the weight
norms of the layers for the rest of the training. Weight decay is not used anywhere. The training on
the constrained norm surfaces is done by employing projected gradients instead of regular gradients.

The LAWN variants of Adam and LAMB achieve impressive performance across multiple network
architectures and tasks. At large batch sizes, most optimizers get caught in sub-optimal regions due
to lowered stochasticity which is worsened by increased logits. LAWN’s attenuation of the logits

2

Under review as a conference paper at ICLR 2022

helps avoid this worsening. Due to this, the LAWN variants of Adam and LAMB work significantly
better than their base versions at large batch sizes. Table 1, which compares the generalization
performance of SGD, Adam and LAMB (all with weight decay) against the LAWN variants of Adam
and LAMB on the popular Imagenet dataset, powerfully showcases the two observations on LAWN
mentioned above. In §4 we show that these LAWN variants give much better generalization than
weight decay on several architectures for image classification (CIFAR, ImageNet) and recommender
systems (MovieLens, Pinterest). We end this section with a discussion of related work.

Related work: The issue of loss flattening and the resulting loss of adaptivity is highlighted
in (Szegedy et al., 2015). Several well-known techniques are used to mitigate this issue. `2

regularization is often used in conjunction with optimizers like SGD and adaptive optimizers
(Kingma & Ba, 2017; Zeiler, 2012; Duchi et al., 2011), among others. Recently, decoupled weight
decay (Loshchilov & Hutter, 2019; Hanson & Pratt, 1988) has become popular to reign-in network
weights and prevent overconfidence on training samples. Other techniques are: (a) label smoothing
regularization (Szegedy et al., 2015), which makes the model less confident about predictions by
changing the ground-truth label distribution; and (b) flooding (Ishida et al., 2020) which tries to keep
the aggregate training loss to be around a specified small value. From a theory perspective, weight
norm bounding has been shown to be useful for improving generalization (Neyshabur et al., 2015;
Bartlett et al., 2017). Salimans and Kingma (Salimans & Kingma, 2016) use weight normalization as
a transformation; but, by also keeping the scale component, they end up allowing logits to grow large.
Hoffer et al (Hoffer et al., 2018) discuss keeping the norms of the parameters fixed, but the method
would require a LAWN-like approach to work effectively.

It has been observed that small batch sizes yield better generalization performance (Keskar et al.,
2016) due to the noise of mini-batch gradients and the large learning rate. The noise diminishes with
increasing batch sizes. Large batch sizes are useful for speeding up the training process by leveraging
parallel GPUs. Poor generalization for large batch sizes is attributed to them stalling around "sharp"
minimizers (Keskar et al., 2016). Goyal et al (Goyal et al., 2018) scale ImageNet training to batch
sizes of 8k without loss in generalization performance, by carefully tuning parameters like learning
rate and batch normalization. Other recent efforts to train large-batch models include (Hoffer et al.,
2017; You et al., 2017; 2019; Shallue et al., 2018; You et al., 2020). It is important to note that for a
majority of the cited works, large batch gains do not necessarily hold across tasks or datasets.

2 THE NEED FOR LAWN

In this section we motivate LAWN by describing the problem settings in which normal training
struggles and in which LAWN could improve generalization performance. We define these problem
settings in §2.1, then describe what we mean by loss of adaptivity in §2.2. We review the strengths
and weaknesses of existing methods for avoiding loss of adaptivity in §2.3. With this context, we
elaborate on the LAWN method in §3.

Notations. For the rest of the paper we will use multi-class setting as the running example. The
following notations will be used: n is the number of weight variables; m is the number of training
examples; i is the index used to denote the index of a training example; yi is the target class of the
i-th training example; k is the index used to denote a class; nc is the number of classes; w is the
weight vector of the deep net; pk(w) is the class k probability assigned by the deep net with weight
vector w. For an optimizer, ⌘ denotes the learning rate and B is the batch size.

2.1 WHEN DOES LAWN WORK?
Let us describe the problem settings in which we expect generalization improvement using LAWN.

Problem type. We are mainly interested in classification and ranking problems which form a score
for the target. In binary classification this score is the logit score of the target class; in a multiclass
problem, this score is the difference between the target class score and the maximum score over
the remaining classes. For ease of presentation we will simply refer to such scores as logit. We
consider a loss function that attains its least value (usually zero) asymptotically as logit goes to
infinity. The logistic loss for binary classification and the cross entropy loss based on softmax for
multi-class classification are important cases. Problems like regression that use a loss function such
as the squared loss (which attains its minimum at a finite value) may not have much benefit using
LAWN. In a multi-task setting, when the total loss is an additive mix of several individual task losses,
LAWN can be useful even if just one of them is suited for LAWN.

3

Under review as a conference paper at ICLR 2022

Network Complexity. This refers to the complexity of the network in relation to the number of
training examples. Most deep networks used in applications are over-parametrized. Roughly, we will
take over-parametrized to mean that the network is so powerful that training easily locates a w that
classifies most examples correctly, i.e., the target class has the highest score among all classes. Deep
nets usually have one or more fully connected homogeneous layers (usually with ReLU units) at the
end. If the deep net is powerful enough to correctly classify most examples correctly, then by making
the weights large it is possible to push the loss of most training examples (and thereby the train loss)
to very small values.

Generalization Metrics. Our focus is on improving metrics that are based on score ordering as
opposed to the actual values of scores. More precisely, we are interested in test set metrics such
as classification error, AUC, NDCG etc. as opposed to logistic loss, cross entropy loss, probability
calibration error etc. Deep networks are known to be poor with respect to the latter metrics (Guo et al.,
2017) but which can be improved in the post-training stage; the adaptation of LAWN to improving
such metrics will be taken up in a follow-up work.2

2.2 ISSUE OF LOSS OF ADAPTIVITY

Consider the problem setting defined in §2.1 and the minimization of the normally used unregularized
training loss, L(w) = � 1

m

Pm
i=1 log pyi(w). With the network being sufficiently powerful, training

causes the losses of a large fraction of the training examples to become very small. During training,
this happens due to weights becoming large, the logit becoming large, and pyi ! 1 for those examples.
Due to these, each of the following become very small: the gradient of most example-wise loss terms;
⌃, the covariance of the noise associated with minibatch gradient; and, H , the Hessian of the training
loss. We will refer to this collective happening as loss flattening.

It has been established via theoretical and empirical arguments that the powerful generalization
ability of a deep net comes from its ability to escape regions of attraction of “sharper" minima3 with
sub-optimal generalization performance and go to better solutions. Appendix C gives an idea of the
escape mechanism for the SGD method using a simplistic analysis given by Wu et al (Wu et al.),
which we use just for guidance and motivation. It is worth recalling from there, the following rough
guiding condition for SGD to escape from a poor solution: �max{(I � ⌘H)2 + ⌘2(m�B)

B(m�1) ⌃} > 1,
where �max(A) denotes the largest eigenvalue of A. If training is at a sub-optimal generalization
point, loss flattening occurs (which means that H and ⌃ become small), then the escape condition is
difficult to satisfy and hence it becomes difficult for the network to escape from this solution and
then train further to go to a better solution. A carefully increased learning rate schedule to cause the
escape followed by the use of normal learning rates to go to a better solution can make this happen,
but no such automatic sophisticated learning rate adjustment mechanism has been devised yet. We
will refer to this inability of the network to escape out of a sub-optimal solution due to loss flattening
as loss of adaptivity (also see §7 in (Szegedy et al., 2015)).

2.3 CURRENT METHODS FOR DEALING WITH LOSS OF ADAPTIVITY

Several methods have been suggested in the literature to handle the issue of loss of adaptivity.
We briefly describe three key ones: label smoothing regularization (LSR) (Szegedy et al., 2015),
flooding (Ishida et al., 2020), and `2 regularization/weight decay (Loshchilov & Hutter, 2019). LSR
modifies L(w) via making the target class less confident by fixing its probability as (1� ✏LSR) and
reassigning ✏LSR to the remaining classes. This makes the loss attain its minimum at finite logit
values. Flooding modifies the loss as LFlooding(w) = |L � ✏Flooding| so that the training process
is forced to move around the hypersurface defined by L � ✏Flooding = 0. `2 regularization is a
traditional method that modifies the loss as L`2 = L(w) + �

2 kwk
2. (Decoupled) Weight decay, as

used in the recent deep net literature decouples the term �w from the gradient and instead includes
the additive term, ��w at the weight update step. In the next section (§3) we will return to discuss
these methods in relation to LAWN.

3 THE LAWN METHOD

As we mentioned in §2, we consider deep nets that have one or more homogeneous layers (usually
with ReLU units) at the end (top); let fhsn refer to this final homogeneous sub net. Consider a weight

2However, as we show in §4.6, LAWN does much better calibration than the weight decay method.
3Originating from the work of Keskar et al (Keskar et al., 2016), it has been observed in the literature that

minima at which the classification function has a sharper behavior has poorer generalization.

4

Under review as a conference paper at ICLR 2022

vector w̄ and corresponding fhsn weights w̄fhsn. When we extend w̄fhsn along a radial direction,
i.e., wfhsn = ↵w̄fhsn, ↵ 2 R+, while keeping the weights of the network outside fhsn unchanged,
the classification error on a set of examples (e.g., the training error computed on a training set or the
generalization error computed on a test set) remains unaffected whereas classification loss varies a lot
with ↵. In particular, if w̄ classifies a set of examples strictly correctly, then, as ↵ goes from 0 to 1,
the average loss on these examples goes from log(nc) to zero asymptotically. When training without
any/sufficient weight decay, weights do get large and training loss does become very small. In the
previous section (§2) we saw how, when training loss becomes very small, it causes loss flattening,
which leads to a loss of adaptivity of the network. Therefore, it makes sense to suitably contain the
size of the weights. Theory (Neyshabur et al., 2015; Bartlett et al., 2017) suggests that, for improving
generalization, it is a good idea to bound the weights of the entire network. Given that most layers are
usually homogeneous4 (e.g., units with ReLU activations), it is appropriate to use layer-wise weight
normalization. The essential spirit of LAWN is along this idea.

Consider constrained training via layer-wise weight normalization: kw`k = c
` 8` where w

` is the
weight vector accociated with layer `, and the c

` are some constants. It is useful to understand how
the loss contours behave as the c

` go from small to big values. When the c
` are large, we know that

loss flattening will happen. When the c
` are small, the distinction between the loss values of well

classified examples and poorly classified examples diminishes and so, optimizers will find it harder
to traverse the contours and go to the right place of best generalization. To choose the right c` values,
in LAWN we take a simple and natural approach. We initialize the network with weights having
small magnitude using a standard weight initialization method and start a given optimizer in its free
(unconstrained, without any weight decay) form. At a suitable point in that training process, with
weights at some w̄, we switch to constrained training defined by setting

kw`k = c
` where c

` = kw̄`k 8` (1)

The c
` are fixed for the rest of the LAWN training. Constrained training corresponds to solving the

optimization problem,
minL(w) s.t. kw`k = c

` 8` (2)

using a modified version of any given gradient-based optimizer.

In LAWN, we switch from free training to constrained training after some Efree epochs, and tune
Efree as a hyperparameter using a coarse grid. Thus, when compared to regularization using weight
decay, LAWN (a) does not use weight decay anywhere, and (b) it uses Efree as a hyperparameter
instead.

In the future, we plan to try the following automatic method for choosing Efree. Track the logits of
training examples (done simply and efficiently by tracking them on the minibatches used) and switch
to constrained training when their median value starts reaching high values indicating the onset of
loss flattening.

Algorithm 1 Adam-LAWN Constrained Phase
1: for t in 1...T do
2: Draw batch St from the training set
3: gt = ComputeGrad(wt�1, St)
4: Project each g

`
t to {d` : (w`)T d` = 0} to get g`pt 8`

5: mt = �1mt�1 + (1� �1)gpt
6: vt = �2vt�1 + (1� �2)g2pt
7: m̂t =

mt

1��t
1
, v̂t =

vt
1��t

2

8: Compute rt =
m̂tp
v̂t+✏

9: Project each r
`
t to {d` : (w`)T d` = 0} to get r̂`t 8`

10: wt = wt�1 � ⌘tr̂t

11: Rescale wt to satisfy constraints on kw`k 8`
12: end for

Hoffer et al (Hoffer et al., 2018)
give a bounded weight normalization
method which also constrains the
weight norms and uses simple
heuristics for setting the c

`. However,
it does not use the idea of combining
free and constrained training, and
it does not set up and demonstrate
the use of constrained training as
a powerful method for use with
adaptive optimizers for improving
the performance by overcoming loss
flattening and loss of adaptivity. In
§4 we conduct experiments on image
classification and recommender

datasets and show that Hoffer et al’s method is quite inferior to LAWN.

4In fully homogeneous nets, layer-wise weight normalization is a way of removing some redundancies (Dinh
et al., 2017); layer-wise weight norms also connect well with implicit bias properties (Lyu & Li, 2020).

5

Under review as a conference paper at ICLR 2022

LAWN Implementation. There are two ways of implementing the constrained phase of LAWN. The
first method is to define an unconstrained vector v` and set w` = c

`
v
`
/||v`|| and simply apply the

optimizer to v
`. This is the implementation suggested by Salimans and Kingma (Salimans & Kingma,

2016); see equation (2) there. (Note, however, that Salimans and Kingma (Salimans & Kingma, 2016)
keep the radial component by including the scale parameter, g.) The downside with this method is
that it puts load on the computational graph, and automatic differentiation through the normalizing
transformation increases the computational cost (Huang et al., 2020).

The second method is to have the optimizer directly deal with the constraints. At a given weight
vector, w, let g = rwL(w). For updating w

`, the projected gradient defined by

g
`
p = g

` � (w`)T g`

kw`k2 w
` 8` (3)

naturally plays the role of the gradient for decreasing the loss on the manifold defined by kw`k = c
`

and so it is used instead of the gradient in all optimizer related updates. In Appendix D we use
gradient flow to establish this. We use this method in our implementation of the constrained phase of
LAWN. The implementation of the constrained phase of Adam-LAWN is given in Algorithm 1.

Let us now describe the LAWN method as a complete algorithm. The free and constrained training of
LAWN can be done with any given optimizer. LAWN does a total of Etotal epochs; Etotal is fixed
for a given dataset. After Efree epochs of free training, with w̄ denoting the weights reached, it sets
c
` = kw̄k` 8` and switches to do constrained training (solve (2)) for the remaining (Etotal �Efree)

epochs. Learning rate schedules are important for deep networks to attain good performance and
LAWN employs the standard linear warmup and decay schedule (Loshchilov & Hutter, 2019; Liu
et al., 2020; Loshchilov & Hutter, 2016). This schedule has two hyperparameters, ⌘peak, the peak
learning rate, and Ewarmup, the number of warmup epochs. Efree is the additional hyperparameter;
as already mentioned, this hyperparameter replaces the weight decay parameter.

LAWN and large batch sizes. For a fixed epoch budget, larger batch sizes require a smaller number
of steps; combined with distributed computation this helps speed up training. However, since
stochasticity of updates reduces with large batch size, the mechanism of escape from sub-optimal
solutions gets affected. Thus, one usually sees a reduction in generalization performance as batch
size is increased (Shallue et al., 2018). Loss flattening makes this issue worse by affecting adaptivity.
LAWN, by helping overcome this issue, leads to a more graceful degradation of performance as a
function of batch size. We will empirically demonstrate this in §4. The degradation becomes far less
(even zero) when the the total number of steps is allowed to decently increase with batch size.

LAWN and weight adaptivity. Research in the last five years is clearly showing that improving
weight adaptivity is the key to escaping inferior weights and reaching weights with superior
generalization performance. It was believed that the noise associated with stochastic gradient
is the only way to ensure such adaptivity, leading to the promotion of smaller batch sizes and larger
learning rates. But other ways of improving adaptivity are being suggested. For example, injection of
suitable forms of artificial noise has been shown to improve generalization (Wu et al., 2020; Wen
et al., 2020). It is even being suggested that adaptivity can be improved without any stochasticity
and with just suitable deterministic regularization (Geiping et al., 2021). More interesting research is
expected on this important topic of weight adaptivity. In this line of research and methods, LAWN
can be thought of as an orthogonal technique of improving adaptivity by suitably constraining the
norms of the weights and avoiding loss flattening. While weight decay also helps in a similar way,
we will show in §4 that LAWN is much superior.

4 EXPERIMENTS

Our baselines include SGD, Adam (Kingma & Ba, 2017) and LAMB (You et al., 2020). We add
weight decay to all 3 baseline algorithms, and additionally add momentum to SGD. To evaluate
LAWN, we consider LAWN-based variants of the adaptive optimizers (Adam and LAMB). SGD
has demonstrated strong performance for computer vision tasks (Ren et al., 2015; Goyal et al.,
2018), whereas adaptive methods like Adam perform well on other domains (eg. recommender
systems, text classification). To demonstrate the efficacy of LAWN across a wide variety of tasks, we
conducted experiments on the CIFAR (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009;
Krizhevsky et al., 2012) datasets for image classification, and the MovieLens (Harper & Konstan,
2015) and Pinterest (Geng et al., 2015) datasets for item recommendation. All model training code

6

Under review as a conference paper at ICLR 2022

was implemented using the PyTorch library (Paszke et al., 2019) and experiments were conducted on
machines with NVIDIA V100 GPUs. For each experiment, we report average test metric over 3 runs.

Hyperparameters: Regular versions of SGD, Adam, and LAMB use weight decay. The LAWN
versions do not use weight decay; instead, they use Efree. For a given dataset, the total number of
epochs, Etotal was fixed. Learning rate schedule (with warmup of learning rate from 0 to ⌘peak in
Ewarmup epochs followed by decay to zero in the remaining epochs) has proved beneficial. The above
mentioned hyperparameters were all tuned to get the best generalization performance. For ⌘peak we
used equally spaced values in logarithmic scale suited for each (optimizer, dataset) combination. The
value of Etotal, the range of values for weight decay, Efree and Ewarmup, and additional details
used for individual datasets are given in Appendix B. Apart from these, SGD’s momentum value
was fixed at 0.9, unless specified otherwise in Appendix B. For Adam, LAMB, Adam-LAWN and
LAMB-LAWN, we fixed �1 = 0.9 and �2 = 0.999. For Adam, we used ✏ = 10�8 and the rest of
the adaptive optimizers use 10�6. We did not tune ✏, �1 and �2, which could have led to further
improvements.

Details about datasets, pre-processing and network architectures for all experiments can be found in
Appendix B.

4.1 LAWN VS. OTHER METHODS FOR CONTROLLING LOSS OF ADAPTIVITY

Method MovieLens-1M CIFAR-10 CIFAR-100
BS = 10k BS = 100k BS = 4k BS = 10k BS = 4k BS = 10k

LSR 68.66 67.34 93.09 92.73 69.92 69.24
WD 70.12 69.28 92.93 92.63 68.91 68.61

Hoffer 44.54 45.52 92.99 91.66 70.66 69.35
LAWN 70.41 70.77 93.74 93.84 73.13 72.97

Table 2: Comparison of test performance of LAWN with other methods for controlling loss of adaptivity on
Movielens-1M, CIFAR-10 and CIFAR-100 datasets. The base optimizer used is Adam. Two different batch sizes,
BS are tried for each dataset. For LSR, the smoothing parameter was fixed at 0.05. LAWN comprehensively
outperforms other methods, including weight decay (WD).

We first compared LAWN to three key methods for controlling loss of adaptivity, discussed in §2.3.
The comparison is done on the three datasets, Movielens-1M, CIFAR-10 and CIFAR-100. For each
dataset we tried two values of batch size. Table 2 gives the results. LAWN clearly outperforms all the
other methods. The second overall best method is weight decay and hence it is used as the baseline
for all remaining experiments of this section. The weight normalization technique suggested by
Hoffer et al (Hoffer et al., 2018) does very badly on Movielens-1M; on CIFAR-10 and CIFAR-100,
though it gives a decent performance, it lags behind LAWN a lot. Clearly, this method requires a
modification along the lines of LAWN in order for it do well.

4.2 IMAGE CLASSIFICATION FOR CIFAR-10 AND CIFAR-100
For both CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), we used the VGG-19 CNN
network (Simonyan & Zisserman, 2014) with 1 fully connected final layer. Our ImageNet experiments
use a ResNet-based (He et al., 2015) architecture. All experiments were run with a 300 epoch budget.
As seen in Table 3, LAWN variants either match or outperform the base variants across batch sizes.
Adam-LAWN is particularly impressive. This is in stark contrast to earlier held beliefs that adaptive
optimizers cannot match SGD’s generalization performance for image classification tasks (Wilson
et al., 2017).

Effect of batch size. LAWN variants cause more graceful degradation of performance with batch
size, as compared to base variants. Adam-LAWN causes almost no degradation in generalization
performance even at batch size 10k (see Figures 2(a), 2(b)).

Effect of Efree. We observed that switching early to LAWN mode (i.e. fixing Efree to less than 10
epochs) usually works well for generalization. See Appendix B for details. This is consistent with
our hypothesis that constrained training should kick in before loss flattening sets in.

4.3 RECOMMENDATION SYSTEMS

We conducted experiments on the MovieLens-100k, MovieLens-1M and Pinterest datasets using
the popular neural collaborative filtering (NCF) technique (He et al., 2017). The datasets contain
ratings provided to various items by users. The model is a 3-layer MLP, the input being user and
item embeddings. We use the hit ratio@10 metric (expressed as %), where we reward the model for

7

Under review as a conference paper at ICLR 2022

103 104

90

92

94

Batch size

Te
st

A
cc

ur
ac

y

Adam
Adam-LAWN

(a) CIFAR-10

103 104

68

70

72

74

Batch size

Te
st

A
cc

ur
ac

y

Adam
Adam-LAWN

(b) CIFAR-100

103 104 105
68

69

70

71

Batch size

Te
st

H
R

@
10

Adam
Adam-LAWN

(c) MovieLens-1M

103 104
68

70

72

74

76

Batch size

Te
st

A
cc

ur
ac

y

Adam
Adam-LAWN

(d) ImageNet
Figure 2: Adam-LAWN vs. Adam (weight decay comprehensively tuned) for a variety of datasets. Adam-
LAWN causes little to no drop in generalization performance with increasing batch size.

ranking a test item in the top 10 of 100 randomly sampled items that a user has not interacted with
in the past. We trained for 300 epochs for the two smallest batch sizes, and 500 epochs for the two
biggest batch sizes for each dataset. Details about the datasets, pre-processing, model and evaluation
can be found in Appendix B. A summary of the performance of the aforementioned optimizers on
all 3 datasets can be found in Table 4. LAWN-based optimizers consistently outperform their base
variants. SGD failed to generalize well at large batch sizes and this requires further investigation.

Method MovieLens-100k MovieLens-1M Pinterest
1k 10k 100k 400k 1k 10k 100k 1M 1k 10k 100k 1M

SGD 66.33 65.58 Fail Fail 70.91 69.31 Fail Fail 86.62 85.57 Fail Fail
Adam 66.01 66.03 63.20 63.98 69.87 70.12 69.28 68.99 87.27 85.97 85.81 85.30

Adam-L 66.81 66.91 66.24 66.14 70.80 70.41 70.77 70.66 86.85 86.61 86.04 86.06
LAMB 65.45 65.34 64.23 62.57 69.91 69.77 69.44 68.95 86.63 85.91 85.80 85.65

LAMB-L 66.56 66.54 66.52 66.14 70.86 70.86 70.68 70.34 86.83 86.25 85.99 86.07

Table 4: Test HR@10 on MovieLens and Pinterest recommendations. Standard error is in the range [0.15, 0.25];
details are in Appendix B. Highlighted values indicate the better performing method between x and x-L.

Method CIFAR-10 CIFAR-100
256 4k 10k 256 4k 10k

SGD 93.99 93.48 92.99 73.49 71.68 71.07
Adam 93.48 92.93 92.63 70.84 68.91 68.61
Adam-L 93.91 93.74 93.84 72.99 73.12 72.97
LAMB 93.76 93.27 92.91 71.29 69.39 67.76
LAMB-L 93.67 93.22 92.92 71.25 69.68 69.16

Table 3: Test accuracy on CIFAR-10 and CIFAR-100.
Standard error is in the range [0.1, 0.45]. Details are
in Appendix B. Highlighted values indicate the better
performing method between x and x-L.

Weight decay vs. LAWN. Weight decay was
used and tuned for all the base optimizers since
it arrests the uncontrolled growth of network
weights, helping avoid of loss of adaptivity. The
LAWN variants do not use weight decay but still
outperform the base variants.

Effect of batch size. LAWN variants of
Adam and LAMB scale to very large batch
sizes (1 million for MovieLens-1M, 400k for
MovieLens-100k) without any appreciable loss
in accuracy. SGD could only scale to batch size
10k. Adam-LAWN’s strong scalability with batch size is consistent with results obtained from the
CIFAR experiments (also see Figure 2(c)).

Effect of Efree. Similar to the results of the CIFAR experiments, fixing Efree to a small value works
well for LAWN. Details are in Appendix B.

4.4 IMAGE CLASSIFICATION FOR IMAGENET

As compared to CIFAR, the ImageNet classification problem (Krizhevsky et al., 2012) is more
representative of real world classification problems. We used a variant of the popular ResNet50 (He
et al., 2015) model as the classifier. We considered a small (256) and a large (16k) batch size for this
experiment, and fixed training budget to be 90 epochs.

Results for batch size 256. Overall results can be found in Table 1 (see §1). SGD, used in
conjunction with momentum and weight decay, has long been the optimizer of choice for image
classification. Adam is well known to perform worse than SGD for image classification tasks (Wilson
et al., 2017). For our experiment, we tuned the learning rate and could only get an accuracy of 71.16%.
In comparison, Adam-LAWN achieves an accuracy of more than 76%, marginally surpassing the
performance of SGD.

We found it difficult to reproduce ImageNet results using the LAMB algorithm. We made minor
modifications (details in Appendix B) to the original algorithm to make it more stable, and call

8

Under review as a conference paper at ICLR 2022

the resultant algorithm LAMB+. LAMB-LAWN (the LAWN version of the unmodified LAMB)
comprehensively outperforms LAMB+ for batch size 256 by achieving an accuracy close to 76.5%.

Results for batch size 16k. For the large batch size of 16k, we noticed that LAWN retains strong
generalization performance (also see Figure 2(d)). Both Adam-LAWN and LAMB-LAWN achieve
very high accuracy, with Adam-LAWN retaining its performance at such a large batch size by crossing
the 76% test accuracy mark. This is with only additonally tuning for the LAWN variants Efree and
Ewarmup.

Remark. Adam has traditionally performed worse than SGD at tasks like image classification.
Recent work (Choi et al., 2020; Nado et al., 2021) has shown that Adam’s inner hyperparameters
(that include �1, �2, ✏) could be the reason for the inferior generalization. The above cited works use
sophisticated hyperparameter tuning algorithms over a relatively large search space (see Appendix D
of Choi et al. (2020)) and conclude that the optimal parameters vary a lot between datasets. While
these are important results to close the gap in our understanding of Adam, they do little to improve
the practical usability of Adam since it is prohibitively expensive to run the recommended number of
training runs required to find the ideal hyperparameters.

4.5 LAWN WORKS WITH OTHER LOSS FUNCTIONS

To understand the effect of LAWN on loss functions other than cross entropy, we conducted
experiments with focal loss (Lin et al., 2017). Focal loss was proposed as a way of improving
performance when the classification problem is highly imbalanced, and has also recently found use
for calibration of neural networks (Mukhoti et al., 2020). It is very different from cross-entropy, but
still suffers from the issue of loss flattening. We conducted experiments using focal loss and Adam
on both item recommendation and image classification. Results are given in Table 5. Adam-LAWN
outperformed regular Adam with weight decay on each one of the cases. This demonstrates the
strengths of LAWN across a variety of loss functions and reinforces LAWN’s efficacy in improving
generalization performance.

Method MovieLens-1M CIFAR-10 CIFAR-100
FL0.5 FL2 FL5 CE FL0.5 FL2 FL5 CE FL0.5 FL2 FL5 CE

Adam (BS1) 67.33 69.02 67.17 69.28 93.07 91.16 87.88 92.93 69.19 68.85 67.72 68.91
Adam-L (BS1) 71.24 69.68 69.24 70.77 93.89 92.22 89.14 93.74 73.05 73.29 72.89 73.12
Adam (BS2) 66.42 67.40 66.62 68.99 92.51 89.79 86.82 92.63 67.94 67.28 66.11 68.61

Adam-L (BS2) 70.53 69.56 68.66 70.66 93.21 91.20 88.93 93.84 72.51 72.55 70.95 72.97

Table 5: Adam vs. Adam-LAWN when used with focal loss (FL). We tried 3 different values (0.5, 2 and 5) for
� (focal loss parameter) and also compared the results to cross entropy (CE) loss. BS1 and BS2 refer to batch
sizes. For MovieLens-1M, BS1 = 100k and BS2 = 1M. For the CIFAR datasets, BS1 = 4k and BS2 = 10k.

4.6 LAWN IMPROVES CALIBRATION

Method CIFAR-10 CIFAR-100
Adam 0.132 0.292
Adam-L 0.048 0.188

Table 6: ECE (lower is better) on image
classification.

A well calibrated network is one in which the predicted class
probability is close to the observed probability of being correct.
Many applications require a well calibrated network. It is
well known that over-parameterized deep nets are prone to
over predicting probabilities (Guo et al., 2017). One of the
main reasons for this is that weights become large, logits
become large, and so the network is pushed to give out extreme

probability values. Weight decay helps Adam improve calibration over unregularized Adam. Here we
demonstrate that Adam-LAWN significantly improves the calibration even over Adam with weight
decay. Estimated Calibration Error (ECE) is a standard metric for measuring calibration error (Guo
et al., 2017). For CIFAR-10 and CIFAR-100, with all hyperparameters tuned, Table 6 gives the ECE
values for Adam and Adam-LAWN. It is clear that Adam-LAWN gives much smaller ECE values
than Adam (with weight decay). This improved calibration is an important advantage of LAWN.
5 CONCLUSION

LAWN as a simple and powerful method of modifying deep net training with a base optimizer to
improve weight adaptivity and lead to improved generalization. Switching from free to weight norm
constrained training at an appropriate point is a key element of the method. We study the performance
of the LAWN technique on a variety of tasks, optimizers and batch sizes, demonstrating its efficacy.
Tremendous overall enhancement of Adam and the improvement of all base optimizers at large batch
sizes using LAWN are important highlights.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks. CoRR, abs/1706.08498, 2017.

Dami Choi, Christopher J. Shallue, Zachary Nado, Jaehoon Lee, Chris J. Maddison, and George E.
Dahl. On Empirical Comparisons of Optimizers for Deep Learning, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. IEEE, 2009.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. CoRR, abs/1703.04933, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Jonas Geiping, Micah Goldblum, Phillip E. Pope, Michael Moeller, and Tom Goldstein. Stochastic
training is not necessary for generalization, 2021.

Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. Learning image and user features
for recommendation in social networks. In Proceedings of the IEEE International Conference on

Computer Vision, pp. 4274–4282, 2015.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
imagenet in 1 hour, 2018.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. CoRR, abs/1706.04599, 2017.

Stephen Hanson and Lorien Pratt. Comparing biases for minimal network construction with back-
propagation. Advances in neural information processing systems, 1:177–185, 1988.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. ACM

transactions on interactive intelligent systems (TIIS), 5(4):1–19, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. arXiv preprint arXiv:1705.08741,
2017.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accurate
normalization schemes in deep networks. arXiv preprint arXiv:1803.01814, 2018.

Lei Huang, Jie Qin, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Normalization techniques in training
dnns: Methodology, analysis and application. CoRR, abs/2009.12836, 2020.

Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu, and Masashi Sugiyama. Do we need zero
training loss after achieving zero training error? arXiv preprint arXiv:2002.08709, 2020.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
networks. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,

Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

10

Under review as a conference paper at ICLR 2022

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv

preprint arXiv:1609.04836, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 and CIFAR-100 datasets. URl:

https://www.cs.toronto.edu/~kriz/cifar.html, 6(1):1, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. CoRR, abs/1708.02002, 2017.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond, 2020.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. arXiv

preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks,
2020.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip H. S. Torr, and Puneet K.
Dokania. Calibrating deep neural networks using focal loss. CoRR, abs/2002.09437, 2020.

Zachary Nado, Justin M Gilmer, Christopher J Shallue, Rohan Anil, and George E Dahl. A large
batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. arXiv

preprint arXiv:2102.06356, 2021.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. CoRR, abs/1503.00036, 2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):
145–151, 1999.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. arXiv preprint arXiv:1506.01497, 2015.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. arXiv preprint arXiv:1602.07868, 2016.

Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. arXiv

preprint arXiv:1811.03600, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. CoRR, abs/1512.00567, 2015.

11

https://www.cs.toronto.edu/~kriz/cifar.html

Under review as a conference paper at ICLR 2022

Yeming Wen, Kevin Luk, Maxime Gazeau, Guodong Zhang, Harris Chan, and Jimmy Ba. An
empirical study of stochastic gradient descent with structured covariance noise. In AISTATS, pp.
3621—-3631, 2020.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. arXiv preprint arXiv:1705.08292, 2017.

Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, , and Zhanxing Zhu. On
the noisy gradient descent that generalizes as sgd. In ICML, pp. 10367—-10376, 2020.

Lei Wu, Chao Ma, and Weinan E. How SGD selects the global minima in over-parameterized
learning: A dynamical stability perspective. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems.
Curran Associates, Inc.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks, 2017.

Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large-batch
training for lstm and beyond. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pp. 1–16, 2019.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training BERT in 76 minutes, 2020.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven C. H. Hoi, and Weinan E. Towards
theoretically understanding why SGD generalizes better than ADAM in deep learning. CoRR,
abs/2010.05627, 2020.

12

	Introduction
	The Need for LAWN
	When does LAWN work?
	Issue of loss of adaptivity
	Current methods for dealing with loss of adaptivity

	The LAWN Method
	Experiments
	LAWN vs. other methods for controlling loss of adaptivity
	Image Classification for CIFAR-10 and CIFAR-100
	Recommendation Systems
	Image Classification for ImageNet
	LAWN works with other loss functions
	LAWN improves calibration

	Conclusion
	Loss Flattening
	Experiments
	CIFAR Experimental Setup
	Recommendation Systems Experimental Setup
	ImageNet Experimental Setup
	Data Pre-processing
	Model
	The LAMB+ algorithm
	Hyperparameter tuning

	Explaining escape
	Gradient flow with weight norm constraints

