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Abstract

Training models with longer in-context lengths is a significant challenge for multi-
modal machine learning due to substantial GPU memory and computational costs.
This exploratory study does not present state-of-the-art models; rather, it introduces
an innovative method designed to increase in-context text length in multi-modality
large language models (MLLMs) efficiently. We present Visualized In-Context
Text Processing (VisInContext), which processes long in-context text using visual
tokens. This technique significantly reduces GPU memory usage and floating point
operations (FLOPs) for both training and inferenceing stage. For instance, our
method expands the pre-training in-context text length from 256 to 2048 tokens
with nearly same FLOPs for a 56 billion parameter MOE model. Experimental
results demonstrate that model trained with VisInContext delivers superior perfor-
mance on common downstream benchmarks for in-context few-shot evaluation.
Additionally, VisInContext is complementary to existing methods for increasing
in-context text length and enhances document understanding capabilities, showing
great potential in document QA tasks and sequential document retrieval. The code
is available at https://github.com/showlab/VisInContext.

1 Introduction

Large Language Models (LLMs), such as OPT, Mistral, and LLaMA-2 [4, 5, 6], have significantly
advanced the field of Natural Language Processing (NLP). These advancements are partly due to the
increased capability of LLMs to process long contexts, from 512 tokens [7] up to 16K tokens [6].
Building on these developments, recent multi-modal learning research [1, 8, 9, 10] has shifted focus
from simple image-text pairs, like those in CC3M [11] and LAION-400M [12], to more complex
and lengthy interleaved document datasets. Examples include web corpora like MMC4 [13] and the
OBELICS [14] dataset, as well as PDF corpora like DocVQA [15].

However, training models on these complex datasets presents significant challenges due to the
increased GPU memory and computational demands of extended contexts. For instance, while
processing just 5M data items from MMC4 and 10M from the OBELICS dataset, OpenFlamingo-
9B [9] resorted to sub-sampling text and processing only 256 tokens at a time, yet it still requires
32 80GB A100 GPUs for over three days. This highlights the need for more computation-efficient
methods to handle long context lengths effectively.

In the domain of LLMs, two popular methods to extend context length are the use of memorizing
banks [16] and novel self-attention mechanisms [17, 18]. These methods have inspired advancements
in the multi-modality domain as well. For example, the Large World Model [19] introduces Ring
Attention [18], and MA-LMM [20] employs memory banks to process long video understanding tasks.
While these techniques have shown promise, our approach aims to increase in-context text length
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(a) GPU memory consumption. (b) The flops comparison.

Figure 1: VisInContext significantly increases the in-context text length from 256 to 2048 during pre-
training on NVIDIA H100 GPU. For our method, we incorporate VisInContext after 128 text tokens.
We implement PyTorch Flamingo [1] models with different in-context length during pre-training.
The language model is a 56B MOE [2] model loaded with 4-bit quantization and the batch size on
each GPU is 32 with FP16. We train the model with DeepSpeed [3] Zero-2.

by leveraging the strengths of visual encoders in MLLMs. We first observe that existing MLLMs
usually exploit a much lighter visual encoders, compared to its text decoders. For instance,
Flamingo-9B consists of a 304.4M ViT-L/16 [21] as image encoder, and a 7.1B Chinchilla [1] model
as the text decoder. Additionally, previous works [22, 23] have demonstrated that visual encoders
trained on paired image-text data also exhibit emergent OCR capabilities.

Motivated by these observations, we propose Visualized In-Context Text Processing (VisInContext),
a method that uses visual tokens to process extended textual contexts, which is complementary
of existing methods in extending context length. Specifically, we convert long textual content
into images and use the visual encoders to extract textual representations. In this way, we
can efficiently and effectively enable models with much longer text contexts, as shown in Figure 1.
With VisInContext, we show that the in-context text length can be increased by 7 times over the
competing baseline. Additionally, we observe almost the same overall computation FLOPs even as
in-context length extends significantly. Our extensive experiments will also show that VisInContext
renders superior model performance on conventional in-context few-shot evaluations and document
understanding, with much lower computational cost.

Contributions. In summary, our contributions are as follows: i. We introduce Visualized In-
Context Text Processing (VisInContext), a novel method that increases in-context text length using
visual tokens. VisInContext directly compresses text context at input-level, which is complementary
to existing techniques with improved self-attention or memory banks. ii. We demonstrate that
VisInContext is effective for both training and inference stage with much lower computational cost.
iii. With extended text context brought by VisInContext, our model improves the average in-context
few-shot performance from 55.8% to 57.8% over the competing baseline. iv. As a byproduct, our
method also shows great potential in document understanding on popular document QA tasks and
our newly proposed sequential document retrieval task.

2 Method

The goal of VisInContext is to process in-context text using visual tokens so that the model can handle
long text context more efficiently. We primarily base our study on Flamingo-based architecture [1, 9,
14], as it has shown success in improving a model’s ability to learn from long multimodal context
that contains arbitrarily interleaved text and images.

2.1 Terminology

Before diving into model details, we define the following terms:
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Figure 2: VisInContext Pipeline. The VisInContext pipeline builds upon the Flamingo model for in-context
few-shot modeling (represented in gray). VisInContext processes interleaved image-text data by rendering
portions of the in-context text into images. This approach maintains the Text Token Length of the model while
allowing for a significantly extended In-context Text Length.

In-context Text Length: The actual length of text tokens observed by the model within a document.

Text Token Length: The length of the text sequence input directly to the LLM, corresponding to the
token count of this sequence.

With VisInContext, the In-context Text Length is greater than the text token length, as part of the text
is represented using visual tokens.

2.2 Overall Architecture

The implementation and architecture of VisInContext are shown in Figure 2. It is based on a
dual-stream encoder model that integrates both visual and textual data. To effectively handle long
interleaved data, we use a pre-sampling strategy as in Flamingo-style works [1, 9, 14]. We sample m
images I1, I2, . . . , Im ∈ I with corresponding texts T1, T2, . . . , Tm ∈ T . Tokens are concatenated
in the form < visual1 >< text1 > . . . < visualm >< textm >, where < visual > is a single
placeholder token. A random 256-token sequence is then sampled. However, since the overall length
of a web document is generally much longer than 256 tokens (In-context Text Length ≥ Text Token
Length), this sampling approach can lead to the omission of a lot of related text context.

To address this issue, we convert these omitted text context into visual signals by rendering them into
images. We first concatenate all omitted text segments and divide them into K parts to render text
images, named T

′

1, T
′

2, . . . , T
′

m ∈ T ′. Both the original images and the text-rendered images are then
processed through a shared frozen vision encoder. Then, we employ two learnable resamplers to
extract a fixed number of tokens from both the raw and text-rendered image features, respectively.
To facilitate the model to learn from rendered text images, we introduce two novel model designs,
Token Masking mechanism and Text-Centric Contrastive Learning (TCCL). Token Masking allows
the model to only read from text image tokens by masking the raw image tokens with masking ratio
1, which ensures that the model won’t simply be ignoring the text images during training, hence
can learn the association between the rendered text images {T ′

i } and the text tokens {Ti}. TCCL
aligns the visual text representation from the resampler with the embeddings extracted from text
tokenizers in LLM, which reduces the gap between our visual text tokens and the text tokens the LLM
is trained to perceive. With these designs, VisInContext not only reduces computational demands—as
evidenced by a reduction in flops and inference time—but also improves the OCR ability, as we will
show in our experiments.

2.3 Text Rendering

This module converts textual data into a visually rich RGB format, specifically rendering the text into
an image size of ph × npw, where n is the number of patches. We employ the HERSHEY font at a
size of 10px. On average, one 16x16 patch accommodates approximately 1.5 OPT text tokens. A
224x224 text image contains about 294 text tokens. Consequently, a visual encoder operating on this
rendered text image requires only 1/3 of tokens to encode an equivalent amount of text, compared
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to the text tokenizer in language models. The vision encoder is quite lightweight ViT-L (340M)
compared to language model MOE (56B), which makes the processing of rendered text images
significantly more efficient than directly inputting the text into a language model.

2.4 Token Masking

In our initial experiments, we find that combining tokens from raw images and text images directly
led to the network disregarding the text-image input. To address this issue, we introduce a Token
Masking strategy to force the model to learn text semantics from visual inputs. During pretraining,
the raw image and text image are first encoded into the same number of tokens after resampler,
and then we mask the raw image tokens with a pre-defined probability. When masking out the raw
image tokens, the model can focus on learning the association between rendered text images and
the complementary text tokens. At inference time, we add the text-image tokens and image tokens
together, to allow the model effectively leverage information from both sources.

2.5 Text-Centric Contrastive Loss (TCCL)

Motivation. Given that the vision encoder, typically a frozen Vision Transformer (ViT) [24], never
observes rendered text images during pretraining, it may struggle to derive text semantics from pixels.
To mitigate this issue, we introduce a new training objective, Text-Centric Contrastive Loss (TCCL).
This objective aims to guide the resampler on rendered text images to interpret visual representations
of text with a proficiency comparable to traditional text tokenizers, so that the textual semantics can
be effective extracted from the rendered text images.

Mechanism. TCCL utilizes raw text token embeddings from the text tokenizer as soft supervision
signals to supervise the resampler to learn text-centric representation. To reduce the global semantic
gap between text image embeddings and text token embeddings, we first aggregate these embeddings
with average pooling and then align them with TCCL. Intuitively, TCCL is designed to turn the
joint of the vision encoder and resampler into a “visual" text tokenizer, as it promotes the text image
embeddings to share a similar global semantic as the text token embeddings. The core of TCCL is
formulated as a contrastive loss:

Lij = − log

(
exp(sim(fvi , ftj )/τ)∑N
k=1 exp(sim(fvi , ftk)/τ)

)
(1)

Where Lij denotes the contrastive loss for comparing the ith text image against the jth text, fvi and
ftj represent the feature embeddings of the ith text image and jth text, respectively. τ is a parameter
that control the sharpness of the output distribution. Note that fvi

and fti are different features
extracted from the same text, as the ith text image is a direct rendering of the ith text.

3 Experiment

3.1 Experimental Setup

Pretraining. We validate VisInContext with Open-Flamingo [9] and CosMo [25]. To enhance
computational efficiency, all models utilize float16 precision. For the 56B MOE [2] model, we employ
DeepSpeed’s [3] Zero-2 stage with CPU offloading and further optimize the model by quantizing
it to 4-bit precision 1. We also use Flash Attention [17] to further improve memory efficiency. For
all other experiments, we train the model using DeepSpeed Zero-2 without CPU off-loading. The
Open-Flamingo 9B baseline is based on Mistral7B [5].

Our pretraining dataset includes a 180M subset of DataComp1B [26], MMC4 [13], the OBELICS [14]
dataset, and OCR Rendered Text [27]. (More details are provided in the Appendix B.1) For each
input document or image-text pair, we render a text sequence into an image with a fixed size of
16x8192 (512 patches) by default, with ph = pw = 16.

1The implementation is from https://github.com/TimDettmers/bitsandbytes.
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Method Text ICL
Tokens↑

Shots VQA Caption Classi. Mean

okvqa textvqa vizwiz vqav2 coco flickr HM

Open-
Flamingo
MOE [9]†

Raw
Text

256
0 40.2 21.3 23.3 47.8 82.3 59.4 60.4 47.8
4 42.5 22.2 32.2 49.8 90.5 63.5 63.8 52.1

32 46.8 23.2 40.5 49.9 98.2 66.2 66.0 55.8

+VisInContext +Rendered
Image 2048

0 39.5 26.4 26.3 48.5 84.4 60.5 62.2 49.7
4 44.3 28.9 32.0 50.3 94.2 65.3 65.5 54.4

32 46.3 31.2 41.2 51.0 101.3 68.4 65.2 57.8

Table 1: Increasing in-context text length with VisInContext significantly improves performance on
multi-modality downstream tasks. The model is pre-trained with a 56B MOE model. ICL stands for in-context
text length. HM is short for hatefulmemes. With VisInContext, we increase the ICL from 256 to 2048, leading
to clear improvements over the baseline. † indicates our implementation.

Method Text
Source

Text
Tokens

T-Shots VQA Caption Mean

okvqa textvqa vizwiz vqav2 coco flickr

Open-
Flamingo9B
Baseline [9]

†Raw
Text

10 0 18.1 14.8 21.5 26.5 40.1 32.1 25.5
62 4 23.8 18.1 23.7 40.5 57.5 35.3 33.2(7.7↑)

426 32 25.2 16.4 25.5 34.6 66.1 38.5 34.4(8.9↑)

+VisInContext Rendered
Image

10 0 16.2 16.8 15.4 30.6 42.3 33.5 25.8
10 4 17.2 21.8 19.7 35.2 52.4 35.2 30.3(4.5↑)
10 32 21.3 22.6 21.5 38.8 60.3 37.0 33.6(7.8↑)

Table 2: VisInContext effectively incorporates in-context text with visual tokens, demonstrating significant
performance improvements with consistent token usage. Here, T-shots refer to text-only in-context examples.
Tokens indicate the length of the input to the LLM. Text source describes the preprocessing method for in-context
examples. † denotes our implementation on 180M pretraining data.

Downstream Evaluation. Our objective is to demonstrate that in-context length can be extended
using visual tokens, thereby enhancing the understanding of complex multimodal documents. Conse-
quently, we focus primarily on tasks related to long-context understanding.

To evaluate the long-context understanding ability, we adopt the few-shot evaluation setting in
Flamingo [1]. We report answer accuracy on the OK-VQA [28], TextVQA [29], VizWiz [30],
and VQAV2 [31]. Additionally, we assess performance on captioning tasks using COCO [32] and
Flickr30K [33]. Moreover, we also propose a setting named text-only in context few-shots to explore
text-only in-context evaluation. For this setting, we use in-context sampling without visual input to
generate long-context inputs and the visual input is not observed by the model.

In order to illustrate the impact of having long in-context text, we evaluate the model for document
understanding on DocVQA [15] and OCR VQA [34]. Lastly, we introduce a new task, sequential
multimodal document retrieval. This dataset is based on the existing interleaved OBELICS [14]
dataset. Further details are provided in the Sec. D of the appendix.

3.2 In-context Few-shot Evaluation

Impact of Extended In-Context Text Length. Interleaved document datasets typically contain
long texts. For instance, the OBELICS [14] dataset has an average token length of 815 tokens per
document. Due to GPU memory constraints, Flamingo-like models [14, 9] only sub-sample 256
tokens during pretraining, which leads to a significant loss of context information. We compare
the baseline model pre-trained with 256 tokens, against our method with an increasing In-context
Text Length to 2048 tokens. Table 1 shows a clear advantage of VisInContext. For example, on
TextVQA, accuracy improves from 23.2% to 31.2% with 32-shot. Similarly, the average model
performance across all datasets show an increase from 55.8% to 57.8%. These findings demonstrate
that VisInContext effectively increases the In-context Text Length to improve multi-modality
understanding.

Few-shot Evaluation with Text-only In-context Examples. As downstream tasks often differ in
format from pretraining data, several works [1, 9, 14] have tested the few-shot abilities of models
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Method Text Source DocVQA OCR VQA
val test

Open-Flamingo-9B Baseline [9] Raw Text 45.3 48.2 51.5

+VisInContext Rendered Image 48.5(3.2↑) 52.2(4.0↑) 58.4(6.9↑)

Table 3: VisInContext clearly boosting the baseline on document understanding tasks.

Figure 3: VisInContext significantly improves the OCR ability of LLM. We present the Rendered Text [27]
images and the corresponding next-word prediction accuracy on the validation set. Using the same pre-training
steps, VisInContext achieves significantly better results in predicting words in visual images, even when the
fonts are difficult to recognize.

using in-context examples. For instance, in the VQA dataset, a few question-and-answer pairs
are provided as in-context examples with visual signals. However, for zero-shot evaluation, two
question-and-answer pairs are added as in-context examples without visual signals in [1, 9, 14].
Follow the zero-shot setting, we examine the effect of having text-only in-context examples and
extend it to multi-shot setting, by leaving out the corresponding images (See Appendix .E for more
details). We compare model performance of the baseline Open-Flamingo 9B and our method under
the same setting, where the differences lie in how these text-only in-context examples are processed.
Specifically, Open-Flamingo directly takes in them as text tokens, while VisInContext takes in the
corresponding rendered text images.

Figure 4: VisInContext extends the in-
context text length of MOE based MLLM
from 1k to 9k at inference stage.

Table 2 summarizes the results across four VQA bench-
marks and two captioning benchmarks. Notably, compared
to the text-only 0-shot setting, our VisInContext with 32-
shot significantly is improved on all VQA and captioning
benchmarks considered. Though the 32-shot performance
of VisInContext is slightly lower than the competing base-
line, we cut down the input tokens to the LLM from 426 to
only 10 Text Token Length, which lead to significant reduc-
tion in the inference cost. These outcomes highlight two
key points: i. VisInContext can effectively understand
text rendered in images. ii. Text rendered as images can
be comparably effective as raw text, when used as text-only
in-context examples.

Comparison on Inference Cost. We then analyze the
inference cost of VisInContext and compare to the baseline. Both models are based on a 56B MOE
LLM with a batch size of one to explore the maximum manageable In-context Text Length. The
results, shown in Figure 4, demonstrate that the In-context Text Length can be extended up to 9192
tokens for the 56B MOE model on 80GB H100 GPUs with our method at inference stage. This result
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Figure 5: Sequential multi-modal retrieval example. The input sequence is I1, T1, R1, I2, T2, R2 that from
interleaved document in OBELICS [14] dataset.

Visual Input Text Input Surrounding Text Input Seq-I Seq-T

Raw Image Raw Text - 16.3 64.8
Raw Image Raw Text Raw Text 18.9 67.5
Raw Image Raw Text Rendered Text Image 22.7 66.5

Table 4: The model pretrain with VisInContext significantly improves sequence understanding ability.
We report the sequence retrieval result on OBELICS-Hybrid6.

highlights the efficiency and advantages of VisInContext, also show its potential in understanding
very long document.

3.3 Document understanding

In this section, we evaluate the model on document understanding tasks. Unlike common vision-
language tasks that usually short-form pairs, this task requires comprehension of long and complex
document data. We evaluate our model on DocVQA and OCRVQA. All document images are of
size 384× 384. Following Pix2Struct [35], we finetune the model on DocVQA train data and report
performance on the average normalized Levenshtein similarity (ANLS) metric.

Results in Table 3 show that our method significantly outperforms the baseline. For instance, we
achieve a 6.9% improvement on OCRVQA. To further analyze why our method enhances document
understanding, we present the validation accuracy of the LLM on the Rendered Text [27] dataset
during pretraining in Figure 3. We observe a substantial improvement in next word prediction
accuracy, with top-1 accuracy increasing from 67.37% to 85.25% (a 16% improvement) and top-5
accuracy rising from 80.76% to 93.38%. These findings indicate that the LLM can effectively
understand text embedded in visual signals with VisInContext.

3.4 Sequential Multi-modal Retrieval

In order to further analyze the benefit of having long text context in multimodal modeling, we propose
a new task – Sequential Multimodal Retrieval (SMR), based on document data from interleaved
OBELICS [14] dataset. The document is composed of interleaved data, consisting of images and
texts arranged in a meaningful sequence.

We show one sample in Figure 5 and define the input and output of this task as below: Input: Given
a pair of content items, an image and a corresponding text (I1, T1, R1, I2, T2, R2), from a document
D. I is Image, T is the matched text and R is the surrounding text. Output: The task is to retrieve
the next image I2 and the next text T2 in the sequence. Named as Seq-I and Seq-T, correspondingly.

We sample the first 1K documents that contain data like I1, T1, R1, I2, T2, R2 from OBELICS [14]
and named it as OBELICS-Hybrid6, which have at least three frames and three texts. (See Sec. E in
appendix for more details.) This task encourages the model to leverage the contextual and semantic
relationship in interleaved sequences to effectively predict and retrieve the subsequent pair.

To enable our model with retrieval, we follow CosMo [25] to add a simple contrastive head between
visual embedding and language embedding from the middle layers. Recall that visual embeddings
are either from raw images or rendered images or the addition of the two in our method. Table 4
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Method Pretrain Text Source Task
DocVQA-val

FuYu9B [8]† Raw-Text 42.3
+ VisInContext +Rendered Image 44.5 (2.2↑)

Table 5: Pretraining with VisInContext helps on long-context understanding task for FuYu
model. † means our implementation on 180M data.

reports the results from our model with several input variants. We observe taking surrounding text
input as rendered text image performs much better on the Sequence to image retrieval, while on par
on Sequence to text retrieval, when compared with taking surrounding text input as raw text. These
results further support the designs of VisInContext in the context of document understanding.

3.5 Extension to MLLM with Linear Embedding

Beyond utilizing the visual encoder, some works [36, 8] also employ linear embedding to extract
visual features directly from raw images. To show the generality of our method, we also explore
FuYu [8] model as a baseline and integrate VisInContext into the model. (See Sec. A in the appendix
for more details.) As indicated in Table 5, our method is successful in improving the performances
on DocVQA dataset that require long-context understanding.

Text Image Token Masking TCCL Ok-VQA TextVqa VizWiz VqaV2

11.5 15.3 8.7 24.2
✓ 11.3 15.0 9.4 30.1
✓ ✓ 17.8 18.3 15.3 33.5
✓ ✓ 13.5 15.3 10.3 30.9
✓ ✓ ✓ 17.2 21.8 19.7 35.2

Table 6: Ablation study of the component in our pipeline for text-only 4-shot example.

Font Size 4 6 8 10 12

TextVQA 15.4 17.2 18.5 21.8 20.3
DocVQA 39.8 42.5 45.6 44.3 36.2

Table 7: Font size ablation. We report the result
on DocVQA val dataset.

Dataset 2 4 8 16 32

TextVQA 21.8 20.5 21.3 18.5 15.3
DocVQA 44.3 43.2 39.4 40.5 36.6

Table 8: Font interval thresh ablation. Larger
thresh leads to few texts in general.

3.6 Ablation Study

Ablations on Model Design. We conduct ablation studies on the following modeling components
to demonstrate their effectiveness: Text Image, TCCL, and Token Masking. Results are detailed
in Table 6, which reveal two findings: 1. Token Masking is crucial for the model to learn from
rendered text images. Without Token Masking, the model can only perform comparably to the
baseline. Forcing the model to learn text semantics from rendered text images via token masking
significantly improves model performance. 2. Utilizing TCCL with Token Masking yields better
performance than using Token Masking alone.

Ablations on Font Size and Interval Threshold. As shown in Table 7, optimal performance varies
with changes in font size. We found that adjusting the font size impacts performance similarly to
altering the patch size—both methods effectively increase the contextual information within each
patch. We prefer modifying the font size over the patch size because it allows for more intuitive
adjustments. Our findings indicate that the model does not need a highly detailed understanding of
each word to perform effectively.

Another important factor is the font interval threshold. As shown in Table 8, we observed that a
too-large interval leads to inferior results. This is intuitive because a larger threshold results in fewer
texts in the rendered text image.
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4 Related Work

Multimodal Language Models. Current mainstream Multimodal Large Language Models
(MLLMs) [37, 38, 22, 39, 40, 41] leverage the capabilities of Large Language Models (LLMs) [42, 6]
due to their strong reasoning abilities, as demonstrated by recent advancements. These models
typically adopt one of two primary designs for integrating visual information. The first approach
involves the effective adaptation of visual representations, which are acquired via a separate visual
encoder, into the text-based LLM framework like CLIP, GIT, and BLIP2 [22, 43, 37]. The repre-
sentative method in this category incorporates visual representations into the language model using
cross-attention, as seen in the Flamingo series models [1, 9, 14]. Along this line, recently some works
like LLaVA [40], EMU2 [44], InternVL [45], DeepSeeker [10], and QWen [41] lead to superior
results on multi-modality tasks with supervised finetuning on high-quality data. The second approach
uses visual embeddings directly as input "tokens" for the LLMs, bypassing the traditional use of
a separate visual encoder. This method processes visual patches with a linear layer and uses the
resulting embeddings as direct inputs to the LLM, as implemented in models like ViLT [36] and
FuYu [8]. This strategy omits the need for an additional visual encoder and simplifies the architecture.

In this work, we adopt the Flamingo [1] architecture as our main baseline for the following reasons:
First, the Flamingo model emphasizes in-context few-shot learning ability and designs comprehensive
few-shot evaluation strategies. Second, our focus is on extending the in-context text length during
pre-training rather than on supervised fine-tuning.

Enhancing Text Understanding through Visual Inputs. Traditional text tokenization processes
raw text efficiently, but it faces challenges such as vulnerability to spelling errors and limited cross-
lingual transferability [46, 47]. These issues have prompted the exploration of tokenizer-free models,
which aim to improve robustness and facilitate better cross-language applicability. For instance,
a single spelling error can lead to entirely different tokens using traditional tokenization methods,
impacting model performance.

Recent developments have seen innovative approaches like the Pixel model [46], which proposes
processing text as an image using both an image encoder and an image decoder. This approach
has sparked a series of studies that process not only textual data but also images, charts, and tables
through a unified visual input system [35, 46, 48, 47]. These models are trained on a diverse array
of visual data, such as webpage screenshots and user interface images, sourced extensively from
the internet. They are specifically designed to handle visually-situated text in an end-to-end manner,
offering the potential to support a wide range of applications.

Long Context Modeling. The challenge of incorporating more tokens into LLMs is an active area
of research [49, 50]. Common approaches involve novel self-attention mechanisms [18, 51, 52] ,
compressed token [53, 54, 55] or memory banks [16]. Some works [56] exploit tensor parallelism
or sequence parallelism to reduce memory costs. There also have some works focus on position
embedding [57, 58]. In multi-modality research, closed-source models like Gemini [59] and GPT-
4V [60] support long context inference up to millions of tokens. Open-source models such as
MA-LMM for Long-Term Video Understanding [20] can process up to one hour of video using a
long memory bank. The most relevant work Large World Model [19] extends token length using
Ring Attention.

In contrast to these methods, our method utilizes off-the-shelf LLMs and compresses text tokens into
visual tokens for efficient processing. Our method is complementary to these existing techniques and
can be integrated with them to achieve lower computational cost and longer context length.

5 Conclusion and Limitations

This paper centers on multi-modality learning and addresses the in-context length limitations presented
by heavy computational cost of LLMs in MLLMs. Our contribution is a novel and efficient method
named VisInContext, which enables the model to perceive long text context as rendered text images.
Comprehensive experiments show that VisInContext is effective on conventional in-context few-shot
evaluations and document understanding, while being much more efficient.

9



One limitation of our method is, currently our method requires processing a fixed size image even for
brief texts. In future work, we plan to dynamically reduce token counts with variable image sizes by
retaining only non-empty tokens during pre-training. We aim to expand this method to additional
tasks and encourage the community to further explore this direction.
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A Extending VisInContext to MLLM Using Only Linear Embedding

In Multimodal Large Language Model (MLLM), besides using visual encoders, there are several
works [36, 8] that utilize only linear embeddings to encode visual information. To demonstrate the
generality of our method, we first extend it to the FuYu [8] model in this section. We evaluated our
methodology using the FuYu [8] architecture, a prominent model that leverages visual information
through simple linear embeddings. This approach utilizes a large language model framework without
the need for a visual encoder, instead employing linear embedding to process visual information.

A.1 Methodology

Our system architecture, based on FuYu [8], incorporates a single decoder where both visual and
textual inputs are converted into token embeddings and processed by the same Transformer structure.
Inputs are divided into two segments: the first is a sequence of image patches forming a screenshot
and image patches from text image, and the second a sequence of textual tokens that contextualize
the screenshot. The configuration of this uni-modal approach is depicted in Figure 6.

Figure 6: The main pipeline is based on Fuyu [8]. What’s different
is we introduce an additional text image. During pre-training, the
rendered text image and original image is also alternatively. The
DCSE is preserved. We show one image-text pair here for simplicity.

Input Format. The model inputs are formatted such that a text sequence of m tokens is divided
into screenshot segment (ms) tokens and text segment (mt) tokens, each comprising 256 tokens.
The screenshot dimensions are defined as ph × pw pixels. Special tokens are integrated to guide the
model’s understanding of segment differentiation.

The rendering strategies are consistent with those employed in our visual encoder-based methods.

Architecture. The architecture follows the FuYu model [8], a widely used framework among visual
encoder-free multi-modal language models (LMs), utilizing a 9 billion parameter model. Image
patches are transformed into embeddings through a linear projection, while textual inputs utilize
corresponding word embeddings. These embeddings are subsequently processed together in the
Transformer blocks. To keep contrastive loss, we compute the average token metric after 3rd layer.

A.2 Evaluation Settings

The primary objective of this experiment is to assess whether autoregressive screenshot language
models (LMs) can accurately interpret text within screenshots using only linear embedding for the
rendered text image. In this setup, the screenshot LM processes 256 text tokens derived from the
screenshot context along with an additional 25 text tokens.

A.3 Training Settings

Our training setup follows the Flamingo model, using image-text data sourced from DataComp [26].
For interleaved data, since FuYu does not support interleaved input, we sample one frame and a fixed
length of text during pretraining. The model is trained with DeepSpeed Zero 2 optimization [3] and
uses fp16 data type. We initialize the Language Model from Persimmon-8B weight.

B Pretraining & Downstream Task Evaluation details

B.1 Pretraining Data Details

The associated data statistics for pretraining, presented comprehensively in Table 9, mainly include
Datacomp [26] subset, MMC4 [13], Obelics [14] and Rendered Text [27].
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Data Type Dataset Sample

Image-Text DataComp1B [26] 108M

Interleaved Image-Text MMC4 [13] 30M
Obelics [14] 30M

Synthetic Data Rendered Text [27] 12M

Total - 180M
Table 9: Statistics of the Pre-training Dataset: Subsets are random sampling.

The comparison between our method and Open-flamingo baseline, utilizing equivalent-scale pre-
training data, consistently demonstrates the superior performance of our approach across diverse
tasks.

VisInContext
3B

VisInContext
9B

VisInContext
57B

Model
Language Model Backbone OPT-IML-1.8B [61] Mistral-7B [5] MOE 56B [2]

Vision Model Backbone openai/clip
-vit-large
-patch14

openai/clip
-vit-large
-patch14

laion/CLIP-ViT
-H-14-laion2B
-s32B-b79K

Cross-Layer Interval 2 4 4

Training

Text Sequence Length 128 128 128

ICL Text Length 2048 2048 2048

Effective Batch Size 3072 1536 768

Max Training Steps 200K 200K 500K

Weight Decay 0.1 0.1 0.1

Optimizer adamw(0.9, 0.999) adamw(0.9, 0.999) adamw(0.9, 0.999)

Gradient Clipping 1.0 1.0 1.0

Learning Rate

Initial Max 5e-5 3e-5 3e-5

Decay Schedule Cosine Cosine Cosine

Linear warmup Steps 5000 5000 5000

Table 10: The hyperparameters used in pre-training for three distinct VisInContext variations. The
learning rate and batch size is smaller for sine the GPU memory limitation is 32GB.

B.2 Hyperparameter Configuration

In this subsection, we outline the essential training details required for reproducibility. Our exper-
iments included three different model sizes, with larger models requiring smaller batch sizes due
to GPU memory limitations. We employed DeepSpeed ZeRO-2 optimization with fp16 precision
and adjusted gradient accumulation steps to match the data type count. Comprehensive results are
presented in Table 10.

The text input sequence length is 128 as default. Since we adopt VisInContext to increase the
in-context length, the ICL length can be increased to 2048, around 15 text images. The τ for TCCL
is 0.07.

B.3 Parameter Details

The Flamingo [1] baseline include Resampler, Language Model, Visual Encoder, Cross-attention.
Both the Language Model and Visual Encoder are frozen during pretraining. We mainly train the
Gated Cross Attention layer and Resampler layer.
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Model Language Vision Gated Cross Attention Resampler

Flamingo-9B 7.1B 428M 0.8B 194M
Flamingo-9B Baseline † 7B 307M 0.35B 194M

MOE Baseline† 56B 307M 0.5B 194M
Table 11: Parameter counts for each component in MLLM. † means our implementation.

Method Text
Source

Parameter Text
Tokens↓

T-Shots VQA Mean

ok-vqa textvqa vizwiz vqav2

OPT-
1.3B [4]

Rendered
Image 1.3B

10 0 11.2 15.8 5.4 33.6 16.5
10 4 17.2 21.8 7.8 33.2 20.0 (3.5↑)
10 32 21.3 22.6 11.5 35.8 22.8(6.3↑)

MPT Rendered
Image 7B

10 0 28.5 23.2 24.4 37.7 28.5
10 4 30.1 23.2 28.4 40.3 30.5(2.0↑)
10 32 32.5 25.4 30.3 41.8 32.5(4.0↑)

Table 12: VisInContext performs well over different Language Models.

B.4 Extension to Other Language Models

Our research extends beyond the Mistral model, incorporating other language models such as OPT
and MoE. The comparative results are summarized in Table 12. We noted marked improvements
in performance across all models with the use of more in-context examples. This indicates that
VisInContext’s effectiveness is not highly dependent on the specific language model used, showcasing
the broad applicability and robustness of our methodology.

C Document Understanding Example

In this experiment, we present examples to demonstrate our method. As shown in Figure 7, we
provide samples from the validation sets of DocumentVQA [15] and ChartQA [62].

Using VisInContext, we observe that the method answers questions more accurately, even when the
font is unclear. For instance, consider the first pdf image have low resolution.

D Sequential Multi-modal Retrieval Details

Data Collection We retrieve 1,000 samples from the OBELICS dataset, each sample consisting of
six segments in the fixed order: I1, T1, T2, I2, T3, T4. Each image has one matching text segment and
additional surrounding text. We use relative positioning to indicate which text is matched and which
is surrounding.

Retrieval Details To perform the retrieval task, we incorporate contrastive loss during pretraining,
following the approach of CosMo [25]. We add a contrastive head for the uni-modality text and
vision embeddings. Using the mean of the text and image features as a query, we retrieve the next
image or text segment. This task tests the model’s ability to handle long in-context text.

We compute the dot product similarity and rank the scores to determine the final result. When
processing surrounding text as "Raw Text," we concatenate T1 and the surrounding text R1 directly
to the LLM to obtain the text embedding. We then use the mean of this text embedding and the image
embedding of I1 to retrieve the next image or text.

For our method, we render the surrounding text R1 into an image and use the sum of two resampler
outputs as the image embedding. We compute the mean of this image embedding and the T1

embedding and use this mean vector to retrieve the next image or text segment.
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Figure 7: The document understanding example of our method.

E In-Context Few-Shot Example

In this work, we primarily follow the methods from the Flamingo series [1, 14, 9], as these provide
comprehensive support for in-context pretraining.

For zero-shot evaluation, the input sequence is formatted as follows:

<Visual><Question><Answer>

For few-shot evaluation, such as a two-shot evaluation, the input includes two in-context examples.
The sequence then becomes:

<Visual1><Question1><Answer1><Visual2><Question2><Answer2>
<Visual><Question><Answer>

For the text-only input sequence in a text-to-image few-shot setting, the format is:

<Question1><Answer1><Question2><Answer2>
<Visual><Question><Answer>

Note that we remove all visual tokens to create a longer input sequence, which can then be rendered
into a text image for text-to-image few-shot evaluation.

F Activating the Visual Encoder

One approach involves activating the visual encoder during pretraining, allowing the model to
independently learn visual OCR information within the vision encoder.

As shown in Table 13, this method significantly enhances performance in document understanding
tasks. However, it also introduces considerable instability during pretraining and requires extended
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Method DocVQA OCR VQA Classification
val test Hatefulmems

Frozen 48.5 52.2 58.4 61.3

Learnable 50.3(1.9↑) 54.0(1.8↑) 59.0(0.6↑) 59.4(1.9↓)

Table 13: The impact of opening visual encoder during pre-training.

iterations (from 200k to 500k) for convergence. Additionally, it decreases performance in classifi-
cation tasks. Therefore, we use the frozen visual encoder by default, as the token resampler alone
suffices to develop document understanding capabilities.

G Boarder Impact

This work introduces VisInContext, a method to enhance token efficiency in multi-modality large
language models (MLLMs) by using visual tokens to process extended textual contexts.

Positive Impacts: VisInContext can democratize access to advanced NLP technologies by reducing
computational resources required for long text sequences. This improvement promotes sustainable
AI practices by lowering energy consumption and allows researchers with limited resources to utilize
powerful MLLMs for applications in education, healthcare, and content generation.

Negative Impacts: Potential negative impacts include the misuse of efficient text processing for
spreading misinformation or creating deepfake content. Additionally, reliance on visual tokens may
introduce biases if training data is not diverse.

Mitigation Strategies: To mitigate these risks, we recommend implementing content moderation,
developing ethical AI usage guidelines, and ensuring diverse and balanced training datasets. Contin-
uous monitoring and auditing of AI systems using VisInContext can also help address unintended
consequences.

In summary, VisInContext offers significant advancements in token efficiency and computational
sustainability, but it is essential to consider and address its broader societal impacts responsibly.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper do not propose new theory.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The reproduce details are already included in the experiment sections and
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the code in supplementary.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details are reported in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not include error bars as the experiments are computationally expensive,
and existing literature do not have the convention to report error bras.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the details in the first subsection of experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact in Sec G of appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We expect our model to have similar risk as the pre-trained language model
and Flamingo model. We discuss potential mitigation strategies in Appendix G.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cited all code, data, and models used in this paper.
Guidelines:

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Included code in supplementary material.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work do not include human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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