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Abstract

In this study, we propose a novel approach for quantify-
ing brain-to-brain coupling during a hypnosis induction.
Our approach uses a multi-output sequence-to-sequence
deep neural network applied to raw EEG data recorded
from 51 participants using 59 electrodes. Specifically, we
use a long short-term memory (LSTM) encoder to extract
an embedding, which is then utilized for two downstream
heads: one head to predict the hypnotist’s brain activ-
ity, and the other head to classify the level of hypnotic
depth. We found that removing the head that predicted
the hypnotist’s brain activity substantially decreased the
accuracy of the classification head, indicating that this
head plays a critical role in achieving better classifica-
tion performance. These results highlight the importance
of shared representations in shaping social interactions.
Ultimately, this work can help us better understand the
dynamics of verbal communication.
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Introduction

The brain’s ability to couple with external stimuli as well as
other brains is a crucial process that enables us to extract
information about the state of the world and other minds, facil-
itating social interaction, effective communication, and social
bonding (Hasson, Ghazanfar, Galantucci, Garrod, & Keysers,
2012). Hypnotic interaction is a remarkable example of effec-
tive communications, where the hypnotist can induce profound
changes in the person’s feelings and perceptions using only
words. Despite the growing interest in this phenomenon, the
neural mechanisms underlying hypnotic induction and its im-
pact on the brain remain largely unexplored. Recent evidence
from two-person neuroscience suggests that a multi-brain ap-
proach could lead to a breakthrough in our understanding
of the neural mechanism of social interactions (Redcay &
Schilbach, 2019). Deep neural networks, on the other hand,
have emerged as a powerful tool in cognitive science, offering
not only predictive capabilities but also providing insights into
how the human brain functions (Cichy & Kaiser, 2019). Un-
supervised algorithms, such as sequence-to-sequence mod-
els, are particularly useful when there are no explicit labels
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for classification. These models have shown promise in de-
coding brain state from multichannel EEG, including decoding
emotional processes (Li et al., 2020) and predicting cognitive
workload levels (Zheng, Yin, Wang, & Zhang, 2023). The cur-
rent work aims to train a sequence-to-sequence model based
on raw EEG data to decode participants’ mental state during a
hypnotic induction (whether they were in deep or shallow hyp-
nosis) while optimizing the model’s weights to reconstruct the
hypnotist’s brain activity.

Methods

Data collection and preprocessing This study included 51
participants (39 females) with an average age of 24.5 years.
During the experiment, participants listened to a hypnotic re-
laxation technique (Elkins & Elkins, 2013) while their brain
electrophysiological activity was recorded. The induction and
rest period lasted approximately 10 minutes, with the induction
segment being 5 minutes long. This segment was analyzed
for the study.

After the hypnotic session, participants were asked to rate
their level of hypnotic depth on a scale from 0 to 10, with 10
indicating the highest level of depth and zero indicating the
lowest. Participants who rated below 5 were considered shal-
lowly hypnotized, and those who scored 5 or higher were con-
sidered deeply hypnotized.

In a separate session, the brain activity of the hypnotist was
recorded during a real hypnotic session, while his voice was
recorded for the experimental session. Such an offline record-
ing method has been used in previous studies (e.g. (Silbert,
Honey, Simony, Poeppel, & Hasson, 2014)).

The data of participants and hypnotist was resampled to
128 Hz. We kept the preprocessing of EEG data minimal,
and only included the interpolation of bad channels and re-
referencing to the average of electrodes. Next, we scaled
data over electrode dimension using Lp normalization from
PyTorch.

Model architecture Our multi-output auto-encoder consists
of an LSTM encoder to extract an embedding from the raw
EEG data collected from participants, and a LSTM-based
decoder to reconstruct the input data (Figure 1). The decoder
comprises LSTM layers and fully connected linear layers
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Figure 1: Multi-output auto-encoder architecture. The LSTM auto-encoder extracts an embedding from participants’ raw EEG
data, which is then used by the downstream decoders for hypnotist's EEG data prediction and hypnosis depth level classification.
Abbreviations: X-reconn: reconstructed participants’ brain activity; y-reconn: reconstructed hypnotist’s brain activity; y-cls: level

of hypnotic depth (shallow vs. deep)

to decompress input data. The extracted embeddings of
this autoencoder are then fed into two downstream heads:
a LSTM decoder and fully connected layer for hypnotist's
brain prediction (Brain-to-brain or B2B head) and a fully
connected layer for participants’ hypnosis depth prediction.
Using this approach, the network is able to classify the brain
states of participants while also reconstructing the hypnotist’s
brain from participants’ brains, which takes into account
the similarity between the two brains. To determine if this
information about two brains coupled activity affected the
classification task, we trained two models: one with and one
without the B2B head.

Training and evaluation We trained the model using a com-
bination of mean squared error (MSE) loss for the decoder
heads and cross-entropy loss for the classifier head. To eval-
uate the performance of the model, we split the dataset along
the time dimension, using 80% of the data for training and the
remaining 20% for validation. We segmented the EEG data
into 3-second intervals before feeding it into the model. The
model was trained for 1000 epochs using the Adam optimiza-
tion algorithm with a learning rate of 0.001 and a batch size of
256.

Results

The model that included the B2B head achieved an average
accuracy of 76% in predicting hypnotic depth and an average
MSE of 0.002 in predicting the hypnotist brain activity patterns
on the validation set (Figure 2). However in the model that
does not include B2B head, the classification accuracy drops
to 58%. Several runs with different random seeds were con-
ducted to eliminate the possibility that randomness and dif-
ferent starting points could have contributed to the observed
performance decrease when the B2B head was removed. In
all cases, the model combining both heads performed better
than one containing only the classifier head.
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Figure 2: Performance of two multi-output LSTM auto-
encoders models in predicting hypnosis depth after 1000
epochs of training

Discussion

Our study demonstrated that incorporating information about
the brain state of the hypnotist in a multi-output sequence-to-
sequence deep neural network outperformed a model with-
out this information. The B2B head might play a crucial role
in improving classification performance by capturing essential
information that is relevant for classification task. For exam-
ple, the B2B head could determine the participant’s brain state
based on similarity between their brains activity and the hyp-
notist’s brain activity. Moreover, the B2B head could act as a
regularizer, thereby preventing overfitting of the model.

To further understand the underlying reasons of the im-
proved performance, we plan to use explainable methods to
investigate the features learned by the B2B head and their
contribution to the performance of the classification head.
Specifically, we aim to identify the brain areas where brain
coupling occurs, which will provide insights into the neural ba-
sis of interpersonal communication.
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