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Abstract001

The hardware ecosystem is rapidly evolving,002
with increasing interest in translating low-level003
programs across different instruction set archi-004
tectures (ISAs) in a quick, flexible, and correct005
way to enhance the portability and longevity of006
existing code. A particularly challenging class007
of this transpilation 1 problem is translating008
between complex- (CISC) and reduced- (RISC)009
hardware architectures, due to fundamental010
differences in instruction complexity, memory011
models, and execution paradigms. In this012
work, we introduce GG (Guaranteed Guess),013
an ISA-centric transpilation pipeline that014
combines the translation power of pre-trained015
large language models (LLMs) with the rigor016
of established software testing constructs. Our017
method generates candidate translations using018
an LLM from one ISA to another, and embeds019
such translations within a software-testing020
framework to build quantifiable confidence in021
the translation. We evaluate our GG approach022
over two diverse datasets, enforce high code023
coverage (>98%) across unit tests, and024
achieve functional/semantic correctness of025
99% on HumanEval programs and 49% on026
BringupBench programs, respectively. Further,027
we compare our approach to the state-of-the-art028
Rosetta 2 framework on Apple Silicon,029
showcasing 1.73× faster runtime performance,030
1.47× better energy efficiency, and 2.41×031
better memory usage for our transpiled code,032
demonstrating the effectiveness of GG for033
real-world CISC-to-RISC translation tasks. We034
will open-source our codes, data, models, and035
benchmarks to establish a common foundation036
for ISA-level code translation research.037

1 Introduction038

The modern hardware landscape is undergoing039

a fundamental transformation. As Moore’s Law040

slows and Dennard scaling ends (Dennard et al.,041

1We use “transpilation” to describe the task of translating
code between assembly languages.

1974; Connatser, 2023), the demand for energy- 042

efficient, high-performance architectures has 043

accelerated, particularly with the rise of machine 044

learning (ML) applications (Horowitz, 2014; 045

Jouppi et al., 2017). Hyperscalers are increasingly 046

constrained by power and thermal limits (Patterson 047

et al., 2021; Gupta et al., 2021), prompting a 048

reevaluation of datacenter infrastructure. 049

A major outcome of this shift is the growing 050

adoption of ARM-based processors. Historically 051

dominant in mobile and edge devices due to their 052

RISC-based, low-power design, ARM CPUs were 053

largely absent from datacenters because of their per- 054

formance gap with x86 (a CISC architecture) (Blem 055

et al., 2013). However, this gap has narrowed 056

significantly: ARM-based chips now match x86 057

on many benchmarks (CloudPanel, 2023) and 058

deliver superior energy efficiency (IONOS, 2024). 059

In 2024, x86 designs dominated over 80% of 060

data center servers (Reuters, 2025), but ARM 061

predicts that its share will reach 50% by the end 062

of 2025 (Maruccia, 2025). Industry adoption 063

supports this trend, with ARM-based systems like 064

NVIDIA’s Grace CPU (NVIDIA Corporation, 065

2024), Amazon’s Graviton (Morgan, 2022), and 066

Microsoft’s ARM-compatible OS stack (Verma, 067

2024) accelerating deployment. 068

This rapid hardware transition introduces a 069

significant software gap. Legacy binaries compiled 070

for x86 often lack source code and cannot be recom- 071

piled for ARM. While solutions like Apple’s Rosetta 072

2 (Apple Inc., 2020) and QEMU’s emulation ser- 073

vice (Bellard, 2005) provide runtime virtualization, 074

they introduce memory and performance overheads. 075

Compilers struggle to retarget opaque binaries (He 076

et al., 2018), and decompilation-based approaches 077

are fragile or legally restricted (Wang et al., 2024). 078

A scalable, accurate, and architecture-aware binary- 079

to-binary translation solution remains elusive. 080

In this work, we introduce Guaranteed Guess 081

(GG), an assembly-to-assembly transpiler that trans- 082
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lates x86 binaries (CISC) into efficient ARM or083

RISC-V (RISC) equivalents using a custom-trained084

large language model (LLM). Our approach is085

open-source, avoids the virtualization tax by gen-086

erating native ARM/RISC-V assembly, and directly087

supports legacy binaries without decompilation.088

Transpiling across ISAs is non-trivial. CISC and089

RISC architectures differ in register-memory se-090

mantics, instruction complexity, and binary length,091

x86 instructions are fewer but more expressive,092

while RISC requires longer, register-centric code093

sequences. These differences must be learned094

implicitly by the model, which we achieve by095

incorporating hardware-informed design, tokenizer096

extensions, and context-aware training.097

Our approach builds high-accuracy LLM-based098

transpilers by incorporating hardware-aware099

insights into the training process, enabling the100

model to better capture the CISC-specific patterns101

of x86 and generate semantically valid RISC targets102

such as ARM. However, unlike high-level language103

tasks, conventional NLP correctness proxies (e.g.,104

BLEU, perplexity) fall short for binary translation105

where functional correctness is paramount. There-106

fore, we embed our predictions within rigorous107

software testing infrastructure to provide test-driven108

guarantees of correctness. Holistically, our paper109

makes the following key contributions:110

1. The first CISC-to-RISC transpiler, coined GG,111

built via a custom-trained, architecture-aware112

LM achieving a test accuracy of 99.39% on113

ARMv8 and 89.93% on RISC-V64.114

2. A methodology to measure and build confi-115

dence into transpilation output via software116

testing approaches ("guaranteeing" the guess)117

(§3), including detailed analysis of correctness,118

errors, and hallucinations (§4)119

3. An in-depth analysis into the inner workings120

of our transpiler, including hardware-informed121

design decisions to best train an accurate LLM122

model for assembly transpilation (§3, §5).123

4. We perform a case-study using our transpiler124

in a real-world setting, by comparing it directly125

to Apple Rosetta’s x86 to ARM virtualization126

engine. Results show that GG’s generated127

assembly achieves 1.73x runtime speedup128

while delivering 1.47x better energy efficiency129

and 2.41x memory efficiency (§5).130

2 Background and Related Work 131

Virtualization and Emulation Emulation and 132

assembly-level virtualization enable the execution 133

of one ISA’s binary on a host machine for which 134

it was not originally compiled. QEMU (Bellard, 135

2005), an open-source emulator, uses dynamic 136

binary translation (Sites et al., 1993) to translate 137

machine code on-the-fly, offering flexibility but 138

with performance overhead. Supported emulation 139

currently includes x86 to ARM, amongst other ISAs. 140

Rosetta 2 (Apple Inc., 2020), Apple’s virtualization 141

layer for macOS, combines ahead-of-time (AOT) 142

and just-in-time (JIT) translation, providing better 143

performance within the Apple ecosystem. 144

These approaches face challenges in achieving 145

native-level performance and ensuring broad com- 146

patibility, due to the dynamic nature of execution. 147

A transpiler approach, directly converting x86 to 148

ARM assembly, could supplant these solutions 149

by eliminating runtime translation overhead 150

with a one-time translation into the host ISA. 151

This method could address the limitations of 152

current emulation and virtualization techniques, 153

particularly in performance-critical scenarios, or 154

where pre-processing is feasible, or when source 155

code is not available (due to proprietary IP). 156

Coding with LLMs Language modeling ap- 157

proaches for code have primarily focused on 158

understanding, generating, and translating high- 159

level programming languages such as C++, Java, 160

and Python (Lachaux et al., 2020; Feng et al., 2020; 161

Wang et al., 2021; Roziere et al., 2023; Liu et al., 162

2024). These models demonstrate increasingly so- 163

phisticated code manipulation capabilities through 164

self-supervised learning on vast code repositories. 165

Models further trained with reinforcement learning 166

have shown remarkable performance in rules-based 167

reasoning tasks, including code (et al., 2025). How- 168

ever, the resulting models struggle when applied to 169

languages under-represented in their training sets, 170

in particular when used to write assembly-level 171

code, where the semantics and structure differ 172

significantly from their high-level counterparts. 173

Neural Low-Level Programming Recent 174

research demonstrates the potential of adapting 175

LLMs to various tasks related to low-level code 176

analysis and transformation: decompilation, binary 177

similarity analysis, and compiler optimization. 178

LLM4Decompile (Tan et al., 2024) introduced spe- 179

cialized language models for direct binary-to-source 180

2



translation and decompiler output refinement.181

DeGPT (Hu et al., 2024) further explored decom-182

piler enhancement through semantic-preserving183

transformations. SLaDe (Armengol-Estapé et al.,184

2024) combines a 200M-parameter sequence-185

to-sequence Transformer with type inference186

techniques to create a hybrid decompiler capable187

of translating both x86 and ARM assembly code188

into readable and accurate C code, effectively189

handling various optimization levels (-O0 and190

-O3). Language models have also been adapted to191

optimization tasks, with LLM Compiler (Cummins192

et al., 2024) introducing a foundation model that193

supports zero-shot optimization flag prediction,194

bidirectional assembly-IR translation, and compiler195

behavior emulation. Binary similarity analysis has196

similarly benefited from language model adapta-197

tions. DiEmph (Xu et al., 2023) addressed compiler-198

induced biases in transformer models, while199

jTrans (Wang et al., 2022) incorporated control200

flow information into the transformer architecture.201

Yu et al. (Yu et al., 2020) combined BERT-based202

semantic analysis with graph neural networks to203

capture both semantic and structural properties of204

binary code. While these applications have shown205

promising results, the use of LLMs to port efficient206

machine code from one machine to another, while207

maintaining efficiency, remains underexplored and208

largely unsolved. Assembly languages present209

unique challenges due to their under-representation210

in training datasets, lack of human readability,211

extensive length, and fundamental differences in212

execution models across architectures.213

Guess & Sketch (Lee et al., 2024) introduced214

a neurosymbolic approach combining language215

models with symbolic reasoning for translating216

assembly code between ARMv8 and RISC-V217

architectures. In our work, we extend the neural218

transpiliation direction with a focus on leveraging219

the existing efficiency in x86 programs to transpile220

into efficient ARM binaries, bridging architectural221

differences in ISA complexity and execution mod-222

els. Further, instead of fixing transpilations with223

symbolic approaches, as done in Guess & Sketch,224

we focus on upfront data design and modeling225

methods to flexibly handle the increased scale and226

complexity of CISC-to-RISC transpilation.227

3 Guaranteed Guess228

In this section, we explore the two primary229

components of building our GG transpiler: data230

generation and model training. 231

3.1 Data Collection 232

As shown in Figure 1, our training dataset is derived 233

from AnghaBench(Da Silva et al., 2021) and The 234

Stackv2(Kocetkov et al., 2022). AnghaBench is 235

a comprehensive benchmark suite that contains 1 236

million compilable C/C++ programs extracted from 237

major public C/C++ repositories on GitHub. The 238

Stack is a 3.1TB dataset of permissively licensed 239

code in 30 languages for training and evaluating 240

code LLMs. From these datasets, we randomly 241

sampled 1.01M programs (16.16B tokens) from 242

AnghaBench and 306k programs (4.85B tokens) 243

from the stack to form our training set, equivalent 244

to 1.32M samples. After we collected the whole 245

samples, we removed boilerplates, deduplicated 246

the data, and choose file that were neither too 247

short (<10 lines) nor too long (>16k lines). These 248

programs were then compiled for x86 (CISC) ↔ 249

ARMv8/ARMv5/RISC-V (RISC). 250

Each program was compiled to both x86 (CISC) 251

↔ ARMv8/ARMv5/RISC-V (RISC) targets under 252

two optimization levels: -O0 (no optimization) 253

and -O2 (aggressive optimization). These flags 254

were selected to expose models to both raw, 255

semantically transparent code (-O0) and real-world, 256

performance-optimized binaries (-O2), enabling 257

the model to learn both unoptimized and optimized 258

ISA patterns. Compilation for ARMv5 and 259

RISC-V64 was performed via cross-compilation 260

on an Ubuntu 20.04 machine with a Ryzen 7 CPU, 261

using arm-linux-gnueabi-gcc (Radcolor, n.d.) 262

and gcc-riscv64-linux-gnu (Project, 2025), 263

respectively. ARMv8 binaries were compiled 264

natively on an Apple M2 Pro (macOS) using 265

clang (Lattner, 2008), ensuring architectural 266

fidelity for performance-critical ARM targets. 267

3.2 Training 268

All hyperparameter optimization experiments 269

were conducted on a small 500k portion of 270

AnghaBench. We tested various hyperparameter 271

settings on this subset of our benchmark. After 272

identifying the optimal configuration, we scaled 273

up the training data to 1.31M samples. We trained 274

three models: DeepSeek-Coder1.3B (Guo et al., 275

2024), Qwen2.5-Coder (1.5B and 0.5B) (Hui et al., 276

2024b). Given the dataset size of 1.3M million 277

samples, with an average of 13k tokens per sample, 278

we opted for smaller models. Training was done 279

on A100 GPUs (40GB each). Training with 1.3M 280
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Figure 1: GG System Overview. A two-stage transpilation pipeline from x86 to ARM/RISC-V. Left: Data is sourced
from Stackv2 and AnghaBench, deduplicated, and compiled using both GCC and Clang to generate paired assembly
(x86 ↔ ARM) from C/C++. Right: A specialized LLM (GG Guesser), trained with tokenizer extension and inferenced
with RoPE extrapolation, predicts target ISA code. Predictions are evaluated via unit tests and symbolic analysis
on benchmarks like HumanEval and BringupBench. The system emphasizes functional correctness, architectural
alignment, and near-native performance.

samples, a batch size of 24, and 2 epochs required281

three days. To conserve memory, mixed precision282

training with bfloat16 was employed. Given limited283

capacity for large batch sizes, we applied gradient284

accumulation with an effective batch size of 2. We285

used paged AdamW (Loshchilov, 2017) to avoid286

memory spikes, with a weight decay of 0.001.287

We chose a small learning rate of 2 × 10−5with288

a cosine schedule, as experiments indicated this289

schedule performed best. We trained our model290

with a context window of 16k. In inference, we do291

RoPE (Su et al., 2024) extrapolation to increase the292

context window to 32.7k.293

Input ldr r1, r2

Tokenizer Tokens

DeepSeek/Qwen 2.5 coder ld r ␣ r 1 , ␣ r 2

GGExtended Tokenizer ldr ␣ r1 , ␣ r2

Table 1: Comparison of tokenization approaches
between DeepSeek/Qwen-Coder and our extended
tokenizer. Spaces are represented as ␣ and shown with
colored backgrounds to highlight token boundaries.
Note how our tokenizer groups related tokens (e.g., ldr
and r1) as singular units.

3.3 Tokenizer Extension 294

To improve our LLMs’ capability in comprehending 295

and generating assembly code, we augmented 296

the tokenizer by incorporating the most com- 297

mon opcodes and register names from x86 and 298

ARMv5/ARMv8/RISC-V64 architectures (as 299

shown in Table 1). This targeted design improves 300

token alignment with instruction semantics, 301

enabling more precise and efficient assembly 302

translation. As shown in table 2, our extension 303

decreases the fertility rate (tokens/words) (Rust 304

et al., 2020) of Qwen and Deepseek tokenizers by 305

2.65% and 6.9%, respectively. This corresponds to 306

our model fitting 848 and 2.2k tokens respectively. 307

Model x86 ARMv5 ARMv8 RISC-V64

Qwen-Coder (Hui et al., 2024a) 4.28 2.89 3.62 3.62
DeepSeek-Coder (Guo et al., 2024) 3.74 3.51 4.28 4.28
GG-Qwen (Ours) 4.14 2.87 3.50 3.50
GG-DeepSeek (Ours) 3.47 3.26 3.99 3.37

∆ Qwen (%) ↓3.3% ↓0.5% ↓3.4% ↓3.4%
∆ DeepSeek (%) ↓7.2% ↓6.9% ↓6.8% ↓6.8%

Table 2: Tokenizer fertility rate (tokens/words) across
ISAs. Lower is better.
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Model ARMv5 ARMv8 ARMv8
HumanEval HumanEval HumanEval HumanEval BringupBench BringupBench

-O0 -O2 -O0 -O2 -O0 -O2
GPT-4o (OpenAI, 2024) 8.48% 3.64% 10.3% 4.24% 1.54% 0%

Qwen2.5-Coder-1.5B (Hui et al., 2024a) 0% 0% 0% 0% 0% 0%
Qwen2.5-Coder-3B (Hui et al., 2024a) 0.61% 0% 0% 0% 0% 0%
StarCoder2-3B (Lozhkov et al., 2024) 0% 0% 0% 0% 0% 0%
Deepseek-R1-1.5B (Guo et al., 2025) 0% 0% 0% 0% 0% 0%

Deepseek-R1-Qwen-7B (Guo et al., 2025) 0% 0% 0% 0% 0% 0%
GG-Deepseek-1.3B 79.25% 12.80% 75.15% 10.3% 3.08% 0%

GG-0.5B 90.85% 23.03% 86.06% 25.45% 27.69% 3.08%
GG-1.5B 93.71% 50.30% 99.39% 45.12% 49.23% 15.38%

Table 3: Models trained with our method outperform baselines across all benchmarks, at all optimization levels.

4 Experiments and Evaluation308

In this section, we describe our experimental setup,309

training methodology, evaluation benchmarks,310

and the metrics used to assess the accuracy and311

robustness of our CISC-to-RISC transpiler.312

4.1 Setup313

We leveraged LLaMa-Factory (Zheng et al., 2024),314

DeepSpeed Zero3 (Rasley et al., 2020), liger ker-315

nels (Hsu et al., 2024), and FlashAttention2 (Dao,316

2023) for efficient training and memory optimiza-317

tion. We also used caching to enhance inference318

speed and disabled sampling to ensure deterministic319

outputs. We used vLLM (Zheng et al., 2023) to320

deploy our model and achieve a throughput of 36x re-321

quests per second at 32.7k tokens context window on322

a single A100 40GB GPU. Additionally, We apply323

post-quantization using llama.cpp (Ggerganov)324

(e.g., bfloat16, int8, int4) to optimize inference325

for CPU-based deployment.326

4.2 Evaluation327

We evaluate GG using two complementary bench-328

marks: HumanEval-C (Tan et al., 2024) and329

BringUpBench (Austin, 2024). HumanEval was330

originally introduced by Chen et al. (2021) for331

Python code generation. The benchmark consists332

of 164 programming problems that assess language333

comprehension, reasoning, and algorithmic334

thinking. For our evaluation, we utilize the335

C-translated version from LLM4Decompile (Tan336

et al., 2024), which maintains the same problems337

while converting both function implementations338

and test cases to C code.339

To evaluate real-world generalization, we lever-340

age BringUpBench (Austin, 2024), a challenging341

benchmark of 65 bare-metal programs ranging from342

85 to 5751 lines of code. Unlike HumanEval, which343

consists of isolated functions, BringUpBench pro-344

grams are embedded in full project structures with345

BringUpBench HumanEval
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Figure 2: Token counts by ISA and benchmark;
BringUpBench is substantially longer than HumanEval.

internal libraries and cross-linked components. This 346

setup more accurately reflects real-world embedded 347

systems development, where executing even a single 348

file often requires compiling and linking the entire 349

codebase. As a result, BringUpBench imposes sig- 350

nificantly greater context length demands. On aver- 351

age, each BringUpBench sample requires 8.9× more 352

tokens for x86 and 8.8× more for ARM compared to 353

HumanEval, as shown in Figure 2. The benchmark’s 354

diverse control flow and I/O patterns further elevate 355

its difficulty, making it a strong testbed for assessing 356

the robustness and scalability of our transpiler. 357

We use gcov, GNU’s coverage tool, to measure 358

line coverage, a core metric in software testing that 359

captures which code lines were executed at least 360

once, thereby exposing untested paths and blind 361

spots (Myers et al., 2011). HumanEval and Bringup- 362

Bench achieved 98.81% and 97.32% average 363

coverage, respectively, indicating near-complete 364

execution of all code lines during testing. 365

We evaluate functional correctness by executing 366

the transpiled ARM code against full unit test 367

suites. A prediction is deemed correct only if all 368

test cases pass, partial correctness is not counted. 369

For HumanEval, this involves compiling the 370

5



predicted code, linking it with the provided tests,371

and executing the binary as shown inf figure 1. For372

BringUpBench, we leverage its Makefile to build373

the static library and link it with the target file.374

The output is then compared against the expected375

output using a diff-based check. This strict pass@1376

evaluation, based solely on the most probable377

sample, even when beam search (beam size = 8) is378

used, ensures that only fully functional translations379

contribute to final accuracy.380

5 Results and Analysis381

We evaluate the efficacy of our transpiler for382

CISC-to-RISC assembly translation, focusing383

on the correctness of the output ARM assembly.384

Utilizing the metrics defined above (§4), we385

compare our approach with state-of-the-art coding386

LLMs and evaluate our approach for x86 to ARM387

transpilation (Table3).388

5.1 Transpiler Validation389

Baselines. As shown in Table 3, most baseline390

models, including state-of-the-art LLMs such as391

StarCoder2 (Lozhkov et al., 2024), DeepSeek (Guo392

et al., 2024), and Qwen2.5 (Hui et al., 2024a),393

achieve 0% accuracy in all transpilation tasks,394

underscoring the unique difficulty of low-level395

ISA translation. These models, while effective396

on high-level programming benchmarks, lack397

the architectural grounding and token-level398

inductive bias needed to generalize from x86 to399

ARM. GPT-4o was the only exception, achieving400

1.5-8% accuracy, which remains far below usable401

thresholds, highlighting that general-purpose LLMs402

are not yet suitable for assembly-level translation403

without specialized training. This performance404

gap reinforces the need for task-specific instruction405

tuning and architectural adaptation to handle the406

deep structural mismatch between CISC and RISC.407

GG Results. Our GG models, particularly the GG-408

1.5B variant, substantially outperform all baselines,409

reaching 99.39% accuracy on ARMv8 and 93.71%410

on ARMv5 under the -O0 setting. This validates411

the effectiveness of architecture aware training,412

tokenizer extension, and longer context modeling413

in capturing fine-grained register and memory se-414

mantics. For -O2 optimized code, accuracy drops to415

45.12% (ARMv8) and 50.30% (ARMv5), exposing416

the fragility of current LLMs under aggressive417

compiler transformations. This suggests that while418

our model learns to generalize well under minimal419

Error Type Files with Errors after Guess
Input + output out of
context window

LongDiv, Regex-Parser, RLE-Compress,
FFT-Int, Blake2B, Anagram, C-Interp,
Totient, Banner, Lz Compress, Satomi,
Rho-Factory

Duplicate function error Frac-Calc, Minspan
Stack/memory error Boyer-Moore-Search, Topo-Sort,

Audio-Codec, Weekday, Simple-Grep,
Max-Subseq, Priority-Queue, Dhrys-
tone, Cipher, AVL-Tree, QSort-Demo,
Vectors-3D, Pascal

Missing function error Fuzzy-Match, Tiny-NN, Kadane, Audio-
Codec, Frac-Calc, Kepler, Dhrystone,
Cipher, Graph-Tests, Quaternions,
AVL-Tree, K-Means, QSort-Demo,
Vectors-3D

Labels referred but not
defined

Fuzzy-Match, Life, AVL-Tree, K-Means

Register mislabel error Bloom-Filter, Topo-Sort, Weekday,
Knights-Tour, Simple-Grep, Max-
Subseq, Mersenne, Audio-Codec,
K-Means, QSort-Demo, Vectors-3D,
Pascal, Minspan

Incorrect immediate value Kadane

Table 4: Failed files on BringupBench. Errors after the
Guess stage are largely around dataflow reasoning. File
names are grouped by error type.

optimization, it struggles with control/data flow 420

reordering and register coalescing introduced by 421

-O2 passes. Addressing this challenge may require 422

incorporating optimization-invariant representa- 423

tions, such as symbolic traces or control/data-flow 424

graphs, or extending the training set with more 425

aggressively optimized samples.A detailed error 426

analysis can be found in Appendix A.1. 427

RISC-v64. To demonstrate the generality of our 428

method, we also trained our model on the task of 429

transpiling from x86 to RISC-V64, achieving a 430

pass@1 of 89.63%. Notably, our model signifi- 431

cantly outperforms existing models like GPT4o and 432

DeepSeekCoder2-16B, which achieved much lower 433

test accuracies of 7.55% and 6.29%, respectively. 434

This result is 9% lower than ARMv8 which shows 435

how much different RISC-v64 from x86 compared 436

ARMv8. 437

(-O2) Opt. Compiler optimizations (-O2) 438

introduce complex patterns that increase failure 439

frequency compared to -O0. A common error is the 440

motion of the instruction; for example, misplacing 441

cbz2 alters the control flow, revealing the difficulty 442

of the model in interpreting optimized sequences. 443

While hard to detect automatically, such errors can 444

be repaired via manual inspection (Liu et al., 2025), 445

symbolic solvers (Lee et al., 2024; Mora et al., 446

2024), or reasoning models. Hybrid human-AI 447

approaches may improve correctness guarantees. 448

2Compare and Branch if Zero
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Figure 3: Comparison of execution time, energy consumption, and memory usage across Rosetta, GG, and native
binaries.

BringUpBench. We evaluate GG-1.5B on449

BringUpBench (Austin, 2024) and manually450

analyze over 200 unit-tested binaries. Our model451

achieves 49.23% exact match accuracy under -O0452

(Table 3) with virtually no syntax errors, outputs453

consistently adhere to valid ARM assembly with454

correct opcodes, registers, and memory access. This455

reflects a strong surface-form prior, shifting focus456

to semantic errors like incorrect dataflow. Notably,457

17% of failures stem from context truncation,458

indicating a key limitation of current context459

window sizes. Table 4 summarizes common failure460

types, including duplicate code, invalid control461

flow, misused registers / intermediaries, and stack462

errors - most symptomatic of broken data flow463

rather than syntax issues. These may be alleviated464

through longer training, symbolic repair, or richer465

representations. Lastly, the benchmark’s extensive466

unit tests offer a valuable semantic signal in the467

absence of ground truth, suggesting a compelling468

path for test-driven transpilation and iterative repair.469

5.2 Real-World Case Study470

To evaluate the efficiency of our transpiler, we471

conducted a real-world study on an Apple M2 Pro472

(ARM64v8-A). This setup offers two advantages:473

(1) native ARM toolchain support, avoiding474

cross-compilation; and (2) Apple’s Rosetta 2475

layer, enabling consistent evaluation across476

execution modes on the same hardware. We assess477

performance across three environments: (i) native478

ARM64 binaries, (ii) x86 binaries via Rosetta 2,479

and (iii) GG-transpiled x86-to-ARM64 assembly.480

For each, we measure execution time, CPU energy481

(via powermetrics), and memory usage. Each482

program is executed 100 times, reporting the483

geometric mean (Fleming and Wallace, 1986),484

under controlled conditions.485

Figure 3 shows that GG achieves near-native486

performance: matching execution time, 1.73× 487

faster than Rosetta, with 1.47× better energy 488

efficiency and 2.41× better memory usage. GG’s 489

memory footprint (1.034 MB) is nearly identical 490

to native (1.03 MB), while Rosetta uses 2.49 MB. 491

These results demonstrate that LLM-based 492

binary translation offers a compelling alternative to 493

traditional dynamic translation layers like Rosetta. 494

Unlike Rosetta, which incurs a persistent runtime 495

overhead, GG performs a one-time transpilation, 496

avoiding the cumulative “runtime tax” and enabling 497

leaner, faster execution. Moreover, our approach 498

is general-purpose and untethered to Apple’s 499

ecosystem, enabling broader cross-ISA deployment 500

and efficient CISC-to-RISC translation across 501

diverse platforms. See Appendix A.1 for scaling, 502

quantization, and error analysis. 503

5.3 Similarity Analysis Across ISAs 504

In Figure 4b, we observe that ARMv8 exhibits 505

the highest average similarity to x86 (40.19%), 506

followed by ARMv5 (25.09%) and RISC-V64 507

(21.41%). This gradient of similarity directly 508

correlates with the drop in model accuracy from 509

ARMv8 (99.39%) to ARMv5 (93.71%) and further 510

down to RISC-V (89.63%). We hypothesize 511

that this discrepancy is rooted in the increasing 512

divergence in instruction semantics and register 513

abstractions across these ISAs. ARMv8’s shift 514

toward CISC-like design (Red Hat, 2022) likely 515

boosts its alignment with x86, aiding model 516

generalization. In contrast, ARMv5 and RISC-V 517

have simpler, more divergent instruction sets and 518

addressing schemes, making the x86-to-RISC 519

mapping less predictable and thus harder to learn. 520

Figure 4a highlights a significant shift in ARMv8 521

opcode usage between -O0 and -O2. At -O2, mov 522

becomes dominant (+14.8%), indicating more 523

register reuse and reduced memory traffic via 524
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Figure 4: Side-by-side comparison of opcode shift and CHRF similarity in ARM assembly analysis.

explicit ldr/str. This hides direct data movement,525

making it harder for the model to learn memory526

interaction. Paired instructions like ldp/stp appear527

more frequently, packing semantics into fewer lines,528

while conditional ops (tbnz, cset) are folded into529

predicated sequences. These changes, introduced530

by the compiler, abstract both control and data531

flow. We hypothesize that the model, trained only532

on -O2, must decode complex x86 semantics into533

a highly optimized and compressed ARMv8 form.534

This transformation increases learning difficulty535

and explains the drop in -O2 accuracy (to 45.12%)536

despite strong -O0 performance.537

Model Variant ARMv8 Accuracy Impact (∆)
Qwen2.5-Coder 0% –
+ 1M AnghaBench 93.94% +93.94%

+ 0.3M Stackv2 95.38% +1.44%

+ RoPE Extrapolation 97.14% +1.76%

+ Extended Tokenizer 98.18% +1.04%

+ 8 Beam Search 99.39% +1.21%

Table 5: Ablation study showing incremental improve-
ments on ARMv8 accuracy from each added component.

5.4 Ablation Study538

To understand what contributed most to model539

performance, we performed ablations shown in540

Table 5, focusing on four key aspects: training data541

size, RoPE extrapolation, the extended tokenizer,542

and decoding strategy.543

First is the training data. As we increased the544

amount of training data to 1M AnghaBench, the545

accuracy jumps from 0% to 93.94%; including an ad-546

ditional 0.3M Stackv2 data points further improves547

accuracy to 95.38%. While effective, this scaling ap-548

proach depends on high-quality, large-scale datasets549

and longer training time. Second is the architectural550

enhancement through RoPE Extrapolation, which551

pushes performance to 97.14%, indicating a +1.76% 552

improvement. This suggests that enabling better 553

generalization beyond the fixed context window 554

substantially benefits instruction understanding and 555

long-range dependency modeling. 556

The third contributing factor is tokenizer 557

coverage: by extending the tokenizer to include 558

additional subword units and symbols, we observe 559

a further gain to 98.18%, adding +1.04%, high- 560

lighting the importance of adapting the tokenizer to 561

the domain-specific vocabulary of assembly code. 562

Finally, decoding strategy plays a non-trivial role; 563

switching to 8-beam search yields the final boost 564

to 99.39%, adding another +1.21%. Altogether, this 565

progression shows that while data scaling gives the 566

biggest leap, fine architectural and decoding choices 567

compound gains toward near-perfect accuracy. 568

6 Conclusion 569

We introduce Guaranteed Guess (GG ), a language- 570

model-based CISC-to-RISC transpiler that unifies 571

pre-trained LLMs with a test-driven validation 572

framework. GG directly transpiles x86 assembly 573

into efficient ARM and RISC-V binaries while 574

embedding unit tests to enforce functional correct- 575

ness. Through architectural enhancements, such 576

as tokenizer extension, RoPE extrapolation, and 577

beam decoding, GG achieves 99. 39% accuracy 578

in HumanEval and 49. 23% in BringUpBench, 579

outperforming both strong LLMs and dynamic 580

virtualization systems like Rosetta. Our analysis 581

highlights how ISA similarity and compiler 582

optimizations affect accuracy, with GG achieving 583

1.73× faster execution, 1.47× lower energy use, 584

and 2.41× smaller memory footprint than Rosetta 585

on real-world binaries. These results position 586

GG as a scalable, test-verified solution for efficient, 587

cross-ISA binary translation. 588
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7 Limitations589

While Guaranteed Guess presents a significant590

advancement in CISC-to-RISC transpilation using591

LLMs, several limitations remain. First, the model’s592

performance degrades substantially under compiler593

optimization flags (e.g., -O2), highlighting its sen-594

sitivity to code transformation patterns that abstract595

data and control flow. This suggests a need for596

stronger semantic modeling or auxiliary representa-597

tions such as control/data-flow graphs. Second, the598

“guarantee” provided by GG is inherently bounded by599

the quality and coverage of the unit tests. While unit600

test success is a strong functional proxy, it cannot601

ensure full semantic equivalence or optimality of602

the transpilation. Lastly, the evaluation excludes603

compiler-, symbolic-, or heuristic-based transpila-604

tion baselines, leaving open questions about hybrid605

system effectiveness and competitive upper bounds.606
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metric on HumanEval with -O0 compiler optimization.

A Appendix879

A.1 Extra Data Analysis880

Scaling and quantization effect on Qwen2.5-881

coder models. Figure 5 represents an study to882

understand where most of the training benefit for883

our transpiler originates. In particular, we focus on884

three fundamental modeling aspects and describe885

their impact on the asm-to-asm transpiler.886

Our first and most significant result relates to the887

context window size, and its impact on the transpiler.888

Recall that a model’s context window is the amount889

of text, in tokens, that the model can consider or890

“remember” at any one time. We found that pro-891

grams do not fully fit in the context window (which892

includes both the input and output of the model, i.e.,893

the x86 asm and the generated ARM asm), are very894

likely to not pass all our tests. Increasing the context895

window length during training had a big impact on896

our model’s accuracy, where going from 4k to 16k897

improved the total number of fully correct transpiled898

programs by 10% points, roughly an additional 16899

programs out of the 164 total in HumanEval.900

The second effect of scaling we observed and901

leveraged was that training on more data also played902

a major role in our transpiler’s efficacy. As shown903

in Figure 5, using a context window of 16k and904

increasing the training data from 500k samples to905

1.3 million samples further increased and pushed906

the accuracy up to about 98% from 87%. This907

is generally a challenging method of scaling, as908

obtaining more data with good quality is not always909

available and also results in increased total training910

time of the model.911

The third scaling impact we found was the benefit912

of increasing the number of beams and doing a beam913

search. Beam search is a heuristic search algorithm914

which allows the model to explore multiple token915

Prog
ID

Edit
Dist

Example

P37 1 Incorrect immediate value causes wrong division factor
and early loop termination
Ground truth: asr r2, r2, #2
Predicted: asr r2, r2, #1

P127 1 Array index offset error causes wrong element compar-
ison
Ground truth: sub r3, r3, #2
Predicted: sub r3, r3, #1

P63 12 Register overwrite corrupts loop counter before multi-
plication
Ground truth: mov r0, r2; ldr r1, [r3, r1, lsl #2]; mul
r0, r0, r1
Predicted: ldr r0, [r3, r1, lsl #2]; mul r0, r0, r1

P153 17 Incorrect instruction sequence fails to compute absolute
value
Ground truth: sub r2, r2, r3; cmp r2, #0; rsblt r2, r2, #0
Predicted: sub r1, r2, r3; eor r2, r1, r2; sub r2, r2, r1

P47 19 Mismatched memory access offsets cause incorrect data
retrieval
Ground truth: str r1, [fp, #-404]; ldr r2, [fp, #-404]
Predicted: str r1, [fp, #-404]; ldr r2, [r3, #-20]

Table 6: Armv5 Syntactically similar generations can
still produce critical semantic errors.

paths in parallel during an inference. Intuitively, 916

beam search allows the model to explore alternative 917

options for next token generation, settling on the 918

most likely token. Beam searching presents an 919

obvious trade-off between computational resources 920

utilization for an inference and prediction accuracy. 921

Combined with a large context window, this is a 922

very powerful technique which we found to be more 923

pronounced when a model was not already near 924

perfect accuracy: in Figure 5, we show an increase 925

going up to 99.39% with the use of beam search 926

for assembly transpilation. We found diminishing 927

returns for using more than 4 beams on accuracy. 928

Finally, from an efficiency perspective, we show 929

that aggressive quantization does not severely 930

impact our transpilers accuracy. Going from FP32 931

down to INT4 substantially reduces the transpilers 932

inference footprint, with a minimal (less than 933
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4%) impact on model prediction accuracy. This934

shows the potential of designing small enough935

models for deployment on edge devices, which936

we would envision the GG transpiler to be used for937

CISC-to-RISC translations in practice.938

Transpilation Error Analysis. We provide a de-939

tailed analysis of functionally equivalent predictions940

produced by our model that deviate syntactically941

from the ground truth. Such cases reveal the model’s942

ability to generalize instruction patterns while main-943

taining semantic correctness, a desirable trait in low-944

level code generation where multiple implementa-945

tions can achieve the same functional outcome.946

Prog
ID

Edit
Dist

Example

P108 16 Different registers can be chosen for temporary values
while maintaining same data flow
Ground truth: mov r2, r0; add r2, r2, #1
Predicted: mov r3, r0; add r3, r3, #1

P8 12 Local variables can be stored at different stack locations
while maintaining correct access patterns
Ground truth: str r1, [fp, #-8]; str r2, [fp, #-12]
Predicted: str r1, [fp, #-12]; str r2, [fp, #-8]

P119 6 Compiler-generated symbol names can differ while
referring to same data
Ground truth: .word out.4781
Predicted: .word out.4280

P135 12 Multiple instructions can be combined into single
equivalent instruction
Ground truth: mov r3, r0;

str r3, [fp, #-8]
Predicted: str r0, [fp, #-8]

P162 4 Stack frame offsets can vary while maintaining correct
variable access
Ground truth: strb r3, [fp, #-21]
Predicted: strb r3, [fp, #-17]

P88 23 Memory allocation sizes can vary if sufficient for
program needs
Ground truth: mov r0, #400
Predicted: mov r0, #800

P103 52 Different instruction sequences can achieve same logical
result
Ground truth: cmp r3, #0; and r3, r3, #1; rsblt r3, r3, #0
Predicted: rsbs r2, r3, #0; and r3, r3, #1; and r2, r2, #1;
rsbpl r3, r2, #0

P69 50 Constants can be loaded directly or from literal pool
Ground truth: mvn r3, #-2147483648
Predicted:
ldr r3, .L8; .L8: .word 2147483647

Table 7: Simple Variation Patterns in Functionally
Equivalent Code

Table 7 enumerates a range of examples with947

moderate edit distances, where syntactic differences948

arise from register allocation, operand ordering, and949

memory layout choices. For instance, the model950

often selects different temporary registers (e.g., r3951

instead of r2) or reorders commutative operands952

without altering the underlying operation. It also953

adjusts stack frame offsets or memory allocation954

sizes, provided that the modifications do not violate 955

data dependencies or correctness constraints. 956

These variations suggest that the model is not 957

merely memorizing instruction patterns but is 958

instead learning high-level register-to-variable 959

mappings and instruction equivalence classes. This 960

flexibility enables generalization beyond the exact 961

reference format and increases robustness to minor 962

program transformations. 963

Prog
ID

Edit
Dist

Combined Patterns and Examples

P128 78 Multiple Optimization Patterns:
Groud truth: mul r1, r2, r3
Predicted:

lsl r1, r2, #2;

add r1, r1, r2

P113 74 Memory and Instruction Patterns:
Ground truth:

str r1, [fp, #-12]

mov r3, r2

add r3, r3, #4
Predicted:

str r1, [fp, #-8]

add r2, r2, #4

Table 8: Complex Variation Patterns with Multiple
Differences

Furthermore, Table 8 presents more substantial 964

structural rewrites that nonetheless retain functional 965

fidelity. These include compound transformations 966

such as converting multiplications into equivalent 967

shift-add sequences, or restructuring memory 968

operations while preserving access order and 969

scope. In one example, a multiplication instruction 970

is replaced with a pair of shift and add instruc- 971

tions demonstrating the model’s awareness of 972

performance-equivalent alternatives. In another 973

case, memory writes and register arithmetic are 974

reordered while maintaining the intended result, 975

revealing the model’s competence in preserving 976

state consistency across instruction sequences. 977

While these examples have higher edit distances, 978

they exemplify a deeper form of equivalence: one 979

grounded in operational semantics rather than 980

surface-level syntax. The ability to produce such 981

alternative forms underscores the potential of 982

language models to reason compositionally about 983

program structure and to synthesize diverse yet 984

correct outputs for the same task. 985

In contrast, Table 6 presents failure cases where 986

minor syntactic deviations result in critical semantic 987

errors. These include incorrect immediate values, 988
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register mismanagement, and mismatched memory989

offsets that compromise program correctness990

despite appearing superficially similar to the ground991

truth.992

Together, Tables 7, 8, and 6 reveal that syntactic993

deviation does not necessarily imply failure. On994

the contrary, these examples support the argument995

that token-level metrics alone are insufficient to996

evaluate low-level transpilation tasks, and that997

functional correctness should take precedence in998

model assessment.999
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