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Abstract

We usually need new data to train or fine-tune machine learning models for new tasks.
However, previously collected data might include relevant information that is enough to
learn the desired tasks. In this paper, we explore discovering new classes in audio data by
extending a recent vision-based task discovery framework with an audio processing pipeline.
Our proposed pipeline aims to find new class boundaries on specific acoustic components,
such as speech and background noise, which extends the vision-based framework to ef-
fectively handle audio data. Furthermore, we introduce a new metric for assessing the
clarity of newly discovered class boundaries. We show that, compared to the baseline task
discovery framework, we can discover new classes with 21% higher clarity, in average.

1 Introduction

Motivation. High-quality labeled time-series data like audio data is often rarely available.
Naturally, if the same audio data can be reused for multiple tasks, then that would allow any
system to be more efficient in storing and processing any newly collected data. Moreover,
whether pre-trained or not, DNNs still require significant labeled data to be fine-tuned
for accurate and personalized apps (Wu et al., 2020). Audio data provide a plethora of
additional information that can act as noise to one app while being meaningful to others. For
example, audio samples in a speech recognition dataset, with binary labels of ‘speech’ and ‘no
speech,’ might contain additional background information like music, dog barking sounds,
vehicle sounds, etc. We study a data-centric approach to finding meaningful classes beyond
the provided label space. We process audio components and search for meaningful class
boundaries across the selected components using a recent task-discovery framework (Atanov
et al., 2022). We employ a pre-trained audio model to assess the classes during our search.
Preliminary results show that, beyond the provided label space, additional class boundaries
with meaningful semantics exist between audio samples.

Methodology. Given an audio sample, we look at specific acoustic components of
interest (see Figure 2). For each sample labeled with ‘speech’, we extract speech com-
ponents and, by removing them from the audio, non-speech components. We introduce
this signal processing pipeline to resolve the concerns surrounding discovering tasks with
higher clarity (see Appendix A). Then, we employ the task-discovery framework to find
additional class boundaries. The framework takes as input a batch of audio samples and
outputs multiple tasks observed across those audio samples with an associated agreement
score (see Appendix A). Each discovered task contains a subset of the audio samples divided
into two classes defined by a class boundary; which is obtained by calculating an agreement
score between two randomly initialized models considering a labeling function. A higher
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agreement score increases the chances of finding more meaningful class boundaries, but this
framework neither guarantees finding class boundaries with higher clarity nor labels the
classes within a task. Although the pre-processing step enhances the clarity of the class
boundaries, we employ a pre-trained audio classification model (M. Plakal and D. Ellis) for
labeling the discovered classes.

2 Preliminary Observations

Setup and Dataset. We use a subset of AudioSet (Gemmeke et al., 2017), labelled
with only one of the four speech-based labels: Babbling, Female Speech, Male Speech, and
Child Speech. After applying signal processing steps, including segmentation by change
points (Arlot et al., 2019) and noise removal, we have 16K samples. To validate the discov-
ered tasks, we employed a pair of ResNet18 models He et al. (2016) in the task discovery
framework (Atanov et al., 2022). These models shared the same architecture framework
but differed in their parameter initialization.
Results. The results, shown in Figure 1, highlight that we can indeed discover hidden
classes beyond the usual label space of the dataset. Notably, the classes (highlighted by
their names) searched using our approach show higher agreement scores and clarity than
the vanilla task discovery approach. A higher agreement score shows that our approach
discovers newer classes with annotation quality close to human labels (Atanov et al., 2022).
Similarly, a higher clarity (defined in Eqn. 2) highlights that the corresponding task provides
a clear class boundary. In summary, the results show the effectiveness of the designed pre-
processing framework.

Figure 1: Hidden classes extracted from AudioSet. Here we compare our approach with
the baseline method of vanilla task discovery without pre-processing. The two
approaches are compared using the metric clarity defined in Eqn. 2.

Future Directions: In the future, we want to design a dedicated framework that utilizes
the key ideas in this study to extract hidden classes from a pre-collected dataset and then
use them to train models for end applications. We also plan to investigate different factors
such as dataset size and model complexity of the task discovery framework.
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Appendix A. Definitions

Agreement Score (Atanov et al., 2022). A task is defined by binary labels assigned
to a set of audio samples X. The labeled dataset D(X, τ) pairs each sample with its
label. The learning algorithm A predicts binary outcomes between 0 and 1, and is trained
using SGD and cross-entropy loss. The generalization of algorithm A is assessed by the
error on a separate test dataset D(Xte, τ). This test error comprises two components:
bias, the difference between the algorithm’s predictions from models with different initial
weights. The agreement score is a metric to evaluate generalization by comparing the
consistency between predictions of two models separately trained on D(Xtr, τ). In principle,
the agreement score highlights the similarity of predictions between two randomly initialised
models with a higher-agreement often shown for tasks that are human-labelled.

The agreement score is defined as:

A(τ ;Xtr, Xte) = Ew1,w2∼A(D(Xtr,τ))Ex∼Xte [I(f(x;w1) = f(x;w2))] (1)

Clarity Metric. Given a task Ti for a total number of samples Ni. Say the number of
samples containing label y from Yamnet (say, singing) present in class 0 is M0

i , and in class
1, be M1

i . Additionally, say the total number of samples categorized in class 0 and class 1
be N0

i and N1
i , respectively. The clarity C of a class boundary is defined by,

C = min
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i }

, 0

)
(2)

Figure 2: The setup for discovering the class boundaries within the audio dataset.
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