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ABSTRACT

Foundation Vision-Language Models (VLMs) like CLIP generalize well due to
large-scale pretraining, but their performance degrades under significant distribu-
tion shifts in appearance and label semantics. Few-shot adaptation via adapter or
prompt tuning addresses limited-data tasks, but are not specifically designed to
handle such extreme domain shifts. Some cross-domain few-shot methods con-
sider such domain-shifts but often use episodic settings with fixed classes, limiting
real-world applicability. To address this gap, we propose a novel framework MIST
(Multiple Stochastic Prompt Tuning), which adapts CLIP to extreme domain shifts
with few labeled examples across all classes simultaneously. MIST uses multiple
learnable prompts per class to capture diverse modes in visual features, modeled
as Gaussian distributions to improve generalization and reduce overfitting. Exten-
sive experiments show the effectiveness of the proposed framework.

1 INTRODUCTION

Foundation Vision-Language Models (VLMs) such as CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021) have advanced computer vision by enabling strong zero-shot generalization. Trained on
large-scale image-text pairs, they learn robust representations transferable across tasks. However,
their performance degrades on specialized or fine-grained tasks, where some task-specific adapta-
tion is necessary. Since full pretraining is costly, there is growing interest in efficient adaptation
techniques with few labeled examples from such tasks.

Few-shot adaptation of such models remains challenging due to overfitting and potential loss of pre-
trained generalization. Parameter-efficient tuning approaches, such as prompt tuning (Zhou et al.,
2022) and adapter tuning (Gao et al., 2024), mitigate this by optimizing only a small set of param-
eters while keeping the backbone frozen. Despite these advances, these methods focus on standard
benchmarks and overlook extreme domain shifts common in real-world applications, where datasets
may differ greatly in visual appearance and label semantics — For example, medical image datasets
often feature domain-specific content and class names that do not align with natural image concepts
and are typically unavailable for pretraining due to privacy concerns. While recent works have ap-
plied CLIP to cross-domain few-shot learning (CDFSL) (Xiao et al., 2024), they typically adopt a
source-free meta-testing setup, adapting to episodes with a few sampled classes (e.g., 5-way) from
the target domain. Performance is averaged over many such episodes. However, this approach
is computationally expensive and misaligned with real-world settings, where all target classes are
present simultaneously.

In this work, we propose a novel prompt learning framework, MIST (Multiple Stochastic Prompt
Tuning), for adapting CLIP to a more realistic setting, where target datasets exhibit significant do-
main and semantic shifts, and only a few labeled examples from all classes are available simultane-
ously. We first observe that extreme distribution shifts can lead to fragmented visual representations,
forming separate and inconsistent clusters in the embedding space (Fig. 3). Moreover, occurrence
of a large number of classes together with semantic shifts (different class labels) can cause multiple
class features to cluster together, resulting in ambiguous decision boundaries. To address these chal-
lenges, we introduce multiple learnable prompts per class, enabling better modeling of multi-modal
feature distributions. Further, instead of directly optimizing prompt weights, we represent each
prompt as a Gaussian distribution with learnable mean and variance, promoting diverse and well-
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separated representations while mitigating overfitting through efficient exploration of the prompt
space. The key contributions of this work are summarized below:

1. We propose a novel framework for few-shot adaptation of CLIP to realistic scenarios with ex-
treme domain and label semantic shifts, with all target classes present simultaneously.
2. We analyze limitations of existing prompt tuning methods for few-shot setting, under severe dis-
tribution shifts.
3. We propose MIST, a novel prompt tuning framework that uses multiple class-specific prompts to
model multimodal visual feature distributions.
4. We further represent each prompt as a learnable Gaussian distribution, enabling better general-
ization and reducing overfitting in low-data regimes.
5. Extensive experiments demonstrate that MIST outperforms state-of-the-art methods across mul-
tiple challenging benchmarks.

2 RELATED WORK

Here, we briefly discuss the related work in literature.
Vision-language foundation models. Recently, Vision-Language Models (VLMs) (Radford et al.,
2021; Jia et al., 2021; Li et al., 2022) have shown strong zero-shot generalization by learning aligned
visual-textual representations from web-scale image-text pairs. However, their performance can de-
grade on domain-specific tasks not seen during pretraining, which has motivated recent works on
efficient adaptation using limited labeled samples from the target domain.
Few-shot adaptation of VLMs. Adapting these large-scale models to downstream tasks with few
labeled training data is often challenging, due to the risk of overfitting. Efficient transfer learn-
ing methods like prompt tuning (Zhou et al., 2022; Khattak et al., 2023a;b) or adapter tuning (Gao
et al., 2024; Zhang et al., 2021) address this issue by optimizing only a few parameters added to
these models, either in the input space or output layers. For instance, CLIP-Adapter (Gao et al.,
2024) modifies visual features via a classifier, Tip-Adapter (Zhang et al., 2021) uses few-shot saved
prototypes for guidance. CoOp (Zhou et al., 2022) trains prompt vectors added to the classname,
keeping the CLIP encoders frozen. MaPLe (Khattak et al., 2023a) uses multimodal prompts in both
encoders, while PromptSRC (Khattak et al., 2023b) enhances performance by knowledge distilla-
tion. Yao et al. (2024) incorporates class descriptions during tuning to improve discriminability. Lu
et al. (2022) tunes text prompts using a classwise prompts pool, while Derakhshani et al. (2023)
adds learnable noise to each text token, for generalization. These works mainly focus on standard
image datasets with natural images and class semantics, overlooking realistic scenarios where the
target data may exhibit substantial domain shifts or unfamiliar, specialized label semantics. Re-
cent works have employed CLIP for cross-domain few-shot learning (CDFSL), which incorporates
these challenges (Xiao et al., 2024; Brahma et al.). SRT (Xiao et al., 2024) trains the vision encoder
with strong and weak augmentations, using multimodal mixup, while PromptMargin (Brahma et al.)
uses a multimodal margin regularization to enforce uniform separation in the feature space. How-
ever, these methods take the episodic paradigm (N-way k-shot setting), and samples fixed number of
classes in each episode, which is often unrealistic in real-world deployment. Moreover, since CLIP-
based few-shot methods already adopt the k-shot setting (k samples from all classes), it is unclear
why CDFSL should be restricted to the episodic evaluation. In this work, we explore few-shot adap-
tation of CLIP on the CDFSL benchmark (with severe domain and semantic shifts present) under
the more practical k-shot all-class setting, bringing the evaluation closer to real-world deployment.
Stochastic neural networks. Standard neural networks train weights deterministically as point-
estimates. Contrarily, Bayesian Neural Networks (Neal, 2012; Blundell et al., 2015) model the
weights as probability distributions, making them useful in handling uncertainty in predictions as
well as learning robust representations. Stochastic classifiers have been explored in UDA (Lu et al.,
2020), person re-identification (Yu et al., 2019), incremental learning (Kalla & Biswas, 2022) and
DG (Zhou et al., 2023) in prior literature. To the best of our knowledge, this is the first work which
explores stochastic classifiers for few-shot adaptation of VLMs under extreme domain shifts.

3 PROBLEM FORMULATION

Given few labeled training examples from a target dataset, the task is to adapt the CLIP model
efficiently to this data. Formally, we have a support set S = {(Xi, yi)}C×k

i=1 from the target dataset
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Deterministic Prompt Tuning Stochastic Prompt Tuning

Figure 1: Effect of deterministic vs stochastic
prompt learning on the EuroSAT dataset with
1-shot per class. The projected class-specific
image features are spread in fixed regions for
stochastic learning, implicitly learning well-
separated decision boundaries.

Method EuroSAT ISIC

1-Shot

Deterministic Prompt Tuning 73.30 27.50
Stochastic Prompt Tuning (µ, σ∗) 73.43 30.67
Stochastic Prompt Tuning (µ∗, σ∗) 67.40 22.67

8-Shots

Deterministic Prompt Tuning 86.80 46.53
Stochastic Prompt Tuning (µ, σ∗) 86.73 50.80
Stochastic Prompt Tuning (µ∗, σ∗) 88.03 50.93

Figure 2: Stochastic prompt learning with
two different sampling techniques on EuroSAT
and ISIC datasets. The fixed mean approach
(µ, σ∗) performs better in low shots, while
sampling from a fully learnable distribution
(µ∗, σ∗) performs better in higher shots.

containing k samples from all theC classes simultaneously. Here, yi ∈ {0, 1}C is the corresponding
ground truth label, and k = {1, 2, 4, 8, 16}, denotes the number of shots. The evaluation is done
on the full test set. Here, in addition to the few-shot problem, the target dataset contains significant
domain and label semantic shift from natural image datasets.

Preliminaries Here, we briefly describe CLIP classification and the base network used in this
work. Let us denote the CLIP text and image encoders as Ft and Fv respectively. The input image
Xv ∈ RC×H×W is broken into patches {eCLS , e1, e2, ..., eM} and fed to the image encoder to
extract the image embedding zv = Fv(Xv). Similarly, the text input (e.g. “A photo of a [CLS]”)
is tokenized as Xt = {tSOS , t1, t2, ..., tCLS , tEOS} and fed to the text encoder to get the text
embedding zt = Ft(Xt). During zero shot classification, the class text embeddings are matched
with the image as follows: exp(<zv,zt>/τ)

C∑
i=1

exp(<zv,zti>/τ)

, where C is the number of classes and τ is the

temperature constant. The class with the highest similarity is output as the predicted class.

Base Network of MIST: We employ a multimodal prompt learning strategy, where learnable prompt
vectors are appended to the image and textual branches. Specifically, let the set of learnable text
and visual prompt vectors are denoted as θt = {θt1 , θt2 , ..., θtm} and θv = {θv1 , θv2 , ..., θvm}
respectively, which are appended to the input text and image patches to form the modified inputs:
X̃t = {tSOS , θt1 , ..., θtm , t1, t2, ..., tCLS , tEOS} and X̃v = {eCLS , θv1 , ..., θvm , e1, e2, ..., eM}.
The feature embeddings from the CLIP encoders are now z̃t = Ft(X̃t) and z̃v = Fv(X̃v). Here,
the trainable textual prompts are passed through a learnable projection layer fϕ to obtain the visual
prompts, i.e., θv = fϕ(θt). Along with adding prompts to the inputs, we also adopt a deep prompting
approach (Khattak et al., 2023a), where learnable prompt vectors are attached after every transformer
block. When adapting to a downstream task, these multimodal prompts are trained in an end-to-end
manner, keeping the CLIP encoders frozen.

4 THE PROPOSED FRAMEWORK

We aim to efficiently adapt pretrained CLIP using few samples from all classes under extreme do-
main and semantic shifts. To this end, we propose MIST (Fig. 4), which adds two novel modules:
(i) Stochastic prompt learning to reduce overfitting, and (ii) Multiple prompts to relax the unimodal
assumption of class distributions.

4.1 STOCHASTIC PROMPT LEARNING

Although existing prompt tuning methods optimize few parameters appended to inputs, limited train-
ing samples make large models like CLIP prone to overfitting (Khattak et al., 2023b). Moreover,
with all target classes present, domain-specific or unfamiliar names can bring class features closer
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class: Highway class: River class: Perma Crop class: Annual Crop

Data distribution violates unimodal assumption for the classes

MaPLe TCP

Figure 3: t-SNE visualization
of image embeddings from
MaPLe (Khattak et al., 2023a)
(left) and TCP (Yao et al., 2024)
(right) for the EuroSAT dataset.
The classwise data distribution
violates the unimodal assumption
due to high interclass similarity
and intraclass variations, and
forms multiple disjoint clusters
within the same class.

in representation space, reducing inter-class separability. We address this with a novel stochastic
prompt learning strategy as described below.

A Bayesian perspective. A classifier network parameterized by θ, can be viewed as a probabilistic
model which models the conditional distribution P (y|X, θ), assigning a probability over class labels
given an input image X . The parameters of the model can be estimated using maximum likelihood
estimate (MLE) as follows:

θMLE = argmax
θ

logP (S | θ) = argmax
θ

k×C∑
i=1

logP (yi | Xi, θ) (1)

which learns a point-estimate of the parameters, usually using gradient descent. However, when
the training data is small (as in this case), MLE fails to generalize and overfits to the small number
of observations. From a Bayesian perspective, the parameters can be estimated using a maximum
a-posteriori (MAP) estimate, by introducing a prior over the parameters:

θMAP = argmax
θ

logP (θ | S) = argmax
θ

[
logP (S | θ) + logP (θ)

]
(2)

This provides an implicit regularization to the model, e.g., taking a Gaussian prior over θ is equiv-
alent to L2 regularization. The fully Bayesian approach helps estimate the posterior predictive
distribution P (y|X) for a given test sample as P (y|X) = Eθ∼P (θ|S)[P (y|X, θ)]. This expectation
effectively averages the predictions over an infinite number of classifiers. Since the true posterior
P (θ|S) is intractible, variational methods (Hinton & Van Camp, 1993) have tried to estimate it with
a parametric distribution q(θ|ψ), and learn ψ via KL minimization, which is often computationally
restrictive (Blundell et al., 2015). In contrast, inspired by Yu et al. (2019), we directly optimize
the parameters ψ using gradient descent on the final classification loss function, by sampling model
weights from q(θ|ψ) at every epoch.

Specifically, we define q(θ|ψ) as a Gaussian distribution N (µ, σ2I), and sample the text prompt
weights as θt ∼ N (µ, σ2I). After every iteration, we backpropagate the loss to the learnable
parameters ψ = {µ, σ}. Note that only the weights of the text prompt vectors are sampled, keeping
rest of the model frozen. This helps to mitigate the uncertainty arising from scarce data, since
each distinct sampled weight from this learnable distribution forms diverse decision boundaries for
the few shot data, by allowing a richer exploration of the prompt parameter space. This provides an
implicit regularization to the model without additional loss functions leading to more robust decision
boundaries for the few-shot training samples.

Reparameterization trick. When θt is sampled from a Gaussian distribution, the loss cannot back-
propagate to it, as the sampling process is non-differentiable. To avoid this, we use the reparam-
eterization trick (Kingma et al., 2013), where we use a random sample from a standard Gaussian
distribution ϵ ∼ N (0, I), and compute the prompt parameters as θt = µ+ ϵ ·softplus(σ). This dis-
entangles the randomness from the network and enables end-to-end training. The softplus function
(softplus(σ) = log(1 + exp(σ))) ensures that the variance is non-negative.

We observe from Fig. 1 that in the deterministic case, passing the same examples through the trained
model always projects them to the same points in the feature space. In contrast, the projections in
the stochastic scenario spreads over a broader region, due to sampling of weights from the learned
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Figure 4: Our proposed MIST framework. We append two sets of prompts to the classnames,
one sampled from a fixed mean (µ̄0, σ0) and the other from a fully learnable Gaussian distribution
(µ1, σ1). fϕ projects the text prompts to visual prompts. The loss term Lmp trains the distribution
parameters (µ1, σ0, σ1) and fϕ such that the image embedding is assigned to the closest text proto-
type of its respective class. The Lreg term prevents the two prompts from collapsing by enforcing
diversity in the class-wise prompt training.

distribution. This variability implicitly encourages a margin between the class-specific features, re-
sulting in more discriminative decision boundaries. Next, to verify this quantitatively, we consider
two distinct strategies for sampling the text prompt parameters. First, we fix the mean of the Gaus-
sian to the standard prompt “A photo”, keeping the variance learnable. In the second case, both
the mean and variance are learnable. The results on two datasets (Guo et al., 2020) are shown in
Table 2. We observe that in low-shot setting, the first approach outperforms the second, while an
opposite trend is seen in the higher-shot setting. This suggests that with very few training data (1-
shot), directly optimizing the parameters of a distribution is challenging, but exploring variations
around a standard prompt improves performance. On the contrary, learning the full distribution with
more data outperforms the fixed mean approach. Hence, the two strategies complement each other
in facilitating an efficient coverage of the prompt parameter space.

4.2 MIST: MULTIPLE STOCHASTIC PROMPT TUNING

Limitations of existing methods. Since CLIP is pretrained on web-scale data encompassing mainly
natural images (Radford et al., 2021), the image encoder struggles to learn robust classwise features
when faced with extreme domain and semantic shifts in the target dataset. In addition, intraclass
diversity and interclass similarity in the images due to presence of many classes, results in disjoint
clusters in visual features from the same class.

Consider an illustrative example of the EuroSAT dataset containing satellite images of various ter-
rains. Here, distinct classes like “Highway” and “River” can have similar visual representatives in
the few-shot training data, at the same time featuring diverse visuals from the same classes as shown
in Fig. 3. Existing prompt tuning approaches represent each class with single learnable prompts,
implicitly assuming that classwise visual features form single clusters. However, such a strategy
is insufficient to represent the disjoint visual clusters, which may result from such challenging set-
tings. To illustrate this, we consider two representative prompt-tuning methods, MaPLe (Khattak
et al., 2023a) and TCP (Yao et al., 2024) and show their t-SNE visualizations in Fig. 3. We observe
that the unimodal assumption is violated and the image embeddings of each class form multiple
modes in the representation space.

Our approach. To address this, inspired from Allen et al. (2019); Afrasiyabi et al. (2021), we
introduce a multiple prompt learning approach, where we represent each class with multiple prompt
vectors. However, incorporating too many prompts for each class is not desirable since: (i) Each
class contains few training samples, and many text embeddings per class could lead to overfitting on
individual datapoints, resulting in loss of class level representations, and (ii) it introduces additional
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learnable parameters and thus more computational overhead. As a balanced approach, we represent
each class with two prompt vectors. Formally, let the embeddings corresponding to the two prompts
for a particular class CLSk be denoted as z̃it, where, i = 1, 2. Here, z̃it = Ft(X̃

i
t), where, X̃i

t =
{tSOS , θ

i
t, t1, ..., tCLSk

, tEOS} is the ith text prompt for the class CLSk. θit = {θit1, θit2, ..., θitm}
denotes the ith set of learnable prompt vectors for that particular class.

To simultaneously represent the underlying multimodal class distribution and mitigate overfitting,
we stochastically model the parameters of the two prompts as described in Sec 4.1. Specifically,
we incorporate the fixed mean, learnable variance approach on the parameters of the first prompt,
simultaneously learning a full Gaussian distribution over the parameters of the second prompt:

θ1t ∼ N (µ̄0, σ0), θ2t ∼ N (µ1, σ1) (3)

Here, µ̄0 is a fixed vector corresponding to the text embedding of “A photo of a”, and µ1, σ0, σ1 are
learnable parameters. Now, we describe the training process of MIST.
MIST Training: For a particular image embedding z̃v , we first find the closest text embedding of
its respective class after every iteration, based on cosine similarity as follows:

i∗ = argmax
i∈{1,2}

sim(z̃it, z̃v) (4)

where, sim(a, b) = a·b
∥a∥∥b∥ denotes the cosine similarity. During training, the image embedding is

assigned to its closest prompt embedding by minimizing the following loss function:

Lmp = −log
( exp(sim(z̃i

∗

t , z̃v))
2C∑
j=1

exp(sim(z̃jt , z̃v))

)
(5)

where, C is the number of classes, and sim(·) denotes the cosine similarity. To prevent the image
embedding z̃v from being always assigned to a single text prompt, and encourage diversity when
training the two prompts within the same class, we minimize an additional regularization term to
increase the cosine similarity of the image embedding to the centroid of the two text embeddings of
its corresponding class:

Lreg = −sim(z̃v, z̃
c
t ) (6)

where, z̃ct = 1
2 (z̃

1
t + z̃2t ) is the centroid of the prompt embeddings for the corresponding class and

sim(·) represents the cosine similarity. Thus, the final objective function is:

Ltotal = Lmp + Lreg (7)

This loss function is used to optimize the Gaussian parameters µ1, σ0 and σ1, as well as the projec-
tion layers as:

µ∗
1, σ

∗
0 , σ

∗
1 , ϕ

∗ = argmin
µ1,σ0,σ1,ϕ

E(X,y)∼Dtgt
Ltotal(X, y) (8)

Inference: After learning the parameters of the distribution, during inference, we can sample
weights for the two text prompts as follows: θ1t ∼ N (µ̄0, σ

∗
0) and θ2t ∼ N (µ∗

1, σ
∗
1). For each

class, we take the maximum logit among the two text prompts as the output prediction for that class.

5 EXPERIMENTAL RESULTS

Here, we extensively evaluate and compare the proposed method with state-of-the-art approaches.

Datasets used: For experiments we consider the BSCDFSL (Guo et al., 2020) benchmark, which
is collected from real-world settings, and consists of four datasets: EuroSAT (Helber et al., 2019),
ISIC (Codella et al., 2019), Plant Disease (Mohanty et al., 2016) and ChestX (Wang et al., 2017).
These datasets cover a varying spectrum of domain shifts, along with specialized classnames, en-
compassing satellite, agricultural and medical images. For training, we consider few samples
(k = 1, 2, 4, 8, 16) randomly selected from all the classes together and then evaluate the trained
model on the full test set of all the datasets. The final accuracy is averaged over 3 random seeds.
Implementation details: We employ CLIP ViT-B/16 as the backbone similar to MaPLe (Khattak
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Method EuroSAT ISIC PDisease ChestX Average

1-shot

CoOp (IJCV’22) 51.87 22.77 24.73 22.83 30.55
TaskRes (CVPR’23) 64.67 19.70 36.57 10.97 32.98
MaPLe (CVPR’23) 73.30 27.50 51.53 14.60 41.73
PromptSRC (ICCV’23) 73.23 21.97 55.03 14.37 41.15
CLAP (CVPR’24) 61.46 26.61 47.22 15.94 37.81
TCP (CVPR’24) 64.30 27.80 49.37 14.93 39.10
MIST (Ours) 77.90 34.40 50.27 17.10 44.92

2-shot

CoOp (IJCV’22) 66.00 21.87 37.97 14.43 35.07
TaskRes (CVPR’23) 68.83 23.13 39.27 10.83 35.52
MaPLe (CVPR’23) 78.07 31.90 67.17 16.27 48.35
PromptSRC (ICCV’23) 79.53 29.47 68.07 12.70 47.44
CLAP (CVPR’24) 70.63 34.79 60.13 16.43 45.50
TCP (CVPR’24) 70.37 36.87 62.63 15.63 46.38
MIST (Ours) 81.57 36.37 69.60 13.90 50.36

4-shot

CoOp (IJCV’22) 66.53 25.00 42.67 17.93 38.03
TaskRes (CVPR’23) 72.40 21.40 39.35 10.27 35.86
MaPLe (CVPR’23) 84.03 37.17 77.07 19.73 54.50
PromptSRC (ICCV’23) 85.23 37.63 78.70 15.17 54.18
CLAP (CVPR’24) 76.43 34.37 65.11 18.98 48.72
TCP (CVPR’24) 76.77 37.37 67.97 17.07 49.80
MIST (Ours) 85.93 40.90 79.67 18.67 56.29

8-shot

CoOp (IJCV’22) 76.53 38.27 60.50 14.60 47.48
TaskRes (CVPR’23) 74.63 34.30 57.77 12.57 44.82
MaPLe (CVPR’23) 86.80 46.53 84.47 14.17 57.99
PromptSRC (ICCV’23) 88.37 42.47 86.80 14.93 58.14
CLAP (CVPR’24) 76.85 42.81 74.62 14.97 52.31
TCP (CVPR’24) 79.03 46.57 76.33 14.97 54.23
MIST (Ours) 88.63 52.70 87.47 16.50 61.33

16-shot

CoOp (IJCV’22) 82.83 43.40 69.90 18.80 53.73
TaskRes (CVPR’23) 79.90 38.10 69.40 12.87 50.07
MaPLe (CVPR’23) 92.80 55.53 89.93 13.90 63.04
PromptSRC (ICCV’23) 92.55 55.17 91.40 14.83 63.49
CLAP (CVPR’24) 82.96 49.43 78.27 17.47 57.03
TCP (CVPR’24) 84.93 52.83 80.63 16.53 58.73
MIST (Ours) 93.57 60.30 91.73 14.77 65.09

Table 1: Performance comparison (average accuracy (%) over 3 seeds) of the proposed MIST with
the state-of-the-art approaches for k = 1, 2, 4, 8, 16 shots from each class.

et al., 2023a). The learnable context length of the text and vision inputs are set as 2, and deep
prompts are incorporated upto a depth of 9. The fϕ ∈ R512×768 is a single linear layer projecting
text to visual prompts. The model is trained using SGD optimizer for 150 epochs with a learning
rate of 0.0035 and a batch size of 4. All experiments are conducted on a NVIDIA RTX A5000 GPU.

5.1 COMPARISON WITH STATE-OF-THE-ART METHODS

To validate the effectiveness of our approach, we compare our proposed MIST with several recent
CLIP-based efficient transfer learning methods for varying number of shots. Specifically, we com-
pare with 1) CoOp (Zhou et al., 2022) and TCP (Yao et al., 2024), which employ prompt tuning on
the text branch; 2) MaPLe (Khattak et al., 2023a) and PromptSRC (Khattak et al., 2023b) which
utilize a multimodal prompt tuning approach; 3) TaskRes (Yu et al., 2023) where task-specific
adapters are tuned keeping the base text classifier fixed; 4) CLAP (Silva-Rodriguez et al., 2024)
uses a linear-probing approach and mainly addresses the absence of validation sets in FSL.

For fair comparison, we run all the methods (using the official, publicly available codes) on the ViT-
B/16 backbone and report the results in Table 1. We list some observations below:
(i) Among the competing methods, MaPLe and PromptSRC achieves the highest performance on
average, closely followed by TCP. Their improved performance suggests the effectiveness of mul-
timodal prompt tuning in handling distribution shifts over text prompt tuning, which was also ob-
served by Khattak et al. (2023a). This observation is further supported by our results;
(ii) Although, CLAP is a recent approach, it mainly focuses on the validation problem of FSL. The
reduced performance of CLAP highlights the limitations of linear probing, which does not utilize
the text information for handling significant semantic and domain shifts;
(iii) As the number of shots increases, the multimodal prompt tuning approaches like MaPLe,
PromptSRC and MIST outperforms other methods by larger margins, suggesting that training more
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Dataset MaPLe PrSRC TCP MIST (Ours)

EuroSAT 72.90 74.10 57.80 76.90
ISIC 14.80 16.10 13.13 16.73

Table 3: Performance comparison (%) of
MIST with state-of-the-art methods on the
class-imbalanced setting, with varying data
samples from each class.

EuroSAT ISIC

1-shot MaPLe 73.30±3.84 27.50±10.19
PromptSRC 73.23±3.75 21.97±6.09
TCP 64.30±3.24 27.80±6.55
MIST (Ours) 77.90±2.63 34.40 ±3.56

2-shots MaPLe 78.07±5.87 31.90±6.08
PromptSRC 79.53±2.76 29.47±6.50
TCP 70.37±2.31 36.87±8.29
MIST (Ours) 81.57±1.84 36.37±3.96

Table 4: MIST exhibits significantly lower
variance across three different random seeds
compared to other approaches.

EuroSAT

ISIC

EuroSAT

ISIC

EuroSAT

ISIC

Figure 5: Generalization to classes: The class-
wise accuracies are sorted and divided into 2 bins.
MIST outperforms the other methods in both bins
and increases the worst-class accuracy for the
same seed in the challenging 1-shot setting.

parameters is more effective for higher shots.
(iv) Although all the methods show similar performance on the ChestX dataset, their overall ac-
curacies are extremely low due to the large domain shift. However, text prompt tuning methods
perform slightly better than the multimodal counterparts. This maybe because ChestX contains
greyscale images, where additional prompt tuning in the vision branch degrades the performance.

Method EuroSAT ISIC

Base Network 73.30 27.50
+ Stochastic Prompt Learning (µ, σ∗) 73.43 30.67
+ Multiple Stochastic Prompting 74.27 27.00
+ Multiple Stochastic Prompting + Lreg (MIST) 77.90 34.40

Table 2: Ablation study (1-shot): All the proposed compo-
nents collectively enhance the overall performance.

Overall, our proposed MIST frame-
work outperforms the other methods
significantly, giving consistent aver-
age gains of 3.19%, 2.01%, 1.79%,
3.19%, 1.60% on k = 1, 2, 4, 8, 16
shots respectively, over the best per-
forming methods. The significant im-
provement for the 1-shot case high-
lights the effectiveness of our ap-
proach in mitigating overfitting in ex-
tremely low data scenarios.

5.2 ADDITIONAL ANALYSIS

Here we perform additional analysis and ablation studies to further validate our proposed frame-
work. For the analysis, we compare with MaPLe, PromptSRC since they use multimodal prompts
and are better suited for this task and TCP, since it is the state-of-the-art prompt tuning approach.
1) Class-imbalanced learning: Here, we explore an even more challenging scenario, where the
number of labeled examples may vary across classes, reflecting real-world datasets. The standard
few-shot settings in literature assume an idealistic scenario where each class has exactly k train-
ing samples, overlooking the effect of class imbalance. To create such a setting, we perform data
sampling in a cyclic manner, e.g., we take {1, 2, 4, 8, 1, 2, ...} from each class of the target dataset
for training. The model is then evaluated on the entire test set. The results on two representative
datasets, EuroSAT and ISIC in Table 3 shows that the proposed MIST outperforms the other methods
even under class-imbalanced conditions, highlighting its effectiveness.

2) Sensitivity to training samples: Model performance depends on the few training samples avail-
able. A robust model should exhibit low variance across sampling strategies. We average results
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Figure 6: Effect of prompt length
(left) and number of text prompts
per class (right) for EuroSAT
(blue) and ISIC (orange) (1-shot).

Pred: Apple Rust

G.T.: Apple Scab

Pred: Apple Rust

G.T.: Apple Scab

Pred: Apple Scab

G.T.: Apple Scab

Pred: Cardiomegaly

G.T.: Pneumothorax

Pred: Infiltration

G.T.: Pneumothorax

Pred: Infiltration

G.T.: Infiltration

Pred: Perma Crop

G.T.: Annual Crop

Pred: Pasture

G.T.: A. Crop

Pred: Annual Crop

G.T.: Annual Crop

Pred: Mel. Nevi

G.T.: Mel. Nevi

Pred: Dfibroma

G.T.: Mel. Nevi

Pred: B.C. Carcinoma

G.T.: Mel. Nevi

Pred: Effusion

G.T.: Infiltration

Figure 7: Qualitative results: From left to right,
shows predictions on EuroSAT, ISIC, Plant Disease
and ChestX respectively. Green denotes correct
while red denotes incorrect predictions.

over 3 random seeds and report variance for EuroSAT and ISIC in Table 4. MIST achieves higher
accuracy with significantly lower variance, demonstrating robustness to sample variation.

3) Generalization to all classes: In practical scenarios, the overall accuracy is often not a reliable
metric to understand the model’s ability to represent difficult classes. Here, we study the effective-
ness of our approach in learning generalized class boundaries and modeling all the complex class
distributions. Specifically, we first sort the class-wise accuracies in ascending order. The classes
are then divided into two bins in this order to highlight the accuracy gain in both the lower as well
as the higher bin. The comparison with the other methods are shown in Figure 5 for one random
seed (same for all methods). We observe that the proposed MIST improves the accuracies in both
the bins, while also increasing the worst-class accuracy, which indicates that MIST learns more
generalized class representations.

4) Ablation Study: Table 2 analyzes various components of MIST. Starting from the base method
MaPLe, adding stochasticity via a learnable Gaussian prompt (fixed mean) reduces overfitting and
improves performance. Adding a second learnable prompt without Lreg boosts EuroSAT but low-
ers ISIC performance, likely due to classifier collapse (Afrasiyabi et al., 2021; Tian et al., 2024).
Including Lreg consistently improves results across both datasets.

5) Number of text prompts & Prompt Length: MIST utilizes two prompts per class sampled from
learnable Gaussian distributions. Here we study the effect of adding more text prompts. We keep
one prompt with a fixed mean, and the others sampled from fully learnable distributions. Figure 6
(right) shows that the performance starts decreasing after two (ISIC) or three prompts (EuroSAT),
suggesting overfitting from the increasing number of learnable parameters. Further, addition of
more classifiers introduces increased computational overhead and longer training time. Similarly
increasing the number of learnable prompt vectors also degrades accuracy (Figure 6 (left)). We used
2 learnable prompts for all experiments.
Qualitative Results: We illustrate the inherent challenges of these datasets in Figure 7, along with
some of the predictions from the proposed MIST framework.

Limitations. While MIST outperforms state-of-the-art methods across all datasets, its performance
slightly drops on the grayscale ChestX dataset, likely because of the additional visual prompts. In
such cases, methods relying solely on textual prompts may prove more effective.

6 CONCLUSION

In this work, we propose a novel framework, MIST for adapting foundation VLMs like CLIP to
realistic few-shot scenarios characterized by extreme domain and label semantic shifts. Motivated
by the limitations of existing parameter efficient fine-tuning approaches, we incorporate multiple
text prompts per class, modeled by distinct learnable Gaussian distributions to represent the inherent
multimodal class distributions as well as mitigate overfitting. Extensive experiments on multiple
benchmarks as well as additional analysis show the effectiveness of our proposed approach com-
pared to state-of-the-art methods.
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plant disease detection. Frontiers in plant science, 7:215232, 2016.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Julio Silva-Rodriguez, Sina Hajimiri, Ismail Ben Ayed, and Jose Dolz. A closer look at the few-
shot adaptation of large vision-language models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 23681–23690, 2024.

Jiahe Tian, Cai Yu, Xi Wang, Peng Chen, Zihao Xiao, Jizhong Han, and Yesheng Chai. Dynamic
mixed-prototype model for incremental deepfake detection. In Proceedings of the 32nd ACM
International Conference on Multimedia, pp. 8129–8138, 2024.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Sum-
mers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2097–2106, 2017.

Kangyu Xiao, Zilei Wang, and Junjie Li. Semantic-guided robustness tuning for few-shot trans-
fer across extreme domain shift. In European Conference on Computer Vision, pp. 303–320.
Springer, 2024.

Hantao Yao, Rui Zhang, and Changsheng Xu. Tcp: Textual-based class-aware prompt tuning for
visual-language model. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 23438–23448, 2024.

Tao Yu, Zhihe Lu, Xin Jin, Zhibo Chen, and Xinchao Wang. Task residual for tuning vision-language
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 10899–10909, 2023.

Tianyuan Yu, Da Li, Yongxin Yang, Timothy M Hospedales, and Tao Xiang. Robust person re-
identification by modelling feature uncertainty. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 552–561, 2019.

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv
preprint arXiv:2111.03930, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

Kaiyang Zhou, Chen Change Loy, and Ziwei Liu. Semi-supervised domain generalization with
stochastic stylematch. International Journal of Computer Vision, 131(9):2377–2387, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MORE DATASET DETAILS

For all the experiments, we have considered the four datasets from the BSCDFSL (Guo et al., 2020)
benchmark. This benchmark consists of images and classnames from various specialized domains
like medical, satellite and agricultural fields, and exhibits extreme domain and label semantic shifts
from natural image datasets. We provide more details on each of these datasets below:
1) EuroSAT (Helber et al., 2019): This dataset consists of satellite images of various terrains and
comprises of 10 classes, namely, Annual Crop, Forest, Herbaceous Vegetation, Permanent Crop,
Residential Buildings, Pasture, Industrial buildings, Highway, River, Sea-Lake.
2) ISIC (Codella et al., 2019): Consists of dermascopic skin disease images and has 7 classes,
namely, Melanoma, Melanocytic Nevi, Basal Cell Carcinoma, Actinic Keratosis, Benign Keratosis,
Dermatofibroma, Vascular Lesions.
3) Plant Disease (Mohanty et al., 2016): Contains images of leaf diseases across 38 classes, e.g.,
Apple Scab, Apple Black Rot, Apple Cedar Rust, Apple Healthy, Blueberry healthy, Cherry Pow-
dery Mildew, Cherry Healthy, and so on.
4) ChestX (Wang et al., 2017): This dataset comprises of greyscale chest X-Ray images across 7
classes, namely, Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumothorax.
The datasets ranked in decreasing order of similarity with ImageNet (Deng et al., 2009) are as fol-
lows: Plant Disease > EuroSAT > ISIC > ChestX.

A.2 EFFECT OF PROMPT SAMPLING STRATEGIES

To enable end-to-end optimization of the prompt weights, we employ the standard reparameteriza-
tion trick, which allows backpropagation through the non-differentiable sampling process. Specifi-
cally, we sample prompt weights from a learnable Gaussian distribution, and parameterize the vari-
ance using the softplus function to ensure stability during training. We choose Gaussian sampling
due to its simplicity and ease of reparameterization, which has also been successfully explored in
prior works like Universal Domain Adaptation (Lu et al., 2020) and Domain Generalization (Zhou
et al., 2023). In contrast, alternative distributions such as Gaussian Mixture Models (GMMs) or
Laplace distribution introduce additional complexity and instability during training. We report a
comparison of these different sampling strategies in Table 5, and observe that, overall the Gaussian
sampling consistently outperforms the other strategies in our stochastic prompt learning framework.

Prompt Sampling EuroSAT ISIC

Gaussian (Ours) 77.90 34.40
GMM (N=4) 78.57 22.10
Laplace 11.10 11.30

Table 5: Effect of different sampling strategies
for prompt weights.

MaPLe PromptSRC TCP MIST (Ours)

Training 1172 2168 778 1348
Inference 1608 2994 4946 1610

Table 6: GPU memory requirements (MB) for
training and inference.

A.3 MEMORY CONSUMPTION

We report the comparative GPU memory consumptions for the 1-shot case in Table 6. Here, we
observe that our proposed MIST utilizes slightly more memory than MaPLe (Khattak et al., 2023a)
during training, due to addition of learnable parameters, but utilizes the same memory during in-
ference. However, PromptSRC (Khattak et al., 2023b) takes up much more memory during both
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training and inference. TCP (Yao et al., 2024) takes slightly less memory due to fewer learnable
parameters during training, but consumes a huge memory during inference, due to loading of the
frozen CLIP model. Overall, our proposed MIST framework fairs comparably to MaPLe, and is
more suitable for real-world deployment compared to the other methods.

Use of Large Language Models (LLMs): Certain parts of the manuscript, including sentence
polishing, paraphrasing, and clarity improvements, were assisted using ChatGPT by OpenAI. All
scientific content, ideas, and results remain the authors’ own.
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