
Published in Transactions on Machine Learning Research (04/2024)

Towards Truly Zero-shot Compositional
Visual Reasoning with LLMs as Programmers

Aleksandar Stanić∗ alexstanic@google.com
Google DeepMind

Sergi Caelles scaelles@google.com
Google Research

Michael Tschannen tschannen@google.com
Google DeepMind

Reviewed on OpenReview: https: // openreview. net/ forum? id= WYGiqSVstK

Abstract

Visual reasoning is dominated by end-to-end neural networks scaled to billions of model
parameters and training examples. However, even the largest models struggle with composi-
tional reasoning, generalization, fine-grained spatial and temporal reasoning, and counting.
Visual reasoning with large language models (LLMs) as controllers can, in principle, address
these limitations by decomposing the task and solving subtasks by orchestrating a set of (vi-
sual) tools. Recently, these models achieved great performance on tasks such as compositional
visual question answering, visual grounding, and video temporal reasoning. Nevertheless, in
their current form, these models heavily rely on human engineering of in-context examples
in the prompt, which are often dataset- and task-specific and require significant labor by
highly skilled programmers. In this work, we present a framework that mitigates these
issues by introducing spatially and temporally abstract routines and by leveraging a small
number of labeled examples to automatically generate in-context examples, thereby avoiding
human-created in-context examples. On a number of visual reasoning tasks, we show that
our framework leads to consistent gains in performance, makes LLMs as controllers setup
more robust, and removes the need for human engineering of in-context examples.

1 Introduction

Compositional visual question answering requires a model to answer questions about visual content in a
compositional manner, involving multiple steps of reasoning or considering relationships between different
objects or entities within an image. It is a complex task as it requires understanding both the visual
information in an image and the structure of the question, and reasoning about how different visual elements
relate to one another to generate the correct answer. Recently, large progress has been made on many
such vision and language tasks by scaling end-to-end neural networks models in terms of size, training data,
and compute (Alayrac et al., 2022; Chen et al., 2022b; Yu et al., 2022; Wang et al., 2022a; Gan et al.,
2022; Lu et al., 2022; Li et al., 2023b; Driess et al., 2023; Chen et al., 2023d;c). However, even the largest
state-of-the-art (SotA) models struggle in tasks that require compositional reasoning, ability to generalize,
fine-grained spatial reasoning capabilities, and counting (Bugliarello et al., 2023; Paiss et al., 2023; Hsieh
et al., 2023; Yuksekgonul et al., 2022; Zhao et al., 2022; Hendricks & Nematzadeh, 2021). An example of
such task is the following query: “Could the cookies on the table be equally distributed among children?”
(Surís et al., 2023). To solve this, the model needs to detect the cookies in the image, filter out the ones that
are not on the table, detect children, count cookies and children, and check if the cookies count is divisible

∗Work completed during an internship at Google Research.

1

https://openreview.net/forum?id=WYGiqSVstK

Published in Transactions on Machine Learning Research (04/2024)

by the children count. Questions like these are difficult for current end-to-end vision and language models
(VLMs). Scaling VLMs further makes them even more data- and compute-hungry(Villalobos et al., 2022),
so the scale alone seems unlikely to solve these tasks, especially due to the exponentially-large long tail of
compositional tasks.

On the other hand, it is questionable whether solving compositional tasks with a single monolithic end-to-end
neural network is the optimal approach. Intuitively, it might be easier to first decompose the task into several
subtasks, individually solve the subtasks, and then use the intermediate results to solve the original task.
This is reminiscent of the way humans approach compositional problems. According to Daniel Kahneman’s
framework (Kahneman, 2017), our thought process can be thought of as consisting of two mechanisms: System
1 and System 2. System 2 is the “slow”, “analytical” system that can decompose the task into subtasks,
while System 1 is the “fast”, “reactive” system that solves individual tasks such as recognizing patterns. In
machine learning, the early work on task decomposition was pioneered by Neural Module Networks (NMNs)
(Andreas et al., 2016; Johnson et al., 2017; Hu et al., 2017). NMNs are trained end-to-end in the hope that
every module will learn a separate function that will be reusable across tasks. However, these models have a
number of drawbacks, namely that the program generation requires hand-tuned parsers, they are difficult to
optimize (sometimes requiring reinforcement learning), and they have the issue of a module “collapse”, where
some modules are never activated and others take over all the work, contrary to the design intentions.

Recently, an alternative approach based on “tool use” gained popularity (Cobbe et al., 2021; Komeili et al.,
2021; Thoppilan et al., 2022; Parisi et al., 2022; Zeng et al., 2022; Gao et al., 2023a; Qin et al., 2023; Zhuge
et al., 2023). In “tool use”, an LLM solves a task by controlling (akin to System 2) a set of tools (such as an
object detector, akin to System 1) (Zeng et al., 2022; Shen et al., 2023; Zhuge et al., 2023). In particular,
VisProg (Gupta & Kembhavi, 2023), ViperGPT (Surís et al., 2023), and CodeVQA (Subramanian et al.,
2023) show great promise in solving visual question answering by using an LLM to generate a program (in
Python or a custom scripting language). During execution, the program calls individual vision models (such
as object detector, depth estimator) through an API that is provided in the prompt. For example, to answer
“Which color is the jacket of the second person from the left?” (Figure 1a), the program needs to detect
people, sort them from left to right, select the second, detect their jacket, and query its color. These models
achieved SotA on compositional visual question answering, visual grounding, and video temporal reasoning
tasks. By their construction, they are interpretable, compositional, adaptable (tools can be upgraded on
the fly), offer strong generalization, mathematical, and reasoning skills, and do not require gradient-based
training. However, in their current form, they heavily rely on human engineering of in-context (program)
examples (ICEs) in the prompt. Moreover, ICEs are dataset- and task-specific. To generate them, significant
labor by highly skilled programmers is required. For this reason, we argue that these methods should not be
called zero-shot in their current form.

In this work, we present a framework that mitigates these issues, makes LLMs-as-programmers setup more
robust, and removes the need for human engineering of ICEs. Our framework, whose effectiveness we show
across a number of compositional question-answering and video temporal reasoning tasks with ViperGPT
(but is universally applicable to other approaches), consists of the following:

• Firstly, instead of using a simple API with only basic routines that call individual tools, we introduce
an “Abstract API”. Abstract API consists of spatially and temporally abstract routines that remove
the large burden on the LLM to have strong spatial and temporal reasoning.

• Second, instead of relying on a large number of dataset-specific (question, code)-pairs as ICEs,
we introduce a setup that generates ICEs automatically. Using a few labeled examples (that are
significantly cheaper to obtain, e.g. via crowd-sourcing), we generate query-code examples in a
zero-shot manner and use these as ICEs. This mitigates the need for human engineering of ICEs.

• Third, we show how LLMs as controllers for visual reasoning can (to some extent) perform “self-
correction” through “self-debugging” and “self-tuning” without any ground truth labels. In “self-
debugging”, we generate new code when the previous fails to execute, either by providing the LLM
previous query-code pair and execution error as feedback or from scratch. In “self-tuning”, we show
how the tool hyperparameters can be tuned automatically if the execution fails due to a module.

2

Published in Transactions on Machine Learning Research (04/2024)

(a)

Query

Code LLM

Self-tuning

Visual
code

Python API

Visual tools

Answer

Abstract
routines

Few-shot
I, Q, A

ICEs

ACEs

(b)

Figure 1: (a) RefCOCO (Yu et al., 2016) example image. (b) A code-generating LLM takes as input the
query, the Python API (functions for “tool use” and Abstract API routines (functions) we introduce in
Section 2.2) and a number of ICEs (we replace human-engineered ICEs by automatically-generated ACEs in
Section 2.3). The LLM generates code that takes as input the image and outputs an answer (here a bounding
box). If code fails to run, “self-tuning” (Section 2.4) can adjust parameters and generate new code.

2 LLMs as programmers for visual reasoning framework

In this section, we first provide a brief overview of the ViperGPT approach (Surís et al., 2023) on top of
which we show the utility of our framework. We then describe each component of our framework, namely the
Abstract API, automatic generation of ICEs, and self-correction.

2.1 Background

ViperGPT takes as input an image or a video and a textual query. The textual query is fed into an LLM
(Codex (Chen et al., 2021)), together with the tools API and ICEs. The LLM generates a program that
solves the given query using the tools without further training. The information in the prompt is crucial for
good ViperGPT performance, as it is the only task-specific information provided. The prompt consists of a
Python API with the necessary functions to solve the visual query, such as object detection, depth estimation,
and language model queries. Additionally, ViperGPT uses several dataset-specific ICEs in the prompt. As
we show in Section 3, performance depends heavily on these human-engineered examples.

ViperGPT API defines an ImagePatch and a VideoSegment class that contain image and video processing
functions. Each function calls a pretrained model to compute the result. The API in the prompt does not
contain function implementations, but it contains docstrings and query-code examples of their use. The
ViperGPT API defines the following functions: find takes as input an image and a textual query, calls an open
vocabulary detector and returns a list of image patches of detected objects; exists takes as input an image
and a textual query and returns true if the query object exists in the image, otherwise false; verify_property
takes as input an image, a noun representing an object and an attribute property to verify and returns a
boolean whether the object has this property; best_image_match that takes as input a list of image patches
and a textual query and returns the image patch that best matches the query; best_text_match that takes
as input a list of queries and one image, and returns the query that best matches the image; compute_depth
that computes the median depth of an image or image patch; distance which computes the pixel-distance
between two images; simple_query which handles textual queries that are not decomposable, by calling an
image captioning model; select_answer that given a context text describing a scene and a list of possible
answers queries an LLM to select the correct answer. The VideoSegment class does not contain any functions
that call individual models, but only the start and end point of the video segment and an iterator over the
frames, which returns an ImagePatch object. For the full ViperGPT API, see Appendix A.4.

3

Published in Transactions on Machine Learning Research (04/2024)

The code-generating LLM outputs code that attempts to solve the query. This code is executed, taking as
input an image or a video (and optionally a list of possible answers) and outputs a result (e.g. a bounding
box or a string). Due to generating programs in native Python code, ViperGPT avoids the need for custom
interpreters and can leverage Python built-in functions (e.g. sort, if/else control flows, math functions, etc.).

2.2 Abstract API through visual routines

When programming, we continuously build new layers of abstraction. grouping them together into new
functions. By abstracting away the implementation details, we reduce the cognitive load on the programmer
which is then able to build systems of increased complexity. Motivated by this, we introduce a set of spatially
and temporally abstract functions (routines 1) that abstract away a number of lines of code for the same
functionality and together make the Abstract API. From a practical perspective, we are motivated by a
number of failure cases observed in the experiments (see Section 3). As presented in Section 2.1, ViperGPT’s
API is fairly simple (contains almost exclusively functions to call pretrained models). Although simplicity is
good and often desirable, in the case of visual reasoning with LLMs as programmers, the lack of expressive
visual routines requires the code-generating LLM to have strong spatial and temporal reasoning capabilities.
Qualitative analysis showed that this is often not the case and that the current LLMs are not yet perfect
in these terms (e.g. they confuse left and right, top and bottom). For example, for the query “return the
second person from the right”, the program generated by the LLM correctly sorts the persons along the
horizontal axis but then wrongly takes the second index in the array (instead of the second last). Similarly,
they sometimes “confuse” temporal order, e.g., if a “before” event means a smaller or a larger time index.

For these reasons, we introduce a set of spatially and temporally abstract routines. We add the following
spatial routines: get_patch_left_of, get_patch_right_of, get_patch_above_of, get_patch_below_of
for relational retrieval relative to a patch; get_patch_closest_to_anchor_object that sorts patches by their
distance to an anchor object and returns the one with the smallest distance; sort_patches_left_to_right,
sort_patches_bottom_to_top, and sort_patches_front_to_back to sort the list of patches along hor-
izontal, vertical or depth axis; get_middle_patch to get the middle patch from a given list of image
patches; For videos, we add temporal routines for event “localization”: get_video_segment_of_event,
get_video_segment_before_event, get_video_segment_after_event, and routines to either caption a
video: caption_video or answer a simple question about the video: simple_query. The routines that we
introduce are general in the sense that they are not specific to any individual task or dataset. This facilitates
their reuse across tasks and avoids engineering task and dataset-specific routines. It is an open research
question what the “optimal” set of primitive routines is. Another exciting research direction is using LLM
with their own abstract routines, then reusing those to come up with even more abstract routines and so on.
We leave these for future work.

2.3 Automatic generation of in-context examples

In-context examples (ICEs) greatly influence the performance of LLMs (Brown et al., 2020; Chen et al.,
2023b). For example, ViperGPT (Surís et al., 2023) uses between 10 and 16 hand-engineered dataset-specific
query-code ICEs per dataset. Similarly, VisProg (Gupta & Kembhavi, 2023) uses between 16 and 31 ICEs
and CodeVQA (Subramanian et al., 2023) about 50 ICEs. However, constructing these ICEs requires heavy
human engineering, as they might need to be rewritten in a way that the LLM can use them to “generalize”
to other examples across the dataset. Furthermore, the constructed examples are specific not only to the
dataset but also to the LLM and the API. If any of those changes, they need to be written from scratch.
Finally, to write good query-code ICEs, highly skilled labor is required, ideally someone familiar with the
workings of LLMs and a good grasp of Python programming.

In our work, we move beyond this need for human engineering of query-code ICEs. We start from a small set
of labeled examples (e.g. 16 image-question-answer tuples), as is common in few-shot transfer learning (Zhai
et al., 2019; Kolesnikov et al., 2020). We run our framework in a zero-shot manner (without any ICEs) on
these few-shot examples, sort the results by accuracy, select the best-performing programs, pair them with
the corresponding queries, and use them as ICEs during test time. We call such ICEs automatically-generated

1Note that our “routines” do not correspond to the visual routines of Ullman (1987) such as tracing or scanning.

4

Published in Transactions on Machine Learning Research (04/2024)

in-context examples (ACEs). Importantly, no gradient-based optimization is performed on the few-shot
examples. Intuitively, this works since even if the LLM does not always generate a program that solves
the task correctly, it might sometimes come up with a correct program. Since retrieval is often easier than
generating programs from scratch, the reuse of the correct programs improves performance on the test set.

ACEs provide a number of benefits over manually writing ICEs. First of all, ACEs are much cheaper to
obtain as they do not require highly skilled labor to write them. Second, the algorithm that generates ACEs
is general: it is neither specific to the API nor the LLM. If any of these changes, ACEs can be easily generated
by re-running the algorithm. Furthermore, they can be seen as a first step of the LLM “coming up” with
its own abstract rules and thus creating a “rulebook” (discussed in Section 2.2). Finally, few-shot (image,
question, answer)-labeled examples are often available in datasets typically used in machine learning. If not
available, they are cheap to obtain via crowd-sourcing and can be reused for further studies as a benchmark.

2.4 Self-correction

One of the advantages of solving visual reasoning tasks with LLMs as programmers is that we know when
code fails to execute. The failure can happen, e.g. due to a compilation error (e.g. due to hallucination),
some of the models failing, or a wrong return type (e.g. a bounding-box is expected, but code returns a
string). Note that to detect these types of errors, no ground-truth labels are needed.

Self-debugging. If the code execution fails, we can query the code-generating LLM to correct the previously
generated code. We do this by feeding back the query, the previously generated code, and the resulting error
in the prompt (see the feedback template in Appendix A.3). Moreover, if the LLM’s sampling temperature is
higher than zero, we can query the model with a different random seed to generate new code from scratch.
There are advantages to both of these approaches. If the code-generating LLM has good “self-correction”
abilities, then it should be able to correct its own mistakes based on the feedback, as we humans could.
However, if the LLM is not good at self-correction or does not know how to incorporate such feedback (e.g. if
the LLM is not trained to be conversational), then feeding back the previous query and code will only “bias”
the model to output the same solution. In that case, generating new code from scratch could work better.

Self-tuning. In some cases, we know that code execution failed due to some components of a particular
module. For example, the open vocabulary detector fails due to a too high threshold hyperparameter. When
the threshold is high, we have a higher number of false negatives. For such cases, we propose to automatically
change the hyperparameter of the module (e.g. reduce the threshold) and execute code again. Although
here we experiment with only a single option of tuning such hyperparameters, the idea is applicable to any
model that involves such “sensitivity” hyperparameters. For example, another such candidate could be the
threshold that determines the “similarity” of the CLIP-style image-text embedding model. The task of this
module is to filter out a particular instance (e.g. “blue ball”) from a set of instances (“balls”), e.g., based on
an attribute (“blue”). It does so by comparing the text embedding of “blue” with the image embeddings of
all “ball” image patches in the image. Then it returns all image patches whose embeddings have similarity
with the text embedding higher than the threshold value. Here we would similarly tune the threshold in case
this module fails.

3 Experiments

Tasks. We evaluate our method on four datasets: RefCOCO, RefCOCO+ (Yu et al., 2016), GQA (Hudson
& Manning, 2019) and NExT-QA (Xiao et al., 2021) used in previous work (Surís et al., 2023). These datasets
evaluate a diverse set of capabilities, namely visual grounding (RefCOCO, RefCOCO+), compositional
image question answering (GQA), and video temporal reasoning (NExT-QA). In RefCOCO (example in
Figure 1a), the task is to detect a bounding box of an object given its natural language description (“referring
expression”). In compositional question answering in GQA, the task is to answer in natural language a
compositional natural language query. We use the “test-dev” split of the GQA dataset, as in ViperGPT. In
NExT-QA, the task is to answer a temporally compositional question by selecting one of the given multiple
choice options. As in ViperGPT, we use NExT-QA “hard” split Buch et al. (2022). For RefCOCO and

5

Published in Transactions on Machine Learning Research (04/2024)

Table 1: Comparison of our method against previous end-to-end and “LLMs as controllers” SotA methods.
For “Ours (code-bison)”, we report mean scores ± standard deviation across three random seeds. The
reference numbers for SotA on each dataset are taken from the following publications: RefCOCO: ZS (Yang
et al., 2023b), FS (Yao et al., 2021), Sup (Wang et al., 2022b); RefCOCO+: ZS (Yang et al., 2023b), FS
(Yao et al., 2021), Sup (Wang et al., 2022b); GQA: ZS (Li et al., 2023b), FS (Jin et al., 2021), Sup (Nguyen
et al., 2022); NExT-QA: ZS (Chen et al., 2023d), FS (Chen et al., 2023d), Sup (Ye et al., 2023a).

Model RefCOCO (IoU) RefCOCO+ (IoU) GQA (acc.) NExT-QA (acc.)
Zero-Shot (ZS) SotA 53.0 57.5 44.7 38.3
Few-Shot (FS) SotA 53.3 52.5 35.7 38.3
Supervised (Sup) SotA 94.0 91.7 72.1 63.1
ViperGPT (paper) 72.0 67.0 48.1 60.0
ViperGPT (GitHub (GH) ZS) 46.7 - - -
ViperGPT (GH w/ DS-ICEs) 60.5 - - -
E2E bsl.(ZS OWLv2/PaLI-3) 33.5 31.7 40.1 58.9
E2E LLM-only baseline - - - 53.3
Ours (code-bison, Zero-Shot) 44.4 ± 0.9 38.2 ± 0.0 32.1 ± 0.4 60.2 ± 0.3
Ours (code-bison) 51.2 ± 0.2 45.7 ± 0.1 33.4 ± 0.2 61.0 ± 0.1

RefCOCO+, methods are evaluated in terms of Intersection over Union (IoU) between the detected and the
ground truth bounding box and for GQA and NExT-QA in terms of accuracy of the predicted answer.

Vision and Language Models. For code generation, we use a code instruction-tuned version of PaLM 2
(Anil et al., 2023) code-bison accessible via the Google Cloud API (Google, 2023). We use the same model
to select an answer for the multichoice questions in the NExT-QA dataset. Vision models we use are OWLv2
(Minderer et al., 2023) for object detection, SigLiT (Zhai et al., 2023) for text-image comparison, MiDaS
(Ranftl et al., 2020) for depth estimation, and PaLI-3 (Chen et al., 2023d) for image captioning and answering
visual queries. Note that all models are different from the models that ViperGPT used (see Appendix A.2).

Baselines. Strong baselines are essential for correctly measuring progress in machine learning. This is
especially true in the emerging area of “tool use” (Cobbe et al., 2021; Komeili et al., 2021; Thoppilan et al.,
2022; Parisi et al., 2022; Zeng et al., 2022; Gao et al., 2023a; Qin et al., 2023; Zhuge et al., 2023). When using
an LLM and other pre-trained models, we must be careful to report the exact LLM version and/or API when
it was accessed, and ideally report results over several random seeds to measure the statistical significance. In
Table 1, we provide an overview of the previous Zero-Shot (ZS), Few-Shot (FS), and Supervised (Sup) SotA
methods, ViperGPT, end-to-end (E2E) baselines, and our results on all datasets we used for evaluation.

Early in the project, we found it difficult to reproduce the results reported in the ViperGPT paper. Our
first hypothesis is that this is due to differences in the vision and language models we use compared to the
ViperGPT paper. However, when running the original ViperGPT code from the official GitHub repository
on RefCOCO, we were only able to achieve an IoU of 60.5 as opposed to 72.0 reported in the paper. Note,
however, that ViperGPT uses Codex, which is discontinued, so we use GPT-3.5-turbo (OpenAI, 2023).
Also note that this score was obtained using 16 dataset-specific ICEs (DS-ICEs). These examples contain
large amounts of dataset-specific human-engineered information, such as “clothing requires returning the
person”. In the case of truly Zero-Shot learning (without any human-engineered ICEs), the IoU score of
ViperGPT’s official GitHub code drops by 14 points to 46.7. Moreover, in their GitHub code we found
hand-engineered improvements: if returning a bounding box fails, then return an “average” bounding box,
and if code execution fails on GQA, then query the image captioner (BLIP-2 (Li et al., 2023b)). These
code changes lead to improved results, but make it hard to quantify the true power of LLMs as controllers
approach.

6

Published in Transactions on Machine Learning Research (04/2024)

ViperGPT Abstract
API

40

42

44

46

48

50

Io
U

RefCOCO

no ACE
w/ ACE

ViperGPT Abstract
API

34

36

38

40

42

44

Io
U

RefCOCO+

no ACE
w/ ACE

ViperGPT Abstract
API

26

28

30

32

34

36

Ac
cu

ra
cy

GQA

no ACE
w/ ACE

ViperGPT Abstract
API

30

40

50

60

Ac
cu

ra
cy

NExT-QA

no ACE
w/ ACE

Figure 2: Using our Abstract API improves performance over the ViperGPT API across all datasets. Similarly,
ACEs consistently improve performance, and these gains compound with the gains from the Abstract API.
Uncertainty bars represent standard deviations computed over three random seeds.

In Table 1, we also provide Zero-Shot end-to-end baselines. On RefCOCO and RefCOCO+, we feed the
query as input to the OWLv2 model and return its output. For the GQA end-to-end baseline, we query the
PaLI-3 model (which was fine-tuned for multi-task inference on different captioning and VQA data sets, but
not on GQA). For NExT-QA, we provide two baselines. For the first baseline, we subsample and caption with
PaLI-3 one frame per second, and then feed all these captions to an LLM (code-bison) together with the
question and multiple choice answers. As the second baseline, we simply feed the LLM the question and the
possible answers and ask it to choose one. LLM-only baseline achieves an accuracy of 53.3%, which is only
5.4% lower than the baseline that also gets videos as input and significantly above the chance level accuracy
of 20% (since there are 5 possible multichoice answers to each question). This suggests that NExT-QA might
not fully evaluate the vision properties of the model and that new datasets are needed; for example, the
Perception Test (Pătrăucean et al., 2023) was created specifically to avoid such problems.

Lastly, in Table 1 we report the Zero-Shot performance in our setup, as well as results for our best performing
model variant (averaged over three random seeds). In the following sections, we evaluate each component,
as well as their combinations, to obtain the reported results. Using GPT-3.5-turbo instead of code-bison
resulted in a slight drop in performance, but as we shall see below, the same conclusions hold for both
code-bison and GPT-3.5-turbo for all our suggested improvements. In the following, we present the
components of our framework. For an ablation study, see Table 2 that shows that each component contributes
positively to the final scores on each dataset.

3.1 Zero-Shot through spatially and temporally Abstract API

In Figure 2, we show the effect of using our Abstract API instead of the API used in ViperGPT. The API for
RefCOCO, RefCOCO+, and GQA uses the same set of image routines (see Appendix A.4), whereas the API
for NExT-QA uses only video-specific (temporal) routines. For now, we focus on the brown bars in Figure 2,
and we compare the ViperGPT API and our Abstract API. We can see that our Abstract API leads to gains
both with and without ACEs across all datasets. The performance gain is most notable for the NExT-QA
dataset when ACEs are not used. We suspect that this is due to the LLM’s difficulty in reasoning about
the temporal order of events. This confirms our hypothesis that building a more abstract API such that the
LLM does not need to use low-level Python routines is a promising direction.

Finally, we investigate whether our conclusions also hold for other LLMs, namely OpenAI’s GPT-3.5-turbo.
On RefCOCO GPT-3.5-turbo achieves an IoU of 28.9 with the ViperGPT API and 39.8 with our Abstract
API and an accuracy of 9.4 and 42.9 for the ViperGPT API and our Abstract API, respectively, on NExT-QA.
This confirms that our Abstract API brings gains not only for code-bison, but also for other LLMs. For each
sample in the evaluation, we allow only one trial of code generation (no self-correction). Compared to the
results with code-bison, IoU of 37.7 and 40.5 on RefCOCO and accuracy of 11.5 and 46.1 on NExT-QA for
the ViperGPT API and our Abstract API, respectively, the results with GPT-3.5-turbo are slightly worse.
We suspect that the reason for this could be that GPT-3.5-turbo is mainly built to be a conversational agent,
while code-bison is specifically trained to have good coding capabilities.

7

Published in Transactions on Machine Learning Research (04/2024)

0 4 8 16
Number of ACEs

40

42

44

46

48

50

Io
U

RefCOCO

ViperGPT API
Abstract API

0 4 8 16
Number of ACEs

34

36

38

40

42

44

Io
U

RefCOCO+

ViperGPT API
Abstract API

0 4 8 16
Number of ACEs

29.5

30.0

30.5

31.0

31.5

32.0

32.5

Ac
cu

ra
cy

GQA

ViperGPT API
Abstract API

0 4 8 16
Number of ACEs

30

40

50

60

Ac
cu

ra
cy

NExT-QA

ViperGPT API
Abstract API

Figure 3: Increasing the number of ACEs in the prompt improves performance. Note that using the ViperGPT
API on NExT-QA results in only three correct ACEs, so the performance plateaus after four ACEs.

3.2 Few-shot boostrapping via automatically generated in-context examples (ACEs)

We evaluate the effect of using automatically generated in-context examples (ACEs), described in Section 2.3.
We can either sample few-shot examples manually or pick them at random. Both of these variants lead to
good results, as we show in the following experiments. However, selecting examples manually allows for a
better “quality” (in terms of diversity) given a small number of few-shot examples, so by default we use these
for all experiments. For the first set of experiments, we manually pick 16 few-shot examples from the training
set: image/video, question, and ground-truth answer. We try to make examples diverse to cover question
“types” (e.g. left-right, front-back, closest-to, etc.).

In Figure 2, we show the effect of ACEs. For each dataset and for each API, the performance without ACEs
is shown with the brown bar, and the performance with ACEs corresponds to the blue bar. We can see
that for all datasets and all APIs, ACEs improve performance. The largest gains when using ACEs are
for RefCOCO, RefCOCO+, and NExT-QA datasets when using the ViperGPT API. This indicates that
ACEs are effective in dealing with complex spatial and temporal reasoning. More importantly, it can be seen
in Figure 2 that the gains from both the Abstract API and ACEs compound for all tasks, indicating that
they provide complementary strengths. Figure 3 shows how the performance in terms of IoU and accuracy
scales with the number of few-shot examples used to generate ACEs. As expected, increasing the number of
few-shot examples leads to improved performance. Note that the ViperGPT API on NExT-QA is able to
correctly “solve” only 3 few-shot examples, so there are no gains beyond using 4 few-shot examples.

We evaluate the effect of using randomly sampled few-shot examples instead of manually selecting them. On
RefCOCO, we sample 100 few-shot random samples from the training set, run Zero-Shot framework on them,
sort the resulting programs by their IoU, and select the top 16 programs. Therefore, we end up with the
same number of ACEs as with manual selection. On RefCOCO, we achieve IoU of 47.9 and 49.1 with the
ViperGPT API and our Abstract API respectively. These results are slightly better than those with manually
selected few-shot examples (46.9 and 48.2 IoU). This shows that the manual labor for generating ACEs can
be removed altogether if we already have some labeled examples. With 50 few-shot random samples we
obtain similar performance, and for 16 such samples we observe a small drop in performance (see Tables 5
and 6 in the Appendix A.1 for detailed results).

As in the previous section, we test whether our findings are consistent with GPT-3.5-turbo on RefCOCO
and NExT-QA. On RefCOCO, when using GPT-3.5-turbo, ACEs improve IoU from 28.9 to 39.8 with the
ViperGPT API and from 38.1 to 41.6 with our Abstract API. Similarly, for GPT-3.5-turbo on NExT-QA,
ACEs improve accuracy from 9.4 to 42.9 the ViperGPT API and from 56.7 to 58.8 with our Abstract API.
This confirms that the benefit of ACEs is not only limited to code-bison but also holds for GPT-3.5-turbo
as well.

Another benefit of the few-shot setup when generating ACE is that it allows us to “tune” hyperparameters
(HPs). For example, when sweeping over LLM temperature and object detection threshold HPs, we observed
that the relative performances on the few-shot examples closely resemble the one when sweeping over the full
validation dataset (the analysis is shown in Appendix A.1).

8

Published in Transactions on Machine Learning Research (04/2024)

1 2 3 4 5
Number of ACEs

38

40

42

44

46

48

50

52

Io
U

RefCOCO
Vip. API
Vip. API w/ ACE
Abs. API
Abs. API w/ ACE
Dyn.t=0.1
Dyn.t=0.15

1 2 3 4 5
Number of ACEs

32

34

36

38

40

42

44

46

Io
U

RefCOCO+

1 2 3 4 5
Number of ACEs

28

29

30

31

32

33

34

Ac
cu

ra
cy

GQA

1 2 3 4 5
Number of ACEs

10

20

30

40

50

60

Ac
cu

ra
cy

NExT-QA

Figure 4: Increasing the number of “self-tuning” steps leads to improved performance. Our Abstract API
(Abs. API) consistently outperforms the ViperGPT API (Vip. API). The best performance is achieved when
using dynamic object detector threshold (Dyn.t) in addition to the Abstract API with ACE.

Table 2: Component-wise ablations of our framework. Each component contributes positively to the final
score. Their relative contributions vary for different tasks. We report mean scores across three random seeds.

Model RefCOCO (IoU) RefCOCO+ (IoU) GQA (acc.) NExT-QA (acc.)
ViperGPT API 38.4 32.0 27.9 11.5
+ Abstract API 42.3 (+3.9) 34.0 (+2.0) 30.0 (+2.1) 57.6 (+46.1)
+ ACE 47.3 (+5.0) 41.7 (+7.7) 30.6 (+0.6) 60.7 (+3.1)
+ Self-debugging 48.2 (+0.9) 42.9 (+1.2) 32.4 (+1.8) 61.0 (+0.3)
+ Self-tuning 51.2 (+3.0) 45.7 (+2.8) 33.4 (+1.0) -

3.3 Self-correction

In this section, we analyze the ability of the framework to “self-correct” itself without any external feedback
when code execution fails.

Self-debugging. When the program execution fails (due to e.g. compilation errors), we can retry by
generating a new program (Chen et al., 2021). When creating a new program, we can also feed the previously
generated code and the question as part of the prompt (see Appendix A.4), a variant that we call “self-
debugging”. Another option would be to simply repeat the exact same prompt as in the previous trial and
rely on stochasticity in the LLM with a temperature greater than zero to generate a new correct solution. In
our experiments, the “self-debugging” variant did not lead to an improvement in performance. In all cases,
the performance plateaus after the first trial. This is in line with other recent findings Huang et al. (2023);
Stechly et al. (2023); Valmeekam et al. (2023). On the other hand, the variant without any feedback in the
prompt led to an increasingly better performance as the number of “trials” increases (see Figure 4).

Self-tuning. In some cases, we know that code fails due to some specific module. Therefore, we can then
adjust the hyperparameters of the respective module and re-run code. For example, the open vocabulary
detector we used (OWLv2) has a threshold hyperparameter that controls how sensitive it is. The lower
this threshold, the more false positives we will have, but also the fewer false negatives. There is no global
“optimal” value for this threshold that performs best for all images. Our framework allows us to adjust this
hyperparameter dynamically: if the open vocabulary detector fails, we can lower the threshold and run
the visual program again. In Figure 4, we can see that variants with a dynamic object detection threshold
outperform all other variants and achieve the best performance. Note that the variant that achieves the
highest performance after five trials has a lower performance for the first trial. This happens because we
start with a higher object detection threshold value of 0.15 (by default, we use 0.1). In this case, initially
there will be more false negatives, but also fewer false positives. As we decrease the threshold in subsequent
trials, the previously false negatives are detected and the queries are correctly answered.

9

Published in Transactions on Machine Learning Research (04/2024)

IoU[0.7, 1] IoU[0.3, 0.7) IoU(0, 0.3) IoU0 ErrObj. Det ErrRet. Type ErrOther

ViperGPT API

0

10

20

30

40

50

%

ViperGPT API
+ ACE
+ ACE + Dynamic Threshold

IoU[0.7, 1] IoU[0.3, 0.7) IoU(0, 0.3) IoU0 ErrObj. Det ErrRet. Type ErrOther

Abstract API

0

10

20

30

40

50

%

Abstract API
+ ACE
+ ACE + Dynamic Threshold

Figure 5: Error diagrams for the ViperGPT API and our Abstract API. We visualize the percentages of
samples with IoU in certain ranges. “Err” classes are samples for which code execution failed due to either:
object detection (Obj.Det), wrong return type (Ret.Type) or some other error (Other) e.g. hallucination.

3.4 Error analysis

Another benefit of visual reasoning with LLMs as programmers is interpretability. For example, we can get
insights into the percentage of successful program executions, which can be further decomposed into the ones
that resulted in correct or incorrect responses, and for the programs that failed to execute, we can provide
further insights into why they failed, i.e. which module failed to return the correct result. Figure 5 shows
one such error analysis on RefCOCO. Categories labeled with “Error” are the ones for which code failed to
execute due to either object detection (Obj.Det), wrong return type (Ret.Type) or some other error (Other)
e.g. hallucination. For all other cases, code executed correctly (it returned a bounding box), but sometimes
it failed to detect the object (“IoU = 0” case). First, we notice that for both APIs the number of “correct”
detections (IoU higher than 0.7) grows as we include ACEs and “self-tuning” through the dynamic object
detection threshold. We can also see that the percentages of samples with high IoU are always higher for our
Abstract API compared to the ViperGPT API. Finally, note that the percentage of error cases drops from
12.8% to 4.8% for the ViperGPT API and from 9.1% to 3.8% for our Abstract API.

4 Related work

Visual reasoning with end-to-end monolithic models. Recently, SotA on VQA has been largely
obtained by scaling end-to-end vision and language models (VLMs) in terms of their size, training data,
and compute (Alayrac et al., 2022; Chen et al., 2022b; Yu et al., 2022; Wang et al., 2022a; Gan et al.,
2022; Lu et al., 2022; Li et al., 2023b; Driess et al., 2023; Chen et al., 2023d;c). One of the earliest VLMs
Flamingo (Alayrac et al., 2022) used a frozen pretrained language model of up to 70B parameters and a
frozen pretrained image encoder with 435M parameters and trained only a “cross-attention” module that
served as an interface between them. Since then, efforts have mainly gone into scaling both the image and
the language models: GIT (Wang et al., 2022a) used a 300M language and scaled the image encoder to 4.8B
parameters; PaLI (Chen et al., 2022b) scaled both components jointly, language model to 17B and image
encoder to 4B parameters; PaLI-X (Chen et al., 2023d) continued this trend of scaling the total number of
parameters to 55B by using an image encoder with 22B parameters; PaLM-E scaled the number of total
parameters in the VLM to 562B by integrating the 540B PaLM (Chowdhery et al., 2022) and the 22B Vision
Transformer (Dosovitskiy et al., 2020; Dehghani et al., 2023). On the other hand, BLIP-2 (Li et al., 2023b)
achieved SotA performance on various tasks with a 12B VLM and PaLI-3 Chen et al. (2023d) introduced a
significantly smaller VLM with 5B total parameters that achieves competitive performance with SotA models
on various VLM benchmarks. These models are typically pretrained on large amounts of data and then
fine-tuned for the best performance on the downstream tasks. In contrast to this, visual reasoning with LLMs
as programmers (Gupta & Kembhavi, 2023; Surís et al., 2023; Subramanian et al., 2023) does not require
any fine-tuning or gradient updates on the downstream tasks. Moreover, even the largest VLMs struggle
on the tasks that require compositional reasoning, the ability to generalize, fine-grained spatial capabilities,
and counting (Bugliarello et al., 2023; Hsieh et al., 2023; Tschannen et al., 2023). Further scaling makes

10

Published in Transactions on Machine Learning Research (04/2024)

them even more data- and compute-hungry; therefore, it is unclear whether scaling alone can solve these
tasks. Conversely, using LLMs as programmers enables task decomposition into subtasks and holds promise
of strong generalization and compositional reasoning.

Visual reasoning with Modular Networks. Neural Modular Networks (NMNs) (Andreas et al., 2016;
Johnson et al., 2017; Hu et al., 2017) are an alternative approach to monolithic end-to-end networks and
offer a potential route to (compositional) generalization. They are also typically trained end-to-end, using
supervised or reinforcement learning. NMNs are designed to have several modules, and the hope is that
during training, each module will learn a different functionality, which will then be reusable across tasks.
However, these models have a number of drawbacks: the program generation requires hand-tuned parsers,
and they require optimization through reinforcement learning (e.g., REINFORCE Williams (1992)), which
is often unstable. Learning all modules end-to-end hinders their ability to generalize (Bahdanau et al.,
2018) and sometimes leads to a mode “collapse”, where some modules take over all the work and other
modules are never activated, or modules that do not learn intended functionalities (Subramanian et al.,
2020). Furthermore, they sometimes require supervision for program learning, which is difficult to obtain
at scale. On the other hand, visual reasoning with LLMs as programmers mitigates many issues of NMNs:
it does not require gradient-based training or finetuning, it is able to incorporate any modules or swap the
existing ones, it leverages the strong generalization ability of LLMs, and it generates programs by utilizing
the in-context learning ability of LLMs, thereby removing the need for training program generators. The
programs generated by LLM do not have to be domain specific, but can use a common language such as
Python that does not require custom interpreters.

Visual reasoning with LLMs as programmers. The field of LLMs as controllers for visual reasoning
has received a great deal of interest recently. LLMs as controllers (also known as “tool use”) approach became
prominent in the literature (Parisi et al., 2022; Schick et al., 2023), in particular for structured reasoning
in the natural language domain (Madaan et al., 2022; Wang et al., 2023b; Gao et al., 2023a; Chen et al.,
2022a). In the domain of using LLMs as controllers for visual reasoning, PICa (Yang et al., 2022) solves a
knowledge-based VQA task by first extracting an object and captions from the image and then querying
GPT-3 with this information and in-context examples to answer a question. Socratic models (Zeng et al.,
2022), HuggingGPT (Shen et al., 2023), Societies of Mind (Zhuge et al., 2023), and many other papers (Liu
et al., 2023; Zhu et al., 2023b; Zhang et al., 2023b; Li et al., 2023c; Yang et al., 2024; Xu et al., 2022b; Zhang
et al., 2023a; Gao et al., 2023b; Ye et al., 2023b; Yang et al., 2023c; Lu et al., 2024; Wu et al., 2023; Zhu
et al., 2023a) (for a comprehensive survey, see Yin et al. (2023) or Li et al. (2023a)) compose vision and
language models to “communicate” in a fixed “protocol” and solve tasks such as image captioning, visual
question answering, image generation, and robot planning. On the other hand, models such as VisProg
(Gupta & Kembhavi, 2023), ViperGPT (Surís et al., 2023) and CodeVQA (Subramanian et al., 2023) go
beyond a fixed communication “protocol” by having LLM write (Python) programs. During execution, the
program calls individual vision modules (such as the object detector and depth estimator) through an API
that is provided in the prompt. Additionally, VisProg is also capable of generating images as program output.
These models showed great performance and achieved SotA on tasks such as compositional visual question
answering, visual grounding, and video temporal reasoning. However, in their current form, these models rely
on heavy human engineering of query-code examples in the prompt that are dataset- and task-specific and
require significant labor by highly skilled workers. Our framework, on the other hand, is able to automatically
generate in-context examples, removing the need for humans to write query-code examples, uses an Abstract
API that puts less burden on the LLM to have strong spatial and temporal reasoning abilities, and proposes
a way to “self-correct” the programs that failed to execute. Note that our framework is equally applicable to
all of the above approaches.

Automatizing prompt engineering. Vast literature shows that prompt format and contents are often
important for achieving good performance with an LLM (Reynolds & McDonell, 2021; Zhao et al., 2021; Lu
et al., 2021; Moradi & Samwald, 2021; Madaan & Yazdanbakhsh, 2022; Wei et al., 2023). A prompt typically
consists of a task description (in natural language), in-context examples (e.g. query-code in ViperGPT) and
an API (in the case where LLMs write a program). Various prompting techniques have been engineered, such
as Chain-of-Thought prompting (Wei et al., 2022), Self-Consistency (Wang et al., 2022c), Tree of Thoughts

11

Published in Transactions on Machine Learning Research (04/2024)

(Yao et al., 2023), Graph of Thoughts (Besta et al., 2023), Plan-and-Solve Prompting (Wang et al., 2023a),
Least-to-Most Prompting (Zhou et al., 2022a), etc. All these techniques rely on human prompt engineering,
in particular, on in-context examples. On the other hand, some methods try to automate prompt engineering.
They sometimes use gradient-based optimization (Shin et al., 2020; Gao et al., 2020; Wen et al., 2023) and
some approaches require only API access to the model (Xu et al., 2022a; Prasad et al., 2022). Other works
use LLMs for prompt optimization. APE (Zhou et al., 2022b) first generates instructions with an LLM,
then selects instructions with the highest accuracy, and uses them for future LLM prompts. APO (Pryzant
et al., 2023) generates feedback with an LLM that informs how to update the previous instruction. OPRO
(Yang et al., 2023a) uses an LLM to generate new instructions at each optimization step, asking the LLM to
improve task accuracy by changing task instructions, which requires determining the score on a small set
of labeled examples and providing it in the meta-prompt. Promptbreeder (Fernando et al., 2023) goes a
step further and proposes a self-referential self-improvement LLM using a meta-prompt that controls the
generation of the main (task) prompt and evolves both via mutation. More importantly, Promptbreeder shows
some surprising results such that a simple prompt “SOLUTION” outperforms all previous approaches. This
further demonstrates the sensitivity of LLMs and the importance of automatizing the prompt engineering
process. Common to all above frameworks for automatizing prompting is that they automatize the “task
description” part of the prompt. On the other hand, in our framework, we automatize the generation of
in-context examples, which might have an even greater influence on the performance of the LLM.

LLMs and self-correction. In the LLM literature, there have been mixed findings on the ability of LLMs
to critique and self-correct their own reasoning and outputs. Self-Refine (Madaan et al., 2023) provides
feedback to the LLM of the previously generated output, which is then refined. Several other approaches
show benefits of providing feedback to LLM in improving reasoning (Shinn et al., 2024; Madaan et al., 2023),
code generation (Chen et al., 2023e; Olausson et al., 2023; Chen et al., 2023a), improving LLM alignment
(Bai et al., 2022; Ganguli et al., 2023), etc. On the other hand, there has been increasing evidence that
LLMs cannot self-correct reasoning yet (Huang et al., 2023; Stechly et al., 2023; Valmeekam et al., 2023),
unless they receive external feedback, which usually requires access to ground truth labels. In our work,
we also found that providing the previous question and code as feedback to the model did not improve the
results. However, we show that it is possible to improve performance by tuning hyperparameters on the fly, a
direction that, to the best of our knowledge, has not been explored previously.

5 Discussion and future work

Although the LLMs as controllers framework is very promising for visual reasoning, there is much future
work to be explored. First, the use of video-specific models (or tools) could greatly improve performance on
video tasks compared to the image-specific models we used. Moreover, the code generating LLM currently
only takes the question as the input, but for some questions the program that correctly solves the question
can only be generated given the image or video as the input too.

The results with the Abstract API show that this is a promising path forward, but more research is needed
to find the “optimal” set of visual and temporal routines. Starting from these primitive routines, the model
should be able to build an ever-growing library of routines (e.g. through the ACE generation process) that it
can later reuse. This growing library of routines will most likely grow larger than the size of the context
window, so research is needed on an API “router” that can select routines that are relevant to a specific task
at hand. Furthermore, it would be important to research ways of eliminating the need for few-shot examples
when generating ACEs, e.g. by providing a natural language dataset specification (a datasheet).

Lastly, more effort should be put into creating better benchmarks for evaluating compositional visual reasoning,
as current ones have a number of limitations. For example, not all samples in RefCOCO and RefCOCO+
require compositional reasoning, so the LLM should only query the open-vocabulary object detector. Similarly,
many referring expressions in GQA are ambiguous in the sense that there is not a single unique answer.
Finally, NExT-QA contains ambiguous questions (e.g. why someone did certain actions) or questions that
can be answered by looking at the multiple choice answers only and disregarding the visual input altogether.
The Perception Test (Pătrăucean et al., 2023) is a promising benchmark for future work, as it was specifically

12

Published in Transactions on Machine Learning Research (04/2024)

created to avoid such problems. We hope that our findings inform future research on LLMs as controllers for
visual reasoning and encourage systematic evaluation and benchmarking efforts in the future.

6 Conclusion

In this work, we present a framework that makes LLMs as programmers for visual reasoning more robust,
removes the need for human engineering of in-context examples (ICEs), and thus brings them a step closer to
truly zero-shot visual reasoners. We introduce an “Abstract API” that consists of spatially and temporally
abstract routines, which improves performance by reducing the burden on the code-generating LLM to have
strong spatial and temporal reasoning. By using a few labeled examples, we show how one can generate
query-code ICEs automatically (ACEs) in a zero-shot manner. When used as in-context examples, ACEs
consistently improve performance, eliminating the need for human engineering of ICEs. We demonstrate
how LLMs as controllers for visual reasoning can (to a certain extent) perform “self-correction” through
“self-debugging” and “self-tuning” without any ground-truth labels. In self-debugging, generating new code
from scratch led to consistently better results, but providing the previous query-code pair as feedback to the
LLM did not improve performance. In self-tuning, we show that the object detector threshold hyperparameter
can be tuned automatically if code execution fails due to this module. Across a number of compositional
question-answering and video temporal reasoning tasks, we demonstrate that each component of our framework
consistently leads to improvement.

References
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for
few-shot learning. Advances in Neural Information Processing Systems, 35:23716–23736, 2022.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 39–48, 2016.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, and
Aaron Courville. Systematic generalization: what is required and can it be learned? arXiv preprint
arXiv:1811.12889, 2018.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving
elaborate problems with large language models. arXiv preprint arXiv:2308.09687, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Shyamal Buch, Cristóbal Eyzaguirre, Adrien Gaidon, Jiajun Wu, Li Fei-Fei, and Juan Carlos Niebles.
Revisiting the" video" in video-language understanding. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 2917–2927, 2022.

Emanuele Bugliarello, Laurent Sartran, Aishwarya Agrawal, Lisa Anne Hendricks, and Aida Nematzadeh.
Measuring progress in fine-grained vision-and-language understanding. arXiv preprint arXiv:2305.07558,
2023.

13

Published in Transactions on Machine Learning Research (04/2024)

Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern Chan, Samuel R Bowman,
Kyunghyun Cho, and Ethan Perez. Improving code generation by training with natural language feedback.
arXiv preprint arXiv:2303.16749, 2023a.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou. How many demonstrations do you need for
in-context learning?, 2023b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Dis-
entangling computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588,
2022a.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian Goodman,
Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual language-image model.
arXiv preprint arXiv:2209.06794, 2022b.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Carlos Riquelme
Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a multilingual vision and
language model. arXiv preprint arXiv:2305.18565, 2023c.

Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, Jialin Wu, Paul Voigtlaender, Basil Mustafa,
Sebastian Goodman, Ibrahim Alabdulmohsin, Piotr Padlewski, et al. Pali-3 vision language models:
Smaller, faster, stronger. arXiv preprint arXiv:2310.09199, 2023d.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to self-debug.
arXiv preprint arXiv:2304.05128, 2023e.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision
transformers to 22 billion parameters. In International Conference on Machine Learning, pp. 7480–7512.
PMLR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal language model.
arXiv preprint arXiv:2303.03378, 2023.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel. Prompt-
breeder: Self-referential self-improvement via prompt evolution. arXiv preprint arXiv:2309.16797, 2023.

Zhe Gan, Linjie Li, Chunyuan Li, Lijuan Wang, Zicheng Liu, Jianfeng Gao, et al. Vision-language pre-training:
Basics, recent advances, and future trends. Foundations and Trends R© in Computer Graphics and Vision,
14(3–4):163–352, 2022.

14

Published in Transactions on Machine Learning Research (04/2024)

Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas Liao, Kamilė Lukošiūtė, Anna Chen, Anna Goldie,
Azalia Mirhoseini, Catherine Olsson, Danny Hernandez, et al. The capacity for moral self-correction in
large language models. arXiv preprint arXiv:2302.07459, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. Pal: Program-aided language models. In International Conference on Machine Learning, pp.
10764–10799. PMLR, 2023a.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu, Conghui
He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model. arXiv preprint
arXiv:2304.15010, 2023b.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners.
arXiv preprint arXiv:2012.15723, 2020.

Google. Google cloud vertex ai api [code-bison], available at: https://cloud.google.com/vertex-ai/
docs/generative-ai/model-reference/code-generation. 2023.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning without
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14953–14962, 2023.

Lisa Anne Hendricks and Aida Nematzadeh. Probing image-language transformers for verb understanding.
arXiv preprint arXiv:2106.09141, 2021.

Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcrepe: Fixing
hackable benchmarks for vision-language compositionality. arXiv preprint arXiv:2306.14610, 2023.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to reason:
End-to-end module networks for visual question answering. In Proceedings of the IEEE international
conference on computer vision, pp. 804–813, 2017.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny
Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint arXiv:2310.01798, 2023.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and
compositional question answering. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 6700–6709, 2019.

Woojeong Jin, Yu Cheng, Yelong Shen, Weizhu Chen, and Xiang Ren. A good prompt is worth millions of pa-
rameters: Low-resource prompt-based learning for vision-language models. arXiv preprint arXiv:2110.08484,
2021.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Inferring and executing programs for visual reasoning. In Proceedings of the IEEE
international conference on computer vision, pp. 2989–2998, 2017.

Daniel Kahneman. Thinking, fast and slow. 2017.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big transfer (bit): General visual representation learning. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pp. 491–507. Springer,
2020.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. Internet-augmented dialogue generation. arXiv preprint
arXiv:2107.07566, 2021.

Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, and Jianfeng Gao. Multimodal
foundation models: From specialists to general-purpose assistants. arXiv preprint arXiv:2309.10020, 1(2):2,
2023a.

15

https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/code-generation
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/code-generation

Published in Transactions on Machine Learning Research (04/2024)

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023b.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and
Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355, 2023c.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang,
Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-training. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10965–10975, 2022.

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang
Su, Jun Zhu, et al. Llava-plus: Learning to use tools for creating multimodal agents. arXiv preprint
arXiv:2311.05437, 2023.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi. Unified-io: A
unified model for vision, language, and multi-modal tasks. arXiv preprint arXiv:2206.08916, 2022.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models. Advances
in Neural Information Processing Systems, 36, 2024.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered prompts
and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786,
2021.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it takes two to
tango. arXiv preprint arXiv:2209.07686, 2022.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of code are
few-shot commonsense learners. arXiv preprint arXiv:2210.07128, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. arXiv
preprint arXiv:2303.17651, 2023.

Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection, 2023.

Milad Moradi and Matthias Samwald. Evaluating the robustness of neural language models to input
perturbations. arXiv preprint arXiv:2108.12237, 2021.

Binh X Nguyen, Tuong Do, Huy Tran, Erman Tjiputra, Quang D Tran, and Anh Nguyen. Coarse-to-fine
reasoning for visual question answering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4558–4566, 2022.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
Demystifying gpt self-repair for code generation. arXiv preprint arXiv:2306.09896, 2023.

OpenAI. Openai chatgpt api [gpt-3.5-turbo], available at: https://platform.openai.com/docs/
model-index-for-researchers. 2023.

Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar Mosseri, Michal Irani, and Tali Dekel. Teaching clip
to count to ten. arXiv preprint arXiv:2302.12066, 2023.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Viorica Pătrăucean, Lucas Smaira, Ankush Gupta, Adrià Recasens Continente, Larisa Markeeva, Dylan
Banarse, Skanda Koppula, Joseph Heyward, Mateusz Malinowski, Yi Yang, et al. Perception test: A
diagnostic benchmark for multimodal video models. arXiv preprint arXiv:2305.13786, 2023.

16

https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers

Published in Transactions on Machine Learning Research (04/2024)

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based instruction
search for prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with" gradient descent" and beam search. arXiv preprint arXiv:2305.03495, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world apis. arXiv
preprint arXiv:2307.16789, 2023.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on
pattern analysis and machine intelligence, 44(3):1623–1637, 2020.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the few-shot
paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems,
pp. 1–7, 2021.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. arXiv
preprint arXiv:2302.04761, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt: Solving
ai tasks with chatgpt and its friends in huggingface. arXiv preprint arXiv:2303.17580, 2023.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt: Eliciting
knowledge from language models with automatically generated prompts. arXiv preprint arXiv:2010.15980,
2020.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language
agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4 doesn’t know it’s wrong: An analysis
of iterative prompting for reasoning problems, 2023.

Sanjay Subramanian, Ben Bogin, Nitish Gupta, Tomer Wolfson, Sameer Singh, Jonathan Berant, and
Matt Gardner. Obtaining faithful interpretations from compositional neural networks. arXiv preprint
arXiv:2005.00724, 2020.

Sanjay Subramanian, Medhini Narasimhan, Kushal Khangaonkar, Kevin Yang, Arsha Nagrani, Cordelia
Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. Modular visual question answering via code generation.
arXiv preprint arXiv:2306.05392, 2023.

Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for reasoning.
arXiv preprint arXiv:2303.08128, 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog applications. arXiv
preprint arXiv:2201.08239, 2022.

Michael Tschannen, Manoj Kumar, Andreas Steiner, Xiaohua Zhai, Neil Houlsby, and Lucas Beyer. Image
captioners are scalable vision learners too. arXiv preprint arXiv:2306.07915, 2023.

Shimon Ullman. Visual routines. In Readings in computer vision, pp. 298–328. Elsevier, 1987.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models really
improve by self-critiquing their own plans?, 2023.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson Ho. Will
we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv preprint
arXiv:2211.04325, 2022.

17

Published in Transactions on Machine Learning Research (04/2024)

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and
Lijuan Wang. Git: A generative image-to-text transformer for vision and language. arXiv preprint
arXiv:2205.14100, 2022a.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. Plan-and-
solve prompting: Improving zero-shot chain-of-thought reasoning by large language models. arXiv preprint
arXiv:2305.04091, 2023a.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks, and modalities through a simple sequence-to-
sequence learning framework. In International Conference on Machine Learning, pp. 23318–23340. PMLR,
2022b.

Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code generation for few-shot event structure prediction.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 3640–3663, 2023b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824–24837, 2022.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv preprint
arXiv:2303.03846, 2023.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Hard
prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery. arXiv preprint
arXiv:2302.03668, 2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229–256, 1992.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Visual ChatGPT:
Talking, drawing and editing with visual foundation models. arXiv preprint arXiv:2303.04671, 2023.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-answering to
explaining temporal actions. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9777–9786, 2021.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, and Zhilin Yang. Gps: Genetic
prompt search for efficient few-shot learning. arXiv preprint arXiv:2210.17041, 2022a.

Zhiyang Xu, Ying Shen, and Lifu Huang. Multiinstruct: Improving multi-modal zero-shot learning via
instruction tuning. arXiv preprint arXiv:2212.10773, 2022b.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large
language models as optimizers. arXiv preprint arXiv:2309.03409, 2023a.

Lingfeng Yang, Yueze Wang, Xiang Li, Xinlong Wang, and Jian Yang. Fine-grained visual prompting. arXiv
preprint arXiv:2306.04356, 2023b.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching large
language model to use tools via self-instruction. Advances in Neural Information Processing Systems, 36,
2024.

18

Published in Transactions on Machine Learning Research (04/2024)

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng Liu, and Lijuan Wang. An
empirical study of gpt-3 for few-shot knowledge-based vqa. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 3081–3089, 2022.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu, Ce Liu,
Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal reasoning and action.
arXiv preprint arXiv:2303.11381, 2023c.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601,
2023.

Yuan Yao, Ao Zhang, Zhengyan Zhang, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Cpt: Colorful
prompt tuning for pre-trained vision-language models. arXiv preprint arXiv:2109.11797, 2021.

Qinghao Ye, Guohai Xu, Ming Yan, Haiyang Xu, Qi Qian, Ji Zhang, and Fei Huang. Hitea: Hierarchical
temporal-aware video-language pre-training. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 15405–15416, 2023a.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,
Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models with
multimodality. arXiv preprint arXiv:2304.14178, 2023b.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on multimodal
large language models. arXiv preprint arXiv:2306.13549, 2023.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca:
Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917, 2022.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context in
referring expressions. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 69–85. Springer, 2016.

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and why
vision-language models behave like bags-of-words, and what to do about it? In The Eleventh International
Conference on Learning Representations, 2022.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker, Federico
Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, et al. Socratic models: Composing zero-shot
multimodal reasoning with language. arXiv preprint arXiv:2204.00598, 2022.

Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision language pre-training: Aligning texts with
visual concepts. arXiv preprint arXiv:2111.08276, 2021.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip
Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. The visual task adaptation
benchmark. 2019.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
pre-training. arXiv preprint arXiv:2303.15343, 2023.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language model for
video understanding. arXiv preprint arXiv:2306.02858, 2023a.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and
Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init attention. arXiv preprint
arXiv:2303.16199, 2023b.

19

Published in Transactions on Machine Learning Research (04/2024)

Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen, Kyusong Lee, Xiaopeng Lu, and Jianwei Yin.
Vl-checklist: Evaluating pre-trained vision-language models with objects, attributes and relations. arXiv
preprint arXiv:2207.00221, 2022.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving few-shot
performance of language models. In International Conference on Machine Learning, pp. 12697–12706.
PMLR, 2021.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire
Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning in large language
models. arXiv preprint arXiv:2205.10625, 2022a.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba.
Large language models are human-level prompt engineers. arXiv preprint arXiv:2211.01910, 2022b.

Deyao Zhu, Jun Chen, Kilichbek Haydarov, Xiaoqian Shen, Wenxuan Zhang, and Mohamed Elhoseiny.
Chatgpt asks, blip-2 answers: Automatic questioning towards enriched visual descriptions. arXiv preprint
arXiv:2303.06594, 2023a.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-
language understanding with advanced large language models. arXiv preprint arXiv:2304.10592, 2023b.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás, Anand Gopalakrishnan,
Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki Irie, et al. Mindstorms in
natural language-based societies of mind. arXiv preprint arXiv:2305.17066, 2023.

20

Published in Transactions on Machine Learning Research (04/2024)

A Appendix

A.1 Ablations

Here we present hyperparameter ablations, namely over the code-generating LLM (code-bison) temperature
and the open-vocabulary object detector (OWLv2) threshold.

Table 3: Code-generating LLM (code-bison) temperature hyperparameter ablations (with ACEs). The
scores are reported as mean ± standard deviation across three random seeds.

Model LLM temp. RefCOCO (IoU) RefCOCO+ (IoU) NExT-QA (acc.)
ViperGPT API 0.0 41.4 ± 0.3 39.8 ± 0.0 36.0 ± 0.1

0.4 46.9 ± 0.8 41.7 ± 0.4 53.1 ± 0.1
0.8 46.9 ± 0.3 42.0 ± 0.7 53.2 ± 0.1
1.0 46.2 ± 0.7 40.9 ± 0.6 50.3 ± 0.5

Abstract API 0.0 47.0 ± 0.1 41.9 ± 0.3 59.1 ± 0.0
0.4 48.2 ± 0.1 44.7 ± 0.2 61.0 ± 0.4
0.8 48.2 ± 0.0 43.0 ± 0.2 60.6 ± 0.6
1.0 48.8 ± 0.1 42.8 ± 0.3 59.9 ± 0.7

In Table 3, we report the scores for different code-bison LLM temperatures: 0, 0.4, 0.8 and 1.0. We found
the deterministic case to underperform compared to the cases with a temperature higher than zero. This
indicates that the solutions of which the models are most “confident” of are not necessarily always correct.
On the other hand, when the temperature is too high, the model starts to hallucinate functions that do
not exist in the API and the performance degrades. Early in our work, we settled on the code-bison LLM
temperature of 0.4 and did not tune it further.

Table 4: Open-vocabulary object detector (OWLv2) threshold hyperparameter ablations. The scores are
reported as mean ± standard deviation across three random seeds.

Model OWLv2 thrs. RefCOCO (IoU) RefCOCO+ (IoU)

ViperGPT API 0.05 42.6 ± 0.3 41.9 ± 0.3
0.10 46.9 ± 0.8 41.7 ± 0.4
0.15 45.0 ± 0.5 38.2 ± 0.2
0.20 33.3 ± 0.6 29.8 ± 0.2

Abstract API 0.05 42.8 ± 0.3 42.7 ± 0.7
0.10 48.2 ± 0.1 44.7 ± 0.2
0.15 47.1 ± 0.2 38.6 ± 0.1
0.20 33.7 ± 0.4 30.1 ± 0.4

Table 4 shows the effect of using different thresholds for OWLv2 open vocabulary detector. This threshold
controls the level of ‘sensitivity’ of the open vocabulary detector. If the threshold value is set too high,
we will have fewer false positives, but also more false negatives. We perform this study on RefCOCO and
RefCOCO+. On both datasets, the threshold of 0.1 achieves the best results, so by default we use this
threshold in all our experiments.

In Table 5 and Table 6 we show results for RefCOCO and RefCOCO+ when using randomly sampled samples
for the generation of ACEs. For comparison purposes, in the tables we also provide scores when not using
any ACEs and with the default setting when generating ACEs with 16 manually selected few-shot examples.
From the tables, we can see that randomly selected 100 or 50 samples perform similarly as when using 16
manual samples. With 16 random samples we observe a small drop in performance, though we still observe

21

Published in Transactions on Machine Learning Research (04/2024)

Table 5: Results on RefCOCO with randomly sampled few-shot samples for generating ACEs. Shown are
IoU scores for zero-shot (w/o ACE) setting, with the default setting that we used throughout the paper (16
manually sampled few-shot samples from the dataset (16 manual)) and with 100, 50 and 16 randomly-sampled
samples (100, 50 and 16 random) from the dataset. The IoU scores are reported as mean ± standard deviation
across three random seeds.

API w/o ACE 16 manual 100 random 50 random 16 random
ViperGPT 41.7 ± 0.6 46.9 ± 0.8 47.9 ± 0.2 45.8 ± 0.4 41.5 ± 0.2
Abstract 44.4 ± 0.9 48.2 ± 0.1 49.1 ± 0.2 49.0 ± 0.2 46.9 ± 0.2

Table 6: Results on RefCOCO+ with randomly sampled few-shot samples for generating ACEs. Shown are
IoU scores for zero-shot (w/o ACE) setting, with the default setting that we used throughout the paper (16
manually sampled few-shot samples from the dataset (16 manual)) and with 100, 50 and 16 randomly-sampled
samples (100, 50 and 16 random) from the dataset. The IoU scores are reported as mean ± standard deviation
across three random seeds.

API w/o ACE 16 manual 100 random 50 random 16 random
ViperGPT 36.7 ± 0.4 41.7 ± 0.4 41.3 ± 0.1 40.3 ± 0.3 36.3 ± 0.1
Abstract 38.2 ± 0.0 42.9 ± 0.2 42.8 ± 0.6 41.8 ± 0.0 40.2 ± 0.4

an improvement compared to the setting without any ACEs. In summary, this shows that the manual labor
for generating ACEs can be removed altogether if we already have some labeled examples.

22

Published in Transactions on Machine Learning Research (04/2024)

A.2 Pretrained models

Here we specify the pretrained models we used, and compare them with the ones used in ViperGPT:

• Open-vocabulary object detector:

– Ours: OWLv2 (Minderer et al., 2023).
– ViperGPT: GLIP Li et al. (2022) from the official GitHub repository2.

• Depth estimation model:

– Ours: MiDaS (Ranftl et al., 2020) v2 “DPT_Small” from PyTorch hub3.
– ViperGPT: MiDaS (Ranftl et al., 2020) v2 “DPT_Large” version from the PyTorch hub4.

• Vision-language captioning model:

– Ours: PaLI-3 (Chen et al., 2023d).
– ViperGPT: BLIP-2 (Li et al., 2023b) from the official repository5.

• CLIP-style image-text embedding model:

– Ours: SigLiT (Zhai et al., 2023).
– ViperGPT: X-VLM (Zeng et al., 2021) version finetuned for retrieval on MSCOCO from the

official repository6.

• Code-generating LLM:

– Ours: code-bison accessible via the Google Cloud Vertex AI API (Google, 2023).
– ViperGPT: Codex (code-davinci-002) via the official OpenAI Python API7.

• Answer selector (based on context information) LLM for multiple choice questions in NExT-QA:

– Ours: code-bison accessible via the Google Cloud Vertex AI API (Google, 2023).
– ViperGPT: GPT-3 via the official OpenAI Python API8.

A.3 Self-debugging prompt

1 prompt += f"""
2

3 Previously , for the query :
4 # { query }
5 you ’ve generated the following code:
6 {code}
7

8 The execution of the above code failed and returned the following error message :
9 { error }.

10

11 Given this , correct the above function , such that it executes correctly and solves the same
query .

12

13 """

2https://github.com/microsoft/GLIP
3https://pytorch.org/hub/intelisl_midas_v2/
4https://pytorch.org/hub/intelisl_midas_v2/
5https://github.com/salesforce/LAVIS/tree/main/projects/blip2
6https://github.com/zengyan-97/X-VLM
7https://openai.com/blog/openai-api
8https://openai.com/blog/openai-api

23

Published in Transactions on Machine Learning Research (04/2024)

A.4 Prompt listings

A.4.1 RefCOCO and GQA - ViperGPT API

1 import math
2

3 class ImagePatch :
4 """A Python class containing a crop of an image centered around a particular object , as

well as relevant information .
5 Attributes
6 ----------
7 cropped_image : array_like
8 An array -like of the cropped image taken from the original image .
9 left , lower , right , upper : int

10 An int describing the position of the (left/ lower / right / upper) border of the crop ’s
bounding box in the original image .

11

12 Methods
13 -------
14 find(object_name : str)->List[ImagePatch]
15 Returns a list of new ImagePatch objects containing crops of the image centered

around any objects found in the
16 image matching the object_name .
17 exists (object_name : str)->bool
18 Returns True if the object specified by object_name is found in the image , and False

otherwise .
19 verify_property (property : str)->bool
20 Returns True if the property is met , and False otherwise .
21 compute_depth () ->float
22 Returns the median depth of the image crop.
23 crop(left: int , lower : int , right : int , upper : int)->ImagePatch
24 Returns a new ImagePatch object containing a crop of the image at the given

coordinates .
25 """
26

27 def __init__ (self , image , left: int = None , lower : int = None , right : int = None , upper :
int = None):

28 """ Initializes an ImagePatch object by cropping the image at the given coordinates
and stores the coordinates as

29 attributes . If no coordinates are provided , the image is left unmodified , and the
coordinates are set to the

30 dimensions of the image .
31 Parameters
32 -------
33 image : array_like
34 An array -like of the original image .
35 left , lower , right , upper : int
36 An int describing the position of the (left/ lower / right / upper) border of the

crop ’s bounding box in the original image .
37 """
38 if left is None and right is None and upper is None and lower is None:
39 self. cropped_image = image
40 self.left = 0
41 self. lower = 0
42 self. right = image . shape [2] # width
43 self. upper = image . shape [1] # height
44 else:
45 self. cropped_image = image [:, lower :upper , left: right]
46 self.left = left
47 self. upper = upper
48 self. right = right
49 self. lower = lower
50

51 self. width = self. cropped_image . shape [2]
52 self. height = self. cropped_image . shape [1]
53

54 self. horizontal_center = (self.left + self. right) / 2
55 self. vertical_center = (self. lower + self. upper) / 2

24

Published in Transactions on Machine Learning Research (04/2024)

56

57 def find(self , object_name : str) -> List[ImagePatch]:
58 """ Returns a list of ImagePatch objects matching object_name contained in the crop

if any are found .
59 Otherwise , returns an empty list.
60 Parameters
61 ----------
62 object_name : str
63 the name of the object to be found
64

65 Returns
66 -------
67 List[ImagePatch]
68 a list of ImagePatch objects matching object_name contained in the crop
69

70 Examples
71 --------
72 >>> # return the foo
73 >>> def execute_command (image) -> List[ImagePatch]:
74 >>> image_patch = ImagePatch (image)
75 >>> foo_patches = image_patch .find (" foo ")
76 >>> return foo_patches
77 """
78 return find_in_image (self. cropped_image , object_name)
79

80 def exists (self , object_name : str) -> bool:
81 """ Returns True if the object specified by object_name is found in the image , and

False otherwise .
82 Parameters
83 -------
84 object_name : str
85 A string describing the name of the object to be found in the image .
86

87 Examples
88 -------
89 >>> # Are there both foos and garply bars in the photo ?
90 >>> def execute_command (image)->str:
91 >>> image_patch = ImagePatch (image)
92 >>> is_foo = image_patch . exists (" foo ")
93 >>> is_garply_bar = image_patch . exists (" garply bar ")
94 >>> return is_foo and is_garply_bar
95 """
96 return len(self.find(object_name)) > 0
97

98 def verify_property (self , object_name : str , visual_property : str) -> bool:
99 """ Returns True if the object possesses the visual property , and False otherwise .

100 Differs from ’exists ’ in that it presupposes the existence of the object specified
by object_name , instead checking whether the object possesses the property .

101 Parameters
102 -------
103 object_name : str
104 A string describing the name of the object to be found in the image .
105 visual_property : str
106 A string describing the simple visual property (e.g., color , shape , material) to

be checked .
107

108 Examples
109 -------
110 >>> # Do the letters have blue color ?
111 >>> def execute_command (image) -> str:
112 >>> image_patch = ImagePatch (image)
113 >>> letters_patches = image_patch .find (" letters ")
114 >>> # Question assumes only one letter patch
115 >>> return letters_patches [0]. verify_property (" letters ", "blue ")
116 """
117 return verify_property (self. cropped_image , object_name , property)
118

119 def compute_depth (self):

25

Published in Transactions on Machine Learning Research (04/2024)

120 """ Returns the median depth of the image crop
121 Parameters
122 ----------
123 Returns
124 -------
125 float
126 the median depth of the image crop
127

128 Examples
129 --------
130 >>> # the bar furthest away
131 >>> def execute_command (image)->ImagePatch :
132 >>> image_patch = ImagePatch (image)
133 >>> bar_patches = image_patch .find (" bar ")
134 >>> bar_patches .sort(key= lambda bar: bar. compute_depth ())
135 >>> return bar_patches [-1]
136 """
137 depth_map = compute_depth (self. cropped_image)
138 return depth_map . median ()
139

140 def crop(self , left: int , lower : int , right : int , upper : int) -> ImagePatch :
141 """ Returns a new ImagePatch cropped from the current ImagePatch .
142 Parameters
143 -------
144 left , lower , right , upper : int
145 The (left/ lower / right / upper)most pixel of the cropped image .
146 -------
147 """
148 return ImagePatch (self. cropped_image , left , lower , right , upper)
149

150 def overlaps_with (self , left , lower , right , upper):
151 """ Returns True if a crop with the given coordinates overlaps with this one ,
152 else False .
153 Parameters
154 ----------
155 left , lower , right , upper : int
156 the (left/ lower / right / upper) border of the crop to be checked
157

158 Returns
159 -------
160 bool
161 True if a crop with the given coordinates overlaps with this one , else False
162

163 Examples
164 --------
165 >>> # black foo on top of the qux
166 >>> def execute_command (image) -> ImagePatch :
167 >>> image_patch = ImagePatch (image)
168 >>> qux_patches = image_patch .find (" qux ")
169 >>> qux_patch = qux_patches [0]
170 >>> foo_patches = image_patch .find (" black foo ")
171 >>> for foo in foo_patches :
172 >>> if foo. vertical_center > qux_patch . vertical_center
173 >>> return foo
174 """
175 return self.left <= right and self. right >= left and self. lower <= upper and self.

upper >= lower
176

177

178 def best_image_match (list_patches : List[ImagePatch], content : List[str], return_index = False)
-> Union [ImagePatch , int]:

179 """ Returns the patch most likely to contain the content .
180 Parameters
181 ----------
182 list_patches : List[ImagePatch]
183 content : List[str]
184 the object of interest
185 return_index : bool

26

Published in Transactions on Machine Learning Research (04/2024)

186 if True , returns the index of the patch most likely to contain the object
187

188 Returns
189 -------
190 int
191 Patch most likely to contain the object
192 """
193 return best_image_match (list_patches , content , return_index)
194

195

196 def distance (patch_a : ImagePatch , patch_b : ImagePatch) -> float :
197 """
198 Returns the distance between the edges of two ImagePatches . If the patches overlap , it

returns a negative distance
199 corresponding to the negative intersection over union .
200

201 Parameters
202 ----------
203 patch_a : ImagePatch
204 patch_b : ImagePatch
205

206 Examples
207 --------
208 # Return the qux that is closest to the foo
209 >>> def execute_command (image):
210 >>> image_patch = ImagePatch (image)
211 >>> qux_patches = image_patch .find(’qux ’)
212 >>> foo_patches = image_patch .find(’foo ’)
213 >>> foo_patch = foo_patches [0]
214 >>> qux_patches .sort(key= lambda x: distance (x, foo_patch))
215 >>> return qux_patches [0]
216 """
217 return distance (patch_a , patch_b)
218

219 INSERT_IN_CONTEXT_EXAMPLES_HERE
220

221 Write a function using Python and the ImagePatch class (above) that could be executed to
provide an answer to the query .

222

223 Consider the following guidelines :
224 - Use base Python (comparison , sorting) for basic logical operations , left/ right /up/down ,

math , etc.
225 - Make sure to always return an ImagePatch object .
226 - Make sure that for all possible control flows , the program always returns an ImagePatch

object .
227

228 INSERT_PREVIOUS_CODE_AND_ERROR_HERE
229

230 # INSERT_QUERY_HERE

27

Published in Transactions on Machine Learning Research (04/2024)

A.4.2 RefCOCO and GQA - Abstract API

1 import math
2

3 class ImagePatch :
4 """A Python class containing a crop of an image centered around a particular object , as

well as relevant information .
5 Attributes
6 ----------
7 cropped_image : array_like
8 An array -like of the cropped image taken from the original image .
9 left , lower , right , upper : int

10 An int describing the position of the (left/ lower / right / upper) border of the crop ’s
bounding box in the original image .

11

12 Methods
13 -------
14 find(object_name : str)->List[ImagePatch]
15 Returns a list of new ImagePatch objects containing crops of the image centered

around any objects found in the
16 image matching the object_name .
17 exists (object_name : str)->bool
18 Returns True if the object specified by object_name is found in the image , and False

otherwise .
19 verify_property (property : str)->bool
20 Returns True if the property is met , and False otherwise .
21 compute_depth () ->float
22 Returns the median depth of the image crop.
23 crop(left: int , lower : int , right : int , upper : int)->ImagePatch
24 Returns a new ImagePatch object containing a crop of the image at the given

coordinates .
25 """
26

27 def __init__ (self , image , left: int = None , lower : int = None , right : int = None , upper :
int = None):

28 """ Initializes an ImagePatch object by cropping the image at the given coordinates
and stores the coordinates as

29 attributes . If no coordinates are provided , the image is left unmodified , and the
coordinates are set to the

30 dimensions of the image .
31 Parameters
32 -------
33 image : array_like
34 An array -like of the original image .
35 left , lower , right , upper : int
36 An int describing the position of the (left/ lower / right / upper) border of the

crop ’s bounding box in the original image .
37 """
38 if left is None and right is None and upper is None and lower is None:
39 self. cropped_image = image
40 self.left = 0
41 self. lower = 0
42 self. right = image . shape [2] # width
43 self. upper = image . shape [1] # height
44 else:
45 self. cropped_image = image [:, lower :upper , left: right]
46 self.left = left
47 self. upper = upper
48 self. right = right
49 self. lower = lower
50

51 self. width = self. cropped_image . shape [2]
52 self. height = self. cropped_image . shape [1]
53

54 self. horizontal_center = (self.left + self. right) / 2
55 self. vertical_center = (self. lower + self. upper) / 2
56

57 def find(self , object_name : str) -> List[ImagePatch]:

28

Published in Transactions on Machine Learning Research (04/2024)

58 """ Returns a list of ImagePatch objects matching object_name contained in the crop
if any are found .

59 Otherwise , returns an empty list.
60 Parameters
61 ----------
62 object_name : str
63 the name of the object to be found
64

65 Returns
66 -------
67 List[ImagePatch]
68 a list of ImagePatch objects matching object_name contained in the crop
69

70 Examples
71 --------
72 >>> # return the foo
73 >>> def execute_command (image) -> List[ImagePatch]:
74 >>> image_patch = ImagePatch (image)
75 >>> foo_patches = image_patch .find (" foo ")
76 >>> return foo_patches
77 """
78 return find_in_image (self. cropped_image , object_name)
79

80 def exists (self , object_name : str) -> bool:
81 """ Returns True if the object specified by object_name is found in the image , and

False otherwise .
82 Parameters
83 -------
84 object_name : str
85 A string describing the name of the object to be found in the image .
86

87 Examples
88 -------
89 >>> # Are there both foos and garply bars in the photo ?
90 >>> def execute_command (image)->str:
91 >>> image_patch = ImagePatch (image)
92 >>> is_foo = image_patch . exists (" foo ")
93 >>> is_garply_bar = image_patch . exists (" garply bar ")
94 >>> return is_foo and is_garply_bar
95 """
96 return len(self.find(object_name)) > 0
97

98 def verify_property (self , object_name : str , visual_property : str) -> bool:
99 """ Returns True if the object possesses the visual property , and False otherwise .

100 Differs from ’exists ’ in that it presupposes the existence of the object specified
by object_name , instead checking whether the object possesses the property .

101 Parameters
102 -------
103 object_name : str
104 A string describing the name of the object to be found in the image .
105 visual_property : str
106 A string describing the simple visual property (e.g., color , shape , material) to

be checked .
107

108 Examples
109 -------
110 >>> # Do the letters have blue color ?
111 >>> def execute_command (image) -> str:
112 >>> image_patch = ImagePatch (image)
113 >>> letters_patches = image_patch .find (" letters ")
114 >>> # Question assumes only one letter patch
115 >>> return letters_patches [0]. verify_property (" letters ", "blue ")
116 """
117 return verify_property (self. cropped_image , object_name , property)
118

119 def compute_depth (self):
120 """ Returns the median depth of the image crop
121 Parameters

29

Published in Transactions on Machine Learning Research (04/2024)

122 ----------
123 Returns
124 -------
125 float
126 the median depth of the image crop
127

128 Examples
129 --------
130 >>> # the bar furthest away
131 >>> def execute_command (image)->ImagePatch :
132 >>> image_patch = ImagePatch (image)
133 >>> bar_patches = image_patch .find (" bar ")
134 >>> bar_patches .sort(key= lambda bar: bar. compute_depth ())
135 >>> return bar_patches [-1]
136 """
137 depth_map = compute_depth (self. cropped_image)
138 return depth_map . median ()
139

140 def crop(self , left: int , lower : int , right : int , upper : int) -> ImagePatch :
141 """ Returns a new ImagePatch cropped from the current ImagePatch .
142 Parameters
143 -------
144 left , lower , right , upper : int
145 The (left/ lower / right / upper)most pixel of the cropped image .
146 -------
147 """
148 return ImagePatch (self. cropped_image , left , lower , right , upper)
149

150 def overlaps_with (self , left , lower , right , upper):
151 """ Returns True if a crop with the given coordinates overlaps with this one ,
152 else False .
153 Parameters
154 ----------
155 left , lower , right , upper : int
156 the (left/ lower / right / upper) border of the crop to be checked
157

158 Returns
159 -------
160 bool
161 True if a crop with the given coordinates overlaps with this one , else False
162

163 Examples
164 --------
165 >>> # black foo on top of the qux
166 >>> def execute_command (image) -> ImagePatch :
167 >>> image_patch = ImagePatch (image)
168 >>> qux_patches = image_patch .find (" qux ")
169 >>> qux_patch = qux_patches [0]
170 >>> foo_patches = image_patch .find (" black foo ")
171 >>> for foo in foo_patches :
172 >>> if foo. vertical_center > qux_patch . vertical_center
173 >>> return foo
174 """
175 return self.left <= right and self. right >= left and self. lower <= upper and self.

upper >= lower
176

177

178 def best_image_match (list_patches : List[ImagePatch], content : List[str], return_index = False)
-> Union [ImagePatch , int]:

179 """ Returns the patch most likely to contain the content .
180 Parameters
181 ----------
182 list_patches : List[ImagePatch]
183 content : List[str]
184 the object of interest
185 return_index : bool
186 if True , returns the index of the patch most likely to contain the object
187

30

Published in Transactions on Machine Learning Research (04/2024)

188 Returns
189 -------
190 int
191 Patch most likely to contain the object
192 """
193 return best_image_match (list_patches , content , return_index)
194

195

196 def distance (patch_a : ImagePatch , patch_b : ImagePatch) -> float :
197 """
198 Returns the distance between the edges of two ImagePatches . If the patches overlap , it

returns a negative distance
199 corresponding to the negative intersection over union .
200

201 Parameters
202 ----------
203 patch_a : ImagePatch
204 patch_b : ImagePatch
205

206 Examples
207 --------
208 # Return the qux that is closest to the foo
209 >>> def execute_command (image):
210 >>> image_patch = ImagePatch (image)
211 >>> qux_patches = image_patch .find(’qux ’)
212 >>> foo_patches = image_patch .find(’foo ’)
213 >>> foo_patch = foo_patches [0]
214 >>> qux_patches .sort(key= lambda x: distance (x, foo_patch))
215 >>> return qux_patches [0]
216 """
217 return distance (patch_a , patch_b)
218

219 def get_patch_left_of (patch : ImagePatch) -> ImagePatch :
220 left_patch = get_patch_left_of (patch)
221 return left_patch
222

223 def get_patch_right_of (patch : ImagePatch) -> ImagePatch :
224 right_patch = get_patch_right_of (patch)
225 return right_patch
226

227 def get_patch_above_of (patch : ImagePatch) -> ImagePatch :
228 above_patch = get_patch_above_of (patch)
229 return above_patch
230

231 def get_patch_below_of (patch : ImagePatch) -> ImagePatch :
232 below_patch = get_patch_below_of (patch)
233 return below_patch
234

235 def get_patch_around_of (patch : ImagePatch) -> ImagePatch :
236 around_patch = get_patch_around_of (patch)
237 return around_patch
238

239 def sort_patches_left_to_right (list_patches : List[ImagePatch]) -> List[ImagePatch]:
240 """
241 Sorts patches according to their horizontal centers .
242

243 Parameters
244 ----------
245 list_patches : List[ImagePatch]
246

247 Examples
248 --------
249 # Right foo
250 >>> def execute_command (image):
251 >>> image_patch = ImagePatch (image)
252 >>> foo_patches = image_patch .find(’foo ’)
253 >>> foo_patches = sort_patches_left_to_right (foo_patches)
254 >>> right_foo_patch = foo_patches [-1]

31

Published in Transactions on Machine Learning Research (04/2024)

255 >>> return right_foo_patch
256 """
257 return sort_patches_left_to_right (list_patches)
258

259

260 def sort_patches_bottom_to_top (list_patches : List[ImagePatch]) -> List[ImagePatch]:
261 """
262 Sorts patches according to their vertical centers .
263

264 Parameters
265 ----------
266 list_patches : List[ImagePatch]
267

268 Examples
269 --------
270 # Second bar from the top
271 >>> def execute_command (image):
272 >>> image_patch = ImagePatch (image)
273 >>> bar_patches = image_patch .find(’bar ’)
274 >>> bar_patches = sort_patches_bottom_to_top (bar_patches)
275 >>> second_topmost_bar_patch = bar_patches [-2]
276 >>> return second_topmost_bar_patch
277 """
278 return sort_patches_bottom_to_top (list_patches)
279

280

281 def sort_patches_front_to_back (list_patches : List[ImagePatch]) -> List[ImagePatch]:
282 """
283 Sorts patches according to how far from camera they are.
284

285 Parameters
286 ----------
287 list_patches : List[ImagePatch]
288

289 Examples
290 --------
291 # Person in the back
292 >>> def execute_command (image):
293 >>> image_patch = ImagePatch (image)
294 >>> person_patches = image_patch .find(’ person ’)
295 >>> person_patches = sort_patches_front_to_back (person_patches)
296 >>> person_in_the_back = person_patches [-1]
297 >>> return person_in_the_back
298 """
299 return sort_patches_front_to_back (list_patches)
300

301

302 def get_middle_patch (list_patches : List[ImagePatch]) -> ImagePatch :
303 """
304 Returns the middle patch .
305

306 Parameters
307 ----------
308 list_patches : List[ImagePatch]
309

310 Examples
311 --------
312 # Middle ham
313 >>> def execute_command (image):
314 >>> image_patch = ImagePatch (image)
315 >>> ham_patches = image_patch .find(’ham ’)
316 >>> middle_ham_patch = get_middle_patch (ham_patches)
317 >>> return middle_ham_patch
318 """
319 return get_middle_patch (list_patches)
320

321

32

Published in Transactions on Machine Learning Research (04/2024)

322 def get_patch_closest_to_anchor_object (list_patches : List[ImagePatch], anchor_object :
ImagePatch) -> ImagePatch :

323 """
324 Returns the object from list_patches that is the closest to the anchor_object .
325

326 Parameters
327 ----------
328 list_patches : List[ImagePatch]
329 anchor_object : ImagePatch
330

331 Examples
332 --------
333 # Foo next to bar
334 >>> def execute_command (image):
335 >>> image_patch = ImagePatch (image)
336 >>> foo_patches = image_patch .find(’foo ’)
337 >>> bar_patches = image_patch .find(’bar ’)
338 >>> bar_patch = bar_patches [0]
339 >>> foo_next_to_bar_patch = get_patch_closest_to_anchor_object (foo_patches ,

bar_patch)
340 >>> return foo_next_to_bar_patch
341 """
342 return get_patch_closest_to_anchor_object (list_patches , anchor_object)
343

344

345 INSERT_IN_CONTEXT_EXAMPLES_HERE
346

347 Write a function using Python and the ImagePatch class (above) that could be executed to
provide an answer to the query .

348

349 Consider the following guidelines :
350 - Use base Python (comparison , sorting) for basic logical operations , left/ right /up/down ,

math , etc.
351 - Make sure to always return an ImagePatch object .
352 - Make sure that for all possible control flows , the program always returns an ImagePatch

object .
353 - ImagePatch class uses left and right to denote horizontal edges .
354 - ImagePatch class uses bottom and top to denote vertical edges .
355

356 INSERT_PREVIOUS_CODE_AND_ERROR_HERE
357

358 # INSERT_QUERY_HERE

33

Published in Transactions on Machine Learning Research (04/2024)

A.4.3 NExT-QA - ViperGPT API

1 import math
2

3 class ImagePatch :
4 """A Python class containing a crop of an image centered around a particular object , as

well as relevant information .
5 Attributes
6 ----------
7 cropped_image : array_like
8 An array -like of the cropped image taken from the original image .
9 left , lower , right , upper : int

10 An int describing the position of the (left/ lower / right / upper) border of the crop ’s
bounding box in the original image .

11

12 Methods
13 -------
14 find(object_name : str)->List[ImagePatch]
15 Returns a list of new ImagePatch objects containing crops of the image centered

around any objects found in the
16 image matching the object_name .
17 exists (object_name : str)->bool
18 Returns True if the object specified by object_name is found in the image , and False

otherwise .
19 verify_property (property : str)->bool
20 Returns True if the property is met , and False otherwise .
21 best_text_match (option_list : List[str], prefix : str)->str
22 Returns the string that best matches the image .
23 simple_query (question : str=None)->str
24 Returns the answer to a basic question asked about the image . If no question is

provided , returns the answer to "What is this ?".
25 compute_depth () ->float
26 Returns the median depth of the image crop.
27 crop(left: int , lower : int , right : int , upper : int)->ImagePatch
28 Returns a new ImagePatch object containing a crop of the image at the given

coordinates .
29 """
30

31 def __init__ (self , image , left: int = None , lower : int = None , right : int = None , upper :
int = None):

32 """ Initializes an ImagePatch object by cropping the image at the given coordinates
and stores the coordinates as

33 attributes . If no coordinates are provided , the image is left unmodified , and the
coordinates are set to the

34 dimensions of the image .
35 Parameters
36 -------
37 image : array_like
38 An array -like of the original image .
39 left , lower , right , upper : int
40 An int describing the position of the (left/ lower / right / upper) border of the

crop ’s bounding box in the original image .
41 """
42 if left is None and right is None and upper is None and lower is None:
43 self. cropped_image = image
44 self.left = 0
45 self. lower = 0
46 self. right = image . shape [2] # width
47 self. upper = image . shape [1] # height
48 else:
49 self. cropped_image = image [:, lower :upper , left: right]
50 self.left = left
51 self. upper = upper
52 self. right = right
53 self. lower = lower
54

55 self. width = self. cropped_image . shape [2]
56 self. height = self. cropped_image . shape [1]

34

Published in Transactions on Machine Learning Research (04/2024)

57

58 self. horizontal_center = (self.left + self. right) / 2
59 self. vertical_center = (self. lower + self. upper) / 2
60

61 def find(self , object_name : str) -> List[ImagePatch]:
62 """ Returns a list of ImagePatch objects matching object_name contained in the crop

if any are found .
63 Otherwise , returns an empty list.
64 Parameters
65 ----------
66 object_name : str
67 the name of the object to be found
68

69 Returns
70 -------
71 List[ImagePatch]
72 a list of ImagePatch objects matching object_name contained in the crop
73

74 Examples
75 --------
76 >>> # return the foo
77 >>> def execute_command (image) -> List[ImagePatch]:
78 >>> image_patch = ImagePatch (image)
79 >>> foo_patches = image_patch .find (" foo ")
80 >>> return foo_patches
81 """
82 return find_in_image (self. cropped_image , object_name)
83

84 def exists (self , object_name : str) -> bool:
85 """ Returns True if the object specified by object_name is found in the image , and

False otherwise .
86 Parameters
87 -------
88 object_name : str
89 A string describing the name of the object to be found in the image .
90

91 Examples
92 -------
93 >>> # Are there both foos and garply bars in the photo ?
94 >>> def execute_command (image)->str:
95 >>> image_patch = ImagePatch (image)
96 >>> is_foo = image_patch . exists (" foo ")
97 >>> is_garply_bar = image_patch . exists (" garply bar ")
98 >>> return bool_to_yesno (is_foo and is_garply_bar)
99 """

100 return len(self.find(object_name)) > 0
101

102 def verify_property (self , object_name : str , visual_property : str) -> bool:
103 """ Returns True if the object possesses the visual property , and False otherwise .
104 Differs from ’exists ’ in that it presupposes the existence of the object specified

by object_name , instead checking whether the object possesses the property .
105 Parameters
106 -------
107 object_name : str
108 A string describing the name of the object to be found in the image .
109 visual_property : str
110 A string describing the simple visual property (e.g., color , shape , material) to

be checked .
111

112 Examples
113 -------
114 >>> # Do the letters have blue color ?
115 >>> def execute_command (image) -> str:
116 >>> image_patch = ImagePatch (image)
117 >>> letters_patches = image_patch .find (" letters ")
118 >>> # Question assumes only one letter patch
119 >>> return bool_to_yesno (letters_patches [0]. verify_property (" letters ", "blue "))
120 """

35

Published in Transactions on Machine Learning Research (04/2024)

121 return verify_property (self. cropped_image , object_name , property)
122

123 def best_text_match (self , option_list : List[str]) -> str:
124 """ Returns the string that best matches the image .
125 Parameters
126 -------
127 option_list : str
128 A list with the names of the different options
129 prefix : str
130 A string with the prefixes to append to the options
131

132 Examples
133 -------
134 >>> # Is the foo gold or white ?
135 >>> def execute_command (image)->str:
136 >>> image_patch = ImagePatch (image)
137 >>> foo_patches = image_patch .find (" foo ")
138 >>> # Question assumes one foo patch
139 >>> return foo_patches [0]. best_text_match ([" gold", " white "])
140 """
141 return best_text_match (self. cropped_image , option_list)
142

143 def simple_query (self , question : str = None) -> str:
144 """ Returns the answer to a basic question asked about the image . If no question is

provided , returns the answer
145 to "What is this ?". The questions are about basic perception , and are not meant to

be used for complex reasoning
146 or external knowledge .
147 Parameters
148 -------
149 question : str
150 A string describing the question to be asked .
151

152 Examples
153 -------
154

155 >>> # Which kind of baz is not fredding ?
156 >>> def execute_command (image) -> str:
157 >>> image_patch = ImagePatch (image)
158 >>> baz_patches = image_patch .find (" baz ")
159 >>> for baz_patch in baz_patches :
160 >>> if not baz_patch . verify_property (" baz", " fredding "):
161 >>> return baz_patch . simple_query (" What is this baz ?")
162

163 >>> # What color is the foo?
164 >>> def execute_command (image) -> str:
165 >>> image_patch = ImagePatch (image)
166 >>> foo_patches = image_patch .find (" foo ")
167 >>> foo_patch = foo_patches [0]
168 >>> return foo_patch . simple_query (" What is the color ?")
169

170 >>> # Is the second bar from the left quuxy ?
171 >>> def execute_command (image) -> str:
172 >>> image_patch = ImagePatch (image)
173 >>> bar_patches = image_patch .find (" bar ")
174 >>> bar_patches .sort(key= lambda x: x. horizontal_center)
175 >>> bar_patch = bar_patches [1]
176 >>> return bar_patch . simple_query (" Is the bar quuxy ?")
177 """
178 return simple_query (self. cropped_image , question)
179

180 def compute_depth (self):
181 """ Returns the median depth of the image crop
182 Parameters
183 ----------
184 Returns
185 -------
186 float

36

Published in Transactions on Machine Learning Research (04/2024)

187 the median depth of the image crop
188

189 Examples
190 --------
191 >>> # the bar furthest away
192 >>> def execute_command (image)->ImagePatch :
193 >>> image_patch = ImagePatch (image)
194 >>> bar_patches = image_patch .find (" bar ")
195 >>> bar_patches .sort(key= lambda bar: bar. compute_depth ())
196 >>> return bar_patches [-1]
197 """
198 depth_map = compute_depth (self. cropped_image)
199 return depth_map . median ()
200

201 def crop(self , left: int , lower : int , right : int , upper : int) -> ImagePatch :
202 """ Returns a new ImagePatch cropped from the current ImagePatch .
203 Parameters
204 -------
205 left , lower , right , upper : int
206 The (left/ lower / right / upper)most pixel of the cropped image .
207 -------
208 """
209 return ImagePatch (self. cropped_image , left , lower , right , upper)
210

211 def overlaps_with (self , left , lower , right , upper):
212 """ Returns True if a crop with the given coordinates overlaps with this one ,
213 else False .
214 Parameters
215 ----------
216 left , lower , right , upper : int
217 the (left/ lower / right / upper) border of the crop to be checked
218

219 Returns
220 -------
221 bool
222 True if a crop with the given coordinates overlaps with this one , else False
223

224 Examples
225 --------
226 >>> # black foo on top of the qux
227 >>> def execute_command (image) -> ImagePatch :
228 >>> image_patch = ImagePatch (image)
229 >>> qux_patches = image_patch .find (" qux ")
230 >>> qux_patch = qux_patches [0]
231 >>> foo_patches = image_patch .find (" black foo ")
232 >>> for foo in foo_patches :
233 >>> if foo. vertical_center > qux_patch . vertical_center
234 >>> return foo
235 """
236 return self.left <= right and self. right >= left and self. lower <= upper and self.

upper >= lower
237

238

239 class VideoSegment :
240 """A Python class containing a set of frames represented as ImagePatch objects , as well

as relevant information .
241 Attributes
242 ----------
243 video : torch . Tensor
244 A tensor of the original video .
245 start : int
246 An int describing the starting frame in this video segment with respect to the original

video .
247 end : int
248 An int describing the ending frame in this video segment with respect to the original

video .
249 num_frames ->int
250 An int containing the number of frames in the video segment .

37

Published in Transactions on Machine Learning Research (04/2024)

251

252 Methods
253 -------
254 frame_iterator -> Iterator [ImagePatch]
255 trim(start , end)->VideoSegment
256 Returns a new VideoSegment containing a trimmed version of the original video at the [

start , end] segment .
257 select_answer (info , question , options)->str
258 Returns the answer to the question given the options and additional information .
259 """
260

261 def __init__ (self , video : torch .Tensor , start : int = None , end: int = None , parent_start
=0, queues =None):

262 """ Initializes a VideoSegment object by trimming the video at the given [start , end]
times and stores the

263 start and end times as attributes . If no times are provided , the video is left
unmodified , and the times are

264 set to the beginning and end of the video .
265

266 Parameters
267 -------
268 video : torch . Tensor
269 A tensor of the original video .
270 start : int
271 An int describing the starting frame in this video segment with respect to the

original video .
272 end : int
273 An int describing the ending frame in this video segment with respect to the

original video .
274 """
275

276 if start is None and end is None:
277 self. trimmed_video = video
278 self. start = 0
279 self.end = video . shape [0] # duration
280 else:
281 self. trimmed_video = video [start :end]
282 if start is None:
283 start = 0
284 if end is None:
285 end = video . shape [0]
286 self. start = start + parent_start
287 self.end = end + parent_start
288

289 self. num_frames = self. trimmed_video . shape [0]
290

291 def frame_iterator (self) -> Iterator [ImagePatch]:
292 """ Returns an iterator over the frames in the video segment ."""
293 for i in range (self. num_frames):
294 yield ImagePatch (self. trimmed_video [i], self. start + i)
295

296 def trim(self , start : Union [int , None] = None , end: Union [int , None] = None) ->
VideoSegment :

297 """ Returns a new VideoSegment containing a trimmed version of the original video at
the [start , end]

298 segment .
299

300 Parameters
301 ----------
302 start : Union [int , None]
303 An int describing the starting frame in this video segment with respect to the

original video .
304 end : Union [int , None]
305 An int describing the ending frame in this video segment with respect to the

original video .
306

307 Examples
308 --------

38

Published in Transactions on Machine Learning Research (04/2024)

309 >>> # Return the second half of the video
310 >>> def execute_command (video):
311 >>> video_segment = VideoSegment (video)
312 >>> video_second_half = video_segment .trim(video_segment . num_frames // 2,

video_segment . num_frames)
313 >>> return video_second_half
314 """
315 if start is not None:
316 start = max(start , 0)
317 if end is not None:
318 end = min(end , self. num_frames)
319

320 return VideoSegment (self. trimmed_video , start , end , self. start)
321

322 def select_answer (self , info: dict , question : str , options : List[str]) -> str:
323 return select_answer (self. trimmed_video , info , question , options)
324

325 def __repr__ (self):
326 return " VideoSegment ({} , {})". format (self.start , self.end)
327

328 def simple_query (self , question) -> str:
329 """ Ask a simple question about the video .
330

331 Examples
332 --------
333 # why does X happen ?
334 # possible_answers : [’ answer1 ’, ’answer2 ’, ’answer3 ’, ’answer4 ’, ’answer5 ’]
335 def execute_command (video , question , possible_answers) ->[str , dict]:
336 # Create a video segment object
337 video_segment = VideoSegment (video)
338 # The question is simple , so just ask
339 info = video_segment . simple_query (" why does X happen ?")
340 # Choose the answer among given possible answers
341 answer = select_answer (info , question , possible_answers)
342 return answer
343 """
344 answer = simple_query (question)
345 return answer
346

347

348 def best_image_match (list_patches : List[ImagePatch], content : List[str], return_index = False)
-> Union [ImagePatch , int]:

349 """ Returns the patch most likely to contain the content .
350 Parameters
351 ----------
352 list_patches : List[ImagePatch]
353 content : List[str]
354 the object of interest
355 return_index : bool
356 if True , returns the index of the patch most likely to contain the object
357

358 Returns
359 -------
360 int
361 Patch most likely to contain the object
362 """
363 return best_image_match (list_patches , content , return_index)
364

365

366 def distance (patch_a : ImagePatch , patch_b : ImagePatch) -> float :
367 """
368 Returns the distance between the edges of two ImagePatches . If the patches overlap , it

returns a negative distance
369 corresponding to the negative intersection over union .
370

371 Parameters
372 ----------
373 patch_a : ImagePatch

39

Published in Transactions on Machine Learning Research (04/2024)

374 patch_b : ImagePatch
375

376 Examples
377 --------
378 # Return the qux that is closest to the foo
379 >>> def execute_command (image):
380 >>> image_patch = ImagePatch (image)
381 >>> qux_patches = image_patch .find(’qux ’)
382 >>> foo_patches = image_patch .find(’foo ’)
383 >>> foo_patch = foo_patches [0]
384 >>> qux_patches .sort(key= lambda x: distance (x, foo_patch))
385 >>> return qux_patches [0]
386 """
387 return distance (patch_a , patch_b)
388

389

390 def bool_to_yesno (bool_answer : bool) -> str:
391 return "yes" if bool_answer else "no"
392

393

394 def select_answer (info: str , question : question , possible_answers : str) -> str:
395 """ Given an info , question and possible answers , select the correct answer .
396

397 Examples
398 --------
399 # what does man do at the end of the video
400 # possible_answers : [’ answer1 ’, ’answer2 ’, ’answer3 ’, ’answer4 ’, ’answer5 ’]
401 def execute_command (video , question , possible_answers) ->[str , dict]:
402 # Create a video segment object
403 video_segment = VideoSegment (video)
404 # Caption last frame of the video (end of video)
405 last_frame = ImagePatch (video_segment , -1)
406 last_caption = last_frame . simple_query (" What is this ?")
407 men = last_frame .find (" man ")
408 if len(men) == 0:
409 men = [last_frame]
410 man = men [0]
411 man_action = man. simple_query (" What is the man doing ?")
412 # Answer the question . Remember to create the info dictionary
413 info = {
414 " Caption of last frame ": last_caption ,
415 "Man looks like he is doing ": man_action
416 }
417 answer = video_segment . select_answer (info , question , possible_answers)
418 return answer , info
419 """
420

421

422 INSERT_IN_CONTEXT_EXAMPLES_HERE
423

424

425 Write a function using Python and the VideoSegment class (above) that could be executed to
provide an answer to the query .

426

427 Consider the following guidelines :
428 - Use base Python (comparison , sorting) for basic logical operations , left/ right /up/down ,

math , etc.
429

430 INSERT_PREVIOUS_CODE_AND_ERROR_HERE
431

432 # INSERT_QUERY_HERE

40

Published in Transactions on Machine Learning Research (04/2024)

A.4.4 NExT-QA - Abstract API

1 import math
2

3

4 class VideoSegment :
5 """A Python class containing a video , as well as relevant information .
6 Attributes
7 ----------
8 video : np. ndarray
9 A tensor of the original video .

10 start : int
11 An int describing the starting frame in this video segment with respect to the original

video .
12 end : int
13 An int describing the ending frame in this video segment with respect to the original

video .
14 num_frames ->int
15 An int containing the number of frames in the video segment .
16

17 Methods
18 -------
19 trim(start , end)->VideoSegment
20 Returns a new VideoSegment containing a trimmed version of the original video at the [

start , end] segment .
21 select_answer (info , question , possible_answers)->str
22 Returns the answer to the question given the possible answers and additional information

.
23 """
24

25 def __init__ (self , video : np.ndarray , start : int = None , end: int = None , parent_start
=0, queues =None):

26 """ Initializes a VideoSegment object by trimming the video at the given [start , end]
times and stores the

27 start and end times as attributes . If no times are provided , the video is left
unmodified , and the times are

28 set to the beginning and end of the video .
29

30 Parameters
31 -------
32 video : np. ndarray
33 A tensor of the original video .
34 start : int
35 An int describing the starting frame in this video segment with respect to the

original video .
36 end : int
37 An int describing the ending frame in this video segment with respect to the

original video .
38 """
39

40 if start is None and end is None:
41 self. trimmed_video = video
42 self. start = 0
43 self.end = video . shape [0] # duration
44 else:
45 self. trimmed_video = video [start :end]
46 if start is None:
47 start = 0
48 if end is None:
49 end = video . shape [0]
50 self. start = start + parent_start
51 self.end = end + parent_start
52

53 self. num_frames = self. trimmed_video . shape [0]
54

55 def trim(self , start : Union [int , None] = None , end: Union [int , None] = None) ->
VideoSegment :

41

Published in Transactions on Machine Learning Research (04/2024)

56 """ Returns a new VideoSegment containing a trimmed version of the original video at
the [start , end]

57 segment .
58

59 Parameters
60 ----------
61 start : Union [int , None]
62 An int describing the starting frame in this video segment with respect to the

original video .
63 end : Union [int , None]
64 An int describing the ending frame in this video segment with respect to the

original video .
65

66 Examples
67 --------
68 >>> # Return the second half of the video
69 >>> def execute_command (video):
70 >>> video_segment = VideoSegment (video)
71 >>> video_second_half = video_segment .trim(video_segment . num_frames // 2,

video_segment . num_frames)
72 >>> return video_second_half
73 """
74 if start is not None:
75 start = max(start , 0)
76 if end is not None:
77 end = min(end , self. num_frames)
78

79 return VideoSegment (self. trimmed_video , start , end , self. start)
80

81 def get_video_segment_of_event (self , event) -> VideoSegment :
82 return get_video_segment_of_event (event)
83

84 def get_video_segment_before_event (self , event) -> VideoSegment :
85 return get_video_segment_before_event (event)
86

87 def get_video_segment_after_event (self , event) -> VideoSegment :
88 return get_video_segment_after_event (event)
89

90 def caption_video (self , question) -> str:
91 return caption_video (question)
92

93 def simple_query (self , question) -> str:
94 """ Ask a simple question about the video .
95

96 Examples
97 --------
98 # why does X happen ?
99 # possible_answers : [’ answer1 ’, ’answer2 ’, ’answer3 ’, ’answer4 ’, ’answer5 ’]

100 def execute_command (video , question , possible_answers) ->[str , dict]:
101 # Create a video segment object
102 video_segment = VideoSegment (video)
103 # The question is simple , so just ask
104 info = video_segment . simple_query (" why does X happen ?")
105 # Choose the answer among given possible answers
106 answer = select_answer (info , question , possible_answers)
107 return answer
108 """
109 answer = simple_query (question)
110 return answer
111

112

113 def select_answer (info: str , question : question , possible_answers : str) -> str:
114 """ Given an info , question and possible answers , select the correct answer .
115

116 Examples
117 --------
118 # what does person A do after event X?
119 # possible_answers : [’ answer1 ’, ’answer2 ’, ’answer3 ’, ’answer4 ’, ’answer5 ’]

42

Published in Transactions on Machine Learning Research (04/2024)

120 def execute_command (video , question , possible_answers) ->[str , dict]:
121 # Create a video segment object
122 video_segment = VideoSegment (video)
123 # Get video segment after event X
124 video_segment_after = video_segment . get_video_segment_after_event (" event X")
125 # Ask what the person A is doing
126 info = video_segment_after . caption_video (" What is person A doing ?")
127 # Choose the answer among given possible answers
128 answer = select_answer (info , question , possible_answers)
129 return answer
130 """
131

132

133 INSERT_IN_CONTEXT_EXAMPLES_HERE
134

135 Write a function using Python and the VideoSegment class (above) that could be executed to
provide an answer to the query .

136

137 Consider the following guidelines :
138 - Use base Python (comparison , sorting) for basic logical operations , left/ right /up/down ,

math , etc.
139 - The input to your program is a video , question and possible answers .
140 - Always start your function by creating a ‘video_segment = VideoSegment (video)‘ object .
141

142 INSERT_PREVIOUS_CODE_AND_ERROR_HERE
143

144 # INSERT_QUERY_HERE

43

	Introduction
	LLMs as programmers for visual reasoning framework
	Background
	Abstract API through visual routines
	Automatic generation of in-context examples
	Self-correction

	Experiments
	Zero-Shot through spatially and temporally Abstract API
	Few-shot boostrapping via automatically generated in-context examples (ACEs)
	Self-correction
	Error analysis

	Related work
	Discussion and future work
	Conclusion
	Appendix
	Ablations
	Pretrained models
	Self-debugging prompt
	Prompt listings
	RefCOCO and GQA - ViperGPT API
	RefCOCO and GQA - Abstract API
	NExT-QA - ViperGPT API
	NExT-QA - Abstract API

