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Abstract

While FL enables learning a model with data privacy, it often suffers from signif-
icant performance degradation when client data distributions are heterogeneous.
Many previous FL algorithms have addressed this issue by introducing various
proximal restrictions. These restrictions aim to encourage global alignment by
constraining the deviation of local learning from the global objective. However,
they inherently limit local learning by interfering with the original local objectives.
Recently, an alternative approach has emerged to improve local learning generality.
By obtaining local models within a smooth loss landscape, this approach mitigates
conflicts among different local objectives of the clients. Yet, it does not ensure
stable global alignment, as local learning does not take the global objective into ac-
count. In this study, we propose Federated Stability on Learning (FedSoL), which
combines both the concepts of global alignment and local generality. In FedSoL,
the local learning seeks a parameter region robust against proximal perturbations.
This strategy introduces an implicit proximal restriction effect in local learning
while maintaining the original local objective for parameter update.

1 Introduction

Federated Learning (FL) is an emerging distributed learning framework that preserves data privacy
while leveraging client data for training [23, 24]. In this approach, individual clients train their local
models using their private data, while the server aggregates these models into a global model. By
precluding the need for direct access to private data, FL enables the utilization of extensive data
collected from edge devices such as mobile phones, vehicles, and facilities [3, 55].

However, FL encounters a notorious challenge known as data heterogeneity [19]. Due to the diverse
underlying distributions of the clients, the local datasets are non-independent and identically dis-
tributed (Non-IID). Its inevitable occurrence in many real-world scenarios leads to an inconsistency
between global and local objectives, often significantly degrading performance [31, 33].

To tackle the data heterogeneity problem, most prior studies have introduced various proximal
restriction into the local objective [20, 27, 30, 32]. These restrictions are designed to maintain
alignment between global and local objectives by preventing the deviation of local learning from the
global objective. Nevertheless, this approach inherently limits local learning by interfering with the
original local objectives [37, 56]. Furthermore, it often falls into a sharp global landscape under high
heterogeneity, which results in unreliable minima and poor stability [44, 47] (Figure 1 (a)).

In contrast, an alternative approach has emerged that focuses on the local generality in FL [37,
44]. Building on recent findings that highlight the benefits of smooth loss landscape for better
generalization [5, 17, 18], this approach aims to seek flatness during local learning by employing
the recently proposed Sharpness-Aware Minimization (SAM) [13] as the local optimizer [44]. By
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Figure 1: An overview of FL scenarios. Shaded regions stand for the degree of local generality of the
trained local models. FedSoL ensures global alignment while promoting local generality.

improving local generality, this approach mitigates the conflicts between individual local objectives,
contributing to the overall smoothness of the aggregated global model [4, 47]. Although these
approaches have demonstrated competitive performance without the proximal restrictions, their
ability to generalize well within their respective local distributions does not necessarily ensure
alignment with the global objective (Figure 1 (b)).

Our key motivation is to tackle data heterogeneity by harnessing both the strengths of global align-
ment and local generality. To this end, we propose a novel algorithm Federated Stability on Learn-
ing (FedSoL) (Figure 1 (c)). FedSoL seamlessly incorporates the proximal restriction effect into the
SAM optimization, without interfering with the original local objective. More specifically, FedSoL
updates the local model using the gradient of the original local objective, which is determined at the
weights perturbed by the gradient of the proximal restriction objective. By identifying a parameter
region that is minimally influenced by the proximal perturbation, FedSoL diminishes the negative
impact of local updates on global alignment, while maintaining the original local objective to preserve
local generality. We comprehensively demonstrate the efficacy of FedSoL on global alignment and
local generality. Experimental results show FedSoL achieves state-of-the-art performance in various
setups. To summarize, our main contributions are as follows:

• We propose FedSoL, a novel and effective FL algorithm that leverages both the strengths of
global alignment and local generality. FedSoL conducts proximal perturbations with the
SAM strategy, yielding an implicit regularization effect during local learning. (Section 3

• We validate the efficacy of FedSoL on various setups and show that it consistently achieves
state-of-the-art performances. We highlight FedSoL performs exceptionally well under high
levels of heterogeneity. (Section 4)

• We provide a comprehensive analysis of the benefits that FedSoL brings to FL. Not only
does it enhance the smoothness of the global model, but it also preserves global knowledge
during local learning. (Section 5)

2 Background

2.1 Proximal Restriction

Consider an FL system that consists of K clients and a central server. Each client k has a local dataset
Dk, where the entire dataset is a union of the local datasets as D “

Ť

kPrKsDk. FL aims to train a
global server model with weights w that minimize the loss across all clients:

Lglobalpwq “
ÿ

kPrKs

|Dk|

|D|
Lk
localpwq , (1)

where |Dk| and |D| are the number of instances in each datasets. When using a proximal restriction
objective, the loss function for each client k is a linear combination of its original local loss,
Lk
localpwkq, and a proximal loss, Lk

ppwk;wgq, controlled by a hyperparameter β:

Lkpwkq “ Lk
localpwkq ` β ¨ Lk

ppwk;wgq. (2)
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Here, Lk
localpwkq is the loss on the client’s local distribution (e.g., cross-entropy loss), and

Lk
ppwk;wgq quantifies the discrepancy between the global model wg and the local model wk.

This discrepancy can be measured in various ways, such as the Euclidean distance between the
two parameters [32] or the KL-divergence between probability vectors computed using the client’s
data [27]. Introducing proximal restriction within the local objective constrains the deviation of local
learning from the global objective [20].

2.2 Overview of SAM

The SAM [13] optimizer pursues flatter minima for the given loss L by solving the minimax problem:
min
w

max
}ϵ}2ăρ

Lpw ` ϵq. (3)

In the above equation, the inner maximization finds a parameter perturbation ϵ that induces maximal
loss change within the ρ-ball neighborhood. In practice, it is approximated by a single re-scaled
gradient step ϵ˚“ρ∇wLpwq{}∇wLpwq}2. Then, the outer minimization is conducted by a base
optimizer such as SGD [39], by taking the gradient ∇wLpw ` ϵ˚q at the perturbed weights. SAM
demonstrates an exceptional ability to perform well across different model structures [6, 58] and
tasks [1, 52] with high generalization performance. In FL, using SAM enhances the generalization of
each client’s local model [4, 44]. We further provide the related literature in Appendix M.

3 FedSoL: Federated Stability on Learning

3.1 Proximal Perturbation

In local learning, the local model wk begins with the same parameters as the distributed global
model wg , thereby initially having a minimal proximal loss. The main challenge is guiding the local
learning to reduce the original local loss Lk

local without inducing an increase in the proximal loss
Lk
p . We address this problem in the context of SAM optimization by seeking a gradient that not only

minimizes the original local loss Lk
local, but also is robust against the increases in proximal loss Lk

p .
To this end, FedSoL aims to minimize the original local loss, which is minimally affected by the
weight perturbation that maximizes proximal loss. By decoupling the roles of these two types of
losses, FedSoL conducts the following steps for each local update of client k:

Step1: Weight Perturbation FedSoL finds a weight perturbation ϵ˚
p that causes the most significant

change for any given proximal loss Lk
p:

ϵ˚
p “ ρ

∇wk
Lk
ppwk;wgq

}∇wk
Lk
ppwk;wgq}2

« argmax
}ϵ}2ďρ

Lk
ppwk`ϵ;wgq . (4)

Step2: Parameter Update After perturbation, FedSoL updates parameters by computing the
gradient of the original local loss Lk

local at this perturbed weights:

wk Ð wk ´ γ ¨ ∇wk
Lk
localpwk ` ϵ˚

p q , (5)
where γ is a learning rate. In the above procedures, the update gradient is computed on the original
local loss Lk

local, whereas the proximal loss Lk
p only plays in an implicit role. Note that ϵ˚

p is used
solely for weight perturbation, thereby we do not need to compute its gradient. To clarify how FedSoL
influences local learning, we analyze the update gradient gu of FedSoL by employing the first-order
Taylor approximation of Lk

local at wk, with perturbation ϵ˚
p :

gupwkq “ ∇wk
Lk
localpwk ` ϵ˚

p q

« glpwkq ` ρ∇2
wk

Lk
localpwkqĝppwkq . (6)

We denote gl“∇wk
Lk
localpwkq, gp“∇wk

Lk
ppwk;wgq, and ĝp“gp{}gp}2, omitting wk and wg if

there is no conflict. Based on Equation (6), we examine the change of each loss induced by a single
local update with a learning rate γ, as defined in Equation (7):

∆algoLkpwkq “ Lk
`

wk ´ γgupwkq
˘

´ Lkpwkq

« ´γx∇wk
Lkpwkq, gupwkqy . (7)
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In the above equation, we apply a first-order Taylor approximation to Lk at wk, taking into account
a local update by ´γgupwkq. Here, Lk can be either local loss or proximal loss. The detailed
procedure of FedSoL is outlined in Appendix A. By combining the approximation for gu from
Equation (6) into the loss difference in Equation (7), we derive the following two key propositions.
Proposition 1. Given a convex local loss Lk

local, the change of proximal loss Lk
p by FedSoL update

with a learning rate γ reduces the conflicts between gl and gp as ρ grows:

∆FedSoLLk
p « ´γ

´

xgl , gpy ` ρ ¨ ĝp
J∇2Lk

local gp
l ě 0 n

¯

, (8)

where ∇2Lk
local is the Hessian at wk. In Proposition 1, we study the change of proximal loss

after the FedSoL update, denoted as ∆FedSoLLk
p . The proposition suggests that FedSoL implicitly

regularizes local learning for global alignment, reducing the negative impact of local updates on
proximal loss. This regularization effect grows as the curvature of local loss ∇2Lk

local becomes
steeper. Note that when ρ is set to 0, Equation (8) becomes the change of proximal loss after FedAvg
update, ∆FedAvgLk

p .

Proposition 2. The change of original local loss Lk
local by FedSoL update with a learning rate γ is

equivalent to the FedAvg update at ∇Lk
localpwk `

ρ
2ϵ

˚
p q as:

∆FedSoLLk
localpwkq « ∆FedAvgLk

local

´

wk `
ρ

2
ϵ˚
p

¯

. (9)

Meanwhile, Proposition 2 analyzes how the original local loss changes after the FedSoL update,
∆FedSoLLk

local, and compare it to its counterpart in FedAvg, ∆FedAvgLk
local. The proposition suggests

that even though FedSoL calculates the gradient of the original local loss at the weight perturbed by
proximal gradient, its behavior on the original local loss is almost identical to that of FedAvg with
standard gradient descent using Lk

local. This implies that FedSoL does not noticeably interfere with or
slow down the learning process on the local data distribution. The detailed proofs for the propositions
are provided in Appendix L. We further analyze the effect of FedSoL in Appendix K, with analysis
on possible various perturbation strategies in Appendix F.

4 Experiment

4.1 Experimental Setups

Data Setups We employ 6 datasets: MNIST [9], CIFAR-10 [25], SVHN [40], CINIC-10 [7], PathM-
NIST [54], and TissueMNIST [54]. We distribute data to clients via two strategies: Sharding [36] and
Latent Dirichlet Allocation (LDA) [50]. Sharding sorts data by label and assigns equal-size shards to
clients. The heterogeneity increases as the shard per user, s, becomes smaller. On the other hand,
LDA assigns class c data samples to each client k with probability pcp« Dirpαqq.

Learning Setups We distribute CIFAR-10, and SVHN datasets across 100 clients with a sampling
ratio of 0.1, while CINIC-10, PathMNIST, and TissueMNIST across 200 clients with a ratio of
0.05. We use a model architecture as described in [36], which consists of two convolutional layers,
max-pooling layers, and two fully connected layers. Each client optimizes its local datasets for
5 local epochs using momentum SGD with a learning rate of 0.01, momentum 0.9, and weight
decay 1e-5. The learning rate is decayed by a factor of 0.99 at every communication round. We
conduct 300 communication rounds in general, and 200 for PathMNIST, and TissueMNIST. We use
KL-divergence loss as the proximal loss. Please see more detailed experimental setups in Appendix C.

4.2 Performance on Data Heterogeneity

Heterogeneity Level Table 1 presents a comparison between our approach, FedSoL, and other
baselines such as FedProx [32], FedNova [51], Scaffold [20], FedNTD [27], FedSAM [44], and
FedASAM [4] as baseline methods. Notably, many recently proposed FL methods tend to under-
perform when compared to the standard FedAvg baseline, where a similar observation is reported
in [27, 57]. In contrast, FedSoL consistently exceeds the performance of FedAvg across all evaluated
scenarios. FedSoL achieves state-of-the-art results in most cases, particularly showing consistent
improvement on high heterogeneity levels (s=2 and α=0.05).
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Table 1: Test accuracy@1(%) comparison among baselines and FedSoL. The values in the parenthesis
are the standard deviation. The arrow (Ó, Ò) shows the comparison to the FedAvg. We set s P

t2, 5, 10u and α P t0.05, 0.1, 0.5u for CIFAR-10 datasets, whereas s “ 2 and α “ 0.1 for the others.

Non-IID Partition Strategy : Sharding

Method CIFAR-10 SVHN CINIC-10 PathMNIST TissueMNIST
s = 2 s = 5 s = 10

FedAvg 51.48p3.41q 70.96p0.91q 74.60p0.88q 73.63p3.16q 42.40p2.70q 57.40p1.48q 49.36p1.64q

FedProx 52.80p2.66q Ò 64.71p0.74q Ó 69.37p1.21q Ó 71.09p3.13q Ó 40.00p3.01q Ó 60.77p3.64q Ò 48.20p1.95q Ó

FedNova 46.89p2.57q Ó 67.11p0.25q Ó 70.59p0.52q Ó 67.35p2.84q Ó 40.94p2.29q Ó 58.85p4.10q Ò 36.44p0.95q Ó

Scaffold 62.60p0.70q Ò 74.28p0.39q Ò 76.71p0.16q Ò 77.84p2.28q Ò 47.76p0.45q Ò 71.12p1.04q Ò 30.99p6.09q Ó

FedNTD 67.25p1.08q Ò 70.47p0.33q Ò 76.46p0.07q Ò 85.30p0.78q Ò 52.72p1.12q Ò 65.00p1.26q Ò 52.63p0.59q Ò

FedSAM 51.85p3.14q Ò 69.29p0.39q Ó 72.98p0.34q Ó 65.85p3.77q Ó 45.91p2.02q Ò 67.32p3.15q Ò 49.62p1.61q Ò

FedASAM 52.08p2.19q Ò 63.24p1.16q Ò 74.74p0.88q Ò 79.48p2.17q Ó 43.15p2.73q Ò 59.47p2.91q Ò 49.46p1.91q Ò

FedSoL (Ours) 66.72p0.61q Ò 69.88p0.15q Ò 77.79p0.19q Ò 85.18p0.37q Ò 55.17p0.32q Ò 73.85p1.55q Ò 53.42p0.46q Ò

Non-IID Partition Strategy : LDA

Method CIFAR-10 SVHN CINIC-10 PathMNIST TissueMNIST
α = 0.05 α = 0.1 α = 0.5

FedAvg 42.27p1.34q 56.13p0.78q 73.90p0.66q 55.36p4.85q 36.49p4.37q 65.98p4.76q 42.78p2.03q

FedProx 50.58p0.57q Ò 59.80p1.12q Ò 72.87p0.55q Ò 72.40p3.15q Ò 40.09p3.97q Ò 70.44p1.92q Ò 52.25p1.40q Ò

FedNova 10.00pFailedq Ó 10.00pFailedq Ó 70.04p0.45q Ó 53.07p3.30q Ó 21.89p1.71q Ó 38.94p2.34q Ó 15.03p3.74q Ó

Scaffold 10.00pFailedq Ó 10.00pFailedq Ó 75.49p0.21q Ò 21.46p1.75q Ó 16.89p2.25q Ó 18.07p0.04q Ó 32.04p0.07q Ó

FedNTD 58.08p0.48q Ò 63.16p1.02q Ò 74.91p0.33q Ò 79.25p0.61q Ò 50.22p3.71q Ò 74.26p1.25q Ò 44.55p1.95q Ò

FedSAM 36.14p1.21q Ó 52.14p0.94q Ó 70.74p0.40q Ó 13.27p2.78q Ó 36.70p4.28q Ò 66.64p3.76q Ò 44.07p3.02q Ò

FedASAM 43.12p1.25q Ò 57.00p0.30q Ò 73.91p0.51q Ò 60.25p4.56q Ò 36.93p4.60q Ò 69.45p3.19q Ò 42.73p2.35q Ò

FedSoL (Ours) 60.01p0.30q Ò 64.13p0.46q Ò 75.60p0.32q Ò 83.92p0.29q Ò 55.07p1.48q Ò 78.88p0.46q Ò 53.40p0.85q Ò

Figure 2: Performance of FedAvg and FedSoL on CIFAR-10 (α=0.1) with various setups: (a) sampling
ratio, (b) the number of local epochs, (c) initial learning rate, and (d) perturbation strength. The error
bars stand for the standard deviations.

Learning Factors In Figure 2, we examine the learning factors that influence FedSoL’s performance:
Partial Participation (Figure 2 (a)), Number of Local Epochs (Figure 2 (b)), and Learning Rate (
Figure 2 (c). Throughout experiments, FedSoL consistently surpasses the FedAvg across varying
factors. Most of all, FedSoL enlarges its gain as the smaller portion of clients participate in each round.
For instance, FedAvg significantly declines in performance at a sampling ratio of 0.02, reaching to a
near-random accuracy. However, FedSoL maintains robust performance under such condition.

Perturbation Strength In FedSoL, a hyperparameter ρ controls the overall perturbation strength.
Figure 2 (d) plots FedSoL’s performance against varying ρ values. Although the model often diverges
when using the SAM strategy with high perturbation strength (as shown in Table 1), our FedSoL
remains relatively robust and achieve its best performance within the ρ range between 0.5 and 2.0.

Additional Experiments We further provide the overall learning curves in Appendix D, perfor-
mance on various model architectures in Appendix J, adaptive version of FedSoL in Appendix G,
combination of various proximal losses in Appendix H, partial perturbation variant in Appendix I,
and personalized performance in Appendix E.
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5 Analysis

5.1 Knowledge Preservation

Figure 3: Comparison of FedAvg (blue lines) and FedSoL (ρ=2.0) (red lines) on CIFAR-10 (s=2). (a)
shows learning curves for global and local models, with shaded areas reflecting standard deviation
across clients. (b) exhibits the class-wise accuracy of the global model.

To understand how FedSoL stabilizes the local learning at the prediction level, we examine how
well a local model maintains its performance on the global distribution after local learning. As
illustrated in Figure 3 (a), FedAvg’s local models undergo a significant drop in performance on the
global distribution after local learning. Conversely, FedSoL maintains high performance, indicating
better alignment of local learning with the global objective, and thus stabilizing the learning process.
We further analyze the class-wise accuracy of FedAvg and FedSoL server models. As Figure 3 (b)
demonstrates, while FedAvg exhibits significant fluctuations and inconsistent class-wise performance,
FedSoL preserves its class-wise accuracy as the communication proceeds.

5.2 Smoothness of Loss Landscape

Figure 4: Loss landscape visualization of global model on CIFAR-10 LDA (α=0.1). The λ1 and λ5

in each figure stand for the top-1 and top-5 eigenvalues of the Hessian matrix.

We visualize the loss landscapes [29] of global models obtained from FedAvg, FedASAM, and
FedSoL in Figure 4. In these plots, each axis corresponds to one of the two dominant eigenvectors
(top-1 and top-2) of the Hessian matrix, representing the directions of the most significant shifts in
the loss landscape. Along with each landscape, we provide the value of the dominant eigenvalue
(λ1) and its ratio to the fifth largest eigenvalue (λ1{λ5), following the criteria used in [13, 38]. Here,
FedSoL’s smaller ratio indicates that the variations in loss are more evenly distributed across various
directions. Both the landscape visualization and Hessian eigenvalues underscore the efficacy of
FedSoL in smoothing the loss landscape.

6 Conclusion

In this study, we emphasize the importance of both global alignment and local generality in tackling
data heterogeneity within FL. To unify these essential components, we propose Federated Stability
on Learning (FedSoL), a novel and versatile method that seeks a robust parameter region against
proximal weight perturbations. This allows for an implicit proximal restriction effect on local learning,
without interfering with the original local objective. We present a comprehensive analysis of FedSoL
and demonstrate its benefits in FL.
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A Algorithm

Algorithm 1 Federated Stability on Learning (FedSoL)
Input: local loss Lk

local and proximal loss Lk
p for each client k P rKs, learning rate γ, and base

perturbation radius ρ
Initialize global server weight wg

for each communication round t do
Server samples clients Kptq Ă rKs

Server broadcasts wg for all k P Kptq

Client replaces wk Ð wg

for each client k P Kptq in parallel do
for each local step do

# Set Adaptive Perturbation Radius (Sec 3.2)
ρadaptive “ ρ ¨ Λ (element-wise rescale)
# Perturb using Proximal Gradient (Sec 3.1)

ϵ˚
p “ ρadaptive d

∇wk
Lk

ppwk;wgq

}∇wk
Lk

ppwk;wgq}

# Update Local Model Parameters (Sec 3.1)
wk Ð wk ´ γ ¨ ∇wk

Lk
local

`

wk ` ϵ˚
p

˘

end for
end for
Upload wk to server
Server Aggregation :wg Ð 1

|Kptq|

ř

kPKptq wk

end for
Server output : wg

B Table of Notations

Table 2: Table of Notations throughout the paper.
Indices:
k Index for clients (k P rKs)
g Index for global server

Environment:
D Whole dataset
Dk Local dataset of the k-th client
α Parameter for the Dirichlet Distribution
s The number of shards per user

FL algorithms:
β, µ Multiplicative coefficient for the proximal loss
γ Learning rate
ρ Perturbation Radius for SAM-related algorithms

Weights:
wg Weight of the global server model on the round t
wk Weight of the k-th client model on the round t
}wg ´ wk} Collection of L2-norm between server and client models, among all rounds.

Objective Func-
tions:
Lk
local Local objective for the k-th client

Lk
p Proximal Loss for the k-th client
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C Experimental Setups

The code is implemented by PyTorch [43]. The overall code structure is based on FedML [14] library
with some modifications for simplicity. We use 2 A6000 GPU cards, but without Multi-GPU training.

C.1 Model Architecture

For the primary experiments, we use the model architecture used in FedAvg [36], which consists
of two convolutional layers with subsequent max-pooling layers, and two fully-connected layers.
The same model is also used in [27, 30, 34]. We also conduct experiments on ResNet-18 [15],
Vgg-11 [45], and SL-ViT [28]. For SL-ViT, we resize 28 ˆ 28-sized images into 32 ˆ 32 to fit in the
required minimum patch size.

C.2 Datasets

To validate our algorithm, we employ 6 distinct datasets, as listed below. The values in the parentheses
denote the number of samples used to train and test, respectively.

• MNIST [9] (60,000 / 10,000): contains hand-written digits images, ranging from 0 to
9. The data is augmented using Random Cropping, Random Horizontal Flipping, and
Normalization. The data is converted to 3-channel RGB images.

• CIFAR-10 [25] (50,000 / 10,000): contains a labeled subset of 80 Million Tiny Images
[49] for 10 different classes. The data is augmented using Random Cropping, Horizontal
Flipping, Normalization, and Cutout [10].

• SVHN [40] (73,257 / 26,032): contains digits of house numbers obtained from Google
Street View. The data is augmented using Random Cropping, Random Horizontal Flipping,
and Normalization.

• CINIC-10 [7] (90,000 / 90,000): contains a combination of CIFAR and downsized ImageNet
[8], which is compiled to serve as a bridge between the two datasets. The data is augmented
using Random Cropping, Random Horizontal Flipping, and Normalization.

• PathMNIST [54] (110,000 / 7,180): contains non-overlapping patches from Hematoxylin
& Eosin stained colorectal cancer histology slide images. The data is augmented using
Random Horizontal Flipping, and Normalization.

• TissueMNIST [54] (189,106 / 47,280): contains microscope images of human kidney cortex
cells, which are segmented from 3 reference tissue specimens. The data is augmented using
Random Horizontal Flipping, and Normalization. The data is converted to 3-channel RGB
images.

Figure 5: Example images from PathMNIST datasets and TissueMNIST datasets.

Note that we evaluate our algorithm is on medical imaging datasets - a crucial practical application of
federated learning [3, 55]. Illustrative examples of the images are in Figure 5.
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C.3 Non-IID Partition Strategy

To comprehensively address the data heterogeneity issue in federated learning, we distribute the
local datasets using the following two distinct data partition strategies: (i) Sharding and (ii) Latent
Dirichlet Allocation (LDA).

• (i) Sharding [27, 36, 41]: sorts the data by label and divide the data into shards of the same
size, and distribute them to the clients. In this strategy, the heterogeneity level increases as
the shard per user, s, becomes smaller, and vice versa. As the number of shards is the same
across all the clients, the dataset size is identical for each client.

• (ii) Latent Dirichlet Allocation (LDA) [30, 34, 50]: allocates the data samples of class
c to each client k with the probability pc, where pc « Dirpαq. In this strategy, both the
distribution and dataset size differ for each client. The heterogeneity level increases as the
concentration parameter, α, becomes smaller, and vice versa.

Note that although only the statistical distributions varies across the clients in Sharding strategy, both
the distribution and dataset size differ in LDA strategy. Figure 6 illustrates the difference between
these partition strategies.

Figure 6: CIFAR-10 partition examples across 10 clients.

C.4 Learning Setups

We use a momentum SGD optimizer with an initial learning rate of 0.01, a momentum value of 0.9,
and weight decay 1e-5. The momentum is employed only for local learning and is not uploaded to the
server. Note that SAM optimization also requires its base optimizer, which performs the parameter
update using the obtained gradient at the perturbed weights. The learning rate is decays with a factor
of 0.99. As we are assuming a synchronized FL scenario, we simulate the parallel distributed learning
by sequentially conducting local learning for the sampled clients and then aggregate them into a
global model. The standard deviation is measured over 3 runs. The detailed learning setups for each
datasets is provided in Table 3.

Table 3: Learning scenarios for each datasets.

Datasets Clients Comm. Rounds Sampling Ratio
MNIST 100 200 0.1

CIFAR-10 100 300 0.1
SVHN 100 200 0.1

CINIC-10 200 300 0.05
PathMNIST 200 200 0.05

TissueMNIST 200 200 0.05
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Table 4: Algorithm-specific hyperparameters.

Methods Selected Searched Candidates

FedAvg None None

FedProx µ=1.0 µ P t0.1, 0.5, 1.0, 2.0u

Scaffold None None

FedNova None None

FedNTD β=1.0, τ=1.0 β P t0.5, 1.0u, τ P t1.0, 3.0u

FedSAM ρ=0.1 ρ P t0.1, 0.5, 1.0, 2.0u

FedASAM ρ=1.0 ρ P t0.1, 0.5, 1.0, 2.0u

FedDyn None None

MOON µ=0.1, τ=0.5 µ P t0.1, 0.5u, τ P t0.5, 1.0u

FedSoL ρ “ 2.0 ρ P t0.1, 0.5, 1.0, 2.0u

C.5 Algorithm Implementation Details

We search for hyperparameters and select the best among the candidates. The hyperparameters for
each method is provided in Table 4. In the primary experiments, we use KL-divergence loss [16] with
softened logits with temperature τ=3 for the proximal loss for the weight perturbation in FedSoL.

D Learning Curves

Figure 7: Learning curves of FL methods on LDA (α=0.1). The curves are smoothed for clear
visualization.

To provide further insights into the learning process, we illustrate the learning curves of different
FL methods in Figure 7. Although we utilize different communication rounds for each dataset, the
performance of the model becomes sufficiently saturated at the end of communication rounds. For all
datasets, FedSoL not only achieves a superior final model at the end of the communication round
but also demonstrates much faster convergence. Moreover, although some algorithms that perform
well on a dataset fail on another (ex. FedNTD [27] underperforms compared to FedProx [32] on the
TissueMNIST datasets), FedSoL consistently exhibits significant improvements when compared to
the other baselines.

E Personalized Performance

In Table 5, we compare FedSoL with several methods specifically designed for personalized federated
learning (pFL): PerFedAvg [12], FedBabu [41], and kNN-Per [35]. Each method is assessed by
fine-tuning them for e local epochs from the global model after the final communication round. As
global alignment is unnecessary for the personalized model, we fine-tune FedSoL using original the
local objective without perturbation and denote it as FedSoL-FT. The standard deviation is measured
across the clients. The results reveal that our FedSoL-FT consistently outperforms other pFL methods
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under various scenarios. Furthermore, the gap is enlarged when local (e=1), implying that the global
model obtained by FedSoL adapts more quickly to local distributions. We suggest that by integrating
FedSoL with other methods specialized for pFL, we can attain superior performance for both the
global server model and client local models.

Table 5: Personalized FL performance after τ epochs of fine-tuning. The heterogeneity level is set as
LDA (α “ 0.1).

Method e CIFAR-10 SVHN TissueMNIST
Local-only - 84.7 ˘12.8 87.4 ˘13.0 82.4 ˘15.5

FedAvg
1 84.1 ˘13.4 86.6 ˘15.5 82.2 ˘17.5

5 88.9 ˘8.9 92.1 ˘5.7 89.2 ˘10.1

PerFedAvg
1 80.5 ˘16.2 64.1 ˘30.3 82.3 ˘18.9

5 86.3 ˘10.4 72.4 ˘21.2 88.8 ˘10.2

FedBabu
1 84.6 ˘12.7 88.7 ˘9.6 85.7 ˘14.3

5 89.2 ˘8.4 92.7 ˘6.2 90.5 ˘8.8

kNN-Per
1 85.7 ˘12.3 86.4 ˘15.0 86.5 ˘14.2

5 89.7 ˘8.1 92.8 ˘6.2 91.4 ˘7.5

FedSoL-FT (Ours)
1 87.5 ˘9.7 92.5 ˘7.4 88.1 ˘12.2

5 90.5 ˘7.8 95.0 ˘3.9 91.6 ˘6.9

F Proximal Perturbation with SAM

In our work, we consider how to combine the proximal restriction into SAM optimization to improve
overall FL performance. A straightforward approach might involve using the linearly combined local
objective between the original local loss Lk

local and the proximal loss Lk
p in Equation (2) for the SAM

optimization in Equation (3) as follows:

min
wk

max
}ϵ}2ăρ

“

Lk
localpwkq ` β ¨ Lk

ppwk;wgq
‰

. (10)

In the above equation, the gradients for weight perturbation and parameter update are obtained from
the same objective.

However, this approach encounters the same drawbacks as when using each method on its own.
The combined loss also varies considerably across clients due to heterogeneous local distributions,
causing the smoothness to largely rely on individual local distributions. Furthermore, the negative
correlation between the gradients of the two objectives within the combined loss still limits local
learning. Consequently, this approach neither encourages global alignment nor preserves the local
generality as desired.

Instead in FedSoL, we overcome this issue by decoupling this directly combined loss into the proximal
loss Lk

p for weight perturbation and the original local loss Lk
local for weight updates. To further

analyze the relationship between loss functions and weight perturbation in SAM optimization, we
conduct an ablation study on the following strategies.

• A0: Use original local loss without any weight perturbation (FedAvg).
• A1: Use original local loss, but get the original local loss gradient at weights perturbed by

the proximal gradient (FedSoL).
• A2: Use combined loss, but get the proximal loss gradient at weights perturbed by the

proximal gradient.

• A3: Use combined loss, but get the proximal loss gradient at weights perturbed by the
proximal gradient.

• A4: Use combined loss, but get the combined loss gradient at weights perturbed by the
combined gradient.
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• A5: Use combined loss without any weight perturbation (Proximal Restriction).
• A6: Use combined loss, but get the original local loss gradient at proximally perturbed

weight loss.

We exclude the strategies that obtaining proximal loss at the perturbed weights using the original
local loss gradient i.e., Lppwk ` ϵ˚

c ), where ϵ˚
c “ ρ

gp`gl

∥gp`gl∥
, as it leads the learning to diverge. The

detailed formulation for each method is provided in Table 6 with its corresponding performance. The
results in Table 6 demonstrates that utilizing the original local loss gradient at weights perturbed by
the proximal loss gradient (A1 in Table 6) yields outperforms the other approaches. We suggest that
our FedSoL is an effective way to integrate proximal restriction effect into SAM optimization in FL.

Table 6: Detailed formulation for each method and their performance on CIFAR-10 datasets (LDA
α=0.1).

Name Method Formulation Performance

A0 Llocalpwkq 56.13
A1 Llocalpwk ` ϵ˚

p q 64.13
A2 Llocalpwkq ` β ¨ Lppwk ` ϵ˚

p q 53.85
A3 Llocalpwk ` ϵ˚

p q ` β ¨ Lppwk ` ϵ˚
p q 60.28

A4 Llocalpwk ` ϵ˚
c q ` β ¨ Lppwk ` ϵ˚

c q 45.72
A5 Llocalpwkq ` Lppwkq 61.76
A6 Llocalpwk ` ϵ˚

p q ` β ¨ Lppwkq 44.12

G Adaptive Perturbation Radius

While SAM defines a fixed radius ρ, it is often insufficient in capturing the loss landscape dynam-
ics [22, 26]. In FedSoL, we introduce an adaptive radius reflecting the global and local parameter
discrepancies. For each layer m, we construct a scaling vector λpmq, where the i-th entry corresponds
to each parameter in that layer:

λpmq
ris “

ˇ

ˇw
pmq

k ris ´ w
pmq
g ris

ˇ

ˇ

›

›w
pmq

k ´ w
pmq
g

›

›

2

. (11)

Here, wpmq
g and w

pmq

k denote layer m in the global and local model respectively. The denominator
represents the normalization of the discrepancy within the layer, accounting for the layer-wise scale
variance. The adaptive radius allows more perturbation for the parameter with large difference, and
vice versa. It fits with the typical behavior of proximal loss, which increases as }wk ´ wg}2 grows.
By concatenating these layer-specific vectors, Λ “ pλp1q, . . . ,λpmq, . . . ,λplastq

q, and incorporating
it into the Equation (4)), the proximal perturbation ϵ˚

p becomes:

ϵ˚
p “ ρ ¨ Λ d

∇wk
Lk
ppwk;wgq

}∇wk
Lk
ppwk;wgq}2

« argmax∥∥∥Λ´1
d ϵ

∥∥∥
2

ď ρ

Lk
ppwk ` ϵ;wgq , (12)

where d denotes the element-wise product. Intuitively, the adaptive radius allows local learning to
deviate certain parameters from the global model, only if they are crucial enough to withstand larger
weight perturbations.

Adaptive Radius The advantage of the adaptive approach are depicted in Figure 8. As shown in
Figure 8(a), using the adaptive radius not only improve performance but also reduces sensitivity to
the selection of ρ. Meanwhile, Figure 8(b) displays the averaged λ values for each local model layer,
highlighting the increased deviation in the later layers, as a consequence of the data heterogeneity [34].
Note that using a fixed value for ρ corresponds to setting Λ in Equation (12) as a vector with all
entries to one.
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Figure 8: Effect of adaptive radius in CIFAR-10 (α=0.1). (a) Server test accuracy after 300 rounds.
(b) Layer-wisely averaged λ values of FedSoL (ρ “ 1.0) at round 200.

H Proximal Losses

In our primary experiments, we utilize KL-divergence loss as the proximal loss. However, FedSoL
can be combine with various other proximal objectives. Table 7 shows the impact of incorporating
FedSoL with other proximal restrictions: FedProx [32], FedNova [51], Scaffold [20], FedDyn [2],
and Moon [30]. These methods are compared in two distinct scenarios: as an auxiliary objective
alongside the original local objective (Base) and as proximal perturbation within FedSoL (Combined).
The results show the enhanced performances with FedSoL.

Table 7: Comparison of proximal methods combined with FedSoL (ρ=2.0). The heterogeneity is set
as LDA (α = 0.1).

Method CIFAR-10 SVHN CINIC-10
Base Combined Base Combined Base Combined

FedProx 59.80 63.93 Ò 72.40 84.32 Ò 40.09 55.25 Ò

FedNova 10.00 31.77 Ò 53.07 79.95 Ò 21.89 42.37 Ò

Scaffold 10.00 62.70 Ò 21.46 77.52 Ò 16.89 49.96 Ò

FedDyn 60.80 62.85 Ò 78.15 79.43 Ò 48.25 52.17 Ò

MOON 55.72 60.91 Ò 29.67 76.82 Ò 38.15 49.14 Ò

I Partial Perturbation

As the data heterogeneity does not affect all layers equally [34], we investigate the use of partial
perturbation in FedSoL, by selectively perturbing specific layers instead of the entire model. The
results in Table 8 reveal that perturbing only the last classifier layer (Head in Table 8) is sufficient
for FedSoL. The performance is nearly as high as the full-model perturbation, but the computational
requirement is significantly lower by avoiding multiple forward and backward computations across
all layers when using the standard SAM strategy. Interestingly, perturbing all layers except the
classifier head (Body in Table 8) consumes almost the same amount of computation but rather drops
in performance, showing the importance of the later layers.

Table 8: Effect of partial weight perturbation in CIFAR10 (α=0.1). The FLOPs shows relative
computation w.r.t. FedAvg. δ stands for the computation for the proximal loss.

Target Position Perturbation (ρ) FLOPs
0.0 0.5 1.0 1.5 2.0

All (full)
56.13

61.17 64.16 64.38 63.94 2ˆ `δ

Body (partial) 60.98 62.95 63.94 63.80 1.96ˆ `δ

Head (partial) 62.65 63.62 64.13 63.25 1.33ˆ `δ
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J Model Architecture

We conduct further experiments on different model architectures: VggNet-11 [45], ResNet-18 [15],
and SL-ViT [28], which is a specialized structure of ViT [11] for small-sized datasets. The results
provided in Table 9 validates the efficacy of FedSoL across varying model architectures.

Table 9: Comparison on different model architectures. The heterogeneity is LDA (α = 0.1).

Model Method CIFAR-10 SVNH PathMNIST

Vgg11

FedAvg 41.30˘1.07 50.02˘4.25 61.79˘9.88

FedProx 40.45˘1.41 31.07˘6.72 63.47˘2.68

FedNTD 60.55˘2.14 56.62˘2.64 69.82˘2.27

FedSoL 56.39˘1.40 74.74˘0.04 78.38˘1.12

Res18

FedAvg 49.92˘0.62 76.98˘2.90 57.91˘1.27

FedProx 59.00˘2.58 82.09˘2.35 75.84˘1.58

FedNTD 57.79˘3.42 78.50˘0.18 76.87˘0.57

FedSoL 66.32˘0.48 85.97˘0.04 80.59˘0.11

SL-ViT

FedAvg 35.48˘2.09 53.94˘5.17 72.44˘1.91

FedProx 38.73˘1.23 58.25˘4.23 74.10˘1.23

FedNTD 47.59˘2.84 61.46˘1.76 71.65˘1.71

FedSoL 47.95˘1.51 67.19˘0.33 77.96˘0.47

K Effect on Local Learning

K.1 Proximal Restriction

We examine the proximal restriction effect in FedSoL by analyzing how its update gradient gu
interacts with the proximal loss Lp, as shown in Figure 9. As ρ increases, gu becomes more
orthogonal to the proximal gradient gp (Figure 9(b)). This orthogonality helps in maintaining the
proximal loss low during the local learning process, which implies better global alignment (Figure
9(a)).

Figure 9: Effect of FedSoL on local learning in CIFAR-10 (α=0.1) by varying ρ values. (a) Average
proximal loss of local models. (b) Cosine similarity between FedSoL gradient (gu) and proximal
gradient (gp) during local learning.

K.2 Weight Divergence

To assess the deviation of local learning from the global model, we measure the L2 distance between
models: ∥wg ´ wk∥ where wg is the global model and wk is the client k’s trained local model. The
results, averaged across sampled clients, are shown in Figure 10. In Figure 10(a), FedSoL effectively
reduces the divergence, ensuring that local models remain closely aligned with the global model,
verifying the proximal restriction effect in FedSoL. Figure 10(b) illustrates that this alignment also
fosters increased consistency among local models, reducing their mutual divergence.
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Figure 10: Comparative analysis of weight divergence in FedAvg and FedSoL (ρ=2.0) on CIFAR-10
LDA (α=0.1). (a) shows global-local model divergence, while (b) presents the divergence across
local models.

L Proof of Proposition

We begin by organizing Equation (7), substituting Equation (6) into FedSoL:

∆FedSoLLk
tlocal,pupwkq « ´γx∇wk

Lk
tlocal,pupwkq, gupwkqy

« ´γ
´

x∇wk
Lk

tlocal,pupwkq, gly ` ρ x∇wk
Lk

tlocal,pupwkq,∇2Lk
local ĝpy

¯

, (13)

and for the update of Lk
localpwkq in FedAvg:

∆FedAvgLk
localpwkq « ´γx∇wk

Lkpwkq, gly “ ´γ}∇Lk
localpwkq}2 . (14)

L.1 Proof of Proposition 1

Regarding Proposition 1, from Equation (13), we obtain:

∆FedSoLLk
p « ´γ

´

xgp, gly ` ρ xgp,∇2Lk
local ĝpy

¯

« ´γ
´

xgl , gpy ` ρ ¨ ĝp
J∇2Lk

local gp

¯

.

Furthermore, if the local objective is convex, then the Hessian is always positive semi-definite.
Consequently, gp

J ∇2Lk
local gp ě 0, and we can guarantee that the second term is nonnegative as

well.

L.2 Proof of Proposition 2

Similarly, from Equation (13), we derive:

∆FedSoLLk
localpwkq

« ´γ
´

x∇wk
Lk
localpwkq,∇wk

Lk
localpwkqy ` ρ x∇wk

Lk
localpwkq,∇2

wk
Lk
local ĝpy

¯

“ ´γ

ˆ

}∇wk
Lk
localpwkq}2 `

ρ

2
xĝp, 2∇2

wk
Lk
local∇wk

Lk
localpwkqy

˙

.

“ ´γ

ˆ

}∇wk
Lk
localpwkq}2 ` ∇wk

}∇wk
Lk
localpwkq}2 ¨

ρ

2
ĝp

˙

.

On the other hand, from Equation (14), applying the first-order Taylor approximation to wk ÞÑ

}∇Lk
localpwkq}2, we have:

∆FedAvgLk
local

ˆ

wk `
ρ

2
ĝp

˙

« ´γ}∇wk
Lk
local

ˆ

wk `
ρ

2
ĝp

˙

}2

« γ

ˆ

}∇wk
Lk
localpwkq}2 ` ∇wk

›

›

›
∇wk

Lk
localpwkq

›

›

›

2

¨
ρ

2
ĝp

˙

.

Therefore, ∆FedAvgLk
local pwk `

ρ
2 ĝpq is equal to ∆FedSoLLk

localpwkq, up to the first-order Taylor
approximation.
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M Related Work

M.1 Federated Learning (FL)

Federated learning is a distributed learning paradigm to train models without directly accessing
private client data [23, 24]. The standard algorithm, FedAvg [36], aggregates locally trained models
by averaging their parameters. While a variety of FL algorithms have been introduced, they commonly
conduct parameter averaging in a certain manner [20, 27, 32, 56]. Although FedAvg ideally performs
well when all client devices are active and IID distributed [46, 53], its performance significantly
degrades when clients have heterogeneous data distributions [19, 33, 57]. Our work focuses on
mitigating this data heterogeneity issue by modifying the local learning strategy.

M.2 Proximal Restriction in FL

A prevalent strategy to address data heterogeneity in FL is the introduction of a proximal term into
local learning objectives [20, 27, 30, 32]. This approach aims to restrict the local learning deviation
induced by the biased local distributions. For example, FedProx [32] employs L2 distance between
models, while MOON [30] uses the contrastive loss [42], regarding the previously trained local
model’s representations as negative pairs. Meanwhile, Scaffold [20] use estimated global direction
as a control variate to adjust local gradients. However, such explicit alteration of local objectives
may hinder the acquisition of new knowledge during local learning [37, 44]. In our study, we aim to
leverage the benefits of proximal restriction effect during local learning, but without changing the
original local objectives.

M.3 SAM Optimization in FL

Recent studies have begun to suggest that enhancing local learning generality can significantly boost
FL performance [4, 37, 44], aiding the global model in generalizing more effectively. Inspired by
the latest findings that connect loss geometry to the generalization gap [5, 17, 18, 21], those works
seek for flat minima, utilizing the recently proposed Sharpness-Aware Minimization (SAM) [13] as
the local optimizer. For instance, FedSAM [44] and FedASAM [4] demonstrate the benefits of using
SAM and its variants as local optimizer. Meanwhile, FedSMOO [47] incorporates a global-level SAM
optimizer, and FedSpeed,[48] employs multiple gradient calculations to encourage global consistency.
In our work, we introduce the proximal restriction effect into SAM in an implicit manner, by adjusting
the perturbation direction and magnitude during local learning.
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