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Abstract

Current state-of-the-art generative models map noise to data distributions by match-
ing flows or scores. A key limitation of these models is their inability to readily
integrate available partial observations and additional priors. In contrast, energy-
based models (EBMs) address this by incorporating corresponding scalar energy
terms. Here, we propose Energy Matching, a framework that endows flow-based
approaches with the flexibility of EBMs. Far from the data manifold, samples move
from noise to data along irrotational, optimal transport paths. As they approach
the data manifold, an entropic energy term guides the system into a Boltzmann
equilibrium distribution, explicitly capturing the underlying likelihood structure of
the data. We parameterize these dynamics with a single time-independent scalar
field, which serves as both a powerful generator and a flexible prior for effective
regularization of inverse problems. The present method substantially outperforms
existing EBMs on CIFAR-10 and ImageNet generation in terms of fidelity, while
retaining simulation-free training of transport-based approaches away from the
data manifold. Furthermore, we leverage the flexibility of the method to introduce
an interaction energy that supports the exploration of diverse modes, which we
demonstrate in a controlled protein generation setting. This approach learns a scalar
potential energy, without time conditioning, auxiliary generators, or additional net-
works, marking a significant departure from recent EBM methods. We believe this
simplified yet rigorous formulation significantly advances EBMs capabilities and
paves the way for their wider adoption in generative modeling in diverse domains.

1 Introduction

Generative models learn to map from a simple, easy-to-sample distribution, such as a Gaussian, to
a desired data distribution. They do so by approximating the optimal transport (OT) map—such as
in flow matching [Lipman et al., 2023} |Liu et al., [2023| |/Albergo and Vanden-Eijnden, [2023]]—or
through iterative noising and denoising schemes, such as in diffusion models [Ho et al., 2020, [Song
et al., 2021]]. In addition to being highly effective in sample generation, diffusion- and flow-based
models have also been used as priors to regularize poorly posed inverse problems [Chung et al., 2023}
Mardani et al., [2024, [Ben-Hamu et al.| 2024]]. However, these models do not explicitly capture the
unconditional data score and instead model the score of smoothed manifolds at different noise levels.
The measurement likelihood, on the other hand, is not tractable on these noised manifolds. As a
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Figure 1: Trajectories (green lines) of samples traveling from a noise distribution (black dots; here, a
Gaussian mixture model) to a data distribution (blue dots; here, two moons as in [Tong et al.| 2023]))
under four different methods: Action Matching [Neklyudov et al.,[2023|], Flow Matching (OT-CFM)
[Tong et al.| [2023]], EBMs trained via contrastive divergence [Hinton,2002], and our proposed Energy
Matching. We highlight several individual trajectories in red to illustrate their distinct behaviors.
Both Action Matching and Flow Matching learn time-dependent transports and are not trained for
traversing the data manifold. Conversely, EBMs and Energy Matching are driven by time-independent
fields that can be iterated indefinitely, allowing trajectories to navigate across modes. While samples
from EBMs often require additional steps to equilibrate (see, e.g., the visible mode collapses that
slow down sampling from the data manifold), Energy Matching directs samples toward the data
distribution in “straight” paths, without hindering the exploration of the data manifold.

result, existing approaches repeatedly shuttle between noised and data distributions, leading to crude
approximations of complex, intractable terms [Daras et al.|[2024]]. For example, DPS [Chung et al.,
2023]] approximates an intractable integral using a single sample. More recently, D-Flow [Ben-Hamu
et al.| [2024] optimizes initial noise by differentiating through the simulated trajectory. To the best of
our knowledge, these models lack a direct way to navigate the data manifold in search of the optimal
solution without repeatedly transitioning between noised and data distributions.

EBMs [Hopfield, 1982, Hinton, [2002| |ILeCun et al., 2006] provide an alternative approach for
approximating the data distribution by learning a scalar-valued function E(z) that specifies an
unnormalized density p(z) o« exp (—E(x)). Rather than explicitly mapping noise samples onto
the data manifold, EBMs assign low energies to regions of high data concentration and high energy
elsewhere. This defines a Boltzmann distribution from which one can sample, for example, via
Langevin sampling. In doing so, EBMs explicitly retain the likelihood information in E(x). This
likelihood information can then be used in conditional generation (e.g., to solve inverse problems),
possibly together with additional priors simply by adding their energy terms [Du and Mordatch, [2019].
Moreover, direct examination of local curvature on the data manifold—allows the computation of
local intrinsic dimension (LID) (an important proxy for data complexity)—whereas diffusion models
can only approximate such curvature in the proximity of noise samples.

Despite the theoretical elegance of using a single, time-independent scalar energy, practical EBMs
have historically suffered from poor generation quality, falling short of the performance of diffusion
or flow matching models. Traditional methods [Song and Kingmal 2021] for training EBMs, such
as contrastive divergence via Markov chain Monte Carlo (MCMC) or local score-based approaches
[Song and Ermon, |2019], often fail to adequately explore the energy landscape in high-dimensional
spaces, leading to instabilities and mode collapse. Consequently, many methods resort to time-
conditioned ensembles [[Gao et al.| [2021]], hierarchical latent ensembles [[Cui and Hanl 2024]], or
combine EBMs with separate generator networks trained in cooperation [Guo et al., 2023 [Zhang
et al.| 2024} [Yoon et al}|2024], thereby requiring significantly higher parameter counts and training
complexity.



Contributions. In this work, we propose Energy Matching, a two-regime training strategy that
combines the strengths of EBMs and flow matching; see Figure|[T]

When samples lie far from the data manifold, they are efficiently transported toward the data.
Once near the data manifold, the flow transitions into Langevin steps governed by an internal
energy component, enabling precise exploration of the Boltzmann-like density well around the
data distribution. This straightforward approach produces a time-independent scalar energy field
whose gradient both accelerates sampling and shapes the final density well—via a contrastive
objective that directly learns the score at the data manifold—yet remains efficient and stable
to train. Empirically, our method significantly outperforms existing EBMs on both CIFAR-10
and ImageNet generation in terms of fidelity, and compares favorably to flow-matching and
diffusion models—without auxiliary generators or time-dependent EBM ensembles.

Our proposed process complements the advantages of flow matching with an explicit likelihood
modeling, enabling traversal of the data manifold without repeatedly shuffling between noise
and data distributions. This simplifies both inverse problem solving and controlled generations
under a prior. In addition, to encourage diverse exploration of the data distribution, we showcase
how repulsive interaction energies can be easily and effectively incorporated, with an application
to conditional protein generation. Finally, we also showcase how analyzing the learned energy
reveals insight on the LID of the data with fewer approximations than diffusion models[]

“Code repository: https://github.com/mlbalcerak/EnergyMatching

2 Energy matching

In this section, we show how a scalar potential V' (z) can simultaneously provide an optimal-transport-
like flow from noise to data while also yielding a Boltzmann distribution that explicitly captures the
unnormalized log-likelihood of the data.

The Jordan-Kinderlehrer—Otto (JKO) scheme. The starting point of our approach is the JKO
scheme [Jordan et al.l [1998]], which is the basis of the success of numerous recent generative models
[Xu et al., [2023} [Terpin et al.,[2024} |Choi et al., |2024]]. The JKO scheme describes the discrete-time
evolution of a probability distribution p; along energy-minimizing trajectories in the Wasserstein

space,
W2 (p,
Prrar = argmin %tpt) + / Vo(x)dp(z) +£(t) /p(z) log p(z)dz . (1
—_——
Transport Cost Potential Energy Internal Energy (-Entropy)

Here, 0 denotes the learnable parameters of the scalar potential Vy(x), and €(t) is a temperature-like
parameter tuning the entropic term. The transport cost is given by the Wasserstein distance,

Wipp) = amin [ o ylPd(e). @
YEL(p,p1) JRA xR

where T'(p, p;) is the set of couplings between p and py, i.e., the set of probability distributions on

R? x R¢ with marginals p and p;. Here, d is the dimensionality of the data. Henceforth, we call OT

coupling any -, that yields the minimum in (Z). When ~, = (id, T') »p, i.e., it is the pushforward of

the map x — (z, T'(z)) for some function T', we say that 7" is an OT map from p to p;.

Differently from most literature, we consider £(¢) to be dependent on time and study the behavior of
Equation @ as t — oo. To fix the ideas, consider, for instance, a linear scheduling:

0, 0<t<r*
E(t) = Emax%v T <t< ]-7 (3)
€max; t>1.

First-order optimality conditions. Following Terpin et al.| [2024], we analyze (I)) at each time ¢
via its first-order optimality conditions [Lanzetti et al.,[2024} 2025]]. These conditions characterize
the properties of the desired solution and thus represent the optimization goal:
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where ~; is an OT plan between the distributions p;4a¢+ and p; and supp(+y;) is the support of ;.
That is, this condition has to hold for all pairs of points in the support of p;+ A; and p; that are coupled
by OT. Intuitively, analyzing (@) provides us with two key insights:

1. For times ¢ < 7*, £(¢) = 0 and (@) becomes

1
&Y+ VaVo(2) =0 (a,y) € supp(m)- ®)

That is, the system is in an OT, flow-like, regime.

2. Near the data manifold, which we aim at modeling with the equilibrium distribution peq of (I),

PtAt R Peq and, thus, for t > 1, z ~ y for all (x,y) € supp(7:). Then, we can simplify (@) as
Emauxvz IOg qu(x) = _VIVH(:E) = qu(w) & exp (_ :i;(i)) '
Thus, the equilibrium distribution is described by an EBM, exp (—FE(x)), with E(x) = 7\6/9(95) .

Our approach in a nutshell. Combining the two insights above, we propose a generative framework
that combines OT and EBMs to learn a time-independent scalar potential Vy(x) whose Boltzmann

distribution,
Vo(z) >

6)

matches pgata. To transport samples efficiently from noise pg t0 peq ~ Pdata, WE USE twWo regimes:

max

Peq(T) o< exp <

* Away from the data manifold: ¢ ~ 0. The flow is deterministic and OT-like, allowing rapid
movement across large distances in sample space.

* Near the data manifold: € ~ €,,x. Samples diffuse into a stable Boltzmann distribution, properly
covering all data modes.

By combining the long-range transport capability of flows with the local density modeling flexibility
of EBMs, we achieve tractable sampling and explicitly encode the unnormalized log-likelihood
—Vo(x)/emax of the underlying data distribution; see Figure

2.1 Training objectives

In practice, we balance the two objectives by initially training Vjy exclusively with the optimal-
transport-like objective (¢ = 0, see Section[2.1.T)), ensuring a stable and consistent generation of
high-quality negative samples for the contrastive phase. Subsequently, we jointly optimize both
the transport-based and contrastive divergence objectives, progressively increasing the effective
temperature to € = £p,ax as samples approach the data manifold (i.e., the equilibrium distribution);

see Section 2.1.21

2.1.1 Flow-like objective LoT

We begin by constructing a global velocity field —V . Vy(x) that carries noise samples {z¢} to
data samples {Zqat, } With minimal detours. For this, we consider geodesics in the Wasserstein
space [[Ambrosio et al., 2008]]. Practically, we compute the OT coupling v* between two uniform
empirical probability distributions, one supported on a mini-batch of the data, and one supported on
a set of noise samples with the same cardinality. These samples are drawn from an easy-to-sample
distribution; in our case, a Gaussian. Since the probability distributions are uniform and empirical
with the same number of samples, a transport map 7" is guaranteed to exist [Ambrosio et al.l 2008]].

Remark 2.1 (OT solver). Depending on the method used to compute the OT coupling, an explicit OT
map may or may not be obtained. Similarly, if the number of noise samples differs from the mini-batch
size B, the resulting OT coupling generally will not correspond to a map. In this case, one can
adapt the algorithm by defining a threshold Ty, and considering all pairs (data, To) for which the
coupling value satisfies v* (Tdata, o) > Ten. In our experiments, we used the POT solver [[Flamary
et al.l 2021\ and did not observe benefits from using a sample size different from B, consistent with
previous approaches [[Tong et al., |2023|].



Then, for each data point z4.t, We define the interpolation vy = (1 — t)T (Zdata) + tZdata, Which
is a point along the geodesic. The velocity of each x4 is Tgata — T (Zdata) (i-€., the samples move
from the noise to the data distribution at constant speed) and, in this regime, we would like to have
—V.Vo(x1) = Tgata — T(Zdata). For this, we define the loss:

EOT = Etid[}t(?)’e-,—g) |:vaV9(-'L‘t) + Tdata — T(xdata)||2:| .

This objective can be interpreted as a flow-matching formulation under the assumption that the
velocity field is both time-independent and given by the gradient of a scalar potential, thereby
imposing an irrotational condition. This aligns naturally with OT, which also yields an irrotational
velocity field—any rotational component would add unnecessary distance to the flow and thus inflate
the transport cost without benefit. Our experimental evidence adds to the recent study by [Sun
et al.,[2025]], in which the authors observed that time-independent velocity fields can, under certain
conditions, outperform time-dependent noise-conditioned fields in sample generation.

Algorithm 1 Phase 1 (warm-up).

1: Inmitialize model parameters 6
2: for iterationn = 0,1, ... do

3: Sample mini-batch {$data,b}1]73:1 ~D > Data samples
4: Sample mini-batch {zg ;}2_; ~ N(0,I) > Random Gaussian samples
5: T < OTsolver({zdata,b}, {Zo,b}) > Compute OT map
6: Sample {tp}£_; ~ U(0,7*) > Typically 7% = 1 for the warm-up
7: Set interpolations x¢, <— (1 — &) T'(Zdata,b) + tb Tdata,b > Interpolation along geodesics
8: Lot (0) + Zszl V2 Va(xe,) + Taata,y — T'(Tdata,b) H2 > Loss function
9: 0« 0—aVyLor(H) > Gradient update with learning rate o
10: end for

11: return 6 > Trained 0

2.1.2 Contrastive objective Lcp

Near the data manifold, Vjy(z) is refined so that peq(z) o exp (—Vp()/emax) matches the data
distribution. We adopt the contrastive divergence loss described in EBMs [Hinton, |2002],

Vi Vo (Z
'CCD - Eﬂf’\‘pdala |: e(x):| - ]Eiwsg(Peq) |: a(x):| )

6IIlaX
where Z are “negative” samples of the equilibrium distribution induced by V. We approximate these
samples using an MCMC Langevin chain [Welling and Tehl 2011]. We split the initialization for
negative samples: half begin at real data, and half begin at the noise distribution. This way, Vj(z)
forms well-defined basins around high-density regions while also shaping regions away from the
manifold, correcting the generation. The sg(+) indicates a stop-gradient operator, which ensures
gradients do not back-propagate through the sampling procedure.

max

2.1.3 Dual objective and implementation notes

To balance the deterministic flow-like regime (where € ~ 0) away from the data manifold and the
stochastic Boltzmann regime (where € /= £,,x) near equilibrium, we adopt the linear temperature
schedule described in (3). We introduce a dataset-specific hyperparameter Acp to stabilize the
contrastive objective by appropriately weighting Lcp relative to Lor. The resulting algorithm is
described in detail in Algorithm [I]and Algorithm[2] Since Algorithm 2]benefits from high-quality
negatives, we begin with Algorithm [I] (and, thus, with Lot only) to ensure sufficient mixing of
noise-initialized negatives.

Given the trained models, we define a sampling time 7. Although convergence to the equilibrium
distribution is guaranteed only as 7, — oo, we empirically observe that sample quality (measured with
Fréchet inception distance (FID)) plateaus by 75 = 3.25 on CIFAR-10; see Section[A.2] The sampling
procedure, which optionally includes conditional and interaction terms, is detailed in Algorithm [3]
In practice, we implement training using explicit Euler-Maruyama updates and sampling with an
Euler—Heun predictor-corrector scheme, while for simplicity the algorithms illustrate only explicit
updates. Additionally, the constant factor 1/e.x in Lop is absorbed into A¢p.

Section [A.T|discusses how the landscape of Vj evolves across these two phases. Hyperparameters for
each dataset, along with intuitions to guide their selection for new datasets, are provided in Section D]



Algorithm 2 Phase 2 (main training).

0 < Opretrained > Initialize from Algorithm
for iterationn = 0,1, ... do
Lot <+ Use lines 3-8 from Algorithm ]

1:
2:
3
4: Initialize negative samples {x(o) V£, from noise and/or data > Negative samples
5
6
7

neg,b
for m = 0, 1, ey MLangevin - lgdo
for b =1to B do

(m) Emax, if initialized from data (Optional)
€

e(mAt) from (@), otherwise

8: Sample n, ~ N(0, 1)

9: et (M) AtV Vig(o) (20 ) + V24t > Langevin dynamics step
10: end for

11: end for I

12: Lep + 5350, [Ve (Tdata,p) — Vo (ch}e;z‘ge"i"))] > Contrastive divergence loss
13: L(0) < Lot +Acp Lcp

14: Update 6 < 0 — aVoL(0) > Gradient descent step
15: end for

16: return 6 > Trained 6

Table 1: FIDJ score comparison for unconditional CIFAR-10 generation (lower is better). Unless otherwise
specified, we use results for solvers that most closely match our setup (325 fixed-step Euler—Heun [Butcher,
2016]]). * indicates reproduced methods, while all other entries reflect the best reported results. EGC in its
unconditional version has been reported in [Zhu et al.l 2024]

Learning Unnormalized Data Likelihood \ Learning Transport/Score Along Noised Trajectories
Ensembles: Diffusion + (one or many) EBMs \ Diffusion Models
Hierarchical EBM Diffusion [Cui and Han}{2024] 8.93 DDPM™ [Ho et al.|[2020] 6.45
EGC [Guo et al.}[2023] 5.36 DDPM++ (62M params, 1000 steps) |[Kim et al.|[2021] 3.45
Cooperative DRL (40M params) |[Zhu et al.;[2024] 4.31 NCSN++ (107M params, 1000 steps) [Song et al.}|[2021] 245
Cooperative DRL-large (145M params) [Zhu et al.|[2024] 3.68
Energy-based Models \ Flow-based Models

ImprovedCD [Du et al.|[2021]] 25.1 Action Matching [Neklyudov et al.|[2023] 10.07
CLEL-large (32M params) |Lee et al.| [2023] 8.61 Flow-matching [Lipman et al.||2023] 6.35
Energy Matching (50M params, Ours) 334 OT-CEM* (37M params) [Tong et al.}[2023] 4.04

3 Applications

In this section, we demonstrate the effectiveness and versatility of our proposed Energy Matching
approach across three applications: (i) unconditional generation (ii) inverse problems, and (iii) LID
estimation. The model architecture and all the training details are reported in Section

3.1 Unconditional generation

We compare four classes of generative models: (1) Diffusion models, which deliver state-of-the-art
quality but typically require many sampling steps; (2) Flow-based methods, which learn OT paths
for more efficient sampling with fewer steps; (3) EBMs, which directly model the log-density as a
scalar field, offering flexibility for inverse problems and constraints but sometimes at the expense of
sample quality; and (4) Ensembles (Diffusion with one or many EBMs), which combine diffusion’s
robust sampling with elements of EBM flexibility but can become large and complex to train. Our
approach, Energy Matching, offers a simple (a single time-independent scalar field) yet powerful
EBM-based framework. We evaluate our approach on CIFAR-10 [Krizhevsky and Hintonl 2009] and
ImageNet32x32 [Deng et al., 2009, |(Chrabaszcz et al.,|2017|] datasets, reporting FID scores in Table
and Table 2] respectively. Our method outperforms state-of-the-art EBMs, reducing the FID score by
more than 50%.



Table 2: FID] score comparison for unconditional ImageNet 32x32 generation (lower is better). Unless
otherwise specified, we use results for solvers that most closely match our setup (300 fixed-step Euler—Heun
[Butcher, [2016]).

Learning Unnormalized Data Likelihood Learning Transport/Score Along Noised Trajectories

Ensembles: Diffusion + (one or many) EBMs Diffusion Models

Cooperative DRL (40M params) [Zhu et al.||2024] 9.35 DDPM++ (62M params, 1000 steps) [Kim et al.;|2021] 8.42

Energy-based Models Flow-based Models

ImprovedCD [Du et al.;|2021]] 32.48 Flow-matching [Lipman et al.|[2023] (196M params) 5.02
CLEL-base [Lee et al.,[2023|] (7M params) 22.16
CLEL-large [Lee et al., 2023|| (32M params) 15.47
Energy Matching (50M params, Ours) 6.64

3.2 Inverse problems

In many practical applications, we are interested in recovering some data = from noisy measurements

y generated by an operator A, y = A(x) + w, where w ~ N/ (0, V2(T ) In this setting, the posterior
distribution of = given y is

plaly) o exp (—;ny - A<x>2) exp (~ Ep(a)), @
< pol) > plz)

where Fy(x) is an energy function which one can learn from the data, an EBM. Because we want to
sample z given a measurement y, this reconstruction task is often referred to as an inverse problem.
Here, ||y — Ax||? encodes the measurement fidelity with ¢ controlling the balance between this fidelity
term and the prior. We obtain the prior term Fy(z) = % by training Vy(z) via Energy Matching.
Samples from this posterior can be drawn by starting from a random sample z(©) ~ A (0,1) and
following a Langevin update. We detail the algorithm for generating solutions to inverse problems
in Algorithm (which also incorporates additional interaction energy W (z, ') between generated
samples). We demonstrate our model’s capabilities qualitatively through a controlled inpainting task

and quantitatively via a protein inverse design benchmark. Specific hyperparameters are detailed in
Section

Algorithm 3 Unconditional/conditional sampling with optional interaction energy

1: form = 1to M do

2: Initialize xTS) from noise and/or data > Initialize each chain

3: end for

4: N+ |75 /At > Number of Langevin steps for sampling time 7

5: forn=0,1,...,N —1do

6 form=1,2,...,M do > Prior + data fidelity + interaction
Emax, if initialized from data (Optional)

7: e
e(nAt) from (@), otherwise

8: Uy (mgﬁo) — Vb(mgp) +e™ |y — A(:pﬁ,’;)) HQ/C2 4™ > ktm W(xgﬁ), x,@)

9: Sample n' ~ N (0, 1)

10: 2t 2 ALV, U, (xs,?)) +V2e™ At pi > Langevin dynamics step

11: end for

12: end for

13: return {xﬁfqv ) M > Final samples

Controlled inpainting. Suppose we want to recover two images from a masked image while
encouraging diverse reconstructions. EBMs allow this by introducing an additional interaction energy,

W(x1,x2) = —”B(“U%)Hz, where B has ones in the region of interest (focusing diversity there)
and zeros elsewhere, and o is a hyperparameter controlling the interaction’s strength. Specifically,
we define p(z1, 22 | y) o< p(z1 | y) p(z2 | y) exp(—W (21, 22)), which gives high probability to

pairs (1, z2) that lie far apart in the specified region B. This encourages exploring the edges of the



posterior rather than just its modes, and with suitable W, samples shift toward rare events without
needing many draws. To illustrate the interaction term’s advantages for diverse reconstruction, we

apply our method to a CelebA 2013] 64 x 64 inpainting task. As shown in Figure 2}
we start from a partially observed (masked) face and aim to reconstruct two distinct high-fidelity

completions.

p(ﬁEl, 1’2|y)
o p(z1]y)p(w2ly)

/
\ | LAl

p(xlv l'2|y)
o p(x1|y)p(zaly)

o (126 x2>||2>

g

Figure 2: Controlled inpainting for diverse reconstructions. On the left is the masked face. On the
right are two reconstructions: the top pair without the interaction term and the bottom pair with it.
The interaction term applies in the solid red square (where B has ones), and the measurement matrix
A is the dotted blue square (zeros inside, ones outside). By encouraging x; and x5 to differ in the
target region, the interaction yields a wider range of completions while preserving fidelity.

Protein inverse design. In Figure 3| we demonstrate our method’s performance on the inverse
design problem of generating Adeno-Associated Virus (AAV) capsid protein segments
[2021]). Given a desired functional property (fitness)—here defined as the predicted viral packaging
efficiency normalized between 0 and 1—the goal is to design novel protein sequences satisfying this
target condition. Beyond achieving high fitness, practical inverse design requires generating diverse
candidate sequences to ensure robustness in the downstream experimental validation

. We evaluate on two benchmark splits (medium and hard), which correspond to subsets of the
original AAV dataset differing in baseline fitness distributions and required mutational distance from
known high-performing variants [Kirjner et al.| 2024]]. Leveraging the latent-space representation of
VLGPO [Bogensperger et al.| 2025]], we employ our Energy-Matching Langevin sampler with an
inference-time tunable repulsion term, allowing explicit control over the diversity of the designed
proteins. This enables a flexible trade-off between fitness and diversity, resulting in high fitness
scores alongside substantially improved sequence diversity. See Section [B]for experimental details
and dataset descriptions.

3.3 Local intrinsic dimension estimation

Real-world datasets, despite displaying a high number of variables, can often be represented by
lower-dimensional manifolds—a concept referred to as the manifold hypothesis [Fefferman et al.
[2016]). The dimension of such a manifold is called the intrinsic dimension. Estimating the LID at a
given point reveals its effective degrees of freedom or directions of variation, offering insight into
data complexity and adversarial vulnerabilities. We defer the precise definition to Section [C]

Diffusion-based approaches. Recent work leverages pretrained diffusion models to estimate the
LID [Kamkari et all, 2024} [Stanczuk et all 2024]] by examining the learned score function. However,
since these models do not learn the score at the data manifold (f = 1), their estimates become
unreliable there. Consequently, current methods rely on approximations, for instance by evaluating
the score in the proximity of the data manifold (t = 1 — t(), where computations remain sufficiently
reliable.
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Figure 3: Fitness—diversity trade-off for protein inverse design on the AAV Medium (left) and Hard
(right) benchmarks. We compare our Energy Matching method (blue), with diversity explicitly
controlled by a repulsion strength parameter (o< %), against leading flow-based (purple), score-based
(orange), and other non-likelihood methods (black). Fitness measures how well generated sequences
satisfy the target property (predicted viral packaging efficiency), while diversity quantifies the average
Levenshtein distance between sequences in each generated batch.

Spearman’s correlation T | MNIST | CIFAR-10
ESS [Johnsson et al.,[2014] 0.444 0.326
FLIPD [Kamkari et al.| 2024] | 0.837 0.819
NB [Stanczuk et al.,[2024]] 0.864 0.894
Energy Matching (Ours) 0.877 0.901
Table 3: Spearman’s correlation coefficients of LID estimates with PNG compression rate. Bench-
marks results reported in [[Kamkari et al., 2024]].

Hessian-based LID Estimation. Unlike diffusion models, EBMs explicitly parametrize the relative
data likelihood. This explicit parametrization enables efficient analysis of the curvature of the
underlying data manifold — in this example, estimating the LID. To this end, we compute the Hessian
matrix V2V (24at.) at a given data point and perform its spectral decomposition. We define near-zero
eigenvalues as those whose absolute values lie within a small threshold 7 (in our experiments, we
set 7 = 3 for MNIST [Deng} 2012] and 7 = 2 for CIFAR-10). The count of near-zero eigenvalues
reflects the number of flat directions and thus reveals the local dimension. As shown in Table[3] the
LID estimates we obtain exhibit stronger correlations with PNG compression sizeF_-] (evaluated on
4096 images) using Spearman’s correlation. Figure ] offers qualitative illustrations. Our EBM-based
approach compares favorably to diffusion-based methods, as it relies on fewer approximations by
performing computations exactly on the data manifold rather than merely in its vicinity.

Hessian spectrum Hessian spectrum

LID: 21 LID: 136

1,000

B

| . ; L | | ;
0 200 400 600 0 200 100 600
Index Index

Eigenvalue
Eigenvalue

Figure 4: Qualitative results for LID estimation using the Hessian spectrum of Vp(x). Left: Spectrum
for a low-LID image. Right: Spectrum for a high-LID image. The eigenvalues quantify curvature
along principal directions (eigenvectors). A degenerate spectrum (many near-zero eigenvalues,
marked in red) indicates locally "flat" regions, revealing the LID. Intuitively, higher image complexity
often corresponds to a higher LID.

'PNG is a lossless compression scheme specialized for images and can provide useful guidance when no
LID ground truth is available Kamkari et al.| [2024]).



4 Conclusion and limitations

Contributions. We introduced a generative framework, Energy Matching, that reconciles the
advantages of EBMs and OT flow matching models for simulation-free likelihood estimation and
efficient high-fidelity generation. Specifically, it:

* Learns a time-independent scalar potential energy whose gradient drives rapid high-fidelity
sampling—surpassing state-of-the-art energy-based models—while also forming a Boltzmann-like
density well suitable for controlled generation. All without auxiliary generators.

* Offers efficient sampling from target data distributions on par with the state-of-the-art, while
learning the score at the data manifold with manageable trainable parameters overhead.

* Offers a simulation-free, principled likelihood estimation framework for solving inverse prob-
lems—where additional priors can be easily introduced—and enables the estimation of a data
point’s LID with fewer approximations than score-based methods.

Limitations. First, our method requires an additional gradient computation with respect to the
input, which can increase GPU memory usage (e.g., by 20-40%), particularly during training.
Second, when estimating the LID (Section [3.3) for very high-dimensional datasets, computing the
full Hessian spectrum may be impractical due to its computational complexity of O(d?); in such
cases, partial-spectrum methods such as random projections or iterative solvers can be employed
instead.

Outlook. Contrary to widespread belief, we demonstrated that time-independent irrotational meth-
ods for generative flows are highly effective and offer an exciting direction for future research. Our
Energy Matching approach has the potential to yield novel insights into controlled generation and
inverse problems for cancer research [Weidner et al.|[2024], Balcerak et al.| [2024], molecules and
proteins Wu et al.| [2022], Bilodeau et al.|[2022], computational fluid dynamics|Gao et al.| [2024]],
Shysheya et al.|[2024], Molinaro et al.[[2024]], and other fields where precise control over generated
samples and effective integration of priors or constraints are crucial. Moreover, Energy Matching
aligns naturally with recent generative Al trends toward scaling inference for new capabilities [Zhang
et al., |2025| Ma et al.l 2025]], further broadening its potential impact across scientific and engineering
domains.
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a) Phase 1 (warm-up): b) Phase 2 (main training): ¢) Reference EBM:
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Figure 5: Visualization of the energy Vy(x) landscapes driving the samples from eight Gaussians to
two moons. See Figure[T]for the 2D perspective. (a) The OT flow loss enforces zero curvature in
Vo () along the trajectories to the target. (b) Around the 2 Moons, the curvature of Vp(x) is adjusted
to approximate 1og pmoons () ¢ Vg (z) while remaining close to the pretrained landscape elsewhere.
Combining these objectives yields a potential energy landscape that is both efficient for sampling
and representative of the underlying target data distribution. (¢) An EBM is shown for comparison,
trained using contrastive divergence loss. Visible mode collapse that slows down the equilibration.
Less regular landscape away from the data as it needs many simulations to explore it.

A Additional details on Energy Matching

In this section, we provide additional studies and visualizations on our method.

A.1 Energy landscape during training

In Figure we visualize how the potential Vj(z) transitions from a flow-like regime, where the OT
loss enforces nearly zero curvature away from the data manifold (a), to an EBM-like regime, where
the curvature around the new data geometry (here, two moons) is adaptively increased to approximate
log paaa(z) (b). This two-stage design yields a well-shaped landscape that is both efficient to sample
(thanks to a mostly flat potential between clusters) and accurate for density estimation near the data
modes. For comparison, (c) shows an EBM trained solely with contrastive divergence, exhibiting
sharper but less globally consistent basins.

A.2 Ablation on the sampling time

Here, we provide ablation studies on CIFAR-10 unconditional generation. Specifically, we first
pretrain using Lo, and then fine-tune with (Lot + Lcop), producing a stable Boltzmann distribution
from which one can sample. Figure [f]illustrates the FID as a function of sampling time 7, for models
trained under these different regimes. In the case of pure Lo, the quality measure drops (FID
increases) sharply when sampling at 75 > 1; this occurs because, once the samples move close to the
data manifold, there is no Boltzmann-like potential well to keep them from drifting away. Because
the fidelity slope near the data manifold is steep with respect to sampling time, methods lacking
explicit time-conditioning can easily overshoot or undershoot, significantly impacting fidelity. This
behavior might explain why some models degrade in performance when made time-independent, as

recently reported by 2025]).

In Figure [6] we also report results for different values of the temperature-switching parameter 7*,
which influences the sampling along the paths towards the data manifold (see Equation (3))).

A.3 Ablations on the OT Solver

We evaluate the computational overhead and sensitivity to solver choice of the OT solver employed
in our experiments.
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FID vs sampling time 7
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Figure 6: CIFAR-10 unconditional generation FID vs. sampling time 74 when sampling from models
trained under different scenarios: pure Lot and combined (Lot 4+ Lcp), with temperature regime
switching parameter 7* € {0.9, 1.0} during sampling. Lower FID indicates better generative quality.
All results for Euler-Heun with At = 0.01.

Computational overhead. In the CIFAR-10 experiment, the OT solver accounts for roughly 1.5%
of the training iteration time during Phase 1 Algorithm[I]} This overhead decreases to a negligible
level (approximately 0.01%) in Phase 2 Algorithm [2] where computational costs are predominantly
dominated by the generation of negative samples.

Impact of solver accuracy and complexity. Let us (over-idealise) and model a standardised
CIFAR-10 image as a vector x € R<, drawn from A (0, 1), with dimensionality d = 32 x 32 x 3 =
3072, and paired with an independent Gaussian-noise vector z ~ A(0, I;). Each coordinate of
the difference (z — ) thus follows N(0,2), and the squared Euclidean distance distribution is

|z — x|3 ~ 2x2, which has mean 2d, standard deviation V/8d, and relative spread ‘é—szd ~ 0.025. This
demonstrates the "thin-shell" phenomenon, implying that all entries of the cost matrix C;; = |2, —x; |2
concentrate around nearly identical values, consistent with the distance-concentration effect observed
by [Aggarwal et al.,[2001]]. Consequently, the choice among exact linear programming (LP), entropic
regularisation (Sinkhorn), or even random matching should yield nearly identical cumulative optimal-

transport costs, despite their different complexities: O(n? logn) for LP, O( %2) for Sinkhorn (with
regularisation strength ), and O(n) for random matching.

Empirical evidence supporting this is summarised below:

* Our CIFAR-10 runs: FID degrades from 3.34 (LP) to 3.37 (random).

* [Tong et al., [2023]] Table 5: FID scores of 4.44 (LP) vs 4.46 (random) at 100 steps.

* [Tong et al.}[2023]] Fig. D.2: solver accuracy saturates beyond batch size 16 in the 2D task.
e [Terpin et al., |2024]] App. C.2: LP and Sinkhorn methods produce indistinguishable results

unless regularisation is extreme.

We employ the LP approach for robustness, negligible cost, and no additional hyperparameters.

A.4 Sampling Time Analysis
Computing the gradient V,Vy(x) via automatic differentiation (autograd [Ansel et al., [2024])

introduces additional computational overhead compared to directly evaluating Vj(z). Specifically,
on the CIFAR-10 network architecture (see Figure[7), gradient evaluation is approximately 2.15x
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slower, as it requires both forward and backward passes. In contrast, flow matching and diffusion
models directly parameterize the velocity field, thus only requiring forward computations during
sampling.

Nevertheless, despite this per-step computational cost, our method achieves competitive overall
sampling efficiency due to a reduced number of integration steps needed for high-quality generation.
As demonstrated in Table[d] Energy Matching achieves a lower FID (3.34) in 173 seconds per batch,
outperforming OT-FM (FID 3.74 in 136 seconds per batch) and DDPM++ (FID 3.45 in 183 seconds
per batch). Our results thus indicate a favorable balance between computational overhead per step
and total sampling runtime.

Table 4: Comparison of sampling efficiency and quality on CIFAR-10 (batch size 128, NVIDIA
R6000 48GB GPU). Despite gradient computation overhead (V, Vy(x) via backward pass), Energy
Matching achieves superior FID scores with competitive wall-clock sampling time.

Method Params Steps Sampling Time [s]] FID|
Flow-/Diffusion-based Models
OT-FM |[Tong et al.,[2023] 37M 1000 136 3.74
DDPM++ [Kim et al.[[2021] 62M 1000 183 3.45

Energy-based Models
Energy Matching (Ours) 50M 325 173 3.34

B Details on AAV inverse design protein generation

We optimize protein fitness for adeno-associated virus (AAV) sequences in the medium and hard data
regimes proposed by [Kirjner et al.| |2024]], using latent encodings and backbone architectures from
[Bogensperger et al.l 2025]]. Conditional sampling employs classifier guidance via learned predictor
networks gy or g, to steer samples toward high-fitness regions. The CNN-based fitness predictors
from [Kirjner et al.2024] are trained only on the limited training data for each regime.

Training follows Algorithm[I|and Algorithm[2] We sample 128 sequences using Algorithm 3] keeping
the same batch size across all baselines; detailed hyperparameters are given in Section[D] Generated
sequences are evaluated for fitness using the learned oracle from [Kirjner et al., 2024], and further
assessed for both intra-set diversity and novelty relative to the training sequences [Jain et al., 2022].
Our approach achieves state-of-the-art fitness while improving diversity (see Table[5)). Incorporating
interaction energy in Algorithm 3] further enhances diversity with manageable impact on fitness.

Table 5: AAV optimization results. For VLGPO (flow-based) and Energy Matching, medium difficulty
uses gy, hard difficulty uses g,. Metrics (Fitness?, Diversity?, Novelty?T). Reported uncertainty of
Fitness is expressed as standard deviation.

AAV medium AAV hard
Method FitnessT Diversity NoveltyT FitnessT Diversity? NoveltyT
Learning Unnormalized Data Likelihood
Energy-based Models
Energy Matching (Ours) 0.59 (0.0) 5.86 5.0 0.61 (0.0) 4.77 6.7
Energy Matching (+repulsion) (Ours) 0.58 (0.0) 6.22 5.0 0.60 (0.0) 5.22 6.6

Learning Transport/Score Along Noised Trajectories
Flow-based Models

VLGPO [Bogensperger et al.|[2025| 0.58 (0.0) 5.58 5.0 0.61 (0.0) 4.29 6.2
Diffusion Models

gg-dWIJS [Ikram et al.|[2024] 0.48 (0.0) 9.48 42 0.33 (0.0) 14.3 53

Other Methods

LatProtRL [Lee et al.|[2024] 0.57 (0.0) 3.00 5.0 0.57 (0.0) 3.00 5.0
GGS [Kirjner et al.|[2024] 0.51 (0.0) 4.00 5.4 0.60 (0.0) 4.50 7.0
AdaLead [Sinai et al.}|2020] 0.46 (0.0) 8.50 2.8 0.40 (0.0) 8.53 34
CbAS [Brookes et al.}|[2019] 0.43 (0.0) 12.70 7.2 0.36 (0.0) 144 8.6
GWG [Grathwohl et al.[[2021]] 0.43 (0.1) 6.60 7.7 0.33 (0.0) 12.0 12.2
GFN-AL [Jain et al.||2022] 0.20 (0.1) 9.60 19.4 0.10 (0.1) 11.6 19.6
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C Details on LID estimation

Definition. To start, we need to introduce the concept of local mass, defined as
M) = [ payds,
B ($dala ;7‘)

where p(z) is the local density and B(Zga, 7) is a ball of radius r around Zga, i.6. B(Zdaa, ) =
{x € R4 : ||z — Zgatal| < r}. The LID is then given by:

LID(xgata) = d — lim

Intuitively, M () measures how much probability mass is concentrated in a ball of radius r around
Zdata- As we shrink this ball, the growth rate of M () in terms of r reveals the local dimensional
structure of the data.

Assumptions. In the context of contrastive divergence, we assume that data points s, lie in
well-like regions [Hyvirinen| [2000], i.e.:

VV (Zdata) =0 and V2V(:rdata) is positive semidefinite (or nearly so).

Conceptually, V' (x) can be thought of as an energy function; points where VV (z4at.) = 0 are near
local minima of this energy, and the Hessian V2V (2441, ) provides information about local curvature
(see Figure ] for a qualitative illustration).

Energy-based density. We define an energy-based density
p(@) o exp(—¥2),

where ¢ is a temperature parameter. Near a data point ga, satisfying V.V (24ata) = 0, we can
approximate V (z) by its second-order Taylor expansion:

1
V($) ~ V(xdata) + 5(1' - xdata)—rviv(wdata)(x - :L'data)~

Consequently, in view of the assumptions above,

1
p(x) X €xXp (—25(:L‘ - xdata)—rviv(xdata)(x - xdata)) .

Local mass derivation and the rank of the energy Hessian. Substituting the local quadratic form
of p(x) near 4,4, into the definition of the local mass M (r), we obtain:

M(r) = / p(z)dz / exp (—2—16(30 — Zaata) | V2V (Zdata) (@ — xdata)) dz.
B(wdm,r) B(wda&aﬂ‘)

For small r, the dominant contribution depends on the rank of the Hessian VﬁV(xdam). Let
k = rank(V2V (2qata)). Then, as r — 0, one can show that M(r) = Cr*, where C does not
depend on r. We take the logarithm on both sides and divide by log(r) to get

log(M(r)) _ log(C) + klog(r) i log(C)

log(7) log(r) " log(r)’
and the second term vanishes as » — 0. Hence,

LID(2data) = d — k.

Practical estimation. In practice, the LID at a data point z 4.t can be estimated through the
following procedure:

1. Train V' (x) with Energy Matching.
2. Compute the Hessian H = V2V (2 gata)-
3. Perform an eigenvalue decomposition on H.

Then the estimated local data-manifold dimension corresponds to the number of directions with
negligible curvature (smaller magnitude than some 7).
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D Training details

Below, we detail the training configurations for CIFAR-10, ImageNet 32x32, CelebA, MNIST,
and AAV. Additionally, we provide intuitions for practical hyperparameter choices to facilitate
effective training across additional datasets. We recommend using SiLU activation functions wherever
possible, as they smooth out the energy landscape and improve the numerical stability of the V, V' (x)
computation. The gradient of the potential, V,V (x), is computed using automatic differentiation
via PyTorch’s autograd [Ansel et al.l [2024]]. We optimize all models using the Adam optimizer
[Kingma and Ba, |2014] and maintain an exponential moving average (EMA) of the model weights.

While we specifically adopt (i) a one-sided trimmed mean of negative sample energies and (ii)
clamping of the contrastive loss for stability, any commonly used EBM technique (e.g., persistent
contrastive divergence [Tieleman) [2008]], replay buffers, multi-scale negative sampling) could be
readily employed.

In our approach, we introduce two hyperparameters, « and 3, to control these stabilizing techniques:

a = fraction of negative energies discarded to remove outliers that skew the mean (e.g., top 10%),
B = clamp threshold for Lcp (i.e., we clamp Lcp to be > — ).

CIFAR-10: The architecture is shown in Figure |7} We use the same UNet from [Tong et al., [2023]
(with fixed ¢ = 0.0, making it effectively time-independent) followed by a small vision transformer
(ViT) [Dosovitskiy et al.L|2020]] to obtain a scalar output. Hyperparameters are: 7, = 3.25, 7% = 1.0,
At = 0.01, M angevin = 200. We train for 145k iterations using Algorithmwith EMA 0.9999 and
then 2k more with Algorithm [2]and EMA 0.99 on 4xA100. The batch size is 128, learning rate is
1.2 x 1073, epax = 0.01, Acp = 1 x 1073, a = 0.1, and B = 0.02. Negatives initialized on the
data manifold follow the same temperature schedule as those initialized from the noise.

ImageNet 32x32:  The architecture is shown in Figure[7](same as for CIFAR-10). Hyperparameters
are: 7, = 2.5, 7" = 1.0, At = 0.01, Myangevin = 200. We train for 640k iterations using Algorithm
with EMA 0.9999 and then 1k more with Algorithm[2]and EMA 0.99 on 7xA100. The batch size 1s
128, learning rate is 6 x 1074, enax = 0.01, A\cp = 1 x 1073, a = 0.1, and 3 = 0.02. Negatives
initialized on the data manifold follow the same temperature schedule as those initialized from the
noise.

CelebA: We scale the CIFAR-10 model by ~ 2x; see Figure We set 7, = 2.0, 7* = 1.0,
At = 0.01, Mpangevin = 200, and train for 250k iterations using Algorithmmwith EMA 0.9999 then
4k with Algorithm and EMA 0.99 on 4xA100. The batch size is 32, learning rate is 1 x 1074,
€max = 0.05, A\cp = 1 x 1074

MNIST: We downscale the CIFAR-10 model (Figure[/) to 2M parameters by reducing the UNet
base width to 32 channels, using channel multipliers [1, 2, 2], setting the number of attention heads in
the UNet to 2, simplifying the Transformer head to an embedding dimension of 128, 2 Transformer
layers, 2 attention heads, and adjusting the output scale to 100.0. We set 7, = 2.0, 7* = 1.0,
At = 0.025, Myangevin = 75, and train for 50k iterations using Algorithm[l']with EMA 0.999 then
3.3k with Algorithm [2| and EMA 0.99 on a single A100. The batch size 1s 128, learning rate is
1% 1074, emax = 0.1, A\cp = 1 x 1073, a = 0.0, and 5 = 0.05. Negatives initialized on the data
manifold follow the same temperature schedule as those initialized from the noise.

AAV: We adopt the one-dimensional CNN architecture as used in [Bogensperger et al.,|2025]], sum-
ming the final-layer activations to obtain the potential. We train for 10k iterations using Algorithm|T]
and for 1k iterations using Algorithm [2]on a single A100. The batch size is 128, learning rate is
1% 1074, emax = 0.1, Miangevin = 200, At = 0.01, and Acp = 1 x 10~*. For Algorithm 3| we use
7, = 1.7 for AAV medium and 7, = 1.3 for AAV hard, 7* = 0.9, ( = 0.01 for AAV medium and
¢ = 0.009 for AAV hard. We set the target fitness to y = 1 to aim for the maximum fitness in the
generated sequences.

Intuition for other datasets: It is essential for negative samples to reach the equilibrium distribution

induced by the model or at least the proximity of the data manifold. The condition My angevin X At > 1
is critical to achieving this, with At small enough to ensure that negative samples remain of sufficient
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quality—typically the same At as used in flow matching for the given generation task. In practice,
we set Mpangevin X At = 2 across most experiments. We recommend starting with 7* = 1.0 to
ensure optimal transport regularization near the data manifold, thereby enhancing training stability.
If additional conditions are required during sampling, exploring lower values (7* < 1.0) may be
beneficial, as this parameter does not need to remain consistent between training and sampling (as
shown in Figure [6). Training with 7* < 1.0 is advised only in special cases, such as extremely
low-dimensional problems like that shown in Figure[I} where it is possible to simultaneously be far
from the data manifold (from the perspective of the target mode) and close to it (from the perspective
of another mode). The parameter £,,,x controls how extensively negative samples explore the space.
For unconditional generation, we use epax = 0.01, but for inverse problems or design tasks, higher
values (e.g., Emax = 0.05) can improve robustness. The parameter 7, significantly depends on
the task (unconditional or conditional) and thus must be tuned accordingly post-training. Without
explicit tuning, selecting 75 = Mpangevin X At is a reasonable default. Finally, parameters Acp, «,
and S influence the stability of contrastive training and must be empirically determined alongside
appropriate early stopping.

Input

Hyperparameter Value
(3x32x32) Image size 3x32x32
Base channels (UNet) 128
' ResBlocks 2
UNet channel_mult [1,2,2,2]
(37M params) Attention resolution 16
Attention heads (UNet) 4

Head channels (UNet) 64

4 Dropout 0.1
Transfprmer Transformer (ViT) Head
(PatchEmbed+ViT, 12M params) Patch size 4
Embedding dim 384
Transformer layers 8

A
Scalar Transformer heads 4
Potential Output scale 1000.0

Figure 7: Diagram of our UNet+Transformer EBM for CIFAR-10 and ImageNet 32x32. A UNet (37M params)
processes a 3x32x32 image; its output is fed into a Transformer head (PatchEmbed + 8-layer ViT, 12M params)
that produces a scalar potential. Here we employ the identical UNet architecture as in [Tong et al.| [2023]], but
with the time parameter fixed at ¢ = 0 to render the model time-independent.

Input Hyperparameter Value
(3x64x64) Tmage size 3x6Ax64
Base channels (UNet) 128
4 ResBlocks 2
UNet channel_mult [1,2,3,4]
(83M params) Attention resolution 16
Attention heads (UNet) 4
Head channels (UNet) 64
4 Dropout 0.1
Transf'or mer Transformer (ViT) Head
(PatchEmbed+ViT, 25M params) Patch size 4
Embedding dim 512
Transformer layers 8

A
Transformer heads 8
Scalar

Figure 8: Diagram of our UNet+Transformer EBM for CelebA. A UNet (83M params) processes a 3x 64 x 64
image; its output is fed into a Transformer head (PatchEmbed+8-layer ViT, 25M params) that produces a scalar
potential.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Every substantive claim in the abstract and introduction is substantiated by the
theory, experiments, and ablation studies reported in the main text; limitations are stated
explicitly. The “Outlook” (Section ) contains clearly flagged aspirational goals that are
presented as future directions rather than accomplished results, ensuring the scope is not
overstated.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A dedicated “Limitations” paragraph (Section ) clearly details two concrete
constraints of the method. Hence the paper meets the requirement to openly discuss its
limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Each theorem lists its full assumptions and is accompanied by a complete
proof—intuitive sketches in the main text and formal details in the appendix. When we
rely on known results, we cite the originals and restate the necessary arguments for self-
containment.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The manuscript specifies architectural details, hyper-parameter, and evaluation
methods needed for an independent researcher to replicate the reported results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The experiments rely only on publicly available datasets, and an anonymized
code bundle illustrating the full training + evaluation pipeline is attached to the submission;
the repository and all ancillary assets needed for reproduction will be made openly available
upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All key choices—data splits, hyper-parameters, optimizers, and selection
criteria—are documented in the “Training Details” (Section D)), while remaining low-level
implementation specifics are available in the accompanying code. We follow standard
procedures as much as possible.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer:

Justification: Due to high computational costs involved in training and evaluating generative
models, metrics like FID are typically computed only a few times, and thus standard
deviations are usually not reported. Nevertheless, we do provide standard deviations for the
Fitness results obtained on the AAV dataset, where feasible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The hardware specifications and number of training iterations (compute
resources) are detailed in the "Training Details" (Section D).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The study uses only publicly licensed datasets, releases anonymized code for
full reproducibility, involves no human subjects or sensitive personal data, and discloses
compute resources and limitations. These practices align with the NeurIPS Code of Ethics
on transparency, privacy, attribution, and social responsibility; no deviations are required.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The method augments an existing class of generative models with a tunable
flexibility parameter aimed at inverse problems for science (e.g. protein design) rather than
at highest-fidelity large-scale content generation. It (i) trains solely on low-resolution widely
used public benchmarks, (ii) releases no new data, and (iii) mirrors the well-studied risk
profile of prior open-source generators. Hence it poses no incremental societal risks beyond
those already introduced by e.g. flow matching, warranting [NA] .

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work trains and evaluates its model exclusively on widely used public
datasets (MNIST, CIFAR-10, ImageNet32x32, CelebA) and does not release any new data.
Because many comparable generative models for these benchmarks are already available,
the paper introduces no incremental misuse risk and thus requires no additional safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All external assets used in this work are standard, publicly-available bench-
marks. For each dataset we cite the original creators in the manuscript. Below we summarise
the licence associated with every dataset we use:

¢ MNIST - Creative Commons Attribution—ShareAlike 3.0 (CC BY-SA 3.0)E]
CIFAR-10 — Custom licence from the authors: free use for research and educational
purposes provided the dataset is citedE]
¢ ImageNet32x32 —

— Images inherit the original ImageNet non-commercial research licenceﬂ

— Down-sampling scripts released under the MIT LicenseE]
* CelebA — Custom non-commercial research agreement (no redistribution or commercial

use; see dataset webpage)ﬂ

AAV - 1PEI]Jblic-domain molecular data (NCBI places no restrictions provided the dataset
is cited

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The newly introduced assets are fully documented: detailed algorithm de-
scriptions and the complete implementation are bundled in an anonymized ZIP archive that
accompanies this submission.

Guidelines:

* The answer NA means that the paper does not release new assets.

"https://keras.io/api/datasets/mnist/
*https://arbiv.org/html/2111.02374
*https://image-net.org/
https://github.com/PatrykChrabaszcz/Imagenet32_Scripts
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
"https://www.ncbi.nlm.nih.gov/bioproject/PRINA673640/
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14.

15.

16.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs only used for editing.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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