
WL meet VC

Christopher Morris∗
RWTH Aachen University

Floris Geerts∗
University of Antwerp

Jan Tönshof, Martin Grohe
RWTH Aachen University

Abstract
Recently, many works investigated the expressive power of graph neural networks
(GNNs) by linking it to the 1-dimensional Weisfeiler–Leman algorithm (1-WL).
Here, the 1-WL is a well-studied heuristic for the graph isomorphism problem, which
iteratively colors or partitions a graph’s vertex set. While this connection has led to
significant advances in understanding and enhancing GNNs’ expressive power, it
does not provide insights into their generalization performance, i.e., their ability to
make meaningful predictions beyond the training set. In this paper, we study GNNs’
generalization ability through the lens of Vapnik–Chervonenkis (VC) dimension
theory in two settings, focusing on graph-level predictions. First, when no upper
bound on the graphs’ order is known, we show that the bitlength of GNNs’ weights
tightly bounds their VC dimension. Further, we derive an upper bound for GNNs’
VC dimension using the number of colors produced by the 1-WL. Secondly, when an
upper bound on the graphs’ order is known, we show a tight connection between the
number of graphs distinguishable by the 1-WL and GNNs’ VC dimension.

1 Introduction
There are numerous approaches for machine learning for graph-structured, most notably those based on
graph kernels [1, 2] or graph neural networks (GNNs) [3–5]. Here, graph kernels [6] based on the
1-dimensional Weisfeiler–Leman algorithm (1-WL) [7], a well-studied heuristic for the graph isomorphism
problem, and corresponding GNNs [8, 9], have recently advanced the state-of-the-art in supervised vertex-
and graph-level learning [5]. Further, based on the k-dimensional Weisfeiler–Leman algorithm (k-WL),
1-WL’s more powerful generalization, several works generalized GNNs to higher-order GNNs (k-GNNs),
resulting in provably more expressive architectures, e.g., Geerts and Reutter [10], Maron et al. [11], Morris
et al. [12]. While devising provably expressive GNN-like architectures is a meaningful endeavor, it only
partially addresses the challenges of machine learning with graphs. That is, expressiveness results reveal
little about an architecture’s ability to generalize to graphs outside the training set. Surprisingly, only a
few notable contributions study GNNs’ generalization behaviors, e.g., Garg et al. [13], Kriege et al.
[14], Liao et al. [15], Maskey et al. [16] and Scarselli et al. [17]. However, these approaches express
GNN’s generalization ability using only classical graph parameters, e.g., maximum degree, number of
vertices, or edges, which cannot fully capture the complex structure of real-world graphs. Further, most
approaches study generalization in the non-uniform regime, i.e., assuming that the GNNs operate on graphs
of a pre-specified order. Further, they only investigate the case k = 1, i.e., standard GNNs, ignoring more
expressive generalizations.

Present work. This paper investigates the influence of graph structure and the parameters’ encoding lengths
on GNNs’ generalization by tightly connecting 1-WL’s expressivity and GNNs’ Vapnik–Chervonenkis
(VC) dimension. Specifically, our contributions are:

1. In the non-uniform regime, we prove tight bounds on GNNs’ VC dimension. We show that GNNs’
VC dimension depends tightly on the number of equivalence classes computed by the 1-WL over a
set of graphs; see Propositions 2.1 and 2.2. Moreover, our results easily extend to the k-WL and
many recent expressive GNN extensions.

2. In the uniform regime, i.e., when graphs can have arbitrary order, we show that GNNs’ VC dimension
is lower and upper bounded by the largest bitlength of its weights; see Proposition 2.5.

∗Equal contribution.

C. Morris et al, WL meet VC (Extended Abstract). Presented at the Second Learning on Graphs Conference (LoG
2023), Virtual Event, November 27–30, 2023.

WL meet VC

Uniform?

Bitlength ≤ b?

= b [Prop. 2.5]

1-WL colors ≤ u?

≈ poly(d, L) log(u) [Thm. 2.6]

∞ [Thm. 2.4]= mn,d,L [Prop. 2.1,2.2]

Yes

Yes

No

Yes

NoNo

Figure 1: Overview of our results for bounded-width GNNs. Green and red boxes denote VC dimension
bounds. Here, mn,d,L denotes the number of graphs of order at most n with boolean d-dimensional
features distinguishable by 1-WL after L iterations.

3. In both the uniform and non-uniform regimes, GNNs’ VC dimension depends logarithmically
on the number of colors computed by the 1-WL and polynomially on the number of parameters;
see Theorem 2.6.

Main insight. Overall, our results provide new insights into GNNs’ generalization behavior and how graph
structure and parameters influence it. Specifically, our results imply that a complex graph structure,
captured by 1-WL, results in worse generalization performance. The same holds for increasing the
encoding length of the GNN’s parameters. Importantly, our theory provides the first link between
expressivity results and generalization ability. Moreover, our results establish the first lower bounds for
GNNs’ VC dimension. See Figure 1 for a high-level overview of our results. See Appendix A for a
discussion on related work.

1.1 Background

Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use {{. . . }} to denote multisets, i.e.,
the generalization of sets allowing for multiple instances for each of its elements. Throughout the paper,
we use standard notations, e.g., we denote the neighborhood of a vertex v by N(v) and ℓ(v) denotes its
discrete vertex label, and so on; see Appendix B for details.

The Weisfeiler–Leman algorithm. We here describe the 1-WL and refer to Appendix C for the k-WL.
The 1-WL or color refinement is a well-studied heuristic for the graph isomorphism problem, originally
proposed by Weisfeiler and Leman [7]. Formally, let G = (V (G), E(G), ℓ) be a labeled graph. In each
iteration, t > 0, the 1-WL computes a vertex coloring C1

t : V (G) → N, depending on the coloring of the
neighbors. That is, in iteration t > 0, we set

C1
t (v) := RELABEL

((
C1

t−1(v), {{C1
t−1(u) | u ∈ N(v)}}

))
,

for all vertices v in V (G), where RELABEL injectively maps the above pair to a unique natural number,
which has not been used in previous iterations. In iteration 0, the coloring C1

0 := ℓ. To test if two graphs
G and H are non-isomorphic, we run the above algorithm in “parallel” on both graphs. If the two graphs
have a different number of vertices colored c in N at some iteration, the 1-WL distinguishes the graphs as
non-isomorphic. Moreover, if the number of colors between two iterations, t and (t+ 1), does not change,
i.e., the cardinalities of the images of C1

t and C1
i+t are equal, or, equivalently,

C1
t (v) = C1

t (w) ⇐⇒ C1
t+1(v) = C1

t+1(w),

for all vertices v and w in V (G), then the algorithm terminates. For such t, we define the stable coloring
C1

∞(v) = C1
t (v), for v in V (G). The stable coloring is reached after at most max{|V (G)|, |V (H)|}

iterations [18]. We define the color complexity of a graph G as the number of colors computed by the
1-WL after |V (G)| iterations on G. See Appendix C for details on the k-WL, 1-WL’s more expressive
generalization.

Graph neural networks. Formally, let G = (V (G), E(G), ℓ) be a labeled graph with initial vertex
features h(0)

v in Rd that are consistent with ℓ. That is, each vertex v is annotated with a feature h(0)
v in Rd

such that h(0)
v = h

(0)
u if and only ℓ(v) = ℓ(u), e.g., a one-hot encoding of the labels ℓ(u) and ℓ(v).

Following, Gilmer et al. [4] and Scarselli et al. [19], in each layer, t > 0, we compute vertex features

h(t)
v := UPD(t)

(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

u | u ∈ N(v)}}
))

(1)

2

WL meet VC

in Rd, where UPD(t) and AGG(t) may be differentiable parameterized functions, e.g., neural networks. In
the case of graph-level tasks, e.g., graph classification, one additionally uses

hG := READOUT
(
{{h(L)

v | v ∈ V (G)}}
)
∈ R, (2)

to compute a single vectorial representation based on learned vertex features after iteration L.2 Again,
READOUT may be a differentiable parameterized function. See Appendix D for a definition of
(higher-order) k-GNNs.

Notation. In the subsequent sections, we use the following notation. We denote the class of all (labeled)
graphs by G, the class of all graphs with d-dimensional, real-valued vertex features by Gd, the class of all
graphs with d-dimensional boolean vertex features by GB

d , the class of all graphs with an order of at
most n and d-dimensional vertex features by Gd,n, and the class of all graphs with d-dimensional vertex
features and of color complexity at most u by Gd,≤u. Further, we consider the following classes of GNNs.
We denote the class of all GNNs consisting of L layers with (L+ 1)th layer readout layer by GNN(L),
the subset of GNN(L) but whose aggregate, update and readout functions have a width at most d by
GNN(d, L), and the subset of GNN(L) but whose aggregation function is a summation and update and
readout functions are single layer perceptrons of width at most d by GNNslp(d, L). More generally, we
consider the class GNNmlp(d, L) of GNNs using summation for aggregation and such that update and
readout functions are multilayer perceptrons (MLPs), all of width of at most d. We refer to elements in
GNNmlp(d, L) as simple GNNs. See Appendix F for details. We stress that simple GNNs are already
expressive enough to be equivalent to the 1-WL in distinguishing non-isomorphic graphs.

VC dimension of GNNs. For a class C of GNNs and class X of attributed graphs, see Appendix B,
VC-dimX (C) is the maximal number m of graphs G1, . . . ,Gm in X that can be shattered by C. Here,
G1, . . . ,Gm are shattered if for any τττ in {0, 1}m there exists a GNN gnn in C such that for all i in [m]:

gnn(Gi) =

{
≥ 2/3 if τi = 1, and
≤ 1/3 if τi = 0.

(3)

The above definition can straightforwardly be generalized to k-GNNs. Bounding the VC dimension
directly implies an upper bound on the generalization error; see Appendix E and [20, 21] for details.

Bitlength of GNNs. Below we study the dependence of GNNs’ VC dimension on the bitlength of its
weights. Assume an L-layered GNN with a set of parameters Θ, then the GNN’s bitlength is the maximum
number of bits needed to encode each weight in Θ and the parameters specifying the activation functions.
We define the bitlength of a class of GNNs as the maximum bitlength across all GNNs in the class.

2 WL meet VC ±

We first consider the non-uniform regime, i.e., we assume an upper bound on the graphs’ order. Given the
connection between GNNs and the 1-WL [8, 22], GNNs’ ability to shatter a set of graphs can easily be
related to distinguishability by the 1-WL. For example, let us first consider the VC dimension of GNNs on
the class GB

d,n consisting of graphs of an order of at most n with d-dimensional boolean features. Further,
let mn,d,L be the maximal number of graphs in GB

d,n distinguishable by 1-WL after L iterations. The
following result shows that mn,d,L is also the maximal number of graphs in GB

d,n that L-layer GNNs can
shatter.
Proposition 2.1. For all n, d and L, it holds VC-dimGB

d,n

(
GNN(L)

)
≤ mn,d,L.

This upper bound holds regardless of the choice of aggregation, update, and readout functions used in the
GNNs. We next show a matching lower bound for the VC dimension of GNNs on graphs in GB

d,n. In fact,
the lower bound already holds for simple GNNs of width O(nmn,d,L).
Proposition 2.2. For all n, d, and L, all mn,d,L 1-WL-distinguishable graphs of order at most n
with d-dimensional boolean features can be shattered by sufficiently wide L-layer GNNs. Hence,
VC-dimGB

d,n

(
GNN(L)

)
= mn,d,L.

We note that the above two results can be straightforwardly generalized to k-GNNs, i.e., their VC
dimension is tightly connected to the expressive power of the k-WL, and other recent extensions of GNNs;
see Appendix D.1.

2For simplicity, we assume GNNs to return scalars on graphs. This makes the definition of VC dimension more
concise.

3

WL meet VC

We now consider the uniform regime, i.e., we assume no upper bound on the graphs’ order. Since the
number mn,d,L of 1-WL distinguishable graphs increases for growing n, Proposition 2.2 implies that the
VC dimension of L-layered GNNs on the class GB

d of all graphs with d-dimensional boolean features but
of arbitrary order is unbounded.
Corollary 2.3. For all d and L ≥ 1, it holds that VC-dimGB

d
(GNN(L)) = ∞.

The proof of this result requires update and readout functions in GNNs of unbounded width. Using a
different “bit extraction” proof technique, we can strengthen the previous result such that fixed-width
GNNs can be considered.
Theorem 2.4. For all d, L at least two, it holds that VC-dimGB

d
(GNN(d, L)) = ∞.

Again, this result holds even for the class of simple GNNs. The theorem relies on the following result,
which is of independent interest.
Proposition 2.5. There exists a family Fb of simple 2-layer GNNs of width two and bitlength O(b) using
piece-wise linear activation functions such that its VC dimension is exactly b.

We now fix the width of the GNNs and consider Gd,≤u. Note that Gd,≤u may contain graphs of arbitrary
order. For example, all regular graphs (of the same degree) belong to Gd,≤1. We also remark that there is
no upper bound on the number of 1-WL distinguishable graphs for Gd,≤u, because we only bound the
number of colors appearing in a single graph and not the number of colors appearing in all graphs of the
class. As such, the bounds obtained earlier do not apply. Finally, in the bound below, input graphs can have
real features.
Theorem 2.6. Assume d and L in N, and GNNs in GNNslp(d, L) using piece-wise polynomial activation
functions with p > 0 pieces and degree δ ≥ 0. Let P = d(2dL+L+1)+1 be the number of parameters
in the GNNs. For all u in N,

VC-dimGd,≤u
(GNNslp(d, L)) ≤


O(P log(puP)) if δ = 0,
O(LP log(puP)) if δ = 1,
O(LP log(puP) + L2P log(δ)) if δ > 1.

We note that the above result can be straightforwardly generalized to k-GNNs. These upper bounds,
concerning the dependency on u, cannot be improved by more than a constant factor. Also, note that any
graph of order at most n has at most n 1-WL colors, and hence Gd,n ⊆ Gd,≤n. The above bound thus
complements the upper bound on GB

d,n given earlier, but now for fixed-width GNNs.

Implications, limitations, and future work. Our results include the first lower bounds of GNNs’ VC
dimension and the first inherent connection between GNNs’ VC dimension and the expressive power of the
1-WL. We show that the VC dimension bounds for GNNs can be tightened when considering graphs of low
color complexity. This connection to the number of colors indicates that graphs with complex structures,
captured by the 1-WL, may have a higher VC dimension. Moreover, if the 1-WL can distinguish a large set
of graphs of a given dataset, our results imply that a sufficiently expressive GNN will require a large set of
training samples to generalize well. Therefore, we can use the 1-WL to assess GNNs’ generalization
ability on a given dataset quickly. Although the experimental results in Appendix H suggest that our
VC dimension bounds hold in practice to some extent, it is well known that they do not explain the
generalization behavior of deep neural networks in the over-parameterized regime Bartlett et al. [23],
trained with variants of stochastic gradient descent. Therefore, it is a future challenge to understand how
graph structure influences the generalization properties of over-parameterized GNNs, trained with variants
of stochastic gradient descent.

3 Conclusion
We investigated GNNs’ generalization capabilities through the lens of VC dimension theory in different
settings. Specifically, when not assuming a bound on the graphs’ order, we showed that the VC dimension
tightly depends on the bitlength of the GNNs’ weights. We further showed that the number of colors
computed by the 1-WL, besides the number of parameters and layers, influences the VC dimension. When
a bound on the graphs’ order is known, we upper and lower bounded GNNs’ VC dimension via the
maximal number of graphs distinguishable by the 1-WL. Thus, our theory provides the first link between
expressivity results and generalization. Further, our theory also applies to a large set of recently proposed
GNN enhancements.

4

WL meet VC

Acknowledgements
Christopher Morris is partially funded by a DFG Emmy Noether grant (468502433) and RWTH Junior
Principal Investigator Fellowship under Germany’s Excellence Strategy. Martin Grohe is partially funded
by the European Union (ERC, SymSim, 101054974). Views and opinions expressed are, however, those of
the author(s) only and do not necessarily reflect those of the European Union or the European Research
Council. Neither the European Union nor the granting authority can be held responsible for them.

References
[1] Karsten M. Borgwardt, M. Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and Bastian

Rieck. Graph kernels: State-of-the-art and future challenges. Foundations and Trends in Machine
Learning, 13(5–6), 2020. 1, 12

[2] N. M. Kriege, F. D. Johansson, and C. Morris. A survey on graph kernels. Applied Network
Science, 5(1):6, 2020. 1, 12

[3] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy. Machine learning on graphs: A
model and comprehensive taxonomy. ArXiv preprint, 2020. 1

[4] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pages
1263–1272, 2017. 2, 12

[5] C. Morris, Y. L., H. Maron, B. Rieck, N. M. Kriege, M. Grohe, M. Fey, and K. Borgwardt.
Weisfeiler and Leman go machine learning: The story so far. ArXiv preprint, 2021. 1, 12, 13, 14

[6] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-
Lehman graph kernels. Journal of Machine Learning Research, pages 2539–2561, 2011. 1,
24

[7] B. Weisfeiler and A. Leman. The reduction of a graph to canonical form and the algebra which
appears therein. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968. English translation by G.
Ryabov is available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.
pdf. 1, 2, 12

[8] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence, pages 4602–4609, 2019. 1, 3, 12, 14, 16, 17

[9] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. 1, 12, 16

[10] Floris Geerts and Juan L. Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022. 1, 12

[11] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, pages 2153–2164, 2019. 1, 12

[12] Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. SpeqNets: Sparsity-
aware permutation-equivariant graph networks. In International Conference on Machine Learning,
pages 16017–16042, 2022. 1, 12

[13] Vikas K. Garg, Stefanie Jegelka, and Tommi S. Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning, pages 3419–3430,
2020. 1, 12

[14] Nils M. Kriege, Christopher Morris, Anja Rey, and Christian Sohler. A property testing framework
for the theoretical expressivity of graph kernels. In International Joint Conference on Artificial
Intelligence, pages 2348–2354, 2018. 1, 12

[15] Renjie Liao, Raquel Urtasun, and Richard S. Zemel. A PAC-Bayesian approach to generalization
bounds for graph neural networks. In International Conference on Learning Representations, 2021.
1, 12

[16] S. Maskey, Y. Lee, R. Levie, and G. Kutyniok. Generalization analysis of message passing neural
networks on large random graphs. In Advances in Neural Information Processing Systems, 2022. 1,
12

5

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

WL meet VC

[17] F. Scarselli, A. C. Tsoi, and M. Hagenbuchner. The Vapnik-Chervonenkis dimension of graph and
recursive neural networks. Neural Networks, pages 248–259, 2018. 1, 12

[18] M. Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory.
Cambridge University Press, 2017. 2, 12

[19] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. 2, 12

[20] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995. 3, 12

[21] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press,
2018. 3, 12, 15, 20

[22] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pages 5449–5458, 2018. 3

[23] Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. ArXiv preprint, 2019. 4

[24] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. In Advances in Neural Information Processing Systems, pages
2224–2232, 2015. 12

[25] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017. 12

[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations, 2018.
12

[27] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and deep locally connected
networks on graphs. In International Conference on Learning Representation, 2014. 12

[28] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
pages 3837–3845, 2016. 12

[29] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro. Convolutional neural network architectures for
signals supported on graphs. IEEE Transactions on Signal Processing, 67(4):1034–1049, 2019. 12

[30] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. 12

[31] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cayleynets: Graph convolutional neural
networks with complex rational spectral filters. IEEE Transactions on Signal Processing, 67(1):
97–109, 2019. 12

[32] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and Michael M.
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 5425–5434, 2017. 12

[33] I. I. Baskin, V. A. Palyulin, and N. S. Zefirov. A neural device for searching direct correlations
between structures and properties of chemical compounds. Journal of Chemical Information and
Computer Sciences, 37(4):715–721, 1997. 12

[34] Christoph Goller and Andreas Küchler. Learning task-dependent distributed representations
by backpropagation through structure. In International Conference on Neural Networks, pages
347–352, 1996. 12

[35] D. B. Kireev. Chemnet: A novel neural network based method for graph/property mapping. Journal
of Chemical Information and Computer Sciences, 35(2):175–180, 1995. 12

[36] C. Merkwirth and T. Lengauer. Automatic generation of complementary descriptors with molecular
graph networks. Journal of Chemical Information and Modeling, 45(5):1159–1168, 2005. 12

[37] A. Micheli and A. S. Sestito. A new neural network model for contextual processing of graphs. In
Italian Workshop on Neural Nets Neural Nets and International Workshop on Natural and Artificial
Immune Systems, pages 10–17, 2005. 12

6

WL meet VC

[38] A. Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions on
Neural Networks, 20(3):498–511, 2009. 12

[39] A. Sperduti and A. Starita. Supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks, 8(3):714–35, 1997. 12

[40] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In International Conference on Learning
Representations, 2020. 12

[41] Floris Geerts, Filip Mazowiecki, and Guillermo A. Pérez. Let’s agree to degree: Comparing
graph convolutional networks in the message-passing framework. In International Conference on
Machine Learning, pages 3640–3649, 2021. 12

[42] W. Azizian and M. Lelarge. Characterizing the expressive power of invariant and equivariant graph
neural networks. In International Conference on Learning Representations, 2021. 12

[43] Floris Geerts. The expressive power of kth-order invariant graph networks. ArXiv preprint, 2020. 12
[44] C. Morris, G. Rattan, and P. Mutzel. Weisfeiler and Leman go sparse: Towards higher-order graph

embeddings. In Advances in Neural Information Processing Systems, 2020. 12, 14, 17, 21
[45] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph

isomorphism testing and function approximation with gnns. In Advances in Neural Information
Processing Systems, pages 15868–15876, 2019. 12

[46] T. Maehara and H. NT. A simple proof of the universality of invariant/equivariant graph neural
networks. ArXiv preprint, 2019. 12

[47] A. Aamand, J. Y. Chen, P. Indyk, S. Narayanan, R. Rubinfeld, N. Schiefer, S. Silwal, and T. Wagner.
Exponentially improving the complexity of simulating the Weisfeiler-Lehman test with graph
neural networks. ArXiv preprint, 2022. 12

[48] Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak A. Rao, and Bruno Ribeiro. Relational
pooling for graph representations. In International Conference on Machine Learning, pages
4663–4673, 2019. 12

[49] Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. In Advances in Neural Information Processing
Systems, 2020. 12

[50] R. Abboud, İ. İ. Ceylan, M. Grohe, and T. Lukasiewicz. The surprising power of graph neural
networks with random node initialization. In Joint Conference on Artificial Intelligence, pages
2112–2118, 2021. 12

[51] George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph neural
networks for node disambiguation. In International Joint Conference on Artificial Intelligence,
pages 2126–2132, 2020.

[52] R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks. In SIAM
International Conference on Data Mining, pages 333–341, 2021. 12

[53] Omri Puny, Derek Lim, Bobak Toussi Kiani, Haggai Maron, and Yaron Lipman. Equivariant
polynomials for graph neural networks. ArXiv preprint, 2023. 12

[54] Pablo Barceló, Floris Geerts, Juan L. Reutter, and Maksimilian Ryschkov. Graph neural networks
with local graph parameters. In Advances in Neural Information Processing Systems, pages
25280–25293, 2021. 12

[55] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein. Improving graph neural network
expressivity via subgraph isomorphism counting. ArXiv preprint, 2020. 14

[56] Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In International
Conference on Machine Learning, pages 7306–7316, 2020. 12

[57] Muhammet Balcilar, Pierre Héroux, Benoit Gaüzère, Pascal Vasseur, Sébastien Adam, and
Paul Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning, pages 599–608, 2021. 12

[58] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F. Montúfar, Pietro Lió,
and Michael M. Bronstein. Weisfeiler and Lehman go topological: Message passing simplicial
networks. In International Conference on Machine Learning, pages 1026–1037, 2021. 12

7

WL meet VC

[59] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montúfar, and
Michael M. Bronstein. Weisfeiler and Lehman go cellular: CW networks. In Advances in Neural
Information Processing Systems, pages 2625–2640, 2021. 12

[60] Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten M.
Borgwardt. Topological graph neural networks. In International Conference on Learning
Representations, 2022. 12

[61] Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with 1D
convolutions on random walks. ArXiv preprint, 2021. 12

[62] Karolis Martinkus, Pál András Papp, Benedikt Schesch, and Roger Wattenhofer. Agent-based graph
neural networks. ArXiv preprint, 2022. 12

[63] Rajat Talak, Siyi Hu, Lisa Peng, and Luca Carlone. Neural trees for learning on graphs. ArXiv
preprint, 2021. 12

[64] Pablo Barceló, Mikhail Galkin, Christopher Morris, and Miguel A. Romero Orth. Weisfeiler and
leman go relational. ArXiv preprint, 2022. 12

[65] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. In Advances in Neural Information
Processing Systems, 2020. 12

[66] Dominique Beaini, Saro Passaro, Vincent Létourneau, William L. Hamilton, Gabriele Corso, and
Pietro Lió. Directional graph networks. In International Conference on Machine Learning, pages
748–758, 2021. 12

[67] B. Bevilacqua, F. Frasca, D. Lim, B. Srinivasan, C. Cai, G. Balamurugan, M. M. Bronstein, and
H. Maron. Equivariant subgraph aggregation networks. In International Conference on Learning
Representations, 2022. 12, 14

[68] L. Cotta, C. Morris, and B. Ribeiro. Reconstruction for powerful graph representations. In
Advances in Neural Information Processing Systems, pages 1713–1726, 2021.

[69] J. Feng, Y. Chen, F. Li, A. Sarkar, and M. Zhang. How powerful are k-hop message passing graph
neural networks. In Advances in Neural Information Processing Systems, 2022.

[70] Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Understanding
and extending subgraph GNNs by rethinking their symmetries. CoRR, 2022.

[71] Y. Huang, X. Peng, J. Ma, and M. Zhang. Boosting the cycle counting power of graph neural
networks with I2-GNNs. ArXiv preprint, 2022.

[72] P. A. Papp, L. Faber K. Martinkus, and R. Wattenhofer. DropGNN: Random dropouts increase the
expressiveness of graph neural networks. In Advances in Neural Information Processing Systems,
2021.

[73] Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network
extensions. In International Conference on Machine Learning, pages 17323–17345, 2022.

[74] C. Qian, G. Rattan, F. Geerts, C. Morris, and M. Niepert. Ordered subgraph aggregation networks.
In Advances in Neural Information Processing Systems, 2022. 14

[75] E. H. Thiede, W. Zhou, and R. Kondor. Autobahn: Automorphism-based graph neural nets. In
Advances in Neural Information Processing Systems, pages 29922–29934, 2021.

[76] A. Wijesinghe and Q. Wang. A new perspective on "how graph neural networks go beyond
weisfeiler-lehman?". In International Conference on Learning Representations, 2022.

[77] Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
networks. In AAAI Conference on Artificial Intelligence, pages 10737–10745, 2021.

[78] M. Zhang and P. Li. Nested graph neural networks. In Advances in Neural Information Processing
Systems, pages 15734–15747, 2021.

[79] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In International Conference on Learning Representations,
2022.

[80] Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. CoRR, abs/2302.07090, 2023. 12

8

WL meet VC

[81] Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns
via graph biconnectivity. ArXiv preprint, 2023. 12

[82] Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure transformers are powerful graph learners. ArXiv preprint, 2022. 12

[83] Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampásek. Attending to graph
transformers. CoRR, abs/2302.04181, 2023. 12

[84] Martin Grohe. The descriptive complexity of graph neural networks. ArXiv preprint, 2023. 12
[85] Eran Rosenbluth, Jan Tönshoff, and Martin Grohe. Some might say all you need is sum. ArXiv

preprint, 2023. 12
[86] Marek Karpinski and Angus Macintyre. Polynomial bounds for VC dimension of sigmoidal and

general Pfaffian neural networks. Journal of Computer and System Sciences, 54(1):169–176, 1997.
12

[87] Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R. Zhang. Generalization in graph neural
networks: Improved pac-bayesian bounds on graph diffusion. ArXiv preprint, 2023. 12

[88] Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural
networks. In International Conference on Knowledge Discovery & Data Mining, pages 1539–1548,
2019. 12

[89] Pascal Mattia Esser, Leena C. Vankadara, and Debarghya Ghoshdastidar. Learning theory can
(sometimes) explain generalisation in graph neural networks. In Advances in Neural Information
Processing Systems, pages 27043–27056, 2021. 12

[90] Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complexity and its applications. In
Annual Conference on Learning Theory, pages 157–171, 2007. 12

[91] Ilya O. Tolstikhin and David Lopez-Paz. Minimax lower bounds for realizable transductive
classification. ArXiv preprint, 2016. 12

[92] O. Goldreich. Introduction to testing graph properties. In Property Testing. Springer, 2010. 12
[93] Gilad Yehudai, Ethan Fetaya, Eli A. Meirom, Gal Chechik, and Haggai Maron. From local

structures to size generalization in graph neural networks. In International Conference on Machine
Learning, pages 11975–11986, 2021. 12

[94] B. Weisfeiler. On Construction and Identification of Graphs. Springer, 1976. 12
[95] László Babai. Lectures on graph isomorphism. University of Toronto, Department of Computer

Science. Mimeographed lecture notes, October 1979, 1979. 12
[96] N. Immerman and E. Lander. Describing graphs: A first-order approach to graph canonization. In

Complexity Theory Retrospective: In Honor of Juris Hartmanis on the Occasion of His Sixtieth
Birthday, July 5, 1988, pages 59–81, 1990. 12

[97] A. Atserias and E. N. Maneva. Sherali-adams relaxations and indistinguishability in counting logics.
SIAM Journal on Computing, 42(1):112–137, 2013. 12

[98] M. Grohe and M. Otto. Pebble games and linear equations. Journal of Symbolic Logic, 80(3):
797–844, 2015.

[99] P. N. Malkin. Sherali–Adams relaxations of graph isomorphism polytopes. Discrete Optimization,
pages 73–97, 2014. 12

[100] H. Dell, M. Grohe, and G. Rattan. Lovász meets Weisfeiler and Leman. In International Colloquium
on Automata, Languages, and Programming, pages 40:1–40:14, 2018. 12

[101] A. Atserias, L Mancinska, D. E. Roberson, R. Sámal, S. Severini, and A. Varvitsiotis. Quantum and
non-signalling graph isomorphisms. Journal of Combinatorial Theory, Series B, pages 289–328,
2019. 12

[102] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for graph
identifications. Combinatorica, 12(4):389–410, 1992. 12, 14

[103] Sandra Kiefer. Power and Limits of the Weisfeiler-Leman Algorithm. PhD thesis, Department of
Computer Science, RWTH Aachen University, 2020. 12

[104] V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky. On the power of color refinement. In International
Symposium on Fundamentals of Computation Theory, pages 339–350, 2015. 13

9

WL meet VC

[105] S. Kiefer, P. Schweitzer, and E. Selman. Graphs identified by logics with counting. In International
Symposium on Mathematical Foundations of Computer Science, pages 319–330, 2015. 13

[106] Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight lower and upper bounds for the
complexity of canonical colour refinement. Theory of Computing Systems, 60(4):581–614, 2017. 13

[107] S. Kiefer and B. D. McKay. The iteration number of Colour Refinement. In International
Colloquium on Automata, Languages, and Programming, pages 73:1–73:19, 2020. 13

[108] S. Kiefer and P. Schweitzer. Upper bounds on the quantifier depth for graph differentiation in
first-order logic. In Symposium on Logic in Computer Science, pages 287–296, 2016. 13

[109] M. Lichter, I. Ponomarenko, and P. Schweitzer. Walk refinement, walk logic, and the iteration
number of the Weisfeiler-Leman algorithm. In Symposium on Logic in Computer Science, pages
1–13, 2019. 13

[110] V. Arvind, F. Fuhlbrück, J. Köbler, and O. Verbitsky. On Weisfeiler-Leman invariance: Subgraph
counts and related graph properties. In International Symposium on Fundamentals of Computation
Theory, pages 111–125, 2019. 13

[111] Martin Fürer. On the combinatorial power of the Weisfeiler-Lehman algorithm. In International
Conference on Algorithms and Complexity, pages 260–271, 2017. 13

[112] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? In Advances in Neural Information Processing Systems, 2020. 13

[113] S. Kiefer, I. Ponomarenko, and P. Schweitzer. The Weisfeiler-Leman dimension of planar graphs is
at most 3. Journal of the ACM, 66(6):44:1–44:31, 2019. 13

[114] L. Babai. Graph isomorphism in quasipolynomial time. In Symposium on Theory of Computing,
pages 684–697, 2016. 13

[115] M. Grohe, P. Schweitzer, and D. Wiebking. Deep Weisfeiler Leman. ArXiv preprint, 2020. 13

[116] M. Grohe. Word2vec, Node2vec, Graph2vec, X2vec: Towards a theory of vector embeddings of
structured data. In Symposium on Principles of Database Systems, pages 1–16, 2020. 13

[117] M. Grohe. The logic of graph neural networks. In Symposium on Logic in Computer Science, pages
1–17, 2021. 13, 17

[118] Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension
and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning
Research, 20:63:1–63:17, 2019. 22, 23, 24

[119] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola, and H.-P. Kriegel.
Protein function prediction via graph kernels. Bioinformatics, 21(Supplement 1):i47–i56, 2005. 24

[120] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
and Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments.
Nucleic acids research, pages D431–3, 2004. 24

[121] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S. Yu. Mining significant graph patterns by leap
search. In International Conference on Management of Data, pages 433–444, 2008. 24

[122] J. Kazius, R. McGuire, and R. Bursi. Derivation and validation of toxicophores for mutagenicity
prediction. Journal Medicinal Chemistry, 48(13):312–320, 2005. 24

[123] Kaspar Riesen and Horst Bunke. IAM graph database repository for graph based pattern recognition
and machine learning. In Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR
International Workshop, pages 287–297, 2008. 24

[124] N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. Knowledge and Information Systems, 14(3):347–375, 2008. 24

[125] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. TUDataset: A
collection of benchmark datasets for learning with graphs. ArXiv preprint, 2020. 24

[126] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pages 448–456,
2015. 24, 25

[127] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. 24

10

WL meet VC

[128] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
International Conference on Learning Representations, Workshop on Representation Learning on
Graphs and Manifolds, 2019. 24

11

WL meet VC

A Related work

In the following, we discuss relevant related work.

GNNs. Recently, GNNs [4, 19] emerged as the most prominent graph representation learning archi-
tecture. Notable instances of this architecture include, e.g., Duvenaud et al. [24], Hamilton et al. [25],
and Veličković et al. [26], which can be subsumed under the message-passing framework introduced
in Gilmer et al. [4]. In parallel, approaches based on spectral information were introduced in, e.g., Bruna
et al. [27], Defferrard et al. [28], Gama et al. [29], Kipf and Welling [30], Levie et al. [31], and Monti
et al. [32]—all of which descend from early work in Scarselli et al. [19], Baskin et al. [33], Goller
and Küchler [34], Kireev [35], Merkwirth and Lengauer [36], Micheli and Sestito [37], Micheli [38],
and Sperduti and Starita [39].

Limits of GNNs and more expressive architectures. Recently, connections between GNNs and
Weisfeiler–Leman type algorithms have been shown [8, 9, 40, 41]. Specifically, Morris et al. [8] and Xu
et al. [9] showed that the 1-WL limits the expressive power of any possible GNN architecture in terms of
distinguishing non-isomorphic graphs. In turn, these results have been generalized to the k-WL, see,
e.g., Morris et al. [8], Maron et al. [11], Morris et al. [12], Azizian and Lelarge [42], Geerts [43], Morris
et al. [44], and connected to permutation-equivariant functions approximation over graphs, see, e.g., Geerts
and Reutter [10], Azizian and Lelarge [42], Chen et al. [45], Maehara and NT [46]. Further, Aamand et al.
[47] devised an improved analysis using randomization. Recent works have extended the expressive power
of GNNs, e.g., by encoding vertex identifiers [48, 49], using random features [50–52], equivariant graph
polynomials [53], homomorphism and subgraph counts [54–56], spectral information [57], simplicial [58]
and cellular complexes [59], persistent homology [60], random walks [61, 62], graph decompositions [63],
relational [64], distance [65] and directional information [66], subgraph information [5, 67–80], and
biconnectivity [81]. See Morris et al. [5] for an in-depth survey on this topic. Geerts and Reutter [10]
devised a general approach for bounding the expressive power of a large variety of GNNs utilizing
the 1-WL or k-WL. Recently, Kim et al. [82] showed that transformer architectures [83] can simulate
the 2-WL. Grohe [84] showed tight connections between GNNs’ expressivity and circuit complexity.
Moreover, Rosenbluth et al. [85] investigated the expressive power of different aggregation functions
beyond sum aggregation.

GNN’s generalization capabilities. Scarselli et al. [17] used classical techniques from learning theory [86]
to show that GNNs’ VC dimension [20] with piece-wise polynomial activation functions on a fixed graph,
under various assumptions, is in O(P 2n log n), where P is the number of parameters and n is the order
of the input graph. We note here that Scarselli et al. [17] analyzed a different type of GNN not aligned
with modern GNN architectures [4]. Garg et al. [13] showed that the empirical Rademacher complexity,
e.g., [21], of a specific, simple GNN architecture, using sum aggregation, is bounded in the maximum
degree, the number of layers, Lipschitz constants of activation functions, and parameter matrices’ norms.
We note here that their analysis assumes weight sharing across layers. Liao et al. [15] refined these
results via a PAC-Bayesian approach, further refined in Ju et al. [87]. Maskey et al. [16] used random
graphs models to show that GNNs’ generalization ability depends on the (average) number of vertices in
the resulting graphs. Verma and Zhang [88] studied the generalization abilities of 1-layer GNNs in a
transductive setting based on algorithmic stability. Similarly, Esser et al. [89] used stochastic block models
to study the transductive Rademacher complexity [90, 91] of standard GNNs. Moreover, [14] leveraged
results from graph property testing [92] to study the sample complexity of learning to distinguish various
graph properties, e.g., planarity or triangle freeness, using graph kernels [1, 2]. We stress that all of the
above approaches only consider classical graph parameters to bound the generalization abilities of GNNs.
Finally, [93] showed negative results for GNNs’ ability to generalize to larger graphs. However, the
generalization properties of GNNs and their connection to expressivity is understood to a lesser extent.

Expressive power of k-WL. The Weisfeiler–Leman algorithm constitutes one of the earliest and most
natural approaches to isomorphism testing [7, 94], and the theory community has heavily investigated it
over the last few decades [18]. Moreover, the fundamental nature of the k-WL is evident from various
connections to other fields such as logic, optimization, counting complexity, and quantum computing.
The power and limitations of the k-WL can be neatly characterized in terms of logic and descriptive
complexity [95, 96], Sherali-Adams relaxations of the natural integer linear optimization problem for
the graph isomorphism problem [97–99], homomorphism counts [100], and quantum isomorphism
games [101]. In their seminal paper, Cai et al. [102] showed that, for each k, a pair of non-isomorphic
graphs of size O(k) exists not distinguished by the k-WL. Kiefer [103] gives a thorough survey of more
background and related results concerning the expressive power of the k-WL. For k = 1, the power of

12

WL meet VC

the algorithm has been completely characterized [104, 105]. Moreover, upper bounds on the running
time [106] and the number of iterations for k = 1 [107] and the non-oblivious k = 2 [108, 109] have
been shown. For k in {1, 2}, Arvind et al. [110] studied the abilities of the (non-oblivious) k-WL to detect
and count fixed subgraphs, extending the work of Fürer [111]. The former was refined in [112]. Kiefer
et al. [113] showed that the non-oblivious 3-WL completely captures the structure of planar graphs. The
algorithm for logarithmic k plays a prominent role in the recent result of [114] improving the best-known
running time for the graph isomorphism problem. Recently, Grohe et al. [115] introduced the framework
of Deep Weisfeiler–Leman algorithms, which allow the design of a more powerful graph isomorphism test
than Weisfeiler–Leman type algorithms. Finally, the emerging connections between the Weisfeiler–Leman
paradigm and graph learning are described in two recent surveys [5, 116].

B Extended notation
A graph G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G) and edges E(G) ⊆
{{u, v} ⊆ V (G) | u ̸= v}. If not otherwise stated, we set n := |V (G)|, and the graph is of order n. We
also call the graph G an n-order graph. For ease of notation, we denote the edge {u, v} in E(G) by
(u, v) or (v, u). In the case of directed graphs, the set E(G) ⊆ {(u, v) ∈ V (G) × V (G) | u ̸= v}
and a directed acyclic graph (DAG) is a directed graph with no directed cycles. A (vertex-)labeled
graph G is a triple (V (G), E(G), ℓ) with a (vertex-)label function ℓ : V (G) → N. Then ℓ(v) is a label
of v, for v in V (G). An attributed graph G is a triple (V (G), E(G), a) with a graph (V (G), E(G))
and (vertex-)attribute function a : V (G) → R1×d, for some d > 0. That is, contrary to labeled graphs,
we allow for vertex annotations from an uncountable set. Then a(v) is an attribute or feature of v,
for v in V (G). Equivalently, we define an n-order attributed graph G := (V (G), E(G), a) as a pair
G = (G,L), where G = (V (G), E(G)) and L in Rn×d is a vertex feature matrix. Here, we identify
V (G) with [n]. For a matrix L in Rn×d and v in [n], we denote by Lv· in R1×d the vth row of L such
that Lv· := a(v). We also write Rd for R1×d.

The neighborhood of v in V (G) is denoted by N(v) := {u ∈ V (G) | (v, u) ∈ E(G)} and the degree
of a vertex v is |N(v)|. In case of directed graphs, N+(u) := {v ∈ V (G) | (v, u) ∈ E(G)} and
N−(u) := {v ∈ V (G) | (u, v) ∈ E(G)}. The in-degree and out-degree of a vertex v are |N+(v)|
and |N−(v)|, respectively. Two graphs G and H are isomorphic and we write G ≃ H if there exists a
bijection φ : V (G) → V (H) preserving the adjacency relation, i.e., (u, v) is in E(G) if and only if
(φ(u), φ(v)) is in E(H). Then φ is an isomorphism between G and H . In the case of labeled graphs, we
additionally require that l(v) = l(φ(v)) for v in V (G), and similarly for attributed graphs.

C Oblivious k-WL
Intuitively, to surpass the limitations of the 1-WL, the k-WL colors ordered subgraphs instead of a single
vertex.3 More precisely, given a graph G, the k-WL colors the tuples from V (G)k for k ≥ 2 instead of
the vertices. By defining a neighborhood between these tuples, we can define a coloring similar to the
1-WL. Formally, let G be a graph, and let k ≥ 2. In each iteration, t ≥ 0, the algorithm, similarly to
the 1-WL, computes a coloring Ck

t : V (G)k → N. In the first iteration, t = 0, the tuples v and w in
V (G)k get the same color if they have the same atomic type, i.e., Ck

0 (v) := atp(v). Here, we define the
atomic type atp : V (G)k → N, for k > 0, such that atp(v) = atp(w) for v and w in V (G)k if and
only if the mapping φ : V (G)k → V (G)k where vi 7→ wi induces a partial isomorphism, i.e., we have
vi = vj ⇐⇒ wi = wj and (vi, vj) ∈ E(G) ⇐⇒ (φ(vi), φ(vj)) ∈ E(G). Then, for each layer,
t > 0, Ck

t is defined by
Ck

t (v) := RELABEL
(
Ck

t−1(v),Mt(v)
)
,

with Mt(v) the multiset

Mt(v) :=
(
{{Ck

t−1(ϕ1(v, w)) | w ∈ V (G)}}, . . . , {{Ck
t−1(ϕk(v, w)) | w ∈ V (G)}}

)
,

and where
ϕj(v, w) := (v1, . . . , vj−1, w, vj+1, . . . , vk).

3There exists two definitions of the k-WL, the so-called oblivious k-WL and the folklore or non-oblivious k-WL;
see Grohe [117]. There is a subtle difference in how they aggregate neighborhood information. Within the graph
learning community, it is customary to abbreviate the oblivious k-WL as k-WL, a convention we follow in this paper.

13

WL meet VC

That is, ϕj(v, w) replaces the j-th component of the tuple v with the vertex w. Hence, two tuples are
adjacent or j-neighbors if they are different in the jth component (or equal, in the case of self-loops).
Hence, two tuples v and w with the same color in iteration (t− 1) get different colors in iteration t if
there exists a j in [k] such that the number of j-neighbors of v and w, respectively, colored with a certain
color is different.

We run the k-WL algorithm until convergence, i.e., until for t in N

Ck
t (v) = Ck

t (w) ⇐⇒ Ck
t+1(v) = Ck

t+1(w),

for all v and w in V (G)k, holds. For such t, we define Ck
∞(v) = Ck

t (v) for v in V (G)k. At convergence,
we call the partition of V (G)k induced by Ck

t the stable partition. We set Ck
∞(v) := Ck

∞(v, . . . , v) and
refer to this as the color of the vertex v.

Similarly to the 1-WL, to test whether two graphs G and H are non-isomorphic, we run the k-WL in
“parallel” on both graphs. Then, if the two graphs have a different number of vertices colored c, for c in
N, the k-WL distinguishes the graphs as non-isomorphic. By increasing k, the algorithm gets more
powerful in distinguishing non-isomorphic graphs, i.e., for each k ≥ 2, there are non-isomorphic graphs
distinguished by (k + 1)-WL but not by k-WL [102]. For a finite set of graphs S ⊂ G, we run the
algorithm in “parallel” over all graphs in the set S.

D k-order GNNs
By generalizing Equation (1) in Section 1.1, following [5, 8, 44], we can derive k-GNNs computing
features for all k-tuples V (G)k, for k > 0, defined over the set of vertices of an attributed graph
G = (V (G), E(G), a) with features from Rd. Concretely, in each layer, t > 0, for each k-tuple
v = (v1, . . . , vk) in V (G)k, we compute a feature

h(t)
v := UPD(t)

(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

v (ϕ1(v, w)) | w ∈ V (G)}}, . . . ,

{{h(t−1)
v (ϕk(v, w)) | w ∈ V (G)}}

))
.

Initially, for t = 0, we set

h(0)
v := UPD([atp(v), a(v1), . . . , a(vk)]) ∈ Rd,

i.e., the atomic type and the attributes of a given k-tuple determine the initial feature of a k-tuple’s vertices.
In the above, UPD, UPD(t), and AGG(t) may be differentiable parameterized functions, e.g., neural
networks. In the case of graph-level tasks, e.g., graph classification, one additionally uses

hG := READOUT
(
{{h(L)

v | v = (v, . . . , v), v ∈ V (G)}}
)
∈ Rd,

to compute a single vectorial graph representation based on the learned k-tuple features after iteration L.

D.1 Transfering VC bounds from GNNs to k-order GNNs and other more expressive architectures

In the following, we briefly sketch how Propositions 2.1 and 2.2, Corollary 2.3, and Theorem 2.6 can be
lifted to k-GNNs. First, observe that we can simulate the computation of a k-GNN via a GNN on a
sufficiently defined auxiliary graph. That is, the auxiliary graph contains a vertex for each k-tuple, and
an edge connects two k-tuples j if they are j-neighbors for j in [k]; see Morris et al. [5] for details.
Using a 1-WL equivalent GNN taking edge labels into account, we can extend Propositions 2.1 and 2.2
and Corollary 2.3 to k-GNNs. Similar reasoning applies to Theorem 2.6, i.e., we can apply the proof
technique from Appendix G.3 to this auxiliary graph.

D.1.1 Architectures based on subgraph information

Further, we note that Propositions 2.1 and 2.2 also easily extend to recent GNN enhancements, e.g.,
subgraph-based [55] or subgraph-enhanced GNNs [67, 74]. Since suitably defined variations of the 1-WL,
incorporating subgraph information at initialization, upper bound the architectures’ expressive power, we
can easily apply the reasoning behind the proofs of Propositions 2.1 and 2.2 to these cases. Hence, the
architectures’ VC dimensions are also tightly related to the number of graphs distinguishable by respective
1-WL variants.

14

WL meet VC

E Relationship between VC dimension and generalization error
If we can bound the VC dimension of a hypothesis class C of GNNs, we directly get insights into its
generalization ability, i.e., the difference of the empirical error RS(h) and the true error RD(h) for h ∈ C
and a data generating distribution D.
Theorem E.1. Let C be a class of GNNs, with finite VC dimension VC-dim(C) = d. Then for C, for all
ε > 0 and δ ∈ (0, 1), using

m = O
(

1

ε2

(
d ln

(
d

ε

)
+ ln

(
1

δ
+ 1

)))
samples, for all data generating distributions D, we have

Pr
S≃Dm

(∀h ∈ C : |RS(h)−RD(h)| ≤ ε) ≥ 1− δ.

This result was first proven by Vladimir Vapnik and Alexey Chervonenkis in 1960’s; see, e.g., Mohri et al.
[21] for a proof.

F Simple GNNs
We here provide more detail on the simple GNNs mentioned in Section 1.1. That is, for given d and
L in N, we define the class GNNmlp(d, L) of simple GNNs as L-layer GNNs for which, according
to Equation (1), for each t in [L], the aggregation function AGG(t) is simply summation and the update
function UPD(t) is a multilayer perceptron mlp(t) : R2d → Rd of width at most d. Similarly, the readout
function in Equation (2) consists of a multilayer perceptron mlp : Rd → R applied on the sum of all
vertex features computed in layer L.4 More specifically, GNNs in GNNmlp(d, L) compute on a graph
(G,L) in Gd, for each v ∈ V (G),

h(t)
v := mlp(t)

(
h(t−1)
v ,

∑
u∈N(v)

h(t−1)
u

)
∈ Rd, (4)

for t in [L] and h
(0)
v := Lv., and

hG := mlp
(∑
v∈V (G)

h(L)
v

)
∈ R. (5)

We also consider an even simpler class GNNslp(d, L) of GNNmlp(d, L) in which the multilayer perceptrons
are in fact single layer perceptrons. That is, Equation (4) is replaced by

h(t)
v := σt

(
h(t−1)
v W

(t)
1 +

∑
u∈N(v)

h(t−1)
u W

(t)
2 + b(t)

)
∈ Rd, (6)

where W
(t)
1 in Rd×d and W

(t)
2 in Rd×d are weight matrices, and b(t) in R1×d is a bias vector, and

σt : R → R is an activation function, for t in [L]. Similarly, Equation (5) is replaced by

hG := σL+1

(∑
v∈V (G)

h(L)
v w + b

)
∈ R. (7)

with w in Rd×1 a weight vector and b in R a bias value of the final readout layer. Also, σL+1 : R → R is
an activation function. We can thus represent elements in GNNslp(d, L) more succinctly by the following
tuple of parameters,

Θ =
(
W

(1)
1 ,W

(1)
2 ,b(1), . . . ,W

(L)
1 ,W

(L)
2 ,b(L),w, b

)
,

together with the tuple of activation functions σσσ = (σ1, . . . , σL, σL+1). We can equivalently view
Θ as an element in Rd(2dL+L+1)+1. Each Θ in Rd(2dL+L+1)+1 and σσσ = (σ1, . . . , σL+1) induces a
permutation-invariant graph function

gnnΘ,σσσ : Gd → R : (G,L) 7→ gnnΘ,σσσ(G,L) := hG,

with hG as defined in Equation (7).
4For simplicity we assume that all feature dimensions of the layers are fixed to d in N and also assume that the

readout layer returns a scalar.

15

WL meet VC

G Missing proofs
In the following, we outline missing proofs from the main paper.

G.1 Proofs of Proposition 2.1 and Proposition 2.2

We start with the general upper bound on the VC dimension in terms of the number of 1-WL-
indistinguishable graphs.
Proposition G.1 (Proposition 2.1 in the main text). For all n, d, and L, the maximal number of graphs of
order at most n with d-dimensional boolean features that can be shattered by L-layer GNNs is bounded by
the maximal number (mn,d,L) of 1-WL-distinguishable graphs. That is,

VC-dimGB
d,n

(
GNN(L)

)
≤ mn,d,L.

Proof. Clearly, every set S of mn,d,L + 1 graphs from GB
d,n contains at least two graphs G and G′ not

distinguishable by the 1-WL. Since GNNs cannot distinguish 1-WL-indistinguishable graphs [8, 9], they
cannot tell G and G′ apart and hence cannot not shatter S . Hence, the VC dimension can be at most
mn,d,L.

We next show a corresponding lower bound. In fact, the lower bound already holds for the class of simple
GNNs of arbitrary width, that is for GNNs in GNNmlp(L) :=

⋃
d∈N GNNmlp(d, L).

Proposition G.2 (Proposition 2.2 in the main paper). For all n, d, and L, all mn,d,L 1-WL-distinguishable
graphs of order at most n with d-dimensional boolean features can be shattered by sufficiently wide
L-layer GNNs. Hence,

VC-dimGB
d,n

(
GNN(L)

)
= mn,d,L.

Proof. For all i in [mn,d,L], choose Gi in GB
d,n such that S = {G1, . . . ,Gmn,d,L

} consists of the
maximum number of graphs in GB

d,n pairwise distinguishable by the 1-WL after L iterations.

We next show that the class of simple GNNs which are wide enough, that is, GNNmlp(d
′, L) for large

enough d′, is sufficiently rich to shatter S. That is, we show that for each T ⊆ S there is a gnnT in
GNNmlp(d

′, L) such that for all i in [mn,d,L]:

gnnT (Gi) =

{
1 if Gi ∈ T , and
0 otherwise.

This shows that S is shattered by GNNmlp(d
′, L) and hence its VC dimension is at least |S| = mn,d,L,

as desired.

Overview of the construction Intuitively, we will show that GNNmlp(d
′, L), with d′ large enough, is

powerful enough to return a one-hot encoding of the color histograms of graphs in S . That is, there is a
simple GNN gnn in GNNmlp(d

′, L) which in the MLP in its readout layer embeds a graph Gi in S as a
vector hG in {0, 1}mn,d,L satisfying (hG)i = 1 if and only if Gi in T and i ∈ [mn,d,L]. Then, we
extend the readout multilayer perceptron of gnn by one more layer such that on input G the revised GNN
evaluates to the scalar

gG := sign(hG ·wT − 1) ∈ {0, 1},

with w in Rd′×1. We observe that given T ⊆ S it suffices to let the parameter vector w be the indicator
vector for T . Indeed, this ensures that gG = 1 if and only if G is in a color class included in T . We can
explore all such subsets T of S by varying w; hence, this GNN will shatter S.

Encoding 1-WL colors via GNNs We proceed with the construction of the required GNN. For simplicity
of exposition, in the description below we will construct GNN layers of non-uniform width. One can easily
obtain uniform width by padding each layer. First, by Morris et al. [8, Theorem 2], there exists a GNN
architecture with feature dimension (at most) n and consisting of L layers such that for each Gi in S it
computes 1-WL-equivalent vertex features fv in R1×d for v ∈ V (Gi). That is, for vertices v and w in
V (Gi) it holds that

fv = fw ⇐⇒ C1
L(v) = C1

L(w).

16

WL meet VC

We note here that we can construct a single GNN architecture for all graphs by applying [8, Theorem 2]
over the disjoint union the graphs in S. This increases the width from n to nmn,d,L.

Encoding 1-WL histograms via GNNs Moreover, again by [44, Theorem 2] there exists W in
Rnmn,d,L×nmn,d,L and b in Rnmn,d,L such that

σ
(∑

v∈V (G)

fvW + b
)
= σ

(∑
v∈V (H)

fvW + b
)

⇐⇒ hG = hH,

for graphs G and H in S . We use ReLU as activation function σ here, just as in [8]. Other activation
functions could be used as well [117]. Hence, for each graph in S, we have a vector in R1×nmn,d,L

uniquely encoding it. Since the number of vertices n is fixed, there exists a number M in N such that
Mσ(

∑
v∈V (G) Wfv) is in N1×nmn,d,L for all G in S . Moreover, observe that there exists a matrix W′

in Nnmn,d,L×2mn,d,L such that

Mσ
(∑

v∈V (G)

fvW + b
)
W′ = Mσ

(∑
v∈V (H)

fvW + b
)
W′ ⇐⇒ hG = hH,

for graphs G and H in S . For example, we can set

W′ =

K
nmn,L−1 · · · Knmn,L−1

... · · ·
...

K0 · · · K0

 ∈ Nnmn,d,L×2mn,d,L

for sufficiently large K > 1. Hence, the above GNN architecture computes a vector kG in N2mn,d,L

containing 2mn,d,L occurrences of a natural number uniquely encoding each color histogram for each
graph G in S .

We next turn kG into our desired hG as follows. We first define an intermediate vector h′
G whose entries

will be used to check which color histogram is returned. More specifically, we define

h′
G = lsig(kG · (w′′)T + b),

with w′′ = (1,−1, 1,−1, . . . , 1,−1) ∈ R2mn,L and b = (−c1 − 1, c1 + 1,−c2 − 1, c2 +
1, . . . ,−cmn,d,L

− 1, cmn,d,L
+ 1) ∈ R2mn,d,L with ci the number encoding the ith color histogram.

We note that for odd i,

(h′
G)i := lsig(col(G)− ci − 1) =

{
1 col(G) ≥ ci
0 otherwise.

and for even i,

(h′
G)i := lsig(−col(G) + ci + 1) =

{
1 col(G) ≤ ci
0 otherwise.

In other words, ((h′
G)i, (h

′
G)i+1) are both 1 if and only if col(G) = ci. We thus obtain hG by combining

((h′
G)i, (h

′
G)i+1) using an “AND” encoding (e.g., lsig(x+ y− 1)) applied to pairs of consecutive entries

in h′
G. That is,

hG := lsig


h′
G ·



1 0 · · · 0
1 0 · · · 0
0 1 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 1


− (1, 1, . . . , 1)


∈ Rmd,n,L

We thus see that a 3-layer MLP suffices for the readout layer of the simple GNN, finishing the proof. We
remark that the maximal width is 2nmn,d,L, so we can take d′ = 2nmn,d,L.

G.2 Proof of Proposition 2.5

We now prove Proposition 2.5.

17

WL meet VC

Proposition G.3 (Proposition 2.5 in the main text). There exists a family Fb of simple 2-layer GNNs of
width two and of bitlength O(b) using a piece-wise linear activation such that its VC dimension is exactly
b.

Proof. We first show the lower bound. We fix some n ≥ 1. We shall construct a family of GNNs
whose weights have bitlength O(n) and a family of n graphs shattered by these GNNs. Thereto, for all
x = (x1, . . . , xn) in {0, 1}n, we let

ρ(x) :=

n∑
i=1

(2−2i+1 + xi2
−2i).

Written in binary, we have
ρ(x) = 0.1x11x21x3 . . . 1xn.

Observe that
1

2
≤ ρ(x) ≤ 1. (8)

For 1 ≤ k ≤ n, we let

ρk(x) := ρ
(
(xk+1, . . . , xk+n)

)
=

n∑
i=1

(2−2i+1 + xk+i2
−2i),

where xk+i := 0 for k + i > n. Then it follows from (8) that

1

2
≤ ρk(x) ≤ 1. (9)

We claim that

ρk(x) = 22kρ(x)−

(
k∑

i=1

22(k−i)+1 −
k∑

i=1

22(k−n−i)+1

)
︸ ︷︷ ︸

=:ak

−
k−1∑
i=1

22(k−i)xi︸ ︷︷ ︸
:=bk(x)

−xk (10)

Indeed, we have

22kρ(x) =

n∑
i=1

(
22(k−i)+1 + xi2

2k−2i
)

=

n+k∑
i=1

(
22(k−i)+1 + xi2

2(k−i)
)
−

n+k∑
i=n+1

22(k−i)+1

=

k∑
i=1

22(k−i)+1 −
n+k∑

i=n+1

22(k−i)+1 +

k∑
i=1

xi2
2(k−i) +

n+k∑
i=k+1

(
22(k−i)+1 + xi2

2(k−i)
)

=
k∑

i=1

22(k−i)+1 −
k∑

i=1

22(k−n−i)+1 +
k∑

i=1

xi2
2(k−i) +

n∑
i=1

(
2−2i+1 + xk+i2

−2i
)

=

k∑
i=1

22(k−i)+1 −
k∑

i=1

22(k−n−i)+1 +

k−1∑
i=1

xi2
2(k−i) + xk + ρk(x)

= ak + bk(x) + xk + ρk(x),

which proves (10). Now let
ck(x) := bk(x) + ak + 1.

Then by (9) and (10), we have

xk − 1

2
≤ 4kρ(x)− ck(x) ≤ xk. (11)

For x = (x1, . . . , xn) and y = (y1, . . . , yn) in {0, 1}n, we write x ̸=k y if xi ̸= yi for some i < k.
Observe that x ̸=k y implies

∣∣bk(x)− bk(y)
∣∣ ≥ 4 and thus∣∣ck(x)− ck(y)

∣∣ ≥ 4. (12)

18

WL meet VC

Let A : R → R be the continuous piecewise-linear function defined by

A(x) :=



0 if x < 0,

2x if 0 ≤ x < 1
2 ,

1 if 1
2 ≤ x < 1,

3− 2x if 1 ≤ x < 3
2

0 if 3
2 ≤ x.

Since xk ∈ {0, 1}, by (11) we have

xk = A
(
4kρ(x)− ck(x)

)
. (13)

If follows from (12) that for y with y ̸=k x we have

A
(
4kρ(x)− ck(y)

)
= 0. (14)

Let
Ck :=

{
ck(y)

∣∣∣ y ∈ {0, 1}n
}
.

Then
xk =

∑
c∈Ck

A
(
4kρ(x)− c

)
. (15)

Note that the only dependence on x of the right-hand side of (15) is in ρ(x), because Ck does not depend
on x.

Observe that |Ck| = 2k−1, because ck(y) only depends on y1, . . . , yk−1 ∈ {0, 1} and is distinct for
distinct values of the yi. We have

ak =

k∑
i=1

22(k−i)+1 −
k∑

i=1

22(k−n−i)+1

︸ ︷︷ ︸
=:s≤1

= 2

k−1∑
i=0

4i − s =
2

3

(
4k − 1

)
− s.

Thus
2

3

(
4k − 1

)
− 1 ≤ ak ≤ 2

3

(
4k − 1

)
.

Furthermore,

0 ≤ bk(x) ≤
k−1∑
i=1

22(k−i) =

k−1∑
i=1

4k−i = 4

k−2∑
i=0

4i =
4

3

(
4k−1 − 1

)
.

Thus
2

3

(
4k − 1

)
≤ c ≤ 2

3

(
4k − 1

)
+

4

3

(
4k−1 − 1

)
+ 1 = 4k − 1. (16)

Now for each ρ in R we construct a 2-layer GNN Gρ as follows:

• Initially, all nodes v carry the 1-dimensional feature h
(0)
v := 1.

• The first layer computes the 2-dimensional feature

(
h
(1)
v,1

h
(1)
v,2

)
defined by

h
(1)
v,1 :=

∑
w∈N(v)

ρ · h(0)
w − ρ,

h
(1)
v,2 :=

∑
w∈N(v)

h(0)
w − 1.

• The second layer computes the 1-dimensional feature h
(2)
v defined by

h(2)
v = A

h
(1)
v,1 −

∑
w∈N(v)

h
(1)
w,2

.

19

WL meet VC

• The readout functions just takes the sum of all the h
(2)
v .

We define a graph Fk as follows. The graph Fk is a forest of height 2.

• Fk has a root node rc for every c ∈ Ck.
• Each rc has a child sc and 4k additional children tc,1, . . . , tc,4k .
• The tc,i are leaves.
• Each sc has children uc,1, . . . , uc,c.
• The uc,i are leaves.

Now we run the GNN Gρ on Fk with ρ = ρ(x) for some x = (x1, . . . , xn) in {0, 1}n.

• We have h
(0)
v = 1 for all v in V (Fk).

• We have

h
(1)
tc,i,1

= h
(1)
uc,i,1

,

h
(1)
sc,1

= cρ,

h
(1)
rc,1

= 4kρ,

and

h
(1)
tc,i,2

= h
(1)
uc,i,1

= 0,

h
(1)
sc,2

= c,

h
(1)
rc,2

= 4k.

• We have

h
(2)
tc,i = A

(
− 4k

)
= 0

h(2)
uc,i

= A
(
− c
)
= 0

h(2)
sc = A

(
cρ− 4k

)
= 0

h(2)
rc = A

(
4kρ− c

)
=

{
xk if c = ck(x)

0 otherwise
by (13) and (14).

To see that the first three equalities hold, recall that A(x) ̸= 0 only if 0 < x < 3
2 . Thus A(−4k) = 0.

Moreover, by (16) we have 2 ≤ c and thus A(c) = 0. Finally, A
(
cρ− 4k

)
= 0 because ρ < 1 and

c ≤ 4k − 1 by (16) and therefore cρ− 4k < 0.
• As there is exactly one node rc with c = ck(x), the readout is

∑
v∈V (Fk)

h
(2)
v = xk.

Hence
Gρ(x)(Fk) = xi

Thus the GNNs Gρ(x) for x ∈ {0, 1}n shatter the set {F1, . . . , Fn}. Since the bitlength is upper bounded
by O(b) and the number of parameters in the above construction is constant, the hypothesis set is finite,
and the upper bound follows from standard learning-theoretic results; see, e.g., [21].

G.3 Proof of Theorem 2.6

In the following, we outline the proof of Theorem 2.6. First, we define feedforward neural networks and
show how simple GNNs can be interpreted as such.

Feedforward neural networks. A feedforward neural network (FNN) is specified by a tuple N =
(N , β, γ) where N describes the underlying architecture and where β and γ define the parameters
or weights. More specifically, N =

(
V N , EN , i1, . . . , ip, o1, . . . , oq, α

N) where (V N , EN) is a
finite DAG with p input nodes i1, . . . , ip of in-degree 0, and q output nodes o1, . . . , oq of out-degree
0. No other nodes have in- or out-degree zero. Moreover, αN is a function assigning to each
node v ∈ V N \ {i1, . . . , ip} an activation function α(v) : R → R. Furthermore, the function
β : V N \{i1, . . . , ip} → R is a function assigning biases to nodes, and finally, the function γ : EN → R
assigns weights to edges. For an FNN N , we define its size s as the number of biases and weights, that is
s = |V N | − p+ |EN |.

20

WL meet VC

Given an FNN N = (N , β, γ), we get a function fnnN : Rp → Rq defined as follows. For all v in V N ,
we define a function hN

v : Rp → R such for a = (a1, . . . , ap) in Rp,

hN
v (a) :=

{
aj if v = ij for j ∈ [p],

αN (v)
(∑

u∈N+(v) γ(u, v)h
N
u (a) + β(v)

)
otherwise.

Finally, fnnN : Rp → Rq is defined as a 7→ fnnN (a) :=
(
hN
o1(a), . . . , h

N
oq (a)

)
.

Simple GNNs as FNNs. We next connect simple GNNs in GNNslp(d, L) to FNNs. As described in
Section F such GNNs are specified by L+ 1 activation functions σσσ := (σ1, . . . , σL+1) and a weight
vector Θ in Rd(2dL+L+1)+1 describing weight matrices and bias vectors in all the layers. We show that
for any attributed graph of order at most n G = (G,L) in Gn,d with G = (V (G), E(G)) and L in
Rn×d there exists an architecture NG(σσσ) such that for any weight assignment Θ in Rd(2dL+L+1)+1 of
the GNN, there exists βΘ : V NG → R and γΘ : ENG → R, satisfying

gnnΘ,σσσ(G,L) = fnnN=(NG(σσσ),βΘ,γΘ)(L
′), (17)

where L′ in Rnd is the (column-wise) concatenation of the rows of the matrix L. Moreover, NG(σσσ) is of
polynomial size in the number of vertices and edges in G, the feature dimension d, and the number of
layers L. Furthermore, NG(σσσ) has only a single output node o.

The idea behind the construction of NG(σσσ) is to consider the tree unraveling or unrolling, see, e.g., [44],
of the computation of gnnΘ,σσσ(G,L) but instead of a tree we represent the computation more concisely as
a DAG. The DAG NG(σσσ) is defined as follows.

• The node set V NG consists of the following nodes.
– We have input nodes iv,j for v in V (G) and j in [d] which will take the vertex labels Lvj in R

as value.
– For each t in [L], we include the following nodes: n(t)

v,j for v in V (G), j in [d].
– Finally, we have a single output node o.

We thus have d(L+ 1)|V (G)|+ 1 nodes in total.
• The edge set ENG consists of the following edges.

– We have edges encoding the adjacency structure of the graph G in every layer. More specifically,
we have an edge eu,j,v,k,t := (n

(t−1)
u,j , n

(t)
v,k) whenever u in N(v) ∪ {v} and where u and v

are in V (G), j and k in [d], and t in {2, . . . , L}.
– We also have edges from the input nodes iu,j to n

(1)
v,k for all u in NG(v) ∪ {v} and where u

and v are in V (G) and j and k in [d].
– Finally, we have edges connecting the last layer nodes to the output, i.e., edges ev,j := (n

(L)
v,j , o)

for all v in V (G) and j in [d].
We thus have d|V (G)|+ d2((L− 1)(E(G) + V (G)) + (E(G) + V (G))) edges in total.

• Finally, we define the activation functions.
– αN (n

(t)
v,j) := σt for all v in V (G), j in [d] and t in [L], and αN (o) := σL+1.

This fixes the architecture NG(σσσ). We next verify Equation (17). Let Θ in Rd(2dL+L+1)+1 and
G = (G,L) in Gn,d. Let NG(σσσ) be the architecture defined above for the graph G. We define βΘ and
γΘ, as follows.

• βΘ := V NG → R is such that βΘ(n
(t)
v,j) = b

(t)
j for all v in V (G), j in [d] and t in [L]. We also set

βΘ(o) = b.
• γΘ : ENG → R is such that γΘ(eu,j,v,k,t) := W

(2,t)
jk if u ̸= v and γΘ(eu,j,v,k,t) := W

(1,t)
jk

otherwise, and γΘ(ev,j) = wj , for u and v in V (G), j and k in [d], and t in [L].

Note that we share weights across edges that correspond to the same edge in the underlying graph.

Now, if we denote by f
(t)
v the feature vector in Rd computed in the tth layer by the GNN gnnΘ,σσσ(G,L),

then it is readily verified, by induction on the layers, that for N = (NG, ασσσ, βΘ, γΘ):

hN

n
(t)
v,j

= f
(t)
v,j and thus hN

o := σL+1

 ∑
v∈V (G)

∑
j∈[d]

wjf
(L)
vj + b

,

21

WL meet VC

from which Equation (17) follows.

We next expand the construction by obtaining an FNN that simulates GNNs on multiple input graphs.
More specifically, consider a set G consisting of m graphs G1 = (G1,L1), . . . ,Gm = (Gm,Lm) in
Gn,d and a GNN in GNNslp(d, L) using activation functions σσσ = (σ1, . . . , σL+1) in its layers. We first
construct an FNN architecture NGi

(σσσ) for each graph separately, as explained above, such that for every
Θ in RP , there exists βΘ and γΘ such that

gnnΘ,σσσ(Gi,Li) = fnnNGi
:=(NGi

(σσσ),βΘ,γΘ)(L
′
i),

with L′
i is the concatenation of rows in Li, as before.

Then, let NG(σσσ) be the FNN architecture obtained as the disjoint union of NG1(σσσ), . . . ,NGm(σσσ). If we
denote by oi the output node of NGi(σσσ) in NG(σσσ), then we have again that for every Θ in RP , there
exists βΘ and γΘ such that

gnnΘ,σσσ(Gi) = hNG:=(NG(σσσ),βΘ,γΘ)
oi (L′)

for all i in [m], where L′ := (L′
1, . . . ,L

′
m).

We recall that, for t in [L], the nodes in NG(σσσ) are of the form ν
(t),g
v,j for v in VGg

, j in [d] and g in [m].
In layer L+ 1, we have the output nodes o1, . . . , om. If the order of the graphs in G is at most n, then
every layer, except the last one, has ndm nodes. The last layer only has m nodes.

Piece-wise polynomial activation functions. A piece-wise polynomial activation function σp,δ : R → R
is specified by a partition of R into p intervals Ij and corresponding polynomials pj(x) of degree at most δ,
for j in [p]. That is, σp,δ(x) = pj(x) if x in Ij . Examples of σp,δ(x) are: sign(x) : R → R : x 7→ 1x≥0

for which p = 2 and δ = 0, relu(x) : R → R : x 7→ max(0, x) for which p = 2 and δ = 1, and
lsig(x) : R → R : x 7→ max(0,min(1, x)) for which p = 3 and δ = 1. Piece-wise linear activation
functions are of the form σp,1, i.e., they are defined in terms of linear polynomials. The parameters of an
activation function σp,δ consist of the coefficients of the polynomials involved and the boundary points
(numbers) of the intervals in the partition of R.

Proof of Theorem 2.6. We next derive upper bounds on the VC dimension of GNNs by the approach used
in Bartlett et al. [118], where they used it for bounding the VC dimension of FNNs using piecewise
polynomial activation functions. Their approach allows for recovering known bounds on the VC dimension
of FNNs in a unified manner. As we will see, the bounds by Bartlett et al. [118] for FNNs naturally
translate to bounds for GNNs.

Assume d and L in N. In this section, we will consider the subclass of GNNs in GNNslp(d, L) that use
piece-wise polynomial activation functions with p > 0 pieces and degree δ ≥ 0. As explained in Section F,
d(2dL+ L+ 1) + 1 is the total number of (learnable) parameters for our GNNs in GNNslp(d, L). As
shorthand notation, we define P := d(2dL+ L+ 1) + 1. We first bound VC-dimGd,n

(
GNNslp(d, L)

)
and then use this bound to obtain a bound for VC-dimGd,≤u

(
GNNslp(d, L)

)
.

We take G consisting of m graphs G1 = (G1,L1), . . . ,Gm = (Gm,Lm) in Gn,d and consider the
FNN architecture NG(σσσ) define above with output nodes o1, . . . , om. Let tresh : R → R such that
tresh(x) = 1 if x ≥ 2/3 and tresh(x) = 0 if x ≤ 1/3. We will bound

K ′ :=
∣∣{(tresh(hNG

o1 (L′)), . . . , tresh(hNG
om (L′))

)
: NG := (NG(σσσ), βΘ, γΘ), Θ ∈ RP

}∣∣,
as this number describes how many 0/1 patterns can occur when Θ ranges over RP . These 0/1 patterns
correspond, by the construction of NG and the semantics of its output nodes, to how many of the input
graphs in G can be shattered. To bound K ′ using the approach in Bartlett et al. [118] we need to slightly
change the activation function σL+1 used in the FNN architecture. The reason is that Bartlett et al. use the
sign function to turn a real-valued function into a 0/1-valued function. In contrast, we use the tresh
function described above.

Let σσσ′ := (σ1, . . . , σL, σL+1 − 1/3). We will bound K ′ by bounding

K :=
∣∣{(sign(hNG

o1 (L′)), . . . , sign(hNG
om (L′))

)
: NG := (NG(σσσ

′), βΘ, γΘ), Θ ∈ RP
}∣∣.

Note that K ′ ≤ K because if tresh(σL+1)(x) = 1 then σL+1(x) ≥ 2/3 and hence σL+1(x)−1/3 > 0
and hence sign(σL+1(x)− 1/3) = 1. Similarly, tresh(σL+1)(x) = 0 then σL+1(x) ≤ 1/3 and hence
σL+1(x)− 1/3 ≤ 0 and hence sign(σL+1(x)− 1/3) = 0.

22

WL meet VC

Then, if VC-dimGd,n

(
GNNslp(d, L)

)
= m then K ≥ 2m. We thus bound K in terms of a func-

tion κ in m and then use 2m ≤ κ(m) to find an upper bound for m, i.e., an upper bound for
VC-dimGd,n

(
GNNslp(d, L)

)
. To bound K we can now use the approach of Bartlett et al. [118]. In a

nutshell, the entire parameter space RP is partitioned into pieces S1, . . . , Sℓ such that whenever Θ and
Θ′ belong to the same piece (i) they incur the same sign pattern in {0, 1}m; and (ii) each hNG

o1 (L′) is a
polynomial of degree at most 1 + LδL. For δ = 0, these are polynomials in d+ 1 variables, for δ > 0,
the number of variables is P . Crucial in Bartlett’s approach is the following lemma.
Lemma G.4 (Lemma 17 in Bartlett et al. [118]). Let p1(x), . . . , pr(x) be polynomials of degree at most
δ and in variables x satisfying |x| ≤ r, where | · | denotes the number of components of a vector. Then∣∣∣{(sign(p1(Θ)), . . . , sign(pr(Θ))

)
| Θ ∈ R|x|}∣∣∣ ≤ 2

(
2erδ

|x|

)|x|

.

Given property (ii) of the pieces S1, . . . , Sℓ, we can apply the above lemma to the polynomials
hNG
o1 (L′), . . . , hNG

om (L′) and, provided that the number of variables is at most m, obtain a bound for K

by ℓ2
(

2em
d+1

)d+1

, when δ = 0, and K ≤ ℓ2
(

2em(1+LδL)
P

)P
for δ > 0.

It then remains to bound the number of parts ℓ. Bartlett et al. show how to do this inductively (on the
number of layers), again using Lemma G.4. More precisely, every node in the FNN architecture is
associated with a number of polynomials. In layer t we have nmd nodes (number of computation nodes),
and we associate with each node p polynomials (number of breakpoints of activation function) of degree at
most 1 + (t− 1)δt−1 and have (2d+ 1)d variables for δ = 0 and (2d+ 1)dt variables for δ > 0. We
then get, for δ = 0,

K ≤ 2L

((
2edmnp

(2d+ 1)d

)(2d+1)d
)L

2

(
2em

d+ 1

)d+1

, (18)

and for δ > 0,

K ≤
L∏

t=1

2

(
2edmnp(1 + (t− 1)δt−1)

(2d+ 1)dt

)(2d+1)dt

2

(
2em(1 + LδL)

P

)P

. (19)

These are precisely the bounds given in Bartlett et al. [118] applied to our FNN. It is important, however,
to note that this upper bound is only valid when Lemma G.4 can be applied, and hence, the number of
variables must be smaller than the number of polynomials. For t in [L], we must have that the number of
variables is less than the number of polynomials. We have nmdp polynomials, and up to layer t we have
(2d+ 1)dt parameters (variables). Hence, we must have (2d+ 1)dt ≤ nmdp or (2d+ 1)t ≤ nmp, and
also D ≤ m or P ≤ nmdp for δ > 0. For δ = 0, we need (2d+ 1)d ≤ nmdp (or (2d+ 1) ≤ nmp)
and d+ 1 ≤ m. The following conditions are sufficient

P ≤ m for δ > 0, and 2d+ 1 ≤ m for δ = 0. (†)

FNN size reduction based on 1-WL. We next bring in 1-WL into consideration by collapsing computation
nodes in NG in each layer based on their equivalence with regards to 1-WL. In other words, if we
assume that the graphs to be shattered have at most u vertex colors, then we have at most u—rather than
n—computation nodes per graph. This implies that the parameter n in the above expression can be
replaced by u.

As a consequence, following Bartlett et al. [118], using the weighted AM–GM inequality on the right-hand
side of the inequalities (18) and (19), we obtain a bound for the VC dimension by finding maximal m
satisfying, for δ = 0,

2m ≤ 2L+1

(
2ep(udL+ 1)m

P

)P

and for δ > 0,

2m ≤ 2L+1

(
2ep
(
ud
∑L

t=1(1 + (t− 1)δt−1) + (1 + LδL)
)
m

L(L+1)
2 (2d+ 1)d+ P

)L(L+1)
2 (2d+1)d+P

.

Such m are found in [118], resulting in the following bounds.

23

WL meet VC

Proposition G.5 ([118] modified for our FNN NG).

VC-dimGd,≤u

(
GNNslp(d, L)

)
≤


O(Ld2 log(p(udL+ 1))) if δ = 0

O(L2d2 log(p(udL+ 1))) if δ = 1

O(L2d2 log(p(udL+ 1)) + L3d2 log(δ)) if δ > 1.

We can simplify this to O(P log(puP)), O(LP log(puP)), and O(LP log(puP) + L2P log(δ)),
respectively. We note that since these are larger than P , the condition (†) is satisfied.

H Experimental evaluation
In the following, we investigate how well the VC dimension bounds from the previous section hold in
practice. Specifically, we answer the following questions.

Q1 How does the number of parameters influence GNNs’ generalization performance?
Q2 How does the number of 1-WL-distinguishable graphs influence GNNs’ generalization performance?
Q3 How does the bitlength influence a GNN’s ability to fit random data?

The source code of all methods and evaluation procedures is available at https://www.github.com/
chrsmrrs/wl_vs_vc/.

Datasets. To investigate questions Q1 and Q2, we used the datasets ENZYMES [119, 120], MCF-7 [121],
MCF-7H [121], MUTAGENICITY [122, 123], and NCI1 and NCI109 [6, 124] provided by Morris et al.
[125]. See Table 3 for dataset statistics and properties. For question Q3, to investigate the influence
of bitlength on GNN’s VC dimension, we probed how well GNNs can fit random data. Hence, the
experiments on these datasets aim at empirically verifying the VC dimension bounds concerning bitlength.
To that, we created a synthetic dataset; see Appendix I.3. Since it is challenging to simulate different
bitlengths without specialized hardware, we resorted to simulating an increased bitlength via an increased
feature dimension; see Appendix I.4.

All experiments are therefore conducted with standard 32-bit precision. We also experimented with 64-bit
precision but observed no clear difference. Furthermore, 16-bit precision proved numerically unstable in
this setting.

Neural architectures. For the experiments regarding Q1 and Q2, we used the simple GNN layer described
in Appendix I.1 using a reLU activation function, ignoring possible edge labels. To answer question Q1,
we fixed the number of layers to five and chose the feature dimension d in {4, 16, 256, 1 024}. To answer
Q2, we set the feature dimension d to 64 and choose the number of layers from {0, . . . , 6}. We used sum
pooling and a two-layer MLP for all experiments for the final classification. To investigate Q3, we used the
architecture described in Appendix I.2. In essence, we used a 2-layer MLP for the message generation
function in each GNN layer and added batch normalization [126] before each non-linearity and fixed the
number of layers to 3, and varied the feature dimension d in {4, 16, 64, 256}.

Experimental protocol and model configuration. For the experiments regarding Q1 and Q2, we
uniformly and at random choose 90% of a dataset for training and the remaining 10% for testing. We
repeated each experiment five times and report mean test accuracies and standard deviations. We optimized
the standard cross entropy loss for 500 epochs using the ADAM optimizer [127]. Moreover, we used a
learning rate of 0.001 across all experiments and no learning rate decay or dropout. For Q3, we set the
learning rate to 10−4 and the number of epochs to 100 000, and repeated each experiment 50 times. All
architectures were implemented using PYTORCH GEOMETRIC [128] and executed on a workstation with
128GB RAM and an NVIDIA Tesla V100 with 32GB memory.

H.1 Results and discussion

In the following, we answer questions Q1 to Q3.

Q1. See Table 1 and Figure 4. Increasing the feature dimension d increases the average difference between
train and test accuracies across all datasets. For example, on the ENZYMES dataset, the difference increases
from around 5% for d = 4 to more than 45% for d = 1024. However, we also observe that the difference
does not increase when reaching near-perfect training accuracies, i.e., going from d = 256 to d = 1024
does not increase the difference. Hence, the results show that the number of parameters plays a crucial role
in GNNs’ generalization ability, in accordance with Theorem 2.6.

24

https://www.github.com/chrsmrrs/wl_vs_vc/
https://www.github.com/chrsmrrs/wl_vs_vc/

WL meet VC

10 20 30 40 50 60 70 80 90
|V|

70

75

80

85

90

95

100

Ac
cu

ra
cy

 [%
]

Dim=4
Dim=16
Dim=64
Dim=256

Figure 2: GNN’s ability to fit the synthetic dataset for different feature dimensions in {4, 16, 64, 256}.

Q2. See Table 2. The results indicate that the number of 1-WL-distinguishable graphs (mn,d,L) influence
GNNs’ generalization properties. For example, on the MUTAGENICITY dataset, after two iterations,
the number of unique histograms computed by 1-WL stabilizes, and similarly, the generalization error
stabilizes as well. Similar effects can be observed for the ENZYMES, NCI1, and NCI109 datasets. Hence,
our results largely confirm Propositions 2.1 and 2.2.

Q3. See Figure 2. Increasing the feature dimension boosts the model’s capacity to fit random class labels,
indicating that increased bitlength implies an increased VC dimension. For example, for an order of 70, a
GNN using a feature dimension of 4 cannot reach an accuracy of over 75%. In contrast, feature dimensions
64 and 256 can almost fit such data. Moreover, for larger graphs, up to order 90, a GNN with a feature
dimension of 256 can almost perfectly fit random class labels, with a feature dimension of 64 only slightly
worse, confirming Proposition 2.5.

I Additional experimental data and results
Here, we report on additional experimental details, results, and dataset generation.

I.1 Simple GNN layer used for Q1 and Q2

The simple GNN layer used in Q1 and Q2 updates the feature of vertex v at layer t via

f (t)v := σ
(
f (t−1)
v W

(t)
1 +

∑
u∈N(v)

f (t−1)
u W

(t)
2

)
∈ Rd, (20)

where W
(t)
1 and W

(t)
2 ∈ Rd×d are parameter matrices. In the experiments, we used reLU activation

functions.

I.2 GNN architecture used for Q3

For the experiments on Q3 we extend the simple GNN layer from Equation (20) used in Q1 and Q2. We
update the feature of vertex v at layer t via

f (t)v := σ
(

BN
(
f (t−1)
v W(t) +

∑
u∈N(v)

mlp(t)(f (t−1)
u)

))
∈ Rd, (21)

where BN is a batch normalization module [126] and mlp(t) is a two-layer perceptron with architecture,

Linear → BN → reLU → Linear.

We, therefore, use a normalized 2-layer MLP to generate messages in each layer. We found this change
necessary to ensure smooth convergence on the challenging synthetic task posed by Q3, where the GNN
has to memorize an arbitrary binary graph labeling. Moreover, in the experiments, we used reLU activation
functions.

25

WL meet VC

v0

v1 v2

. . .︸ ︷︷ ︸
m

. . .︸ ︷︷ ︸
n

Figure 3: A visualization of a Tm,n.

I.3 Synthetic dataset generation

To address Q3, we aim to empirically estimate how well GNNs of different sizes can fit arbitrary binary
labelings of graphs. We construct a synthetic dataset that focuses on a simple class of trees. Formally, for
two natural numbers m and n in N≥0, we define the graph Tm,n = (Vm,n, Em,n) as a directed tree with
vertex set V = {v0, . . . , vm+n+3}. The root v0 has two children v1 and v2. The remaining m + n
vertices form the leaves such that vertex v1 has m children and v2 has n children. Figure 3 provides a
visual example.

For a chosen k in N, k ≥ 4, we define:

Tk =
{
Tm,n | 0 ≤ m ≤

⌊ (k − 3)

2

⌋
, n = k − 3−m

}
.

Therefore, Tk contains all distinct graphs Tm,n with |Vm,n(Tm,n)| = k. In particular, we observe
|Tk| = ⌊ (k−3)

2 ⌋.

For k ∈ {10, 20, . . . , 90}, we aim to test how well a GNN with a given feature dimension d in
{4, 16, 64, 256} can learn binary labelings y : Tk → {0, 1} of Tk. The labeling y is obtained by sampling
the label y(T) uniformly at random for all T in Tk. We then train a GNN model with stochastic gradient
descent to minimize the binary cross entropy on the dataset (Tk, y). For each combination of k and d, we
repeat the experiment 50 times. We resample a new labeling y and a new random initialization of the GNN
model in each repetition.

I.4 Simulating bitlength via higher feature dimension

Here, we outline how to simulate a higher bitlength via a higher feature dimension. Assume the simple
GNN layer of Equation (20). Clearly, we can express the matrices W(t)

1 and W
(t)
2 as the sum of k matrix

with smaller bitlength, e.g.,
W

(t)
2 = W

(1,t)
2 + · · ·+W

(k,t)
2 .

Hence, we can re-write the aggregation in Equation (20) as∑
u∈N(v)

f (t−1)
u

[
W

(1,t)
2 , · · · ,W(k,t)

2

]
·M ∈ Rd,

where [· · ·] denotes column-wise matrix concatenation and M in {0, 1}kd×d is a matrix such that

σ
(
f (t−1)
v W

(t)
1 +

∑
u∈N(v)

f (t−1)
u

[
W

(1,t)
2 , · · · ,W(k,t)

2

]
·M
)
= σ

(
f (t−1)
v W

(t)
1 +

∑
u∈N(v)

f (t−1)
u W

(t)
2

)
,

i.e., the matrix M sums together columns of the aggregated features such that they have feature dimension
d.

26

WL meet VC

0 100 200 300 400 500
Epoch

10

0

10

20

30

40

Tr
ai

n
- t

es
t a

cc
ur

ac
y

[%
]

ENZYMES
4
16
256
1024

(a) ENZYMES

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

Tr
ai

n
- t

es
t a

cc
ur

ac
y

[%
]

MCF-7
4
16
256
1024

(b) MCF-7

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

Tr
ai

n
- t

es
t a

cc
ur

ac
y

[%
]

MCF-7H
4
16
256
1024

(c) MCF-7H

0 100 200 300 400 500
Epoch

5

0

5

10

15
Tr

ai
n

- t
es

t a
cc

ur
ac

y
[%

]

Mutagenicity
4
16
256
1024

(d) MUTAGENICITY

0 100 200 300 400 500
Epoch

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Tr
ai

n
- t

es
t a

cc
ur

ac
y

[%
]

NCI1
4
16
256
1024

(e) NCI1

0 100 200 300 400 500
Epoch

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Tr
ai

n
- t

es
t a

cc
ur

ac
y

[%
]

NCI109
4
16
256
1024

(f) NCI109

Figure 4: Difference between train and test accuracy for different feature dimensions in
{4, 16, 256, 1 024}.

27

WL meet VC

Table 1: Train and test classification accuracies with different numbers of parameters, using five layers,
studying how the number of parameters influences generalization.

Dimension Split
Dataset

ENZYMES MCF-7 MCF-7H MUTAGENICITY NCI1 NCI109

4 Train 31.0 ±3.1 92.1 ±0.4 92.1 ±0.4 79.7 ±0.9 76.7 ±7.3 66.4 ±9.5

Test 25.3 ±5.2 92.4 ±0.2 92.3 ±0.3 75.8 ±0.9 72.4 ±7.1 63.6 ±9.1

16 Train 76.8 ±6.4 96.0 ±0.1 96.5 ±0.3 92.7 ±2.7 88.4 ±6.2 86.4 ±0.9

Test 41.7 ±9.4 93.2 ±0.5 93.1 ±0.4 79.8 ±2.2 76.1 ±2.1 78.6 ±1.9

256 Train 98.2 ±3.6 99.7 < 0.1 99.9 < 0.1 100.0 ±0.0 99.8 < 0.1 97.5 ±2.1

Test 54.7 ±2.4 94.0 ±0.2 93.6 ±0.2 80.7 ±1.0 81.8 ±1.5 82.1 ±1.0

1 024 Train 99.8 ±0.2 99.8 < 0.1 99.8 ±0.1 99.9 ±0.2 99.8 ±0.1 98.6 ±1.0

Test 54.3 ±2.3 93.8 ±0.3 93.6 ±0.2 81.7 ±0.8 80.5 ±1.0 82.9 ±0.9

Table 2: Train and test classification accuracies using different numbers of layers and a feature dimension
of 64, studying how the number of different color histograms influences generalization.

Layers Split
Dataset

ENZYMES MCF-7 MCF-7H MUTAGENICITY NCI1 NCI109

0

Train 40.7 ±0.5 91.7 ±0.1 91.8 ±0.1 77.2 ±0.3 74.5 ±0.3 73.1 ±0.5

Test 33.7 ±1.6 91.9 < 0.1 91.2 ±0.1 75.7 ±1.2 67.9 ±1.3 71.5 ±0.7

Difference 7.0 ±1.9 -0.2 ±0.1 1.0 ±0.1 1.5 ±1.3 6.5 ±1.2 1.6 ±0.6

Histograms 385 11 533 19 625 2 819 2 889 2 929

1

Train 66.7 ±3.6 91.8 ±0.1 92.1 < 0.1 90.9 ±0.1 92.0 ±1.5 83.4 ±1.5

Test 52.3 ±5.0 91.9 < 0.1 91.4 ±0.1 82.0 ±1.0 78.6 ±1.3 76.1 ±1.0

Difference 14.4 ±5.2 <0.1 ±0.1 0.1 ±0.1 8.9 ±1.3 13.4 ±0.9 7.3 ±0.7

Histograms 595 25 417 26 037 3 624 3 906 3 950

2

Train 93.5 ±2.1 92.0 ±0.2 91.9 ±0.3 96.9 ±1.9 98.3 ±0.5 91.1 ±0.5

Test 62.7 ±7.2 92.1 ±0.1 91.0 ±0.6 82.5 ±1.0 80.5 ±1.3 78.1 ±1.5

Difference 39.9 ±5.5 -0.1 ±0.2 1.0 ±0.3 14.4 ±1.0 17.8 ±1.0 13.0 ±1.5

Histograms 595 26 872 27 353 4 239 4 027 4 055

3

Train 98.0 ±2.5 92.1 ±0.3 92.1 ±0.2 99.4 ±0.9 99.8 ±0.1 93.6 ±1.2

Test 58.7 ±5.3 92.1 ±0.2 91.5 ±0.2 82.8 ±1.0 83.5 ±0.7 77.8 ±1.8

Difference 39.4 ±2.8 0.1 ±0.2 1.0 ±0.1 16.6 ±1.0 16.3 ±0.7 15.8 ±1.4

Histograms 595 27 048 27 524 4 317 4 039 4 067

4

Train 99.8 ±0.3 92.0 ±0.1 92.2 ±0.2 99.1 ±0.2 99.8 < 0.1 96.9 ±1.0

Test 62.7 ±2.5 92.1 ±0.1 91.5 ±0.2 82.7 ±0.8 83.2 ±0.4 79.8 ±1.2

Difference 37.1 ±2.5 -0.1 ±0.1 1.0 ±0.1 16.4 ±0.7 16.6 ±0.4 17.2 ±0.8

Histograms 595 27 059 OOM 4 317 4 039 4 067

5

Train 98.9 ±1.9 92.1 ±0.2 92.4 ±0.2 99.9 ±0.2 99.8 ±0.0 97.7 ±0.9

Test 57.0 ±3.9 92.3 ±0.2 91.6 ±0.2 83.0 ±0.8 84.1 ±1.1 79.6 ±0.5

Difference 41.9 ±2.9 -0.2 ±0.2 1.0 ±0.2 16.9 ±0.7 15.7 ±1.1 18.1 ±0.5

Histograms 595 OOM OOM 4 317 4 039 4 067

6

Train 99.4 ±0.8 92.0 ±0.2 92.2 ±0.2 99.1 ±1.9 99.6 ±0.6 95.2 ±1.9

Test 54.0 ±2.3 92.2 ±0.2 91.4 ±0.4 83.5 ±1.0 83.4 ±1.3 79.2 ±1.3

Difference 44.4 ±1.9 -0.2 ±0.1 1.0 ±0.2 15.6 ±1.2 16.2 ±0.9 16.0 ±2.1

Histograms 595 OOM OOM 4 317 4 039 4 067

Table 3: Dataset statistics and properties.

Dataset
Properties

Number of graphs Number of classes/targets ∅ Number of nodes ∅ Number of edges Node labels Edge labels

ENZYMES 600 6 32.6 62.1 ✓ ✗
MCF-7 27 770 2 26.4 28.5 ✓ ✓
MCF-7H 27 770 2 47.3 49.4 ✓ ✓
MUTAGENICITY 4 337 2 30.3 30.8 ✓ ✓
NCI1 4 110 2 29.9 32.3 ✓ ✗
NCI109 4 127 2 29.7 32.1 ✓ ✗

28

	1 Introduction
	1.1 Background

	2 WL meet VC [regular]
	3 Conclusion
	A Related work
	B Extended notation
	C Oblivious k-WL
	D k-order GNNs
	D.1 Transfering VC bounds from GNNs to k-order GNNs and other more expressive architectures
	D.1.1 Architectures based on subgraph information

	E Relationship between VC dimension and generalization error
	F Simple GNNs
	G Missing proofs
	G.1 Proofs of thm:colorboundup and prop:matchingvc
	G.2 Proof of thm:bllowerr
	G.3 Proof of thm:bartlett

	H Experimental evaluation
	H.1 Results and discussion

	I Additional experimental data and results
	I.1 Simple GNN layer used for Q1 and Q2
	I.2 GNN architecture used for Q3
	I.3 Synthetic dataset generation
	I.4 Simulating bitlength via higher feature dimension

