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Abstract

Synthesizing controllable 6-DOF object manipulation
trajectories in 3D environments is essential for enabling
robots to interact with complex scenes, yet remains chal-
lenging due to the need for accurate spatial reasoning,
physical feasibility, and multimodal scene understanding.
Existing approaches often rely on 2D or partial 3D repre-
sentations, limiting their ability to capture full scene geome-
try and constraining trajectory precision. We present GMT,
a multimodal transformer framework that generates realis-
tic and goal-directed object trajectories by jointly leverag-
ing 3D bounding box geometry, point cloud context, seman-
tic object categories, and target end poses. The model rep-
resents trajectories as continuous 6-DOF pose sequences
and employs a tailored conditioning strategy that fuses ge-
ometric, semantic, contextual, and goal-oriented informa-
tion. Extensive experiments on synthetic and real-world
benchmarks demonstrate that GMT outperforms state-of-
the-art human motion and human-object interaction base-
lines, such as CHOIS and GIMO, achieving substantial
gains in spatial accuracy and orientation control. Our
method establishes a new benchmark for learning-based
manipulation planning and shows strong generalization to
diverse objects and cluttered 3D environments.

1. Introduction
Generating realistic and controllable 6-DOF object manip-
ulation trajectories in 3D environments is a central chal-
lenge in robotics and computer vision [2, 47]. In manipula-
tion tasks, the object trajectory is often closely aligned with
the end-effector trajectory of the robot. Given such a tra-
jectory in Cartesian space, inverse kinematics (IK) [5] can
be used to compute the corresponding joint configurations,
thereby converting the end-effector path into a full sequence
of robot arm motions. This trajectory-centric formulation
decouples perception from control [21, 43], allowing flex-
ible integration of downstream planners or controllers and
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Figure 1. Given an observed trajectory, scene context, and action
description, our model predicts plausible future 6-DOF object tra-
jectories. The generated trajectories are more efficient than natural
human motions.

facilitating generalization across tasks and platforms.
However, synthesizing such trajectories in cluttered 3D

scenes remains challenging. First, accurate 3D percep-
tion is difficult: depth sensors suffer from noise, occlu-
sion, and sparsity [40, 55, 59], where object centers may
lie far from any captured surface points [41]. Second,
generated trajectories must respect spatial constraints and
physical plausibility, avoiding collisions, maintaining sta-
bility, and aligning with object affordances [3, 15, 53].
Third, goal-conditioned generation requires integrating ge-
ometry, semantics, context, and target poses. Tradi-
tional planners [25, 27] face high computational cost in
high-dimensional spaces, while most learning-based ap-



proaches [4, 28] predict low-level actions end-to-end, lim-
iting explicit trajectory control or physical constraint injec-
tion.

These challenges highlight the need for generative mod-
els that can capture long-range dependencies, integrate het-
erogeneous modalities, and enforce structured constraints
during synthesis. Recent advances in transformers [49] and
diffusion-based generative models [19, 61] have demon-
strated precisely these capabilities, excelling at modeling
complex spatial-temporal structures in high-dimensional
spaces. Nevertheless, applications have focused primarily
on human motion [17, 60] or human-object interaction. In
particular, Human-Object Interaction (HOI) models typi-
cally treat objects as passive entities, with object trajecto-
ries induced indirectly by human motion [14, 30]. These
approaches [32, 57] inject HOI behaviors into simulators
and rely on reinforcement learning to refine them into ex-
ecutable policies. While effective for human-centric skill
transfer, this pipeline restricts the generative model’s flex-
ibility and hinders cross-embodiment generalization: the
learned policy is tied to specific morphologies and training
simulators rather than abstract object dynamics.

Our work takes a different perspective: we shift the
focus from human-centric HOI to object-centric trajectory
generation. By directly modeling 6-DOF object trajecto-
ries, we treat objects as primary dynamic entities condi-
tioned on scene and goal constraints. This design allows
generated trajectories to serve as a universal intermediate
representation: through IK, they can be instantiated by arbi-
trary robotic embodiments, enabling cross-platform transfer
without simulator-dependent policy learning.

In this work, we address these gaps with a multimodal
transformer framework for controllable 6-DOF object tra-
jectory synthesis in 3D scenes. Our model jointly lever-
ages geometric, semantic, contextual, and goal information
to produce spatially consistent and physically plausible tra-
jectories that can be directly executed on robotic systems
via IK.
In summary, our main contributions are:
• GMT, a multimodal transformer architecture for 6-

DOF object trajectory generation, unifying scene geome-
try, semantics, and task goals within a single framework.

• A tailored fusion strategy integrating: (i) geometric con-
ditioning via feature propagation from scene point clouds
to 3D bounding box corners; (ii) semantic conditioning
via hierarchical category embeddings [42]; (iii) contex-
tual conditioning through global scene features; and (iv)
goal conditioning via learnable end-pose embeddings.

• Extensive experiments on challenging 3D manipulation
benchmarks, achieving state-of-the-art performance over
strong human motion baselines such as CHOIS [30] and
GIMO [62], with substantial gains in spatial accuracy and
orientation control.

2. Related Work
Object trajectory synthesis lies at the intersection of com-
puter vision, motion modeling, and 3D scene understand-
ing. While these areas have achieved notable progress, syn-
thesizing controllable 6-DOF object motion in cluttered en-
vironments remains underexplored. Below we review re-
lated directions and position our work accordingly.

2.1. Video Prediction & Dynamics Learning
Video prediction models aim to forecast object dynamics
directly in pixel space. Early methods such as PredNet [31]
and ConvLSTM [45] learned short-term temporal depen-
dencies, while Interaction Networks [1] and Visual Interac-
tion Networks [50] introduced relational reasoning between
objects. More recent efforts leverage transformers for long-
horizon forecasting [51, 52] or diffusion models for stochas-
tic video generation [18, 20].

These works highlight the importance of modeling dy-
namics but operate in image space, which struggles with
depth ambiguity, occlusion, and 3D consistency. Video gen-
erative models such as Sora [34, 65] achieve impressive vi-
sual fidelity and exhibit emergent properties like object per-
manence, yet they often lack explicit physical understand-
ing and fail to support planning or decision-making. Sim-
ilarly, frameworks treating videos as ”world models” are
hindered by the absence of explicit state-action structure
and limited controllability [29, 54]. In contrast, we gener-
ate explicit 6-DOF object trajectories in 3D space, enabling
precise control over motion and direct interaction with the
environment. Our approach focuses on synthesizing phys-
ically plausible trajectories that respect spatial constraints,
rather than predicting pixel-level dynamics.

2.2. Human Motion & Interaction Synthesis
Human motion synthesis has advanced rapidly, spanning
text-conditioned generation [16, 48], scene-aware predic-
tion [62], and diffusion-based motion priors [17, 60].
Human-object interaction models further integrate seman-
tics and contact reasoning: CHOIS [30] generates syn-
chronized HOI from language prompts, while differentiable
simulation [14] enforces physical plausibility.

Recently, diffusion-based methods have advanced HOI
synthesis: CG-HOI [11] explicitly models human-object
contact in a joint diffusion framework, improving physi-
cal coherence; InterDiff [56] introduces physics-informed
correction within diffusion steps for long-term HOI predic-
tions; HOI-Diff [37] utilizes a dual-branch diffusion model
plus affordance correction to generate diverse yet coherent
human-object motions from text prompts.

Despite these strengths, all of these approaches re-
main fundamentally human-centric—modeling object mo-
tion only as a response to human behavior. In contrast, our



work shifts the focus to object-centric trajectory generation,
treating objects as primary dynamic entities conditioned on
scene and goal constraints. This enables trajectories to be
executed via inverse kinematics across robots of varying
morphology, rather than being limited to humanoid embod-
iments.

2.3. Scene Understanding & Geometric Reasoning
Effective motion synthesis requires efficient scene repre-
sentation. Point cloud methods provide detailed geometry
but impose computational constraints. PointNet++ [40] ad-
dresses some limitations through hierarchical feature learn-
ing on point sets in metric spaces, but still faces computa-
tional challenges in dense environments. Voxel represen-
tations [33, 63] improve efficiency but sacrifice resolution
needed for precise manipulation. Recent fully sparse ap-
proaches like VoxelNeXt [8] eliminate sparse-to-dense con-
version requirements while maintaining detection perfor-
mance.

Recent work suggests that coarser representations can be
sufficient for many tasks [10]. 3D-BoNet [58] demonstrates
that direct bounding box regression can be more compu-
tationally efficient than existing approaches by eliminating
post-processing steps such as non-maximum suppression,
feature sampling, and clustering. This key insight, that
high fidelity is not always necessary, suggests that bound-
ing boxes provide sufficient geometric information for tra-
jectory synthesis while enabling real-time performance.

Multimodal fusion architectures enable flexible com-
bination of geometric and semantic information. Per-
ceiver [23] provides a scalable blueprint, while Perceiver
IO [22] extends this with flexible querying mechanisms for
structured inputs and outputs. SUGAR [7] demonstrates ef-
fective multimodal pre-training for robotics through joint
cross-modal knowledge distillation. The key insight from
robotics applications [46] is that fusion must respect con-
straint hierarchies: hard geometric constraints should dom-
inate soft semantic preferences to ensure physically valid
output. Our framework builds on these insights by using
3D bounding boxes as a compact yet expressive representa-
tion, and enforcing a fusion hierarchy where hard geometric
constraints dominate semantic cues.

Furthermore, spatial reasoning in cluttered environments
increasingly benefits from hybrid symbolic geometric ap-
proaches, where discrete scene graphs capture semantic re-
lations while continuous modules preserve metric preci-
sion [24]. This dual representation allows agents to reason
over both affordances and spatial feasibility, bridging per-
ception and action.

3. Methodology
Our goal is to synthesize controllable 6-DOF object trajec-
tories in 3D scenes, conditioned on observed motion, scene

context, and a target goal state. The central challenge is
to fuse heterogeneous modalities: geometry, semantics, and
dynamics into a single representation that preserves phys-
ical plausibility and goal consistency. Naively concate-
nating features or relying on a single modality (e.g., raw
point clouds) caused unstable training and implausible mo-
tion (e.g., interpenetration, drifting). We design a multi-
modal transformer with three key insights: (1) spatial fea-
ture propagation is a compact yet stable spatial abstraction
compared to dense point features; (2) vision language se-
mantics (CLIP) transfer behavior patterns across action de-
scription or categories better than one-hot labels; and (3) hi-
erarchical fusion that prioritizes hard geometric constraints
over softer semantic cues significantly reduces collision and
goal drift. An overview is shown in Fig. 2.

3.1. Problem Formulation
We formulate trajectory prediction as a conditional se-
quence modeling problem.

Let the input history trajectory be denoted as X1:H =
{x1,x2, . . . ,xH} → RH→9, where each xi = (pi, ri) con-
sists of a 3D position pi → R3 and a 6D continuous rotation
representation ri → R6 [64]. Each object trajectory is asso-
ciated with a fixed object category c and size s → R3.

The scene context is represented as S = (P,B), where
P → RN→3 denotes the scene point cloud with N points,
B = {(lk, bk)}Mk=1 is defined as the set of M semantic fix-
ture bounding boxes, with each lk being the semantic label,
and bk = (ck, sk, rk) → R12 containing the 3D center, size,
and 6D rotation representation. The goal condition G → R9

specifies the target object state. The output trajectory to
be predicted is X̂H+1:T = {x̂H+1, x̂H+2, . . . , x̂H}, where
T ↑ H is the prediction horizon. In our particular setup,
we use 30% of the trajectory as the input history to pre-
dict the remaining 70%. Thus, the task is to learn a condi-
tional distribution P (X̂H+1:T | X1:H ,G,S), which gener-
ates physically plausible and semantically consistent future
trajectories, aligned with the specified goal and conditioned
on multimodal scene context.

3.2. Multimodal Scene Encoding
Generating plausible object trajectories requires a compre-
hensive understanding of both spatial and semantic context.
Specifically, the model must capture (1) object motion pat-
terns, (2) spatial arrangements, and (3) environmental con-
straints, including collision and interaction dynamics. To
this end, we construct dedicated representations for each
scene modality.
Trajectory Feature. We observe that using trajectory ge-
ometry alone often leads to overfitting, as the model fails
to capture category-specific motion patterns. To address
this, we couple trajectory embeddings with semantic cat-
egory features.
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Figure 2. Pipeline overview. Given an observed trajectory and scene context, our model predicts future 6-DOF object trajectories con-
ditioned on a specified goal state. We encode (a) trajectory dynamics, (b) local geometry propagated from the scene point cloud to the
object’s bounding box, (c) semantic fixture boxes and labels, (d) natural language description of the action (e) a goal descriptor. A multi-
modal transformer performs hierarchical fusion that emphasizes geometric feasibility before semantic preferences. The fused latent is fed
directly to the prediction head (no separate decoding stage), which we found more stable for long-horizon control.

The temporal motion context Ft is obtained by pass-
ing the observed trajectory sequence through a linear layer,
yielding an embedding suitable for multimodal fusion.
Spatial Feature. To account for environmental constraints
such as floors, walls, or tabletops, the model must capture
both global and local spatial cues. Directly concatenating
a global scene feature Fo is insufficient, as it fails to dis-
tinguish spatially distinct regions (e.g., floor vs. tabletop)
and introduce irrelevant noise (e.g., clutter on the ground).
Instead, we encode the raw point cloud P using Point-
Net++ [40], producing both a global feature Fo and local
features Fl. To provide trajectory features with awareness
of their local surroundings, we propagate per-point local
features from the scene point cloud to the object’s bounding
box at each observed timestep. Specifically, we interpolate
features from the k nearest neighbors using inverse-distance
weighting [40]:

Ft

p
=

∑
k

i=1 wi(ct)fi∑
k

i=1 wi(ct)
, wi(ct) =

1

|ct ↑ pi|2
, (1)

where ct denotes the center of the object bounding box
at time t, and pi and fi are the coordinates and features

of the i-th point, respectively. By repeating this pro-
cess over all observed timesteps t = 1, . . . , H , we ob-
tain a temporal sequence of local geometric features Fp =
{F1

p
,F2

p
, . . . ,FH

p
}, which are subsequently incorporated in

the fusion stage to enrich trajectory representations with
spatial context.

Furthermore, relying solely on point-cloud features is
insufficient to fully capture the interaction constraints be-
tween the moving object and nearby static fixtures. The
spatial extents of these fixtures can be reliably obtained us-
ing modern instance segmentation approaches [6, 26, 44].
Direct concatenation of their embeddings, however, fails
to model inter-object relationships and may result in phys-
ically implausible predictions (e.g., a chair penetrating a
tabletop). To more explicitly encode such interaction con-
straints, we apply a multi-head self-attention module over
the set of fixture bounding boxes:

Fb = SelfAttn
(
{bk}Mk=1

)
. (2)

Semantic Feature. Geometry alone is insufficient to dis-
tinguish objects with similar sizes but different affordances
(e.g., desk vs. bed). Semantic information is incorporated
by embedding fixture labels lk and the natural language de-



scription of the action/object category name d involving the
object with a frozen CLIP encoder [42], followed by pro-
jection into the feature space:

Ff = Proj(CLIP(lk)),Fd = Proj(CLIP(d)) (3)

To mitigate semantic noise, only the K nearest fixtures
(based on center distance) are retained before applying at-
tention, as distant objects contribute little and increase vari-
ance.
Goal Feature. The target object state G, representing the
desired future position and orientation, is encoded via a lin-
ear layer and projected into the same feature space:

Fg = Proj(Linear(G)). (4)

Note that this goal plays two complementary roles. First, it
serves as a high-level intention variable that disambiguates
between otherwise plausible futures under the same history
and scene, e.g., “place the object on the tabletop” versus
“place it back on the floor”. Second, it provides a control-
lable knob at inference time: given a fixed observed trajec-
tory X1:H and scene S, different choices of G induce qual-
itatively different yet physically valid futures. By making
G a first-class conditioning signal, our formulation bridges
trajectory prediction and goal-directed planning, enabling
the synthesis of future motions that are not only plausible
and scene-consistent but also explicitly aligned with user-
specified targets.

3.3. Multimodal Feature Fusion
Multi-modal Transformer. Naively concatenating features
across modalities can cause scale imbalance, leading the
model to over-rely on certain inputs. To achieve balanced
and flexible integration, we adopt a Transformer-based fu-
sion module inspired by Perceiver IO [23]. This design in-
troduces a learnable latent array that acts as an information
bottleneck, ensuring scale normalization across modalities
and enabling modality-agnostic fusion.

Given a collection of modality-specific input tokens X =
{x1, . . . ,xM}, where X → RM→din , the fusion module
maintains a learnable latent array Z0 → RN→dlatent , with
N ↓ M and dlatent denoting the latent feature dimension.

The fusion process is implemented via stacked cross-
attention and latent self-attention blocks. At each layer ω,
the latent array is first updated by attending to the input to-
kens:

Z↑
ω
= CrossAttn(Zω↓1,X) = softmax

(
QK

↔
↔
dK

)
V, (5)

where Q = Zω↓1Wq , K = XWk, and V = XWv are lin-
early projected query, key, and value matrices, respectively.

Next, latent self-attention and a feed-forward network
are applied to propagate information among latent slots:

Zω = FFN (SelfAttn(Z↑
ω
)) , (6)

where SelfAttn follows the same formulation as Eq. 5, but
operates only on latent tokens.

After L layers, the final latent representation ZL serves
as the fused multimodal embedding. Unlike Perceiver
IO [23], our architecture does not include a second decoding
stage; instead, ZL is directly used as input to the trajectory
prediction head.
Scene-aware Trajectory Augmentation. To endow tra-
jectory features with spatial awareness, we fuse Ft with
the propagated local geometry Ft

p
through the multimodal

transformer:

Ftp = MultiTrans
(
Concat(Ft,F

t

p
)
)
. (7)

Direct concatenation without attention underperformed, in-
dicating that attention-based alignment is necessary to re-
solve frame and scale ambiguities.
Semantic Geometric Fusion. While the trajectory features
are enhanced with 3D spatial information, incorporating se-
mantic cues is crucial for guiding trajectory generation, as
the prediction network must understand object semantics
and their relations (e.g., a chair should not move through
a table). To this end, we project the semantic features Ff

and Fd, the spatial features Fb, the global point cloud fea-
ture Fo, and the goal state feature Fg into the same dimen-
sion as the fused trajectory feature Ftp via linear layers.
These features are then concatenated to form a comprehen-
sive multimodal representation:

Ffuse = Concat(Ftp,Ff ,Fd,Fb,Fo,Fg). (8)

Finally, the predicted trajectory X̂H:T is conditioned on the
fused feature Ffuse through the multimodal transformer de-
scribed above.

3.4. Training Objective

Our training objective is designed to supervise both the fu-
ture prediction accuracy and the reconstruction quality of
the observed motion. The total loss comprises four terms:
translation loss, orientation loss, reconstruction loss, and
destination loss for both translation and orientation. Each
term captures a specific aspect of the prediction quality.

Given the model’s prediction X̂ → RT→9 and the ground
truth trajectory X → RT→9, where each frame contains 3D
position and 6D rotation representation, we first split each
sequence into history and future segments based on prede-
fined input and predict ratios. Let Thist and Tfut denote the
number of historical and future steps, respectively.

To supervise the future prediction, we compute an L1

loss between the predicted and ground truth values for both



translation and rotation components:

Ltrans =
1

Tfut

∑

t↗future

↗p̂t ↑ pt↗1 , (9)

Lori =
1

Tfut

∑

t↗future

↗r̂t ↑ rt↗1 , (10)

where pt → R3 and rt → R6 denote the ground truth po-
sition and rotation at timestep t, and p̂t, r̂t are their corre-
sponding predictions.

To preserve fidelity in the observed segment, a recon-
struction loss is applied to the historical frames:

Lrec =
1

Thist

∑

t↗history

↗x̂t ↑ xt↗1 , (11)

where x̂t is the full 9D predicted pose at timestep t.
Additionally, we introduce a destination loss to explicitly

constrain the model’s final predicted pose to match the last
valid ground truth frame:

Ldest = ↗x̂Tend ↑ xTend↗1 , (12)

The final loss is a weighted sum of the above terms:

Ltotal = εtransLtrans + εoriLori + εrecLrec + εdestLdest, (13)

where εtrans,εori,εrec,εdest are hyperparameters controlling
the contribution of each loss component.

4. Experiments
We start this section by describing the experimental setup,
including datasets and metrics. We then present results on
two datasets, followed by an ablation study to analyze the
contributions of different components in our method.

4.1. Experiments Setup

Baseline. To provide comparative insights, we adapt two
state-of-the-art human motion prediction methods for the
object manipulation trajectory generation task:
• GIMO [62]: A transformer-based model originally de-

signed for egocentric human-object interaction forecast-
ing. It leverages a unified Perceiver-inspired architecture
to fuse geometry, object category, and semantic scene
context for predicting 6-DOF human motion. We re-
purpose GIMO to predict object trajectories by replacing
the human body input with object-specific motion and ge-
ometry. Since our object-centric prediction task does not
contain gaze information, we disable the gaze branch and
remove all gaze-related modules in both training and in-
ference.

• CHOIS [30]: This generative framework produces
human-object interaction sequences conditioned on ob-
ject geometry, sparse object waypoints, and textual in-
structions. In our implementation, the human-motion
branch is deactivated, preserving only the object trajec-
tory prediction component. The waypoint conditioning
is restricted to the initial 30% of the input and goal for
fair comparison. To ensure compatibility with our deter-
ministic prediction framework, we disable the diffusion-
based sampling mechanism and utilize only the trans-
former backbone for direct single-step prediction.

Metrics. We evaluate predicted object trajectories using the
following quantitative metrics to assess accuracy, temporal
consistency, and physical plausibility:
• Average Displacement Error (ADE): Measures the

mean L2 distance between the predicted and ground truth
object positions across all future time steps.

• Final Displacement Error (FDE): L2 distance between
the predicted and ground truth position at the final future
time step.

• Fréchet Distance [12] (FD): Measures the maximum de-
viation between two trajectories over time by considering
the best possible alignment along the temporal axis. It is
sensitive to both spatial proximity and temporal consis-
tency. A smaller Fréchet distance indicates that the pre-
dicted trajectory closely follows the shape and timing of
the ground truth, whereas a large value indicates temporal
mismatch or outlier deviations.

• Angular Consistency (AC): Measures how well the di-
rectional dynamics of the predicted trajectory align with
the reference sequence. The positional differences be-
tween consecutive frames are represented as direction
vectors, and the mean cosine similarity between these
vectors quantifies the preservation of orientation trends
and motion smoothness. Higher values indicate better
temporal coherence and directional stability.

• Collision Rate (CR): The fraction of predicted trajec-
tories that result in collisions with surrounding fixtures,
computed based on the intersection of predicted bounding
boxes and static scene geometry. Lower collision rates in-
dicate better physical plausibility and spatial awareness of
the model.

4.2. Controlled Idealized Scenarios
Dataset. We first evaluate our method on the Aria Digital
Twin (ADT) dataset [35], which offers high-fidelity record-
ings of human-object interactions in a fully controlled 3D
simulation environment. The sequences are captured un-
der noise-free conditions with complete visibility and accu-
rate tracking, providing an ideal setting to assess the upper-
bound performance of our model under perfect geometric
and semantic observations. To align with our task objective,
we exclude all ADT sequences involving recognition-only



Figure 3. Qualitative results on the ADT dataset. The green trajectory represents the input history across all experiments. Only our
model produces trajectories that both reach the target and avoid collisions, while also achieving shorter path lengths compared to the
ground-truth natural trajectories. Adaptive GIMO fails due to the absence of gaze information, whereas CHOIS accumulates errors over
time, ultimately leading to failure.

Method ADE[m] ↓ FDE[m] ↓ FD[m] ↓ AC[m] ↑ CR ↓

GIMO [62] 0.982 1.401 1.511 0.140 19.6%
CHOIS [30] 0.853 1.062 1.209 0.283 9.3%
GMT (Ours) 0.366 0.072 0.438 0.402 13.1%

Table 1. Quantitative results on the ADT dataset. Our method out-
performs both baselines in all metrics except collision rate. Note
that collision rate is only meaningful when FDE is also low; oth-
erwise, it may decrease due to trivial predictions such as static
forecasts.

interactions (i.e., without significant object displacement).
We train our model and the baselines on a randomly se-
lected subset of 228 sequences and evaluate them on the
remainder.
Results. As shown in Tab. 1, our method consistently out-
performs both adapted baselines across all evaluation met-
rics except for the collision rate, with significant gains in
spatial accuracy (ADE/FDE). Notably, it achieves the low-
est Fréchet distance and highest angular consistency, in-
dicating superior alignment with the ground-truth in both
position and orientation. While a lower collision rate can
be trivially achieved by predicting static trajectories, only
our model attains both low FDE and a low collision rate,
demonstrating its ability to generate plausible and physi-
cally meaningful object motions. An illustration is shown
in Fig. 3 and more in the supplementary.

4.3. Realistic Challenging Scenarios

Dataset. To assess the robustness of our model in real-
world settings, we evaluate it on the HD-EPIC dataset [38].
HD-EPIC contains 41 hours of egocentric videos of human-
object interactions recorded in natural household environ-
ments. A key challenge in leveraging the HD-EPIC dataset
for our task is the sparsity of its annotations. The dataset
provides object positions for pickup and drop events, but
does not provide dense, frame-by-frame object trajectory

Method ADE[m] ↓ FDE[m] ↓ FD[m] ↓ AC[m] ↑ CR ↓

GIMO [62] 0.411 0.654 0.780 0.002 11.8%
CHOIS [30] 0.446 0.589 0.760 0.009 12.0%
GMT (Ours) 0.283 0.034 0.391 0.037 10.3%

Table 2. Quantitative results on the HD-EPIC dataset. Ours
achieves the best performance across all metrics, demonstrating
superior trajectory prediction accuracy and robustness in real-
world scenarios.

sequences between these points. To bridge this gap, we use
the interacting hand as a proxy for computing the object’s
motion. Our key assumption is that between the moments of
pickup and release, the hand and object are physically cou-
pled and move together. By tracking the hand’s motion us-
ing Project Aria’s Machine Perception Service (MPS) [13],
we can accurately infer the object’s trajectory during this
unannotated phase.

Our process begins by identifying the primary hand in-
teracting with the object. At the start of each sequence,
we use the dataset’s initial 3D object position to select the
hand with the minimum Euclidean distance to the annotated
object position. For all subsequent frames until the drop-
off, this choice is propagated by identifying which hand
is in physical contact, as determined by using a pretrained
Hands23 [9] detector. A sliding window filter is then ap-
plied to this sequence of hand selections to ensure better
temporal consistency and remove flickering.

Finally, we process the motion of this consistently
tracked hand to create a stable trajectory. We compute a
6D rotation for the hand’s orientation by constructing an or-
thonormal basis from its normal vector of the wrist-palm
using singular value decomposition (SVD). This refined 6-
DOF hand trajectory is then directly transferred to the an-
notated target object, yielding a clean and realistic manipu-
lation sequence.
Results. Tab. 2 summarizes the quantitative results. Our



Figure 4. Qualitative results on the HD-EPIC dataset. Across all examples, the green points indicate the input history. Our model
generates trajectories that are more efficient than the ground truth, while all baselines remain stuck in repetitive motions.

model consistently and significantly outperforms all base-
lines across all metrics. Although the HD-EPIC dataset
poses greater challenges due to occlusions and sensor noise,
its substantially larger scale (↘20≃ trajectories than ADT)
and more diverse scenes help compensate for these difficul-
ties and allow the model to maintain strong performance.
Examples can be found in Fig. 4 and in the supplementary.

4.4. Ablation Study

Variant ADE[m] ↓ FDE[m] ↓ FD[m] ↓ AC[m] ↑ CR ↓

w/o pointcloud 0.364 0.062 0.493 0.384 18.7%
w/o semantic 0.360 0.080 0.505 0.391 14.0%
w/o goal 0.531 0.593 0.729 0.311 13.3%
First frame 0.554 0.258 0.696 0.298 83.2%
GMT (Full) 0.366 0.072 0.438 0.402 13.1%

Table 3. Ablation study on the ADT dataset. The best results are
highlighted in bold.

To analyze the contributions of different components in
our method, we conduct an ablation study on the ADT
dataset. We first evaluate the effect of each input modality
by removing geometric and semantic information individ-
ually. Next, we examine the influence of input trajectory
length by reducing the number of observed frames to us-
ing only the first frame. Finally, we assess the importance
of goal conditioning by removing the goal input from the
model.
Results. Table 3 reports the ablation results on the ADT
dataset. Removing geometric features leads to a noticeable
degradation in ADE and Fréchet distance, indicating that lo-
cal spatial structure is important for accurate trajectory pre-
diction. Excluding semantic information similarly worsens
overall performance, though the model retains reasonable
final-position accuracy. In contrast, removing goal condi-
tioning results in a substantial drop across all metrics, con-
firming that explicit goal specification is essential for pro-
ducing coherent long-horizon trajectories. The “first frame”
variant performs the worst, with extremely high collision
rates and large deviations from the target, demonstrating
that dynamic context is crucial for stable motion generation.

Overall, the full model achieves the best Fréchet distance,
angular similarity, and lowest collision rate, highlighting the
complementary contributions of geometric, semantic, and
goal-related features.

5. Limitations, Future Work and Conclusion
In this work, we introduced a trajectory-centric framework
that predicts realistic and controllable 6-DOF object trajec-
tories in complex 3D environments. By combining geo-
metric representations, semantic cues, and goal condition-
ing, our model bridges perception and control through a
flexible and generalizable formulation. A key insight of
our approach is that object trajectories themselves serve
as an effective intermediate representation, enabling cross-
embodiment execution via inverse kinematics and simpli-
fying the integration of downstream planners. This design
allows us to achieve accurate spatial reasoning and efficient
trajectory synthesis while maintaining broad applicability.

Despite these advances, our work has several limitations.
First, the model assumes well-aligned scene context and ob-
ject annotations, which may not hold in cluttered or noisy
real-world scenarios. Second, the provided goal condition
plays a decisive role in guiding the trajectory generation
process; however, such information is often unavailable or
difficult to obtain in real applications.

Future work will address these limitations by incorporat-
ing goal inference mechanisms that estimate plausible tar-
get states from visual observations and contextual cues (e.g.
VLM). Furthermore, integrating reinforcement learning or
closed-loop feedback could improve adaptation to unseen
conditions and support long-horizon planning. Addition-
ally, introducing post refinement based on collision opti-
mization is also a feasible direction. We also see poten-
tial in exploring broader cross-embodiment transfer, where
a single predicted object trajectory can guide manipulation
across robots with different morphologies.
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