
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LAIA-SQL: ENHANCING NATURAL LANGUAGE TO
SQL GENERATION IN MULTI-TABLE QA VIA TASK
DECOMPOSITION AND KEYWORD EXTRACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Natural Language to SQL (NL2SQL) provides an effective solution for multi-table
question answering (Table QA) to automate data retrieval by transforming simple
user queries into SQL commands. It enhances data accessibility and decision-
making processes across various industries. Large Language Model (LLM) based
NL2SQL methods have been shown to outperform rule-based or neural network-
based NL2SQL methods. However, existing LLM-based NL2SQL approaches
face challenges like inaccurate interpretation of user questions, slow retrieval
speeds, erroneous SQL generation, and high operational costs. As there is a
lack of datasets specifically designed to evaluate natural language understanding
(NLU) in NL2SQL tasks and no models optimized for user question understand-
ing in Table QA, we introduce LAIA-NLU, a novel dataset that dissects NLU
into task decomposition and keyword extraction. LAIA-NLU contains 1,500 high-
quality QA pairs, created through manual review. Using this dataset, we developed
LAIA-NLUer, which is capable of effectively interpreting user intent in table-
based queries. To further enhance NL2SQL performance in terms of speed, cost,
and accuracy, we also present LAIA-SQL, a retrieval-augmented based NL2SQL
framework. Experimental results show that LAIA-SQL outperforms state-of-the-
art models, achieving an accuracy improvement to 67.28% in BIRD dataset, a
52.4% reduction in runtime, and a 97% decrease in operational costs. These im-
provements demonstrate the potential of our approach to advance multi-table data
retrieval and analysis. Our code, dataset, and model will be publicly available to
encourage further research in this field.

1 INTRODUCTION

Table Question Answering (Table QA) is a task to help users who are not proficient in coding
skill or advanced spreadsheet software retrieve complex table data by question answering Javaid
et al. (2023); Al Naqbi et al. (2024). A leading approach in Table QA is Natural Language to
SQL (NL2SQL), which translates natural language queries into SQL, allowing users to interact with
databases in everyday language Gao et al. (2023).

Recent research shows that NL2SQL methods leveraging Large Language Models (LLMs) outper-
form other rule-based or neural network based methods significantly Zhang et al. (2024a). A direct
approach is prompting LLMs like GPT-4o OpenAI (2024c) to perform related tasks. However, this
method often results in SQL statements with logical errors, inaccurate field recognition, and diffi-
culty managing multi-table relationships Liu et al. (2024). We hypothesize that these issues arise
from LLM’s inadequate understanding of user question in Table QA scenarios.

Effective SQL generation requires the model to excel in natural language understanding (NLU),
which can be divided into two areas: 1) fine-grained task decomposition and 2) precise keyword
extraction. While the former is crucial for complex multi-table reasoning, the latter ensures accurate
recognition of table and column names. However, as shown in Figure 1, using LLMs like GPT-4o
for task decomposition and keyword extraction still presents challenges, as models may generate
insufficient tasks and misidentify keywords. Addressing these challenges requires specialized train-
ing because it involves understanding and manipulating structured data within a specific context,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Task Decomposition
GPT-4o: 1. Identify schools with the average Math
score over 560 in the SAT test

Ours:
1. Identify schools with the average score in Math
over 560
2. Determine if these schools are directly charter-
funded
3. Count the number of schools that are directly
charter-funded ✅

Among the schools with the average score in Math
over 560 in the SAT test, how many schools are
directly charter-funded?

Ours (With Revision):
SELECT COUNT(T2.`School Code`) FROM satscores AS T1 INNER JOIN frpm AS T2 ON T1.cds =
T2.CDSCode WHERE T1.AvgScrMath > 560 AND T2.`Charter Funding Type` = 'Directly funded’ ✅

SQL GenerationQuestion

68.09

13.35 11.9

0

20

40

60

80

T A - S Q L M A C - S Q L C H E S S

TIME EXPENSE (S)

0.31 0.38

11

0
2
4
6
8

10
12

T A - S Q L M A C - S Q L C H E S S

COST EXPENSE (USD)

GPT-4o (w/o Revision):
SELECT COUNT(*) FROM satscores T1 JOIN schools T2 ON T1.cds = T2.CDSCode WHERE T1.AvgScrMath >
560 AND T2.FundingType = 'Direct’

Keyword Extraction
GPT-4o: [“schools with the average score”, “Math”,
“560”, “SAT test”, “charter-funded”]
Ours: [“schools”, “average score in Math”, “560”,
“SAT test”, “directly charter-funded”] ✅

Figure 1: Comparison of advanced NL2SQL methods with LAIA-SQL. GPT-4o suffers from in-
complete task decomposition and incorrect keyword extraction. Missing a revision module, GPT-4o
shows lower code generation accuracy. Methods like MAC-SQL, CHESS, TA-SQL are efficient in
either time or cost, but not both.

which is different from more general natural language tasks. Fine-grained task decomposition in-
volves breaking down complex queries into smaller, precise steps aligned with the relational schema
of databases. Precise keyword extraction requires accurately mapping natural language to specific
table and column names, necessitating an intimate understanding of the database structure. Addi-
tionally, there is a lack of quantitative evaluation metrics for assessing NLU performance across
different LLMs within the Table QA domain, which impedes progress in this specialized area.

Beyond directly applying large language models (LLMs) for NL2SQL, hybrid methods that combine
LLMs with various modules have also shown promise. Notable examples include CHESS Talaei
et al. (2024), TA-SQL Gao et al. (2023), and MAC-SQL Wang et al. (2023). Nevertheless, as
demonstrated in Figure 1, challenges such as slow data retrieval, erroneous SQL code generation,
and high operational costs still remain.

To systematically improve the field, we present three main contributions: (1) LAIA-NLU, a dataset
specifically designed to evaluate natural language understanding (NLU) within NL2SQL methods,
(2) the LAIA-NLUer model, optimized for Table QA, and (3) LAIA-SQL, a framework enhancing
NL2SQL performance in accuracy, efficiency, and cost.

The LAIA-NLU dataset comprises 1,500 high-quality QA pairs focusing on task decomposition
and keyword extraction. Derived from the BIRD dataset Li et al. (2024c), it has undergone three
meticulous rounds of manual annotation. Leveraging LAIA-NLU, we introduce LAIA-NLUer, a
model fine-tuned based on GPT-4o-Mini. We assessed the performance of LAIA-NLUer by com-
paring it to six foundational models, using BLEU Papineni et al. (2002), ROUGE Lin (2004), and
GPT-4o scores for task decomposition and F1 scores for keyword extraction. Our observations indi-
cate that models fine-tuned with larger base models like GPT-4o-Mini excel at task decomposition,
while smaller base models like Mistral-7B outperform in keyword extraction. Furthermore, results
show that LAIA-NLUer fine-tuned with GPT-4o-Mini significantly enhances NL2SQL capabilities,
drastically improving SQL generation accuracy compared with all other base models.

Lastly, we propose LAIA-SQL, an agent framework refined from CHESS Talaei et al. (2024).
Through ablation studies, LAIA-SQL has been optimized into three main modules: User Question
Understanding (UQU), Entity Retrieval, and Generation. In this study, we used LAIA-NLUer for the
UQU module to enhance comprehension, combined retrieval and re-ranking in the Entity Retrieval
module for improved accuracy, and introduced a revision process guided by task reasoning and error
feedback during code generation. Experimental results demonstrate that this instance of LAIA-SQL
outperforms all state-of-the-art open-source NL2SQL methods, achieving 67.28% accuracy on the
BIRD dev dataset and 88.7% accuracy on the Spider dev dataset. LAIA-SQL also boasts substan-
tially faster processing, answering 10 questions in just 56.81 seconds at a cost of $0.32, with an
80% accuracy rate. Compared to the leading NL2SQL methods using GPT-4o, LAIA-SQL reduced

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

runtime by 52.4% and operational costs by 97%, while maintaining the highest accuracy among
advanced open-source NL2SQL methods.

2 RELATED WORK

2.1 TABLE QUESTION ANSWERING

The field of Table QA aims to deliver accurate answers derived from table data through precise and
effective reasoning techniques. Initial approaches emphasized discrete reasoning Jin et al. (2022),
with notable efforts like TAT-QA Zhu et al. (2021), FinQA Chen et al. (2021), and MVGE Ma et al.
(2017) employing internal context learning (ICL), fine-tuning, and pre-training methods. These
made significant strides but struggled with adaptability in multi-table scenarios Zhang et al. (2024b).
Recently, methods have evolved to convert tabular data into graph structures for enhanced reasoning,
as seen with GraphRAG Edge et al. (2024). Despite their promise, these methods remain time-
consuming, resource-intensive, and face challenges in accurate graph construction Yu et al. (2024).

In parallel, NL2SQL research, which translates natural language questions into SQL queries, of-
fers a more efficient and cost-effective solution Gao et al. (2023). NL2SQL technologies are
mainly categorized into rule-based, neural network-based, Pre-trained Language Models (PLM)-
based, and Large Language Models (LLM)-based approaches Li et al. (2024a). Initially, rule-based
approaches prevailed, utilizing predefined rules or semantic parsers Katsogiannis-Meimarakis &
Koutrika (2021), but were soon superseded by more scalable neural network techniques. By 2017,
PLM methods, particularly those employing models like BERT Devlin (2018), took precedence.
Currently, LLMs, exemplified by GPT-4 Achiam et al. (2023), dominate the field, powering ad-
vanced methods such as CHESS Talaei et al. (2024), DAIL-SQL Gao et al. (2023), and MAC-SQL
Wang et al. (2023). These advanced methods feature specialized modules like filters, evaluators, and
self-correction mechanisms to refine their outputs. Despite their sophistication, LLM-based meth-
ods still grapple with challenges like low accuracy, high operational costs, and significant runtime,
constraining their practical utility Li et al. (2024a).

2.2 NATURAL LANGUAGE UNDERSTANDING

Natural Language Understanding (NLU) is a cornerstone of AI, enabling machines to interpret and
process human language Allen (1988). This field encompasses a wide range of tasks, from keyword
extraction to complex question answering Yu et al. (2023). The advent of LLMs like Gemini-Pro
Reid et al. (2024), GPT-4 Achiam et al. (2023), and Mistral Jiang et al. (2023) has revolutionized
NLU, pushing the boundaries of machine comprehension.

To further enhance NLU capabilities, researchers have investigated various innovative methods.
These include sophisticated text alignment Zha et al. (2024), the integration of human-written expla-
nations Liu et al. (2021), and advanced reasoning techniques like Chain of Thought (COT) Wei et al.
(2022), Tree of Thought Yao et al. (2024), and Buffer of Thought Yang et al. (2024b). Specialized
datasets such as Adversarial NLI Nie et al. (2019) and SemEval-2024 Task 2 Jullien et al. (2024)
have been created to evaluate and refine LLMs’ NLU proficiency.

Despite these advancements, substantial challenges persist in NLU, especially in table QA. While
large language models (LLMs) exhibit impressive reasoning capabilities, they often struggle with
precise information extraction and reasoning from tabular data. A crucial limitation is their inability
to distinguish between meaningful and nonsensical language in user queries, and to consistently
identify and extract relevant keywords corresponding to filter values, column names, or table names
in a database. This deficiency underscores the pressing need for specialized datasets and fine-tuned
models tailored specifically for NLU in table QA.

3 LAIA-NLU DATASET CREATION

As illustrated in Figure 1, current LLMs demonstrate limited NLU capabilities in table QA, ad-
versely affecting the final accuracy of NL2SQL. Furthermore, there are no existing datasets to
evaluate these models in terms of NLU within table QA. To address this gap, we introduce the
LAIA-NLU dataset.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Question
The transaction of 840 USD happened in
1998/10/14, when was this account opened?

Main Task:
["1. Determine the date of account opening",
"2. Identify the account associated with the
transaction of 840 USD on 1998/10/14"]

Sub Task:
["1.1 Find the account opening date", "2.1
Identify the account associated with the
transaction of 840 USD on 1998/10/14"]

Object: ["account"]

Implementation:
[{"transaction": "840 "}, {"date":
"1998/10/14"}]

Initial Annotation

Step 1: Evaluate Task Decomposition
Manually analyze whether the main tasks and sub-tasks derived from
question decomposition in GPT-4o are logically consistent. The main
task represents the primary issue that needs to be addressed within the
question, while the sub-tasks are further breakdowns of the main task.
If any tasks are found to be redundant, remove them. If any relevant
tasks are missing, add them manually.

Step 2: Evaluate Keyword Extraction
Compare the question with the ground truth SQL. From the ground truth
SQL, extract the relevant table name, column name, and filter
condition. Based on these three elements, evaluate whether the
keywords (object and implementation) generated by GPT-4o are
correct. If they are incorrect, add or remove keywords accordingly.

Step 3: Final Scoring
After three rounds of rotational evaluation, the annotators will rate the
revised keywords and tasks. A 5-point Likert scale is used, where 1
indicates ‘unsatisfactory’ and 5 signifies ‘excellent.’ For any cases with
average scores lower than 4, the annotators will collaborate to discuss
and determine the final modifications.

Question
The transaction of 840 USD happened in
1998/10/14, when was this account opened?

Main Task:
["1. Determine the date of account opening"]

Sub Task:
[“1.1 Identify the account associated with the
transaction of 840 USD on 1998/10/14”,
“1.2 Find the account opening date”]

Object: ["account", “transaction”]

Implementation:
[{"transaction": "840 "}, {"date":
"1998/10/14"}]

Score: 5

Verified Annotation

Data Pre-annotated by GPT-4o Human Verification Process Data Verified by Human (LAIA-NLU)

Figure 2: Dataset creation process of LAIA-NLU. GPT-4o firstly generates tasks, sub-tasks, objects,
and implementations from user questions. Human annotators then verify and modify the task de-
composition and keyword extraction for accuracy. After three rounds of cross-validation and final
scoring, low-scoring results are reviewed and refined by discussion, producing LAIA-NLU.

3.1 DATA SOURCES

LAIA-NLU was derived from the BIRD dataset Li et al. (2024c) for its validated origins and exten-
sive research use. BIRD comprises 12,751 text-to-SQL pairs across 95 databases, totaling 33.4 GB
and spanning 37 professional domains, designed specifically for evaluating and training NL2SQL
methods. It integrates 80 open-source relational databases from platforms like Kaggle and Rela-
tion.vit. To prevent data leakage, 15 additional relational databases were created for a hidden test
set. The BIRD team used crowdsourcing to collect natural language questions paired with corre-
sponding SQLs. Given its broad, validated origins and extensive research use, BIRD was chosen as
our data source.

3.2 SELECTION AND ANNOTATION

We randomly selected 1,500 instances from the BIRD dataset’s training data Li et al. (2024c). Each
instance comprises a user question and the corresponding ground truth SQL query. Initially, we
employed GPT-4o OpenAI (2024c) to perform task decomposition and keyword extraction. As
illustrated in Figure 2, task decomposition involved breaking down the user question into two com-
ponents: the main task and sub-tasks. The main task represents the primary goal derived from the
user question, while sub-tasks further refine the main task. In the keyword extraction phase, key-
words were categorized into two types: object and implementation. The object category includes
terms related to table and column names in the user question, while implementation involves filter-
ing criteria represented by a dictionary, where the keys denote filtering actions and the values specify
the conditions. These elements collectively facilitate similarity matching within the database.

However, despite implementing Chain of Thought (CoT) Wei et al. (2022) and few-shot techniques
Brown (2020), GPT-4o’s performance in interpreting user queries was suboptimal. As shown on the
left side of Figure 2, GPT-4o often produced redundant or incomplete tasks and extracted incorrect
keywords. This necessitated manual refinement of the generated raw data.

Therefore, we invited three expert annotators to review and correct GPT-4o generated data. Our
annotation strategy entailed a three-phase cyclic process to ensure cross-validation and accuracy.
Each annotator began with different subsets (A, B, C) before Phase 1, exchanging and reviewing
modified subsets in subsequential phases until all data was thoroughly evaluated by all annotators.
As depicted in the Human Validation Process in Figure 2, the three-step process follows:

1. Evaluate Task Decomposition Annotators first reviewed each question manually to assess the
accuracy of the main tasks and sub-tasks generated by GPT-4o. They checked for logical consis-
tency, removed redundant tasks, and added any missing relevant tasks manually.

2. Evaluate Keyword Extraction Keywords were categorized into objects and implementations.
Annotators compared the keywords generated by GPT-4o with the user questions and corresponding
ground truth SQL elements (such as filters, table names, and column names), to ensure accuracy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Main Task Sub Task Keywords

1 2 3 4 1-2 3-4 5-6 7-8 1-2 3-4 5-6 ≥7

Figure 3: Distribution of number of main task, sub task and keywords.

They added missing keywords and removed extraneous ones. An initial training with 50 data points
was conducted to train annotators and evaluate precision scores for maintaining quality standards.

3. Final Scoring After three rounds of rotational evaluation, annotators rated the revised keywords
and tasks on a 5-point Likert scale, where 1 indicates ’unsatisfactory’ and 5 indicates ’excellent.’
For any cases with average scores lower than 4, annotators collaborated to discuss and finalize the
modifications.

3.3 DATASET STATISTICS

Following three rounds of reviews, we finalized a dataset comprising 1,500 pairs of instructions and
implementations. The dataset was partitioned into training, validation, and testing sets in a 7:2:1
ratio to ensure robust model training and evaluation.

We analyzed the distribution of the main tasks, sub-tasks, and keywords to assess the complexity
of the questions. Complexity is inferred from the number of tasks a model needs to handle, which
tests its reasoning and integration capabilities. Additionally, a higher count of keywords suggests a
more intricate table and column setup, increasing the likelihood of errors. Figure 3 illustrates these
distributions. For main tasks, 68.2% of questions involve one primary task, while 24.9% include
two tasks, and 6.9% entail three or more tasks. Sub-task distribution shows that 31.7% of questions
comprise one to two sub-tasks. Meanwhile, 60% involve three to four sub-tasks, and 8.3% contain
over five sub-tasks. Regarding keywords, 20.3% of questions are linked to one or two keywords,
60.6% to three or four keywords, and 19.2% to five or more keywords.

4 THE LAIA-SQL FRAMEWORK

Current state-of-the-art methods, such as MAC-SQL Wang et al. (2023) and CHESS Talaei et al.
(2024), have advanced the field of SQL generation. However, they still suffer from considerable
runtime, high operation costs, and suboptimal accuracy. To address these limitations, we introduce
LAIA-SQL, an innovative language-adaptive intelligent agent designed to enhance SQL generation.
As shown in Figure 4, LAIA-SQL comprises three core components: User Question Understanding,
Entity Retrieval, and Generation.

4.1 USER QUESTION UNDERSTANDING

In the initial phase of LAIA-SQL, we concentrate on thoroughly comprehending the user’s question,
as illustrated in Figure 4. The user’s question is first incorporated into a prompt template, forming a
new prompt. This prompt is then fed into a LLM to generate a response. An example of the output is
displayed in Figure 4. This procedure involves two crucial tasks: Task Decomposition and Keyword
Extraction:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Question
What is the highest eligible free rate for
K-12 students in the schools in Alameda
County?

You are a professional English teacher.
Question: {task question}
1. The upper sentence is completely
correct. Please divide the upper
sentence into main task and sub task.
2. Tell me how to implement each sub
task and divide it into object and
implementation. You can only detect
the keywords in the sentence, do not
use words not included in the sentence.
3. Object is related to the keywords in
the question.
4. The value in the dictionary of
implementation is mostly one to two
words. If the values you select contains
a lot of word, please double confirm
whether it is belonged to filter condition,
and then revise. It is number or
adjective.

EXAMPLE ONE:
EXAMPLE TWO:

Prompt

Object:
["highest eligible free rate", "K-12
students", "schools"],
Implementation:
[{"in": "Alameda County"}]}

Keywords Extraction
Main Task:
["Identify the highest eligible free
rate for K-12 students in the
schools in Alameda County"],
Sub Task:
["1.1 Identify schools in Alameda
County",
"1.2 Determine the eligible free rate
for K-12 students in these schools",
"1.3 Find the highest eligible free
rate among these schools”]

Task Decomposition

User Question Understanding

LLM

Table schools

CDSCode Country Street … Phone

109835 Alameda Sperber … 581-0202

Table frpm

CDSCode FRPM Count Meal … Charter(Y/N)

109835 2346.0 4369.0 … 581-0202

Entity Retrieval

Embedder

Similar column names: {
"frpm": ["School Code"]},
Similar table values: {
"frpm": {"County Name": ["Alameda"],
"School Name": ["Alameda County
Community", "Alameda High"]}}
Similar descriptions: {
"frpm": {"free meal count (k-12)": {
"column_description": "Free Meal
Count (K-12)",
"value_description": "eligible free rate
= Free Meal Count / Enrollment"}

Second SQL: SELECT `Percent
(%) Eligible Free (K-12)` FROM
frpm WHERE `County Name`
= 'Alameda' AND `Percent (%)
Eligible Free (K-12)` IS NOT
NULL ORDER BY `Percent (%)
Eligible Free (K-12)` DESC
LIMIT 1 (Correct)

Generation

Retriever

Reranker

Table description

Column name Column description … Value description
FRPM Count
(K-12)

Free or Reduced Price Meal
Count (K-12) … eligible FRPM rate = FRPM /

Enrollment

LLM

Answer: [(1.0,)] (Correct) Revision

First SQL: SELECT `Percent
(%) Eligible Free (K-12)` FROM
FRPM WHERE `Percent (%)
Eligible Free (K-12)` IS NOT
NULL ORDER BY `Percent (%)
Eligible Free (K-12)` (Incorrect)
ERROR INFORMATION: FRPM
table is not found. Execute

Figure 4: Framework of LAIA-SQL. Initially, the user’s question is input into a prompt template,
which directs LLM to perform keyword extraction and task decomposition. Keywords are then fed
into the entity retrieval module to find relevant column names, table values, and descriptions. The
task decomposition outcomes, entity retrieval data, and original question are then fed into the LLM,
generating SQL code. If errors arise, the error information and SQL code are sent to a revision LLM
for corrections. Finally, the corrected SQL code is executed to obtain the answer.

Task Decomposition Inspired by the COT Wei et al. (2022) reasoning approach, we decompose user
questions into manageable components, addressing the inherent complexity and multi-task nature of
user inquiries. Compared to previous NL2SQL methods, we employed two-level COT reasoning,
which breaks down a user question into a main task and sub tasks. The main task represents the
primary goal derived from the user question, while sub tasks refine main task further. This dis-
tinction aids the generation model in efficiently producing SQL code by clarifying the hierarchy of
tasks. Specifically, we instruct the generation model that the main task corresponds to the main com-
ponent following ”SELECT,” and the sub tasks correspond to operations such as ”INNER JOIN,”
”WHERE,” and ”CASE WHEN,” among others. However, as illustrated in Figure 2, general mod-
els like GPT-4o sometimes incorrectly decompose tasks or generate irrelevant tasks, demonstrating
unstable performance. To enhance stability and reliability, we employed supervised fine-tuning for
consistent task decomposition.

Keyword Extraction Prior methods involved merely breaking down sentences into individual key-
words, which often resulted in irrelevant keywords. In our approach, we have classified keywords
into two distinct categories: object and implementation, improving the accuracy. The object cate-
gory encompasses terms associated with table and column names found in the user’s query, whereas
implementation pertains to filtering criteria, represented by a dictionary where the keys indicate fil-
tering actions and the values denote the specified conditions. To enhance the accuracy of keyword
extraction, we employed In-Context Learning (ICL) techniques to provide the LLM with multiple
examples. However, as illustrated in Figure 2, GPT-4o tends to generate irrelevant or excessive key-
words. To address this issue, we fine-tuned the smaller model like Mistral-7B Jiang et al. (2023)
using LAIA-NLU, ultimately enhancing the accuracy of keyword extraction.

4.2 ENTITY RETRIEVAL

After extracting the keywords, the subsequent step involves retrieving the corresponding database
entities, including table names, column names, table values, and textual descriptions (column and
value descriptions). The entity retrieval component is composed of three modules: the embedder,
retriever, and reranker. Initially, all table data are encoded and stored in the Chroma database.
The embedder first encodes the keywords obtained during the user question understanding phase.
This encoded information is then fed into the retriever to search the relevant database, yielding five
entities that resemble the keywords. These five entities are subsequently passed to the reranker,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

which recalculates similarity scores and reorders them, ultimately selecting the two most similar
entities. Based on these three modules, we divide entity retrieval into two tasks: Database Retrieval
and Textual Description Retrieval.

Database Retrieval In this task, our objective is to retrieve column names and table values from the
database using the keywords. A column name refers to the name designated to each column, and
table values are the data contained in each cell of the table, excluding the column names. To expedite
the retrieval process given the extensive volume of database values, we employ two methods: Min-
Hash Zhu et al. (2016) + Jaccard Score (Equation 1 and 2) and BM25 Robertson et al. (2009). For
column names, no similarity score threshold is established during retrieval; all scores greater than 0
are recorded, and the top five highest-scoring entities are selected. For table values, if the keyword
is purely numeric, we set a rule that only entities exactly matching the keyword are considered. For
keywords comprising both text and numbers, no threshold is applied, and the top five highest scor-
ing entities are selected. These shortlisted entities are then fed back into the reranker for re-ranking
to identify the two most similar entities. As illustrated in Figure 4, the retrieved entities are cross-
referenced to obtain their corresponding table and column names, which are then deduplicated and
categorized.

MinHash(A,B) = Pr(h(A) = h(B)) (1)

J(A,B) =
|A ∩B|
|A ∪B|

(2)

Textual Description Retrieval Textual descriptions encompass two types of information: column
descriptions and value descriptions. Column descriptions provide additional details about the col-
umn names, whereas value descriptions explain the data within the columns, such as how these
values were derived. Given the smaller dataset in this task, the retrieval method differs from that
used in database retrieval. We directly employ an embedding model to encode the data and then
use cosine similarity within the retriever to calculate scores, identifying the top five most similar
entities. These entities are subsequently re-ranked using a specialized reranker model to determine
the final order of relevance.

4.3 GENERATION

The generation process in LAIA-SQL involves two phases: SQL Generation and Revision.

SQL Generation: Using ICL, we guide general LLMs, like GPT-4o OpenAI (2024c), to generate
SQL statements. The prompts for this task are meticulously structured into four segments: data
schema, user question reasoning, constraints, and incentives. The data schema component includes
details such as data formats, column names, table names, and examples, integrating the entity infor-
mation retrieved in the Entity Retrieval module. The user question reasoning segment incorporates
the user’s question, main and sub tasks identified in User Question Understanding module, and hints
derived from the dataset. By compiling these details into the prompt, the model produces an initial
SQL statement.

Revision: As illustrated in Figure 4, the initial SQL statements may include errors such as incor-
rect table names, misaligned columns, or extraneous symbols. To rectify these issues, we feed the
erroneous SQL statements along with their corresponding error messages back into the LLM for re-
vision. This iterative process results in syntactically correct and operational SQL queries, ultimately
yielding the correct answers.

5 EXPERIMENT

To rigorously assess the LAIA-SQL, we conducted a series of comprehensive experiments. These
included a comparison of SQL generation accuracy on the Bird and Spider datasets against SOTA
NLSQL methods. Additionally, we assessed the practical utility of LAIA-SQL against leading open-
source NL2SQL methods. We also conducted ablation studies to examine the contribution of dif-
ferent models and modules within the LAIA-SQL. Furthermore, we evaluated the performance of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance on Bird and Spider
Datasets. Results from the official leaderboard.

Method BIRD Dataset Spider Dataset
Dev EX Dev EX Test EX

GPT-4 46.35 74.0 67.4
Distillery 67.21 - -
CHESS 65.00 87.2 -
DailSQL 54.76 84.4 86.6
SFT CodeS-15B 58.47 84.9 79.4
MAC-SQL 57.56 86.7 82.8
LAIA-SQL(ours) 67.28 88.7 87.1

Table 2: Practical utility metrics for NL2SQL
methods using GPT-4o as base model.

Method Time(s) Accuracy Cost (USD)
CHESS 119.38 0.5 11
TA-SQL 57.92 0.5 0.41
SFT CodeS-15B 35 0.4 -
MAC-SQL 133.55 0.7 0.38
Chat2Query 680.96 0.6 -
LAIA-SQL (ours) 56.81 0.8 0.32

various models fine-tuned using the LAIA-NLU dataset from multiple perspectives. Collectively,
these experiments provide a multifaceted evaluation of LAIA-SQL’s effectiveness.

5.1 EXPERIMENT SETTING

NL2SQL Baseline Selection We selected NL2SQL methods that are either open-source or have
published papers, including GPT-4 as the baseline model. Our chosen methods are as follows:
Distillery Maamari et al. (2024), which employs a schema linking augmentation technique; CHESS
Talaei et al. (2024), which integrates data catalogs and database values for SQL generation; MAC-
SQL Wang et al. (2023), featuring a multi-agent collaborative framework; Dail-SQL Gao et al.
(2023), which combines prompt engineering with question representation, example selection, and
organization; and CodeS-15B Li et al. (2024b), which uses an incremental pre-training approach on
a curated SQL-centric corpus.

Base Model Selection In the user question understanding module, we evaluated various models
such as GPT-4o-mini OpenAI (2024a), GPT-4 Achiam et al. (2023), Mistral-7B Jiang et al. (2023),
LLaMA3-8B Dubey et al. (2024), Baichuan2-7B, and 13B Yang et al. (2023). For the entity re-
trieval module, we compared the performance of MinHash Zhu et al. (2016) combined with the
Jaccard Score against BM25 Robertson et al. (2009) for the retriever. As for the embedding mod-
els, we assessed text-embedding-3-large OpenAI (2024b), Stella-1.5B, and Stella-400M. During the
fine-tuning stage of the code generation model, we tested DeepSeek-Coder-V2-Instruct, DeepSeek-
Coder-V2-Base Zhu et al. (2024), and Qwen-1.5-Coder Yang et al. (2024a).

Fine-tuning Process The fine-tuning was conducted using a setup of 4 Nvidia 4090 GPUs and
utilized Distributed Data Parallel along with DeepSpeed. We maintained a uniform batch size of
1 and set the epoch count to 1. The learning rate was fixed at 2e-4. Additionally, we utilized the
Low-Rank Adaptation (LoRA) Hu et al. (2021) technique with specific parameters: a LoRA rank
of 64, LoRA alpha of 16, and a dropout probability of 0.05. The bit precision was set to 4. It took
around 30 minutes to fine-tune a LAIA-NLUer model and 4 5 hours for a code generation model.

5.2 METRICS

BLEU, ROUGE and GPT-4o Score In the evaluation of task decomposition in NLU, we assessed
the quality of the generated reasoning results against human-labeled ground truth result using BLEU,
ROUGE, and GPT-4o scores. Specifically, BLEU-1 and BLEU-2 provide insight into the linguistic
accuracy by measuring n-gram matches between generated descriptions and ground truth Papineni
et al. (2002). ROUGE-1, ROUGE-2, and ROUGE-L evaluate the overlap of n-grams, sequences,
and pairs of words, offering a measure of the descriptions’ comprehensiveness and relevance Lin
(2004). Additionally, a five-point Likert scale evaluation by GPT-4o helps gauge the overall quality
and similarity to human annotations Zheng et al. (2023).

F1 Score For keyword extraction tasks in NLU, the model’s performance was evaluated using pre-
cision, recall, and finally get the F1 score. These metrics provide a balance between the correctness
of the extracted keywords and the model’s recall capability, thereby offering a holistic view of its
extraction efficiency.

Execution Accuracy (EX) Execution accuracy was used to measure the correctness of SQL queries
by comparing the results of executed predicted queries against reference queries on specific database
instances. This metric not only ensures the semantic correctness but also accounts for variations in
SQL formulations that yield the same results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Module ablation study of LAIA-SQL on dev set of Bird Dataset.

Method Dev EX
UQU + Entity Retrieval + Revision + Generaton(GPT-4o) 67.28
Entity Retrieval + Revision + Generaton(GPT-4o) 59.62
Entity Retrieval + Revision + Generaton 55.28
Entity Retrieval + Generaton(GPT-4) 51.25
Generaton(GPT-4) 46.35

Table 4: Model ablation study of LAIA-SQL on dev set of Bird Dataset.

Method Dev EX
GPT-4o-mini (finetuned) + MinHASH + Stella-400M + GPT-4o 67.28
Mistral-7B (finetuned) + MinHASH + Stella-400M + GPT-4o 65.16
GPT-4 + MinHASH + Stella-400M + GPT-4o 59.62
GPT-4 + MinHASH + Stella-400M + DeepSeek-Coder-V2-Instruct (finetuned) 55.78
GPT-4 + MinHASH + Stella-400M + DeepSeek-Coder-V2-Base (finetuned) 50.41
GPT-4 + MinHASH + Stella-400M + GPT-4 53.17
GPT-4 + MinHASH + Stella-1.5B + GPT-4 51.36
GPT-4 + MinHASH + text-embedding-3-large + GPT-4 51.25
GPT-4 + BM25 + text-embedding-3-large + GPT-4 49.34

5.3 RESULT

BIRD and Spider Dataset Evaluation In the BIRD dataset, due to the anonymity policy, we only
report the execution accuracy on the development dataset. In the future, we will supplement with the
scores for the test EX and VES. As shown in Table 1, LAIA-SQL earns the best Dev EX compared
to other state-of-the-art models and is also currently the best open-source method available. In
the Spider dataset, compared to all other state-of-the-art models, LAIA-SQL exhibits the highest
execution accuracy across both the development and test datasets.

Additionally, in terms of practical value assessment in Table 2, we found that LAIA-SQL per-
forms the best in aspects such as time efficiency, operational cost, and accuracy. Compared to the
best open-source method CHESS, LAIA-SQL achieves a 52.4% reduction in runtime, and a 97%
decrease in operational costs, demonstrating significant industrial application potential. Overall,
LAIA-SQL is indeed the top-performing method among open-source NL2SQL methods.

Ablation Study As shown in Table 3, in our module ablation study, we observed significant im-
provements in accuracy with each additional module. Notably, the LAIA-NLUer, designed for
keyword extraction and task decomposition, achieved the highest accuracy increase, improving by
7.66 percentage points compared to previous methods. The entity retrieval module also showed
substantial gains, increasing accuracy by 4.9 percentage points. Overall, the LAIA-NLUer, entity
retrieval, and revision modules are indispensable, each contributing to the improvement in accuracy.

For the result of model ablation study illustrated in Table 4, we found that within the entity retrieval
module, MinHash outperformed BM25, achieving two percentage points higher accuracy and con-
suming only one-third of the time taken by BM25. Additionally, we observed varying performances
across different embedding models. Surprisingly, the stell-400M model outperformed the stella-
1.5B model, leading us to conclude that larger parameter models do not necessarily yield better
embedding results.

In the code generation module, we compared the base model with fine-tuned versions and found
that the fine-tuned models did not perform as well as GPT-4. However, it is important to note
that our selected model only had 22 billion parameters, suggesting that the number of parameters
significantly impacts the accuracy of models on complex tasks like code generation.

Supervised fine-tuning As shown in Table 5, we discovered that large models and small models
are suited for different fine-tuning tasks. For instance, large models such as GPT-4 and GPT-4o-
mini exhibit significantly better performance on complex tasks like task decomposition after fine-
tuning compared to smaller models. However, for tasks that do not require deep understanding,
such as keyword extraction, smaller models like Mistral-7B outperform the larger ones. Overall, our
findings suggest that the decision to use large or small models for fine-tuning should be guided by

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Comparison of fine-tuned model in task decomposition and keyword extraction

Method BLEU ROUGE GPT-4o F1 Score
Llama3-8B 0.679 0.813 4.141 0.677
Baichuan2-7B 0.616 0.697 4.112 0.511
Baichuan2-13B 0.622 0.722 4.124 0.583
Mistral-7B 0.706 0.798 4.081 0.696
GPT-4o-mini 0.713 0.811 4.256 0.672
GPT-4 0.722 0.816 4.286 0.665

Table 6: Impact of dataset size and epoch on the performance of LAIA-NLU on F1 Score

Method Dataset Size Epoch Base
Model20% 40% 60% 80% 100% 1 2 3

Llama3-8B 0.609 0.636 0.677 0.661 0.653 0.677 0.728 0.734 0.442
Baichuan2-7B 0.497 0.515 0.558 0.522 0.511 0.511 0.648 0.688 0.208
Mistral-7B 0.648 0.640 0.634 0.694 0.696 0.696 0.755 0.769 0.502
Baichuan2-13B 0.412 0.554 0.573 0.638 0.585 0.585 0.609 0.647 0.266

the specific requirements of the task, as the performance of fine-tuned large models is not universally
superior.

In addition, we compared the effects of varying dataset sizes and different epochs on fine-tuning per-
formance on keyword extraction. In Table 6, we found that the overall performance of the Mistral-7B
model was the best, followed by the LLaMA-8B model. Notably, we observed that for all models
except Mistral-7B, the F1-Score initially increased and then decreased as the training data size in-
creased. This indicates that more data is not always better. Moreover, we discovered that increasing
the number of epochs significantly improved the F1-Score, suggesting that adding more epochs is
the most effective method for enhancing the accuracy of keyword extraction.

6 LIMITATION

While our model surpasses many state-of-the-art NL2SQL methods, its accuracy still falls short for
practical use. Fine-tuning on specific datasets is essential for satisfactory performance, highlighting
the need for enhanced generalizability across varied domains. Computational limitations confined us
to training smaller models; larger models like DeepSeek-V2-Coder-236B and Llama3.1-70B could
potentially offer superior performance over our current 22B model, thereby significantly improv-
ing accuracy. Additionally, the Entity Retrieval component of LAIA-SQL employs MinHash with
Jaccard Score and BM25, resulting in suboptimal retrieval performance. Leveraging advanced RAG
modules could enhance this aspect. Furthermore, LAIA-NLU dataset is limited to 1500 samples due
to resource constraints, affecting the LAIA-NLUer model’s robustness. The scarcity of high-quality
data, exacerbated by copyright restrictions, presents a significant challenge. Future work should
prioritize data augmentation techniques and innovative methods to mitigate data scarcity, as well as
improving computational resources to explore more advanced models.

7 CONCLUSION

In this work, we introduced significant advancements in Table QA methods by developing the LAIA-
NLU dataset and a retrieval-augumented based NL2SQL framework, LAIA-SQL. Our meticulously
curated dataset, containing 1,500 high-quality instructions, enabled us to train LAIA-NLUer, a pi-
oneering NLU model tailored for Table QA. By integrating LAIA-NLUer, our NL2SQL method
LAIA-SQL demonstrated remarkable improvements, achieving higher accuracy to 67.28% and re-
ducing SQL query execution time by 52.4% to 56.81 second for 10 questions. Meanwhile, the cost
is reduced to 0.032 USD for one question. These findings underscore the potential of our approach
to enhance the efficiency and accuracy of multi-table data retrieval, making it more accessible to
non-expert users.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Humaid Al Naqbi, Zied Bahroun, and Vian Ahmed. Enhancing work productivity through generative
artificial intelligence: A comprehensive literature review. Sustainability, 16(3):1166, 2024.

James Allen. Natural language understanding. Benjamin-Cummings Publishing Co., Inc., 1988.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema
Moussa, Matt Beane, Ting-Hao Huang, Bryan Routledge, et al. Finqa: A dataset of numerical
reasoning over financial data. arXiv preprint arXiv:2109.00122, 2021.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. From local to global: A graph rag approach to query-focused summariza-
tion. arXiv preprint arXiv:2404.16130, 2024.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Mohd Javaid, Abid Haleem, and Ravi Pratap Singh. A study on chatgpt for industry 4.0: Back-
ground, potentials, challenges, and eventualities. Journal of Economy and Technology, 1:127–
143, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Nengzheng Jin, Joanna Siebert, Dongfang Li, and Qingcai Chen. A survey on table question an-
swering: recent advances. In China Conference on Knowledge Graph and Semantic Computing,
pp. 174–186. Springer, 2022.

Maël Jullien, Marco Valentino, and André Freitas. Semeval-2024 task 2: Safe biomedical natural
language inference for clinical trials. arXiv preprint arXiv:2404.04963, 2024.

George Katsogiannis-Meimarakis and Georgia Koutrika. A deep dive into deep learning approaches
for text-to-sql systems. In Proceedings of the 2021 International Conference on Management of
Data, pp. 2846–2851, 2021.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language
to sql: Are we fully ready? arXiv preprint arXiv:2406.01265, 2024a.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proceedings of the ACM on Management of Data, 2(3):1–28, 2024b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024c.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Hanmeng Liu, Leyang Cui, Jian Liu, and Yue Zhang. Natural language inference in context-
investigating contextual reasoning over long texts. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 13388–13396, 2021.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan,
Guoliang Li, and Nan Tang. A survey of nl2sql with large language models: Where are we, and
where are we going? arXiv preprint arXiv:2408.05109, 2024.

Guixiang Ma, Chun-Ta Lu, Lifang He, S Yu Philip, and Ann B Ragin. Multi-view graph embedding
with hub detection for brain network analysis. In 2017 IEEE International Conference on Data
Mining (ICDM), pp. 967–972. IEEE, 2017.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi. The death of
schema linking? text-to-sql in the age of well-reasoned language models. arXiv preprint
arXiv:2408.07702, 2024.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adversar-
ial nli: A new benchmark for natural language understanding. arXiv preprint arXiv:1910.14599,
2019.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence. https://openai.com/index/gpt-4o-mini-
advancing-cost-efficient-intelligence/, 2024a.

OpenAI. New embedding models and api updates. https://openai.com/index/new-embedding-
models-and-api-updates/, 2024b.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024c.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
Chess: Contextual harnessing for efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and
Zhoujun Li. Mac-sql: Multi-agent collaboration for text-to-sql. arXiv preprint arXiv:2312.11242,
2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models.
arXiv preprint arXiv:2406.04271, 2024b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.
ACM Computing Surveys, 2023.

Songlin Yu, Nian Ran, and Jianjun Liu. Large-language models: the game-changers for materials
science research. Artificial Intelligence Chemistry, pp. 100076, 2024.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu. Text alignment is an efficient unified model
for massive nlp tasks. Advances in Neural Information Processing Systems, 36, 2024.

Weixu Zhang, Yifei Wang, Yuanfeng Song, Victor Junqiu Wei, Yuxing Tian, Yiyan Qi, Jonathan H
Chan, Raymond Chi-Wing Wong, and Haiqin Yang. Natural language interfaces for tabular data
querying and visualization: A survey. IEEE Transactions on Knowledge and Data Engineering,
2024a.

Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li, Bohan Zhang, Guanlin Li, Zijun Yao, Kangli Xu,
Jinchang Zhou, Daniel Zhang-Li, et al. Tablellm: Enabling tabular data manipulation by llms in
real office usage scenarios. arXiv preprint arXiv:2403.19318, 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J Miller. Lsh ensemble: Internet-scale
domain search. Proceedings of the VLDB Endowment, 9(12), 2016.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng,
and Tat-Seng Chua. Tat-qa: A question answering benchmark on a hybrid of tabular and textual
content in finance. arXiv preprint arXiv:2105.07624, 2021.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

You are a professional English teacher.
Question: {task question}
1. The upper sentence is completely correct. Please divide the upper sentence into main task and sub task.
2. Tell me how to implement each sub task and divide it into object and implementation. You can only detect the keywords in the sentence, do not use
words not included in the sentence.
3. Object is related to the keywords in the question.
4. The value in the dictionary of implementation is mostly one to two words. If the values you select contains a lot of word, please double confirm
whether it is belonged to filter condition, and then revise. It is number or adjective.
5. Please only respond with a JSON object structured as follows, don't change the keys name.

EXAMPLE ONE:
{
'question':"Name schools in Riverside which the average of average math score for SAT is grater than 400, what is the funding type of these schools?",
‘main task':["1. Name schools in Riverside which the average of average math score for SAT is grater than 400", "2. what is the funding type of these
schools?"],
'sub task':["1.1 find the name of schools in Riverside",
"1.2 get the average math score of these school",
"1.3 calculate the average score of average math score of eah school.",
"1.4 find the school which the average of average math score for SAT is grater than 400",
"2.1 the funding type of these schools"],
'object':['Name schools','funding type', 'average math score for SAT','schools’],
'implementation':[{'in':'Riverside'}, {'is grater than':'400'}]
}

EXAMPLE TWO:
{
'question': "How many units of item no.9 were sold in store no.1 in total in January, 2012?",
' main task': ["Determine the total units sold of item no.9 in store no.1 in January, 2012"],
'sub task': ["1.1 Identify store no.1",
"1.2 Identify item no.9",
"1.3 Track sales in January, 2012",
"1.4 Calculate total units sold of item no.9"],
'object': ['units', 'item no', 'store no'],
'implementation': [{'store no.': '1’}, {'item no.': '9’}, {'in': 'January, 2012'}]
}

Figure 5: Prompt of keyword extraction and task decomposition.

You are a data science expert.
Below, you are presented with a database schema and a question.
Your task is to read the schema, understand the question, and generate a valid SQLite query to answer the question.
Before generating the final SQL query think step by step on how to write the query.

Database Schema
{DATABASE_SCHEMA}

This schema offers an in-depth description of the database's architecture, detailing tables, columns, primary keys, foreign keys, and any pertinent
information regarding relationships or constraints.
Pay attention!!! Special attention should be given to the examples listed beside each column of data schema, as they directly hint at which columns are
relevant to our query.

Constraints
1. For key phrases mentioned in the question, we have provided the most similar values within the columns denoted by "-- examples" in front of the
corresponding column names. This is a crucial hint indicating the correct columns to use for your SQL query.
2. pay attention!!! avoid using different column for the same object with different filter values.
3. pay attention!!! Don’t write a wrong column in the SQL code. Please check whether the column is belong to the table again in the SQL.

Question:
{QUESTION}

Steps that you should follow:
{Main Task}
{Sub Task}
{Hint}

The main task, sub task and evidence are correct, please base on them generate final sql query, please strictly follow the main task, sub task and
evidence.
If there is an equation in the evidence, please strictly follow the equation!!!
The amount of item SELECT in sql query depends on the number of main tasks. if there is only one main task, you should only SELECT one item related
to the main task in the sql query.

Please respond with a JSON object structured as follows:
{{"SQL": "Your SQL query is here."}}

Figure 6: Prompt of candidate generation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Objective: Your objective is to make sure a query follows the database admin instructions and use the correct conditions.

Database Schema:
{DATABASE_SCHEMA}

Constraints
1. When you need to find the highest or lowest values based on a certain condition, using ORDER BY + LIMIT 1 is prefered over using MAX/MIN within
sub queries.
2. If predicted query includes an ORDER BY clause to sort the results, you should only include the column(s) used for sorting in the SELECT clause if the
question specifically ask for them. Otherwise, omit these columns from the SELECT.
3. Predicted query should return all of the information asked in the question without any missing or extra information.
4. For key phrases mentioned in the question, we have provided the most similar values within the columns denoted by "-- examples" in front of the
corresponding column names. This is a crucial hint indicating the correct columns to use for your SQL query.
5. If you are joining multiple tables, make sure to use alias names for the tables and use the alias names to reference the columns in the query. Use T1,
T2, T3, ... as alias names.

Question:
{QUESTION}

ERROR INFORMATION
{Error Infomation}

Steps that you should follow:
{Main Task}
{Sub Task}
{Hint}

Predicted query:
{SQL}

Pay attention to the ERROR INFORMATION, based on the error revise the SQL query.
Think about whether the predicted query used the hint and evidence already, if not, use the hint and evidence in the sql query generation.

Please respond with a JSON object structured as follows (if the sql query is correct, return the query as it is):
{{"revised_SQL": "Your revised SQL query is here."}}

Figure 7: Prompt of revision.

15

	Introduction
	related work
	Table Question Answering
	Natural Language Understanding

	LAIA-NLU Dataset Creation
	Data Sources
	Selection and Annotation
	Dataset Statistics

	The LAIA-SQL Framework
	User Question Understanding
	Entity Retrieval
	Generation

	Experiment
	Experiment Setting
	Metrics
	Result

	Limitation
	Conclusion
	Appendix

