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ABSTRACT

Recommender systems traditionally rely on the principle of Revealed Preference
(RP), which assumes that observed user behaviors faithfully reflect underlying in-
terests. While effective at scale, this assumption is fragile in practice, as real-world
choices are often noisy and inconsistent. Thus, even LLM-based recommendation
models (LLM-Rec) equipped with advanced reasoning capabilities may fail to
capture genuine user preferences and often produce rationales of limited persua-
siveness. To address this issue, we introduce the concept of Coherent Preference
(CP), which complements RP by favoring items that are logically and causally
coherent with user interaction history. Building on this perspective, we propose
Conflict-Aware Direct Preference Optimization (C-APO), an LLM-Rec frame-
work that jointly optimizes RP and CP while adaptively reconciling their agree-
ment and conflict, delivering robust recommendation performance and logically
consistent rationales. We construct a unified ordering approach that combines
the RP signal, based on chosen versus unobserved items, with the CP signal,
which ranks items by their logical consistency with past interaction history. In
this unified preference ordering, we dynamically adjust the influence of each sig-
nal depending on whether RP and CP agree or conflict, allowing the model to
better capture user intent and generate more plausible recommendations. On the
Amazon Review dataset, our approach consistently outperforms approximately 20
state-of-the-art baseline models in both recommendation performance and ratio-
nale quality, achieving a 1.65× relative improvement in click-through rate during
deployment, thereby demonstrating its practical utility. The code and dataset are
available at https://github.com/cpark88/C-APO.

1 INTRODUCTION

Recommender systems fundamentally aim to model user preferences. Traditional approaches are
based on the concept of Revealed Preference (RP) (Samuelson, 1938) from microeconomics, which
assumes that observed user choices reliably reflect underlying preferences. Conventional recom-
mender systems, such as collaborative filtering (CF) models, instantiate this view by learning from
user–item interaction histories and have achieved remarkable performance in research contexts.

However, real-world choices are often noisy, inconsistent, or shaped by transient emotions, contex-
tual constraints, and limited information. Consequently, the items users select do not always align
with their stable or meaningful interests (Ahn & Lin, 2024). In our analysis of the Amazon Re-
view dataset (Fig. 1), using an LLM-as-a-Judge (Gu et al., 2024) to assess logical coherence with
prior behavior, roughly 30% of the chosen (ground-truth) items could not be logically explained,
suggesting that RP alone may be insufficient to capture true intent.
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Figure 1: Distribution of LLM coherence scores
(1–7) for chosen items based on user history,
with a substantial portion falling below 4, indi-
cating frequent divergence from past behavior.
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Figure 2: The chosen item (Action) diverges from
the user’s romantic-history pattern, whereas the
unobserved item (Romance) better aligns with
preferences inferred from viewing history.

Consider a user who consistently watches movies in the Fantasy and Romance genres (Fig. 2). At
some point, the user watches an action movie—an atypical choice given their prior viewing history.
Such a choice may not reflect the true preference of users, as it may be driven by shared account
usage, social viewing contexts, or transient factors such as promotional events. A romantic fan-
tasy film—aligned in emotional tone and narrative structure with the user’s history—would likely
serve as a more coherent and persuasive recommendation. This motivates Coherent Preference
(CP): the preference over items that are causally aligned with prior behavior. Inspired by behavioral
economics, CP complements RP by asking not only what was chosen, but what would likely be
chosen if behavior were consistent and explainable. This perspective highlights a core limitation
of the training paradigm in current LLM-based recommenders (LLM-Rec), as methods such as Di-
rect Preference Optimization (DPO) (Rafailov et al., 2023) typically rely on the RP ordering (chosen
≻ unobserved). Consequently, despite their advanced reasoning capabilities, LLM-Rec models may
not fully capture genuine user preferences and thus often produce rationales that lack persuasive-
ness (Tsai et al., 2024). This limitation is particularly critical in platforms such as Instagram or
Amazon, where exposing both recommendations and their rationales may undermine user trust.

To address this issue, we introduce Conflict-Aware Direct Preference Optimization (C-APO), an
LLM-based recommendation framework that jointly models RP and CP orderings while adaptively
reconciling their agreement and conflict. While RP captures observable user-item interactions
that boost recommendation performance, CP complements it by modeling the reasoning behind
choices—beneficial for inferring intent and generating persuasive rationales. For each user, we con-
struct a triplet consisting of the ground-truth chosen item and two unobserved alternatives—items
the user did not interact with, which we hereafter refer to as rejected items. A state-of-the-art LLM
is then prompted to generate, for each item, a natural-language rationale explaining its relevance to
user interaction history along with a coherence score. Of the two rejected items, the one with the
higher CP coherence score is labeled hard rejected, and the one with the lower score easy rejected.
Each triplet element includes both the item and its post-hoc rationale, with the coherence scores
further validated through human evaluation and statistical testing.

In C-APO, we first establish the RP ordering, which always ranks the chosen item above all rejected
ones (i.e., chosen ≻ hard / easy rejected). On top of this, CP introduces a secondary ordering among
the rejected items based on coherence scores (i.e., hard ≻ easy), yielding the unified triplet ranking
chosen ≻ hard rejected ≻ easy rejected. However, CP is not limited to ordering among the rejected
items: it can also compare the chosen item against the rejected ones. This is where the interaction
between RP and CP emerges—alignment occurs when the chosen item also receives the highest
coherence score, while conflict arises when a rejected item is judged more coherent, indicating that
the chosen item may not fully reflect genuine user preference. Therefore, while DPO relies solely
on pairwise comparisons between the chosen and rejected items based on RP, C-APO introduces
a unified ordering that integrates both RP and CP over all items and adjusts their alignment and
conflict. With our conflict-aware adaptive weight, it probabilistically reconciles the two signals by
strengthening CP when aligned with RP, and diminishing it when conflicting. This helps the model
avoid overfitting to noisy signals in RP by leveraging the reasoning-based perspective of CP.

We also provide a gradient analysis of how C-APO modulates the learning dynamics. When the
chosen item shows low coherence with user interaction history—i.e., when the RP and CP orderings
are in conflict—its likelihood is effectively suppressed, reducing its selection probability.

We conducted large-scale experiments across five Amazon Review domains, comparing our method
against approximately 20 state-of-the-art baselines. Our method consistently outperformed most
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baselines in both recommendation performance and rationale quality. Furthermore, in a real-world
online A/B test, our model achieved a 1.65× relative improvement in click-through rate over existing
models, demonstrating its practical effectiveness. We highlight three key contributions:

• We introduce the Coherent Preference and present a data construction recipe for generating ratio-
nales with coherence scores, releasing the entire dataset publicly despite the high API/GPU cost.

• We develop C-APO, a reinforcement learning method that adaptively and probabilistically recon-
ciles conflicts between RP and CP orderings, improving both generalization and rationale quality.

• Our method outperforms about 20 baselines across five Amazon Review domains and achieves
significant gains in online A/B testing, demonstrating real-world applicability.

2 MOTIVATION AND PRELIMINARIES

2.1 PREFERENCE AND RECOMMENDER SYSTEM

Traditional recommenders are built upon Revealed Preference (RP), which infers user interests
directly from observed interactions such as past purchases or clicks. Yet, real-world choices are
often noisy and shaped by transient factors, making RP an imperfect proxy for stable intent (Ahn &
Lin, 2024). To complement this, we introduce Coherent Preference (CP), which focuses on items
that are logically consistent with prior behaviors—what users could or should prefer under coherent
reasoning. CP represents a behavioral economics-inspired critique and extension of the classical
RP paradigm (Hédoin, 2016), while introducing interpretability and generalizability into LLM-Rec.
While the RP signal provides a user-item interaction signal, the CP signal complements it by
capturing the reasoning behind choices—an aspect that is particularly useful when modeling
user intent or generating explanation rationales.

2.2 PROBLEM SETUP AND TASK DEFINITION

■ Definition 1: User Behavior History We assume a sequential recommendation task setting where
a user u ∈ U interacts with a sequence of items Su = [i1, i2, . . . , iT ], where each it ∈ I is an item
from the whole item set I. Each item it is represented by a tuple containing the item’s title and
description. Then, we set the chosen item ic ∈ I that the user interacted with next. Based on this
formulation, we define the user–item interaction dataset D = {(Su, ic) | u ∈ U}. Note that we
denote the ground-truth item as the chosen item and non-interacted items as rejected items.

■ Definition 2: Triplet Rationale Dataset Construction Recipe The chosen item ic is the user’s
next observed choice, reflecting their revealed preference (RP). However, RP does not always exhibit
logical coherence with prior behavioral patterns. Accordingly, we constructed a dataset to model
coherent preference (CP). We randomly sampled two unobserved items—i.e., items the user has not
interacted with—i−1 and i−2 from the whole item set such that i−1 , i

−
2 /∈ Su ∪ {ic}. For each item

i ∈ {ic, i−1 , i
−
2 }, we prompted a state-of-the-art LLM to generate: (1) a natural-language rationale r

explaining why item i might be recommended given Su, and (2) a coherence score s ∈ {1, 2, . . . , 7}
assessing the logical consistency and persuasiveness of the corresponding rationale. This score
follows a rubric ranging from 1: Very Weak (no connection) to 7: Very Strong (highly coherent
and contextually perfect). In the LLM-as-a-Judge framework, this approach is referred to as single-
answer grading (Gu et al., 2024). We validated the LLM-based coherence scores against human
expert and annotator ratings, confirming substantial agreement with human judgments (Spearman’s
ρ = 0.71, p < 0.0001). All validation procedures are provided in Appendix D.

We then compared the coherence scores s of i−1 and i−2 to determine the CP ordering. The item
with the higher score was labeled as the hard rejected item ih, and the one with the lower score was
labeled as the easy rejected item ie. Each constructed instance is represented as a unified ordered
triplet (ic ≻ ih ≻ ie)—that is, RP implies ic ≻ ih and ic ≻ ie, while CP implies ih ≻ ie. CP can
also induce an ordering between the chosen and rejected items based on coherence scores, which is
not included in the fully ordered triplet (ic ≻ ih ≻ ie) but is used to assess agreement or conflict with
RP and modulate the unified ordered triplet accordingly. For each item i, we attached its generated
rationale r and the corresponding coherence score s, and wrote y = (i, r, s); thus the instance can be
expressed as the totally ordered triplet (yc ≻ yh ≻ ye), with yc = (ic, rc, sc), yh = (ih, rh, sh), and
ye = (ie, re, se)—indicating that our model not only learns the recommended item, as in prior
work, but also the rationale supporting its recommendation. Empirically, as shown in Fig. 3,
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we found that although ic often received higher coherence scores than the rejected items, there is a
nontrivial fraction of cases in which ic scores lower, highlighting a conflict between RP and CP.

Although extending beyond two rejected items is possible, it would substantially increase the cost
of generating rationales and scores with the LLM as well as the training overhead (Cai et al., 2025).
Since our model captures RP–CP alignment effectively with two rejected items, we leave such ex-
tensions to future work. We have released our dataset despite substantial LLM API and GPU costs.

Problem Formulation: For a given user u with an interaction history sequence Su =
[i1, i2, . . . , iT ], the model aims to output a tuple (̂i, r̂), where î denotes the next recommended
item and r̂ is a natural-language explanation justifying the recommendation.
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Figure 3: A non-trivial portion of cases across five domains of the Amazon Review exhibit higher
coherence scores for rejected items compared to the chosen item, indicating conflicts between Re-
vealed Preference (RP) and Coherent Preference (CP).

3 CONFLICT-AWARE DIRECT PREFERENCE OPTIMIZATION (C-APO)
3.1 RECALL OF DIRECT PREFERENCE OPTIMIZATION (DPO)
Supervised Fine-Tuning (SFT) In general, most alignment approaches (i.e., reinforcement learn-
ing) in recommendation, including Direct Preference Optimization (DPO) (Rafailov et al., 2023),
are performed following a supervised fine-tuning (SFT) stage on recommendation-specific data. In
this stage, the LLM backbone is trained with a causal language modeling loss on prompts con-
taining user history and completions consisting of chosen items and rationales, and all subsequent
descriptions are based on the tuned LLM obtained after SFT. Further details of SFT are provided in
Appendix C.

Direct Preference Optimization (DPO) DPO does not rely on explicitly training a reward model;
instead, it infers the optimal policy directly from pairwise preference data, namely chosen versus
rejected items. To achieve this, the reward function g is reparameterized in terms of the optimal
policy through a formulation: g(x, y) = β log πθ(y|x)

πref(y|x) , where πθ is the trainable target LLM and
πref is the reference model, with the partition function omitted for simplicity. For the preference
learning dataset D = {(xu, yc, y

−)}, with xu, yc, and y− denoting the input prompt, chosen item,
and rejected item, respectively, preference can be formulated by the Bradley-Terry model as p(yc ≻
y−|xu) = σ(g(xu, yc) − g(xu, y

−)). DPO formulates the preference likelihood as the following
objective:

LDPO(πθ;πref) = −E(xu,yc,y−)∼D

[
logσ

(
β log

πθ(yc|xu)

πref(yc|xu)
− β log

πθ(y
−|xu)

πref(y−|xu)

)]
. (1)

However, existing applications of DPO in recommender systems primarily rely on RP, under the
assumption that the chosen item is preferred over the rejected one. To overcome this limitation, we
propose C-APO, a novel framework that integrates both RP, which captures user–item interaction
signals, and CP, which models the reasoning behind choices—thereby improving recommendation
performance and enhancing the persuasiveness of generated rationales.

3.2 DERIVATION OF C-APO

As mentioned in Section 2.2, we are given a dataset of user preference triplets D = {(x, yc, yh, ye)}.
To align LLM-Rec with triplet preference, we first derive the preference distribution.

Plackett-Luce (PL) model For a prompt xu and three candidate responses {yc, yh, ye}, the
Plackett–Luce (PL) probability of a permutation τ is as follows:
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p(τ | yc, yh, ye, xu) =

3∏
j=1

e

(
gθ(xu,yτ(j))

)
∑3

l=j e

(
gθ(xu,yτ(l))

) , (2)

where ex denotes the exponential function, with the shorthand e used in place of exp(·) due to space
constraints, and the implicit reward is given by gθ(x, y) = β log πθ(y|x)

πref(y|x) . An example of the prompt
used for this task is provided in Appendix E, which is also used in our C-APO framework.

For the desired full ranking yc ≻ yh ≻ ye, let τ⋆ = (yc, yh, ye). Within τ⋆, RP is formalized as
yc ≻ yh and yc ≻ ye, whereas CP is formalized as yh ≻ ye. With shorthand gc=gθ(xu, yc), gh=
gθ(xu, yh), ge=gθ(xu, ye), Eq. 2 can be rewritten as:

p∗
(
yc ≻ yh ≻ ye | xu

)
= p∗

(
τ⋆ | yc, yh, ye, xu

)
=

e gc

e gc + e gh + e ge
· e gh

e gh + e ge
. (3)

We maximize the log–likelihood of the complete ordering; the loss function is therefore the negative
log-probability:

LPL = −E(xu,yc,yh,ye)∼D
[
log p∗

(
yc ≻ yh ≻ ye | xu

)]
. (4)

Substituting Eq. 3 into Eq. 4 and simplifying yields:

LPL = −E(xu,yc,yh,ye)∼D

[
log σ

(
− log

(
e (gh−gc) + e (ge−gc)

))
︸ ︷︷ ︸

(1) Revealed Preference (RP)

+ log σ
(
− log

(
e (ge−gh)

))
︸ ︷︷ ︸

(2) Coherent Preference (CP)

]
. (5)

Eq. 5 shows that the PL model jointly enforces the full ordering in a single objective, thereby pre-
serving permutation consistency. The first term in Eq. 5, corresponding to RP, encourages the model
to rank the chosen yc higher than the rejected items yh and ye. The second term, based on the
coherence score, explicitly models the CP ordering between yh and ye. However, the PL model
does not directly model the ordering between chosen and rejected items from the perspective of CP.
As a result, the first term in Eq.5, which reflects RP, cannot correct for potential noise inherent in
user interactions. Notably, the CP signal can also capture the relative ordering between chosen and
rejected items via LLM-generated coherence scores. This introduces a potential source of agree-
ment or conflict between RP and CP signals. To this end, we propose a conflict-aware weighting
mechanism that adjusts the contribution of the RP and CP signals in Eq. 5.

Conflict-Aware Adaptive Weight As previously discussed, while yc is always preferred over all
rejected items from the RP perspective, this may not hold from the perspective of CP. In cases where
the coherence score sc of the chosen item is lower than that of sh or se—indicating a conflict be-
tween RP and CP—we down-weight the relative reward of the chosen item compared to the rejected
ones using a trainable weight. Conversely, when RP and CP are in agreement, the chosen item’s
relative reward is further emphasized. As a result, the model avoids overfitting to behavior-only
signals and instead learns to generate more coherent rationales, effectively mitigating noise in the
RP signal.

We define the conflict-aware reward difference as wi,j(gi − gj), where wi,j denotes the trainable
conflict-aware adaptive weight assigned to each item pair i, j ∈ {c, h, e}. This weight reflects the
probabilistic advantage of item i over item j based on their coherence scores. Then, we replace
the term (gi − gj) in Eq. 5 with wi,j(gi − gj), and rewrite this equation as follows:

LC-APO = −E(xu,yc,yh,ye)∼D

[
log σ

(
− log

(
e wc,h(gh−gc) + e wc,e(ge−gc)

))
︸ ︷︷ ︸

(1) Conflict-Aware Revealed Preference aligned with Coherent Preference

+ log σ
(
− log

(
e wh,e(ge−gh)

))
︸ ︷︷ ︸

(2) Conflict-Aware Coherent Preference

]
. (6)

The detailed formulation of the conflict-aware adaptive weight wi,j is as follows. Although these co-
herence scores show a statistically significant positive correlation with human ratings (Section 2.2),
we treat them as noisy observations rather than gold-standard references, as even the state-of-the-art
(SOTA) LLM may produce inconsistent evaluations. To calibrate them, we re-examine the same
inputs used for coherence scoring—user history Su, item i, and post-hoc rationale r—through a
smaller text encoder (e.g., SBERT), which provides an additional stage of validation for the scoring
performed by the SOTA LLM.
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Specifically, we use the LLM coherence score s along with the text encoder feature zu =
ftext(Su, i, r) ∈ RB×D, where ftext is a frozen text encoder, and zu denotes its output representation
for a batch of size B and hidden dimension D. Inspired by the Thurstone–Mosteller model (Thur-
stone, 2017; Mosteller, 1951); see Appendix K for details, we compute the mean µ and standard
deviation σ̃ of the score s to calibrate it as follows:

µ = s+ Gate(zu) · FC1(zu), σ̃ = softplus(FC2(zu)),

where Gate is a sigmoid activation followed by a fully connected layer, and FC1 and FC2 are
trainable fully connected layers with ReLU activation. All outputs—Gate(zu), FC1(zu), and
FC2(zu)—are in RB×1. We convert these into a soft pairwise weight:

wc,h = Φ
(

µyc − µyh√
σ̃2
yc

+ σ̃2
yh

)
, wc,e = Φ

(
µyc − µye√
σ̃2
yc

+ σ̃2
ye

)
, wh,e = Φ

(
µyh

− µye√
σ̃2
yh

+ σ̃2
ye

)
, (7)

where Φ is the Gaussian cumulative distribution function, mapping the weight to the [0, 1] range.
The resulting wi,j modulates C-APO updates, amplifying RP–CP agreements (large wi,j) and atten-
uating uncertain conflicts (small wi,j). By softly adjusting the loss in proportion to this preference
inconsistency, the model is guided to favor recommendations where RP and CP are aligned. Note
that our objective Eq. 6 strictly generalizes PL/DPO; see Appendix L.

Gradient Analysis We conducted gradient analysis on C-APO. Let ∆gi,j = (gi − gj), and denote
∇k = ∇θg(x, yk) for brevity; then, the gradient of LC-APO with respect to parameters θ takes the
following formulation, where s1 = log

(
ewc,h∆gh,c + ewc,e∆ge,c

)
and s2 = wh,e∆ge,h.

∇θLC-APO = −E(xu,yc,yh,ye)∼D

[
σ(s1)

wc,he
wc,h∆gh,c (∇c−∇h) + wc,ee

wc,e∆ge,c (∇c−∇e)

ewc,h∆gh,c+ewc,e∆ge,c
+ σ(s2)wh,e (∇h −∇e)

]
.

(8)
The gradient of the C-APO loss in Eq. 8 is mainly governed by two components. First, the gradient
for the chosen item points in the direction that increases the likelihood of yc, while the gradients
for the rejected items push the model to decrease the likelihoods of yh and ye, respectively. The
strength of this effect is scaled by wc,h and wc,e. When RP and CP are aligned—indicated by large
wc,h or wc,e—the gradient more aggressively increases the likelihood of the chosen item, while
applying weaker updates to the rejected items. Second, the σ(·) terms act as modulation factors that
reflect the degree of ordering inconsistency. Specifically, σ(s1) increases when the reward of yh or
ye exceeds that of yc, i.e., when ∆gh,c > 0 or ∆ge,c > 0, and σ(s2) increases when the reward of
ye surpasses that of yh (i.e., ∆ge,h > 0). This results in larger gradient magnitudes applied to push
up yc, encouraging the model to correct the error by increasing the likelihood of the chosen item.
See Appendix J for gradient derivation details.

4 EXPERIMENTS

Our experiments aim to answer the following questions: (RQ1): Does our model achieve superior
recommendation performance over CF-Rec and LLM-Rec baselines? (RQ2): Are the recommen-
dation rationales generated by our model more persuasive than those produced by other LLM-Rec
baselines? (RQ3): Does incorporating coherent preferences alongside revealed preferences lead to
improved recommendation performance? (RQ4): Does our conflict-aware adaptive weight module
lead to improvements in recommendation performance? (RQ5): Is the performance of the model ro-
bust with respect to variations in the hyperparameter? (RQ6): Does our model demonstrate superior
performance to existing baselines in online A/B testing?

4.1 DATASETS Table 1: Statistics of Datasets.

Dataset #Users #Items Avg
Length

Avg Item
Purchase Sparsity

Fashion 11,028 59,004 6.54 1.23 0.9994
Grocery 11,334 6,149 10.76 21.02 0.9926
Scientific 18,275 7,053 6.69 17.43 0.9956
Clothing 13,766 107,353 11.83 1.65 0.9994
Health 21,152 74,784 8.49 2.50 0.9994

We conducted extensive experiments across five
diverse domains of Amazon Review 2023 (Hou
et al., 2024), comparing our model against nearly
twenty baselines to demonstrate its broad applica-
bility (Table 1). The dataset consists of domains
with practical relevance to real-world applications,
including Amazon Fashion, Grocery and Gourmet
Food, Industrial and Scientific, Clothing Shoes and Jewelry, and Health and Household.
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4.2 EXPERIMENTAL SETUP

Baselines and Evaluation Settings We assessed the performance of our model by comparing it to
two categories of baselines: (1) CF-based (CF-Rec) and (2) LLM-based Recommendation model
(LLM-Rec) as shown in Table 2. We adopted Gemma-3-4B-it (Team et al., 2025) as the LLM
backbone, taking into account deployment constraints in real-world environments. However, the
scaling-law trend (e.g., 1B, 4B, 12B) is observed in larger models (Appendix G). We evaluated rec-
ommendation performance using the leave-one-out method. For each user sequence, the last item
was used for testing, the second-to-last for validation, and the rest for training. We adopted a com-
mon approach by pairing the chosen item (positive) with rejected (negative) items the user has not
interacted with. These items form the candidate set and are incorporated into the prompt construc-
tion for training and inference. We focused on standard evaluation metrics, including Hit Ratio (HR)
and Normalized Discounted Cumulative Gain (NDCG). All experiments were conducted using two
NVIDIA H100 GPUs. For reproducibility, implementation details are described in Appendix A.

Table 2: Model performance comparison on Amazon, with the top two methods highlighted in bold
and underline, respectively.

Domain Fashion Grocery Scientific Clothing Health

Types Models HR@1 HR@5 N@5 HR@1 HR@5 N@5 HR@1 HR@5 N@5 HR@1 HR@5 N@5 HR@1 HR@5 N@5

SASRec 3.47 17.71 10.39 4.22 18.39 11.20 3.15 16.15 9.50 3.37 16.74 9.89 2.67 13.88 8.15
BERT4Rec 1.62 6.90 4.19 4.27 18.97 11.47 2.46 13.41 7.80 2.19 12.14 7.02 2.45 12.85 7.53

S3Rec 3.38 14.98 9.09 2.92 14.27 8.46 4.17 17.88 10.91 3.17 12.83 7.91 2.51 12.45 7.37
NextItNet 1.93 6.31 4.15 2.89 15.00 8.97 4.88 24.64 14.52 3.35 13.75 8.45 2.70 13.36 7.94

SINE 2.43 15.34 8.69 3.08 15.11 8.96 2.58 13.72 8.01 4.71 19.14 11.89 2.92 14.19 8.43
GRU4Rec 1.63 8.38 4.85 3.82 17.13 10.28 3.13 15.76 9.30 3.12 13.33 8.12 3.88 17.84 10.84
TransRec 2.27 12.14 6.92 4.79 18.70 11.62 5.33 24.43 14.71 3.36 13.95 8.56 2.80 13.61 8.10

LightSANs 2.84 13.97 8.25 4.42 18.10 11.13 3.11 15.62 9.21 2.95 15.85 9.25 2.80 13.71 8.13
STAMP 2.84 23.51 12.76 3.69 16.80 10.11 3.46 15.78 9.48 3.45 13.89 8.57 2.72 13.61 8.03

CF
Rec

FPMC 1.55 5.27 3.33 4.55 18.27 11.36 4.43 20.10 12.18 2.62 10.59 6.55 2.95 13.39 8.06
Rec-SAVER 4.27 24.41 14.34 5.73 18.04 12.19 6.10 17.41 12.05 5.66 22.03 13.89 2.86 14.65 8.61
SumRecDPO 8.06 28.65 18.55 3.84 15.19 9.89 4.62 14.43 9.90 3.97 18.74 11.82 3.27 15.10 9.31

RecLM 5.86 9.77 6.62 5.52 10.60 8.56 2.59 7.13 5.96 2.25 7.08 5.51 1.90 6.01 5.13
S-DPO 5.22 23.78 14.38 6.57 18.47 12.91 7.57 20.60 14.84 4.16 19.37 11.75 2.76 15.71 9.28
GRAM 5.88 17.12 11.54 1.75 5.22 3.52 4.26 11.85 8.11 3.34 11.76 7.54 4.55 13.39 9.00
Intuitor 4.46 10.46 7.71 6.34 11.58 8.92 7.10 16.39 12.57 3.22 9.53 6.43 3.30 8.62 6.19
Rec-R1 8.43 29.29 18.80 5.65 17.95 11.94 4.82 20.67 13.44 5.62 21.88 14.06 2.33 14.24 8.03

SLMRec 3.21 6.58 4.87 3.44 11.11 7.34 3.27 24.66 13.75 3.19 17.71 10.12 2.77 12.67 7.63
LLMEmb 3.22 7.71 5.15 3.59 14.61 8.18 4.11 13.88 8.57 3.41 16.80 9.97 2.48 7.59 6.39

LLM
Rec

Ours 9.47 28.22 18.87 6.90 19.47 13.62 12.22 22.74 17.97 7.11 23.12 15.09 4.83 18.21 11.73

4.3 PERFORMANCE EVALUATION (RQ1)

In Table 2, we reported the performance of all the baselines and our model. Our model consis-
tently outperformed state-of-the-art CF-Rec and LLM-Rec models across all domains, demon-
strating superior overall recommendation performance. Specifically, our model achieved rel-
ative HR@1 gains over the second-best model in each domain, with gains of +12.34% (Fash-
ion), +5.02% (Grocery), +61.43% (Scientific), +25.62% (Clothing), and +24.48% (Health). In
addition to HR@1, our model consistently demonstrated superior performance across most do-
mains on HR@5 and NDCG@5. This suggests that the enhanced generalization capability of the
model is attributable to the integration of CP alongside RP. Even when replacing the LLM back-
bone with Qwen-3-4b-Instruct (Team, 2025) for both our model and S-DPO—the second-
best baseline—C-APO achieved 15.38% and 12.29% higher HR@5 and NDCG@5, respectively,
demonstrating that the performance improvement originates from our training approach rather than
the choice of the LLM backbone.

4.4 EVALUATING RATIONALE QUALITY (RQ2)
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Figure 4: LLM-as-a-Judge of Rationale Quality

We conducted a quantitative evalua-
tion of the rationales produced by our
model, applying an identical prompt
across five baselines: Gemma-3-4B-it,
Gemma-3-12B-it, Rec-SAVER, DPO,
and S-DPO. From each of the five do-
mains, 300 samples were randomly cho-
sen, yielding 1,500 evaluation cases in to-
tal. Our assessment followed a two-stage
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protocol: we first checked whether the recommended item belonged to the valid item vocabulary,
and subsequently examined the plausibility of the accompanying rationale. Following the evaluation
protocol of Wang et al. (2022), ChatGPT was used as an evaluator with a four-point scale: 0 = Incor-
rect (Hallucination), 1 = Correct but Weak Rationale, 2 = Correct with Reasonable Rationale, and
3 = Correct with Persuasive Rationale. Importantly, the evaluator LLM (e.g., gpt-4o-series)
differs from the LLM used to generate rationales in the training data, preventing potential evalu-
ation bias. To assess reliability, we compared LLM-based judgments with human annotations on
250 sampled examples and found statistically significant agreement (Quadratic Weighted Kappa
QWK = 0.75, p < 0.0001). As illustrated in Fig.4, our approach consistently generated rationales
that not only aligned with the correct recommendation but also enhanced its persuasiveness. Our
model achieved the highest share of top-rated rationales (score 3), reaching 84.33%—representing
an improvement of approximately 5.99%p over the second-best method, Rec-SAVER (78.34% →
84.33%; Fig.4). Details of the LLM-as-a-Judge prompt for rationale evaluation, the human eval-
uation protocol with statistical correlation analysis, and representative rationale examples are all
provided in Appendix F.
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Figure 5: Comparisons between model variants across five domains

4.5 ABLATION STUDY

Component Analysis In Fig. 5, we evaluated the effectiveness of our components through five pri-
mary model variants: (A) Base: the Gemma-3-4B-it model; (B) +SFT: the base model with
supervised fine-tuning on the recommendation dataset; (C) +SFT +DPO: the SFT model further
aligned with DPO; (D) +SFT +PL (DPOPL): the SFT model further optimized with a Plack-
ett–Luce objective enforcing yc ≻ yh ≻ ye; (E) +SFT +C-APO w/o SBERT calibration: C-APO
without SBERT-based conflict-aware weighting; (F) +SFT +C-APO: our proposed model.

(1) Recommendation-Specific Training Needed: The base model (A) underperformed most vari-
ants across domains, underscoring the need for recommendation-specific training.

(2) Preference-Based Alignment Matters: The model (B), which is supervised fine-tuned on the
recommendation-specific dataset using only chosen items, exhibited lower performance in most do-
mains than models further aligned with preference-based objectives (C–F). This result demonstrates
that preference-based reinforcement learning provides additional benefits in recommendation tasks.

(3) Coherent Preference Improves Performance (RQ3): Comparing the variant (C) with (F),
we observe that jointly modeling CP yields better performance than relying solely on RP. This
result empirically indicates that complementing RP with CP promotes improved generalization in
recommendation models, demonstrating that RP alone cannot fully capture human preferences and
highlighting the necessity of CP.

(4) Conflict-Aware Adaptive Weight Improves Performance (RQ4): The variant model (D) cor-
responds to the objective in Eq. 5, namely the Plackett–Luce (PL) model, which captures the full
ordering of chosen and rejected items from both RP and CP perspectives. By comparing this variant
with our model (F), we isolated the effect of joint RP–CP modeling versus additionally calibrat-
ing their conflicts and agreements—that is, the contribution of our Conflict-Aware Adaptive Weight
module. As shown in Fig. 5, model (D) generally underperformed our approach, underscoring the
effectiveness of our adaptive calibration in handling RP–CP alignment and conflict.

To further separate the effect of the SBERT-based calibration module from the conflict-aware adap-
tive weight itself, we also consider the variant (E) that removes the calibration step and relies solely
on raw LLM coherence scores (pairwise difference followed by sigmoid) when forming the weights
wi,j . This variant assesses how well LLM-derived soft weights perform without any text-encoder-
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based adjustment. As shown in Fig. 5, this model performs better than the variant (D) but worse
than the variant (F), indicating that: (i) LLM coherence signals provide meaningful preference cues
on their own, while (ii) the SBERT-based calibration and conflict-aware adaptive weighting jointly
offer the major performance gains, especially under noisy or misaligned CP signals.

Study on Value of β The deviation of the LLM from the base reference policy is controlled by a
hyperparameter β in C-APO. We selected the value of β from {0.1, 0.5, 1, 2, 5} to explore the effect
of β on C-APO. As indicated in Fig. 6, while model performance was generally robust with respect
to β, increasing β improved performance up to 1, beyond which performance degraded.

Scaling Law We observed a consistent scaling-law trend (e.g., 1B, 4B, 12B). All three evaluation
metrics—HR@1, HR@5, and NDCG@5—improved monotonically as the number of model param-
eters increased, reflecting a clear scaling effect in recommendation performance (Appendix G).

Study on Reward of Chosen, Hard Rejected, and Easy Rejected We visualize the relationship
between the coherent score gap ∆si = sc − si, i ∈ {h, e} and the conflict-aware adaptive weight
w using binned distributions (Fig. 7). Negative gaps (∆s ≤ 0) indicate conflicting pairs, while
large positive gaps (∆s ≫ 0) indicate aligned pairs. As ∆s increases, w increases monotonically,
indicating that C-APO strengthens the relative reward of the chosen item over the rejected item when
CP aligns with RP, and weakens it when they conflict. Importantly, some variability remains within
each ∆s bin, since w is not a direct mapping of LLM coherence scores s but is calibrated through
an additional text encoder. This indicates that subtle discrepancies exist between the raw coherence
scores produced by the LLM and the adjusted values derived through the auxiliary text encoder.
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Figure 6: Study of β on Amazon Dataset
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4.6 ONLINE A/B TEST (RQ6) Table 3: Online A/B Test Results
Model # Impression # Clicks CTR CVR Latency

Random 180.08K 17.90K 9.90% 1.58% 94ms/call
ML model 127.83K 11.94K 9.34% 2.01% 120ms/call

SFT 6.50K 0.88K 13.56% 1.81% 132ms/call
Ours 79.50K 11.95K 15.03% 2.60% 138ms/call

We deployed our model in a real-
world production environment and
conducted an online A/B test as a pi-
lot study over August and November
2025. In this setting, the top-1 rec-
ommendation was presented to each
customer, accompanied by a rationale explaining the recommendation. We employed a customized
version of our model tailored to business requirements. For comparison, we used three baselines:
a random control, a traditional machine learning (ML) model, and an SFT-based model that also
generates both recommendations and rationales. Users were randomized via a stable user-level hash
into three buckets with a 4:3:1:2 traffic split (Random, ML, SFT, Ours). Note that the SFT-based
model had been deployed in the online test for only about two weeks at the time of evaluation; thus,
although its bucket allocation was 10%, its total impressions appear lower than other buckets. As
shown in Table 3, our model achieved a +60.88% CTR lift over the ML baseline. A one-sided two-
proportion z-test confirms that this improvement is highly significant (Z = 39.42, p < 0.001), with
a 95% confidence interval (CI) of [5.40%, 5.97%] for the absolute CTR difference. This demon-
strates a robust performance gain while maintaining low inference latency, confirming the model’s
suitability for real-world deployment.

To control for the possibility that performance gains might arise merely from the novelty of dis-
playing rationales, we introduced an SFT-based model that also generates both recommendations
and rationales but does not use conflict-aware weighting. Since the SFT model likewise presents
rationales to users, it serves as a control for rationale exposure, enabling a clean isolation of im-
provements attributable to our method. Even under this stricter comparison, our method achieved a
statistically significant CTR improvement of +1.47%p over the SFT model (15.03% vs. 13.56%; Z
= 3.20, p < 0.001, 95% CI = [0.57%p, 2.37%p]). We also evaluated the conversion rate (CVR)—the
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ratio of purchases to impressions—and our model achieved a statistically significant improvement
over all baselines.

4.7 TIME COMPLEXITY

Theoretical Analysis Let CLLM be the computational complexity of the backbone LLM, B the batch
size, and M = 1 + R the number of responses (one chosen, R rejected; R = 2). During training,
C-APO computes log-probabilities for all M responses by performing pairwise comparisons under
a full ordering, leading to a complexity of O

(
B · M · CLLM

)
. Note that the training complexity of

DPO is O(2B ·CLLM). The calibrator relies on a lightweight text encoder (109M parameters), and its
computation is negligible compared to the LLM backbone, thus omitted from complexity analysis.

Empirical Analysis Compared to GRPO-based Rec-R1, our model trains 3.14× faster, though it
is 1.11× and 1.26× slower than DPO and S-DPO, respectively. This slight slowdown is expected
since DPO essentially leverages only pairwise data, whereas our method adopts a triplet structure;
however, the gap is negligible and justified by the performance improvements. When comparing the
PL model to ours, the difference is minimal (1.001×), indicating that the additional calibration step
contributes almost no overhead relative to the intrinsic time complexity of the LLM (Appendix M).

5 RELATED WORK

Collaborative Filtering-based Recommendation

Collaborative filtering (CF)-based approaches have long formed the foundation of recommenda-
tion systems, achieving reliable performance across various practical domains. SASRec (Kang &
McAuley, 2018) employs self-attention mechanisms to model sequential user-item interactions. Re-
current models such as GRU4Rec (Hidasi et al., 2015) and STAMP (Liu et al., 2018) are designed to
capture both short- and long-term behavioral patterns. In addition, convolutional models like Nex-
tItNet (Yuan et al., 2019) and modality transfer frameworks such as TransRec (He et al., 2017) offer
alternative approaches for encoding user–item dynamics. Despite their effectiveness in capturing
historical interactions, these methods provide limited explanatory capability.

Large Language Model-based Recommendation

Recent work has investigated the application of large language models (LLMs) in recommenda-
tion tasks to enhance contextual understanding and explanation generation. For instance, Rec-
SAVER (Tsai et al., 2024) conditions on user context to elicit rationales for recommendations and
jointly optimizes the explanation and ranking objectives. RDRec (Wang et al., 2024) introduces a
two-step procedure: generating rationales from user history and reviews, followed by training on
sequential recommendation. Rec-R1 (Lin et al., 2025) applies Group Relative Policy Optimization
(GRPO), assigning feedback based on alignment between predicted and target items. S-DPO (Chen
et al., 2024) builds on DPO with a softmax-based formulation, supporting multiple negative samples
and improving preference ranking. See Appendix B for LLM-Rec baseline details.

6 CONCLUSION AND FUTURE WORK

We presented C-APO, a principled framework that jointly models revealed and coherent preferences.
This approach effectively reconciles agreements and conflicts between the two preference dimen-
sions, leading to improved recommendation performance and more persuasive rationales. Further-
more, extensive experiments and real-world deployment demonstrate its practical effectiveness and
real-world applicability. Although C-APO shows strong performance in both offline benchmarks
and real-world deployment, several limitations suggest promising avenues for future work. First,
triplet-level dataset construction relies on costly LLM-based coherence scoring, which may limit
retraining frequency. To address this, we are developing a lightweight distilled evaluator that ap-
proximates the full scorer at significantly reduced cost. Second, our experiments focus on text-only
domains. Extending C-APO to multimodal settings—such as video, music, or image-based plat-
forms—by incorporating vision or audio encoders is a natural next step.

Ethics statement This work introduces a novel training objective for LLM-based recommenders
by integrating both revealed and coherent preferences in a unified generative framework. Our
method is designed to enhance user-aligned recommendations and transparent rationales without
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engaging with sensitive attributes or user-identifiable data. We foresee no potential risks of societal
harm or ethical concerns, and confirm full compliance with the ICLR Code of Ethics.

Reproducibility Statement All experimental results are fully reproducible. To facilitate verifica-
tion and further research, we provide the complete implementation code (https://anonymous.
4open.science/r/C-APO) and a curated dataset constructed using the ChatGPT API and
Gemma-3-27B-it. The dataset comprises structured user purchase histories, candidate item sets,
labeled positives and negatives, LLM-generated rationales, and coherence scores across multiple do-
mains. It was produced through resource-intensive inference pipelines and rigorous human curation.
Detailed hyperparameter settings are reported in Appendix A.

GenAI Usage Disclosure The authors used Generative AI (GenAI) tools solely for the purpose of
correcting minor grammatical errors in the manuscript. No part of the research process—including
problem formulation, data analysis, model design, coding, experimentation, or interpretation of
results—was conducted using GenAI tools. In addition, no GenAI assistance was used in the actual
writing or generation of content for this paper, aside from grammar refinement.
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Appendix

A REPRODUCIBILITY AND IMPLEMENTATION DETAILS
Code and Dataset All experiments were run on two NVIDIA H100 GPUs. To support repro-
ducibility, the implementation code is available at the anonymous links provided. We also re-
lease a dataset constructed using the ChatGPT API and Gemma-3-27B-it, which includes well-
structured user purchase histories, candidate item lists, chosen and rejected items, LLM-generated
rationales, and coherence scores across all domains. This dataset was developed through resource-
intensive and costly LLM inference pipelines, coupled with extensive human curation, and is pub-
licly released to facilitate further progress in explainable recommendation research. It comprises
three subsets: a training set for supervised fine-tuning (SFT), a training set for Conflict-Aware Pref-
erence Optimization (C-APO), and a test set for evaluating model performance. Although the SFT
and C-APO training sets share the same users, they differ in the rationales used, as each was gen-
erated using a different LLM, thereby yielding two distinct datasets tailored for their respective
training objectives.

■ Code: https://github.com/cpark88/C-APO

■ Dataset (Five Domains of Amazon Review Dataset): https://drive.google.com/drive/
folders/1EGI8ZJ7ABjrKrniybddEA24PleR2V31M?usp=share_link

Table 4: Training hyperparameters for our model
Hyperparameter Value

Batch size 6
Epochs 3
Optimizer Paged AdamW (8-bit)
Learning rate 5.0 × 10−5 (cosine schedule, min LR applied)
Warm-up ratio 0.05
Gradient accumulation steps 8
Max sequence length 12,000
Weight decay 0.01 (default)
Gradient clipping 1.0 (default)
LoRA rank (r) 8
LoRA α 16
LoRA dropout 0
LoRA target modules v-, q-, o-, gate-, up-, down-projections
Precision bf16
Gradient checkpointing True
Parallelism DeepSpeed ZeRO-2
Hardware 2 × NVIDIA H100 80GB GPUs

Hyperparameters Table 4 lists the hyper-
parameters used in all experiments, includ-
ing learning rate, batch size, optimizer type,
warm-up ratio, gradient clipping, weight de-
cay, and the number of epochs. We used
Gemma-3-4B-it (Team et al., 2025) as
the LLM backbone. We first performed su-
pervised fine-tuning (SFT) using only the
chosen items. During the SFT stage, we
used the same hyperparameter settings as C-
APO (Table 4), except for setting the num-
ber of epochs to 2 and the batch size to
4. In contrast, C-APO is trained using not
only the chosen item but also the two re-
jected items jointly. C-APO was trained for
3 epochs with a batch size of 6, using the 8-
bit paged AdamW optimizer and a cosine learning rate schedule (initial learning rate 5.0 × 10−5,
decayed to a minimum value). We adopted gradient accumulation with a factor of 8, a warm-
up ratio of 0.05, and a maximum sequence length of 12k tokens. Training was performed with
DeepSpeed ZeRO-2 using bf16 mixed precision, gradient checkpointing. Parameter-efficient fine-
tuning (PEFT) was conducted via LoRA (Hu et al., 2022) with r = 8, α = 16, and dropout
= 0, applied to the v-, q-, o-, gate-, up-, and down- projection modules. We searched over
β ∈ {0.1, 0.5, 1, 2, 5} and report the best test performance. We ultimately set β = 1 for most
domains based on validation performance. To calibrate the coherence scores generated by the
LLM, we employed SBERT (Reimers & Gurevych, 2019) as the text encoder (109M parameters;
sentence-transformers/all-mpnet-base-v2).
Evaluation Protocol We follow a standard leave-one-out protocol: for each user sequence, the
last item is used for test, the second-to-last for validation, and the rest for train. At evaluation time,
the candidate set consists of the ground-truth chosen item paired with unseen 29 rejected items,
and this candidate list is inserted into the prompt for inference. For performance evaluation (e.g.,
HR@k), we set the decoding temperature to 0.7 and, when k = 5, generate 5 samples per prompt.

B DETAILS OF LLM-BASED RECOMMENDATION BASELINES

For collaborative filtering-based recommendation models (CF-Rec), we implemented all methods
using the RecBole framework (Zhao et al., 2022)1. The LLM-based recommendation baselines are
described in detail below.

1https://github.com/RUCAIBox/RecBole
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■ Rec-SAVER (Tsai et al., 2024) performs instruction tuning using paired recommendation items
and rationales, showing that this approach improves recommendation quality in both zero-shot and
fine-tuning settings. We implemented this model from scratch.

■ S-DPO (Chen et al., 2024) introduces a ranking-oriented training objective for LLM-based recom-
mendation, extending DPO with a softmax formulation that accommodates multiple negative sam-
ples. This approach improves the model’s ability to differentiate user-preferred items and strength-
ens the impact of hard negative signals during optimization. This model was developed entirely
from scratch by our team.

■ Intuitor (Zhao et al., 2025) introduces a reinforcement learning framework that eliminates the
need for external rewards by leveraging the model’s own prediction confidence—referred to as
self-certainty—as the training signal. Based on the Group Relative Policy Optimization (GRPO)
paradigm, Intuitor enables large language models to optimize their behavior using intrinsic feed-
back, without relying on labeled supervision. We implemented the model with reference to the
official code repository 2.

■ Rec-LM (Lu et al., 2024) improves LLMs’ instruction-following ability in recommendation by
combining supervised training on recommender-labeled tasks with a reinforcement learning align-
ment procedure (Proximal Policy Optimization; PPO), enhancing response controllability without
sacrificing recommendation performance. Our implementation was guided by the official repository
provided by the authors 3.

■ Rec-R1 (Lin et al., 2025) applies the GRPO framework to the recommendation task, where the
reward is defined based on whether the generated item matches the ground-truth. In our imple-
mentation, we extend this framework by incorporating additional reward signals from collaborative
filtering models such as SASRec. We implemented this model based on the repository that provides
a GRPO implementation 4.

■ GRAM (Lee et al., 2025) formulates recommendation as a text-to-text generation task and in-
troduces two key modules to overcome limitations in capturing item relationships and handling
verbose item descriptions. Specifically, it translates semantic and collaborative signals into lexical
tokens via a semantic-to-lexical translation module, and fuses multi-granular item prompts at the
decoding stage through a multi-granular late fusion mechanism. We implemented the model with
reference to the official code repository 5.

■ SLMRec (Xu et al., 2024) investigates the redundancy of deep layers in LLMs for sequential
recommendation and proposes a distilled small language model optimized for efficiency. Through
extensive experiments, the authors find that many intermediate LLM layers are unnecessary for
performance, and design a compact model that retains effectiveness via simple knowledge distil-
lation. We referred to the official implementation when reproducing the model 6. Due to con-
straints in the official implementation, we employed a LLaMA-series backbone. Specifically, we
used meta-llama/Llama-3.2-3B, which is comparable in scale to Gemma-3-4B-it, the
backbone adopted in our main experiments.

■ LLMEmb (Liu et al., 2025) leverages LLMs to generate item embeddings for sequential rec-
ommendation, addressing the long-tail problem. It combines Supervised Contrastive Fine-Tuning
(SCFT) with Recommendation Adaptation Training (RAT) to align embeddings with collaborative
signals. We based our implementation on the official codebase released by the authors 7.

■ SumRecDPO(Tajiri & Inaba, 2025) is trained via Direct Preference Optimization (DPO) using
LLM-generated dialogue summaries and item recommendation information. While the original
setting targets multi-turn conversational recommendation, we adapted the model to our single-turn
sequential recommendation task by applying both SFT and DPO accordingly. Our implementation
was done from scratch.

2https://github.com/sunblaze-ucb/Intuitor
3https://github.com/microsoft/RecAI/tree/main/RecLM-gen
4https://github.com/huggingface/open-r1
5https://github.com/skleee/GRAM
6https://github.com/WujiangXu/SLMRec
7https://github.com/liuqidong07/LLMEmb
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C SUPERVISED FINE-TUNING PRIOR TO C-APO

Training Modern LLM-based recommendation systems frequently employ supervised fine-tuning
(SFT) to improve their task-specific capabilities. This process typically consists of two phases: (1)
transforming recommendation datasets into textual prompt–response formats, and (2) adapting the
LLM using these structured pairs. In the data preparation step, a prompt xu is created for each user
u, which includes their interaction history Su, a candidate item set C, and an instruction specifying
the sequential recommendation task. This prompt is paired with an output yc, which contains the ti-
tle of the selected item ic ∈ C and its corresponding rationale rc, forming the training example (xu,
yc). Roughly 70% of these SFT training instances are reused in the later C-APO stage, where addi-
tional information—such as rejected items, their rationales, and coherence scores—is incorporated
to model user preferences more effectively. In the second phase, the LLM-based recommendation
model fθ is fine-tuned using the constructed pairs (xu, yc), with training guided by a causal language
modeling loss. This objective, widely used in language modeling, encourages the model to generate
the expected output by predicting each token sequentially given the previous context, effectively
casting recommendation as a next-token prediction problem. Formally, the objective of optimizing
the LLM-based recommender fθ with pair data (xu, yc) can be formulated as:

maxθ
∑

(xu,yc)

|yc|∑
t=1

log(Pθ(yc)t|xu, (yc)<t), (9)

where |yc| is the number of tokens in yc, (yc)t is the t-th token of yc and (yc)<t is the tokens
preceding (yc)t.

However, recommendation tasks are essentially user preference alignment tasks, as formalized in
the above task formulation, and differ from language modeling tasks that consider only chosen
item. Such a gap necessitates further exploration into aligning LLM-based recommenders with user
preference, an area that has been underexplored.

Prompt Example The prompt used for SFT is designed to encourage the model to select the most
appropriate item from a list of recommendation candidates, given a user’s purchase history, and to
generate a rationale explaining the recommendation.

#Prompt xu
Based on [Purchase History], use your logical reasoning process to identify the most suitable item for this customer from the [Candidate List]. Then, include
your reasoning inside the <think></think>tag and the recommended item inside the <item></item>tag.
[Purchase History] (1) Title: Finejo women office ladies 3/4 sleeve neck business bodycon dress, yellow, xx-large (2) Title: Farktop women’s V neck long
sleeves digital graffiti printed prom party maxi long dress with belt,...(truncated) ← Su
[Candidate List]: (omitted for brevity)

#Response yc
<think>The customer has previously purchased two dresses - a business bodycon dress and a long maxi dress. ... (truncated) </think>← rc
<item>Fibo steel 10 pcs women black velvet choker necklace for girls lace choker tatto necklace </item>← ic

D TRIPLET RATIONALE DATASET CONSTRUCTION RECIPE

As described in Section 2.2, we construct training data in the form of y = (i, r, s), where each
sample y consists of a chosen item, two rejected items, and their corresponding rationales r and
coherence scores s with respect to the user’s interaction history. These are generated using a state-
of-the-art (SOTA) LLM, based on the relevance and logical consistency between each item and the
user’s history. Note that the chosen item is not guaranteed to exhibit higher coherence than the
rejected items, as shown in Fig. 9. We detail the data construction recipe and the subsequent human
cross-checking procedure to validate its quality.

Step1: Rationales Generation and Evaluation We first prompted the state-of-the-art LLM
(Gemma-3-27b-it) to generate post-hoc rationales separately for each of the three items—the
chosen item and two rejected (i.e., non-chosen) items—based on their semantic relevance to the
user’s interaction history. For this tasks, we used a deterministic setup with temperature=0, follow-
ing common practice in LLM-as-a-judge literature. We intentionally adopt this conservative setting
because coherence scores act as supervisory signals; introducing stochasticity would inject noise di-
rectly into the optimization objective and undermine training stability. The following is an example
of the prompt used to generate rationales and coherence score.
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#Prompt
(System Prompt) You are a recommendation expert tasked with generating a rationale for the next item purchased by a customer, based on their prior behavior.
Your explanation should be grounded in the causal relationship between the customer’s previous actions and the actual next item. The customer will purchase the
[Next Item] from the list of candidate items based on their given purchase history. Based on this, please follow the instruction below.

[Purchase History] (1) Title: Bai coconut flavored water, cocofusions variety pack (2) Title: Organic coconut oil,...(truncated) ← Su
[Candidate List]: (omitted for brevity)
[Next Item] Title: Wild planet albacore wild tuna with sea salt, canned tuna, non-gmo, kosher ← ic or ih or ie

(Instruction) Step by step, explain why the customer will purchase the [Next Item] based on its [Purchase History]. Describe it in a way that, as a result of the
reasoning process, the next item is recommended. In particular, when deriving the reasoning process, carefully examine the [Purchase History], which includes
a rating-one of Terrible, Bad, Okay, Good, or Excellent-for purchased item, along with an associated review. Analyze both the positive and negative reviews,
thoroughly.
Think about the logical relevance (reasoning process) between the customer’s [Purchase History] and the [Next Item]. Also, evaluate the logical coherence
between the customer’s [Purchase History] and the [Next Item] on a scale from 1 to 7 (1: Very Weak - No connection, 2: Weak - Poorly justified, 3: Slightly
Weak - Minimal relevance, 4: Neutral - Ambiguous or marginally related, 5: Slightly Strong- Generally aligned, 6: Strong: Well aligned and logical, 7: Very
Strong - Highly coherent and contextually perfect), and insert the score within the <rating></rating>tag. Be critical, not generous.

For example, write it like this:
<think>your reasoning process </think>← rc or rh or re
<rating>the degree of the logical coherence </rating>← sc or sh or se

Step2: Human Evaluation Protocol
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Figure 8: Confusion matrix between
LLM and Human Coherence Score

After generating the recommendation rationales r and
their corresponding coherence scores s from the LLM, we
conducted a statistical validation to assess whether human
evaluators make similar judgments regarding the quality
of r as those reflected in s. If the agreement is not statisti-
cally significant, we return to Step 1 and revise the gener-
ation process. Specifically, seven domain experts8 in the
field of recommender systems evaluated approximately
400 samples from the LLM-generated dataset by assign-
ing a coherence score on a 1–7 Likert scale, following the
same instructions provided to the LLM (See the above
prompt). The scores assigned by the experts were subse-
quently aggregated to obtain the mean human-evaluated
coherence score per sample. We then performed a Spear-
man’s rank correlation test between the LLM-generated coherence scores and the human ratings,
obtaining a statistically significant correlation coefficient of ρ = 0.71, p < 0.0001. Additionally,
the Quadratic Weighted Kappa (QWK) score was 0.63, indicating substantial agreement between
the model-generated scores and human evaluations. To further visualize the distribution of agree-
ment between human and LLM assessments, we present the confusion matrix in Fig. 8. This result
indicates a substantial agreement between LLM assessments and human intuition, supporting
the reliability of the coherence score as a meaningful training signal.

Table 5: Rationale Quality

History
Length

Rationale Quality

count mean std

1–2 998 2.20 0.81
3–7 538 2.68 0.82
8–11 142 2.70 0.81
12+ 220 2.76 0.71

Step3: Data Filtering Criteria Subsequently, for training data con-
struction, we filtered out all instances where the two rejected items
received identical coherence scores. As a result, our final dataset
consists exclusively of triplets in the form of (chosen, hard rejected,
easy rejected), where the hard rejected item is guaranteed to have a
higher coherence score than the easy rejected item. This filtering step
preserved approximately 70% of the original data instances.
We additionally conducted an experiment in which we generated rationales for users with only
1–2 interactions (sampled from approximately 2,000 instances in the raw Amazon review data) and
evaluated their quality using the same 0–3 protocol described in Section 4.4. Histories of length 1–2
produced substantially lower-quality rationales, as shown in Table 5.

8A total of seven domain experts participated in the evaluation: one service marketer (female, age 34);
two service engineers (male, ages 41 and 29); and four data scientists (male, ages 37, 33, 31, and 30). This
group reflects diverse professional roles spanning product, engineering, and modeling. All annotators scored
a shared subset of items, enabling measurement of inter-annotator agreement. For cases where annotators’
scores differed by more than 4 points on the 7-point scale, a consensus procedure was conducted to resolve
discrepancies.
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Figure 9: Distribution of coherence scores (LLM-as-a-Judge) for ground-truth (Chosen), hard re-
jected, and easy rejected items in the Amazon dataset, computed from the relationship between each
item and the user’s interaction history (1–7 scale, higher = more logical). Chosen items are generally
distributed in the higher score range, while hard and easy rejected items cluster in lower ranges.

E PROMPT TEMPLATE FOR C-APO

As described in Appendix D, after constructing the training dataset, we first performed supervised
fine-tuning, followed by reinforcement learning based on the C-APO framework. The training
prompt includes the user’s purchase/view history, a list of candidate items, and an instruction. The
model is tasked with generating a recommended item—either a chosen, hard rejected, or easy re-
jected item—accompanied by a rationale for each. For comparison, our experiments configure
DPO to use a single randomly selected negative item (either hard- or easy rejected), whereas S-
DPO—designed to model multiple negative items—leverages the entire triplet structure comprising
the chosen, hard rejected, and easy rejected items, as does our method. An illustrative example of
such a prompt is presented below.

#Prompt
Based on [Purchase History], use your logical reasoning process to identify the most suitable item for this customer from the [Candidate List]. Then, include
your reasoning inside the <think></think>tag and the recommended item inside the <item></item>tag.
[Purchase History] (1) Title: Diamond crystal kosher salt flakes - full flavor, no additives and less sodium (2) Title: Soeos organic cinnamon powder, cinnamon,
ground cinnamon for coffee, baking and cooking,...(truncated) ← Su
[Candidate List]: (omitted for brevity)

#Response yc
<think>The customer has demonstrated a preference for flavorful pantry staples - specifically, gourmet salts, spices, teas,... (truncated) </think>← rc
<item>Nature valley granola bars, sweet salty nut, salted caramel chocolate </item>← ic
#Response yh
<think>The customer has demonstrated a preference for pantry staples and flavoring agents, purchasing Diamond... (truncated) </think>← rh
<item>White lily self rising bleached flour - 5lb </item>← ih
#Response ye
<think>The customer has demonstrated a preference for pantry staples and flavorful additions to food, purchasing both... (truncated) </think>← re
<item>Del monte no sugar added variety fruit cups </item>← ie

As mentioned earlier, this prompt is shared across all models—DPO (one rejected item), S-DPO
(two rejected items, and the PL model (two rejected items)—differing only in the number of re-
sponses used.

F RATIONALE EVALUATION DETAILS

We describe our evaluation procedure for LLM-generated rationales, as introduced in Section 4.4.
First, we tasked the SOTA LLM itself (i.e., gpt-4o-series) with scoring the coherence of each
generated rationale according to a predefined rubric. Importantly, the LLM used for this scoring step
is distinct from the one employed to generate the rationales during dataset construction, ensuring an
independent evaluation. To assess the reliability of these automatic evaluations, a subset of samples
was independently annotated by human judges, who followed the same evaluation criteria provided
to the LLM. We then conducted statistical tests to examine the degree of alignment between LLM-
and human-assigned scores, and found a statistically significant positive correlation—supporting the
validity of the LLM-based rationale assessment.

Rationale Evaluation Prompt We assess the plausibility of the generated recommendations by
prompting a state-of-the-art LLM to evaluate the rationales on a four-point scale, using the following
prompt.
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***Prompt for the Rationales Evaluation***
#Instruction
Please act as a neutral evaluator and assess the AI assistant’s recommendation and its rationales based on the user’s purchase history, the
predicted item, and the ground truth item. Use the following four-level scale to assign your rating:
RATING-0 : Incorrect recommendation — The assistant fails to recommend the correct item.
RATING-1 : Correct recommendation, poor explanation — While the assistant recommends the correct item, the explanation is missing,
vague, off-topic, or includes hallucinated content that doesn’t align with the actual context.
RATING-2 : Correct recommendation, reasonable explanation — The assistant offers a recommendation that fits the user’s profile and
provides a logically coherent explanation. However, the explanation may still lack depth, clarity, or persuasive detail.
RATING-3 : Correct recommendation, strong explanation — The assistant not only recommends the right item but also presents a clear
and insightful explanation, referencing the user’s behavior patterns and showing how they relate to the suggested item.
Please submit your evaluation using the format <eval>RATING-n </eval>, for instance: <eval>RATING-2 </eval>. Avoid
letting the explanation length affect your judgment. Aim for an objective assessment.
#Known Information
[Purchase history] (1) Title: Fansing costume jewelry fathers day gift punk screw stud earrings (2) Title: Iblue jewelry stainless steel 3
pairs mens black gold silver stud earrings set,...(truncated)
[Recommended Item] Jstyle stainless steel mens womens stud earring hoop earrings for men 7 pairs
[Ground-Truth Item] Jstyle stainless steel mens womens stud earring hoop earrings for men 7 pairs
[Rationale] The customer previously purchased two sets of stainless steel stud earrings - one with a punk aesthetic and... (truncated)
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Figure 10: Confusion matrix between
LLM and Human Rationale Rating

Agreement Analysis between LLM and Human Rat-
ings To validate the LLM-derived ratings of ratio-
nale quality, we asked two domain experts to evalu-
ate about 250 samples drawn from a total of 1,500 in-
stances (Section 4.4). To assess the agreement between
LLM-generated and human-assigned scores, we report
Quadratic Weighted Kappa (QWK = 0.75, p < 0.0001)
and Spearman’s rank correlation (ρ = 0.63, p < 0.0001).
Both metrics indicate strong agreement: the QWK score
reflects substantial concordance while accounting for the
ordinal scale and penalizing large discrepancies, whereas
Spearman’s ρ captures the consistency in ranking and
similarly demonstrates high alignment. The results in-
dicate a moderate level of agreement in absolute scoring
and a fairly consistent ranking of item quality, support-
ing the validity of the LLM-based ratings and their alignment with human evaluations. To further
examine how ratings differ across score levels, we visualize the confusion matrix between human
and LLM scores (Fig.10). Most predictions are concentrated along the diagonal, indicating that
the LLM generally assigns scores close to human judgments, with only a small proportion of large
discrepancies.

Case Studies of Rationales To better illustrate the qualitative differences in recommendation gen-
eration across models, we provide representative examples in Fig.11 and Fig.12, comparing our
method against several competitive baselines.

Our model consistently generates rationales that are not only more fluent but also more logically
grounded in the user’s actual purchase history. For example, in Case 1 (Fig.11), our method iden-
tifies the user’s strong preference for women’s clothing—particularly dresses and skirts—and rec-
ommends a women’s cropped cardigan that naturally complements those items. In contrast, Rec-
SAVER infers a general preference for practicality and suggests men’s jeans, overlooking the user’s
clear pattern of purchasing feminine apparel. S-DPO, on the other hand, focuses on the user’s ap-
preciation for expressive and practical items but recommends a humorous graphic t-shirt, which
mismatches the more formal tone of previous purchases. These comparisons demonstrate that our
model offers recommendations and rationales that are more coherent, contextually appropriate, and
better aligned with the user’s underlying preferences.

Another representative example is illustrated in Fig. 12. Our model identifies a clear pattern of
preference for durable, outdoor-ready products, such as Casio G-Shock watches and Carhartt work
pants, and recommends Timberland waterproof hiking boots that naturally extend this theme through
similar emphasis on ruggedness and functionality. In contrast, Rec-SAVER captures a general in-
terest in utility but recommends moisture-wicking socks, which, while practical, lack the salience
and robustness of prior purchases. S-DPO focuses on the user’s appreciation for high-performance
accessories but similarly suggests socks, overlooking the broader pattern of activewear and heavy-
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duty gear. These comparisons highlight that our method yields recommendations and rationales that
are more coherent, contextually grounded, and better aligned with user preferences.

Based on the [Purchase History], user your logical reasoning process to identify the most suitable item for this customer from the 
[Candidate List]. Then, include your reasoning process inside the <think> your reasoning process </think> tag and the recommended item 
title inside the <item_nm>	item title </item_nm> tag.

[Purchase History]
Title: Urban coco women's drape front open cardigan long sleeve irregular hem 
- Item ID: B07JD2GKVS 
- Description & Details: "Department": "Womens", "Date First Available": "August 15, 2016"
- Review: Beautiful i bought black navy teal purple more like eggplant
- Rating: Excellent

Title: Dearcase women's long sleeve maxi dress crewneck loose plain casual empire waist long dresses with pockets
- Item ID: B07BNS1JCF
- Description & Details: "Department": "Womens", "Date First Available": "September 4, 2017", "Manufacturer": "DEARCASE"
- Review: It is a beautiful purple. I wear it seldom because its long sleeves.  But the style comes on short sleeves but color is more eggplant than purple.  The dark green navy and black 

are all nice. 
- Rating: Excellent

(Truncated)

Title :Urban coco women's stylish spandex comfy fold-over flare long maxi skirt
- Item ID: B01MT1L2P7
- Description & Details: "Date First Available": "December 22, 2016"
- Review: Very nice material and colors.  I bought 4<br />The one w the pattern seemed smaller but black blue gray fit well<br /> Best if u r taller like 5 foot 8 9 or 10
- Rating: Excellent

[Candidate List] (omitted for brevity)

C-APO
[Rationale]
<think> The customer has shown a clear preference for women's clothing, particularly dresses and skirts, as evidenced by their purchases of various maxi dresses and 
skirts, all rated as excellent. The reviews indicate satisfaction with the style, comfort, and quality of these items, suggesting that the customer values fashionable yet 
practical clothing. Our recommended item, the Aamilife women's 3/4 sleeve cropped cardigan, aligns perfectly with this trend, offering another versatile piece that can 
complement dresses and skirts. Additionally, the cardigan's open front design and casual nature suggest it would pair well with the other items already in the customer's 
wardrobe. Given the consistent theme of purchasing stylish and comfortable women's apparel, it is highly likely that the customer sees the cardigan as a valuable addition 
to their collection. The previous purchases demonstrate a preference for items that enhance wardrobe options, making the cardigan a logical choice. Overall, the 
combination of style, versatility, and alignment with previous purchases strongly supports the likelihood of this being the next item purchased. </think>
[Recommended Item]
<item_nm> Aamilife women's 3/4 sleeve cropped cardigans sweaters jackets open front short shrugs for dresses </item_nm>

Rec-SAVER
[Rationale]
<think> The customer has shown a clear preference for women's clothing items, particularly those that are comfortable and versatile, as evidenced by their purchases of 
maxi dresses and skirts, all rated as excellent. The reviews indicate satisfaction with the quality and fit of these items, suggesting that the customer values practicality and 
style in their wardrobe choices. Our recommended item, the Levi's men's 501 original fit jeans, aligns with this trend of seeking reliable and comfortable clothing, even 
though it is a men's item. The customer may appreciate the classic style and versatility of Levi's jeans, similar to how they found value in their previous purchases. 
Additionally, the jeans are described as having a relaxed fit, which could appeal to the customer's desire for comfort. Thus, despite being a different category, the choice 
reflects a broader interest in quality apparel that suits their lifestyle. Overall, the logical connection lies in the customer's established preference for well-made, 
comfortable clothing. </think>
[Recommended Item]
<item_nm> Levi's men's 501 original fit jeans </item_nm>

SDPO
[Rationale]
<think> The customer has shown a clear preference for women's clothing that is stylish, comfortable, and often features unique designs, as evidenced by their purchases 
of various maxi dresses and skirts, all rated as excellent. The reviews indicate satisfaction with the quality and aesthetic appeal of these items, suggesting that the 
customer values fashionable yet functional pieces. The recommended item, a humorous graphic t-shirt, aligns with this trend of seeking unique and expressive clothing. 
Additionally, the customer has previously purchased items that reflect personality, such as the colorful scarves and dresses. The funny nature of the shirt may resonate 
with the customer's sense of humor, making it appealing as a casual wear option. Overall, the combination of style, comfort, and personal expression makes the t-shirt a 
fitting choice for the customer. </think>
[Recommended Item]
<item_nm> Funny civil engineers tshirt i'm a crazy civil engineering t-shirt </item_nm>

Prompt

Generated Output

Figure 11: Different rationale qualities across models for the same prompt (Case 1)

G DISCUSSION OF SCALING-LAW

We conducted a comprehensive evaluation using backbone models with parameter sizes of 1B
(Gemma-3-1B-it), 4B (Gemma-3-4B-it), and 12B (Gemma-3-12B-it). As illustrated in
Fig. 13, model performance exhibited a consistent upward trend with increased model size across
both the Grocery and Gourmet Food and Clothing Shoes and Jewelry domains. All three evalua-
tion metrics—HR@1, HR@5, and NDCG@5—improved monotonically as the number of model
parameters increased, reflecting a clear scaling effect in recommendation performance.

Despite these gains, increasing model size also leads to higher inference latency, which can be a
limiting factor in real-time deployment scenarios. To strike a balance between performance and
responsiveness, we adopt the 4B parameter model for integration into our production environment.
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Based on the [Purchase History], user your logical reasoning process to identify the most suitable item for this customer from the 
[Candidate List]. Then, include your reasoning process inside the <think> your reasoning process </think> tag and the recommended item 
title inside the <item_nm>	item title </item_nm> tag.

[Purchase History]
Title: Casio g-shock gw-7900b-1er men's watch, black
- Item ID: B0039YOIH0 
- Description & Details: With the never ending pursuit of toughness and technology, G-Shock introduces a solar atomic addition to the tough and rugged G-Rescue series. …
- Review: Loved the watch. I have owned it for about 10 months. Didn't wear it every day, but after about 3 months of constant wear, …
- Rating: Excellent

Title: Casio men's gw-9400-1cr master of g stainless steel solar watch
- Item ID: B00GFYYKLA
- Description & Details: Casio Rangeman GW9400-1 AS MB6 Twin Sensor Wristwatch,Casio, …
- Review: Awesome watch! 
- Rating: Excellent

(Truncated)

Title :Carhartt men's loose fit firm duck double-front utility work pant
- Item ID: B002G9U3WS
- Description & Details: Double up on durability with carhartt's double-front work dungaree in 12-ounce, firm-hand, 100-percent ring-spun cotton duck, it features chap-style, double-

front panels as well as double knees with cleanout bottoms to accommodate knee pads, …
- Review: These pants are awesome! Very tough and lots of pockets to carry my gear. I do rigorous field work and have worn these pants for 20 years. 
- Rating: Excellent

[Candidate List] (omitted for brevity)

C-APO
[Rationale]
<think> The customer has previously purchased multiple Casio watches, specifically models known for their durability and functionality, such as the G-Shock and 
Rangeman watches, both rated as excellent. These watches indicate a preference for rugged, reliable products that can withstand harsh conditions, suggesting that the 
customer values quality and performance in their purchases. Our recommended item, the Timberland men's white ledge mid waterproof hiking boot, aligns perfectly with 
this preference, as it emphasizes durability and waterproofing, essential traits appreciated in outdoor activities. Additionally, the customer has shown interest in outdoor 
and functional clothing, as evidenced by their purchase of the Carhartt work pants, which also highlight practicality and resilience. The Timberland boots complement this 
trend by offering a solid construction suited for various terrains, reinforcing the customer's inclination towards durable footwear. Therefore, the logical connection between 
the customer's past purchases and the next item indicates a strong likelihood of purchasing the Timberland hiking boots. </think>
[Recommended Item]
<item_nm> Timberland men's white ledge mid waterproof hiking boot </item_nm>

Rec-SAVER
[Rationale]
<think> The customer has shown a strong preference for durable and functional products, particularly those designed for outdoor activities, as evidenced by their 
purchases of Casio G-Shock watches and Carhartt work pants, both rated as excellent. The Carhartt work pants were praised for their toughness and practicality, aligning 
with the customer's active lifestyle. Additionally, the customer has purchased multiple Casio watches, indicating a consistent interest in reliable and robust brands known 
for their quality and functionality. The Dickies men's dri-tech moisture control crew socks multipack complements this trend by offering moisture management and 
comfort, essential features for someone engaged in physical activities. Given the customer's previous positive experiences with high-performance apparel and footwear, it 
is logical that they would choose another item that enhances their overall performance during work or outdoor settings. Therefore, the decision to purchase the Dickies 
socks aligns perfectly with their established preferences for quality and functionality in their purchases. </think>
[Recommended Item]
<item_nm> Dickies men's dri-tech moisture control crew socks multipack </item_nm>

SDPO
[Rationale]
<think> The customer has previously purchased multiple Casio G-Shock watches, indicating a strong preference for durable, rugged, and technologically advanced 
products. Each of these watches received excellent ratings and positive reviews, highlighting their toughness, functionality, and ease of readability. Our recommended
item, the Dickies men's dri-tech moisture control crew socks multipack, aligns with the customer's practical approach to purchasing high-quality, functional items that 
withstand daily wear and tear, similar to the watches they favor. Additionally, the socks are designed for comfort and performance, which resonates with the customer's 
appreciation for quality materials and functionality. Given the customer's consistent choice of durable, reliable brands, the decision to purchase another pair of high-
performance socks from a reputable brand like Dickies is a logical continuation of their buying pattern. </think>
[Recommended Item]
<item_nm> Dickies men's dri-tech moisture control crew socks multipack </item_nm>

Prompt

Generated Output

Figure 12: Different rationale qualities across models for the same prompt (Case 2)
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(b) Clothing Shoes and Jewelry
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Figure 13: Performance of C-APO improves monotonically with larger LLM backbones
(Gemma-3-1B/4B/12B), confirming a scaling-law trend across two domains.
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H EXPERIMENTS ON OTHER DOMAINS

H.1 COLD-START AND ZERO-SHOT DOMAIN TRANSFER

LLM-based recommender systems (LLM-Rec) have been shown to exhibit strong robustness in
cold-start scenarios, often outperforming traditional collaborative filtering recommenders (Lei et al.,
2024). Because LLMs encode broad semantic knowledge, they can also provide reasonable pre-
dictions for domains that were never observed during training—a capability that CF-based models
typically lack. To evaluate this aspect, we examined the zero-shot domain transfer ability of our
approach (Table 6).

Table 6: Performance Comparison on Unseen Domains

Domain Amazon Beauty CDs and Vinyl
Models HR@1 HR@5 N@5 HR@1 HR@5 N@5
SASRec 2.90 16.12 9.18 3.26 16.34 9.61

BERT4Rec 3.26 15.04 9.01 3.14 14.96 8.89
GRU4Rec 3.26 17.57 10.51 4.29 24.00 13.73
FOSSIL 1.81 13.95 7.84 3.72 15.74 9.59

NextItNet 2.72 14.67 8.45 3.68 15.65 9.57
TransRec 3.62 17.21 10.33 2.93 14.90 8.69

SINE 3.80 15.04 9.26 4.64 18.04 11.23
Rec-SAVER 8.56 31.51 19.69 10.16 27.84 19.40

Ours (Unseen) 19.49 40.62 30.81 10.08 28.44 19.66

In this experiment, the CF-Rec base-
lines were trained directly on the tar-
get (unseen) domains, whereas our
model was evaluated without any
domain-specific supervision. We
considered two representative target
domains: Amazon Beauty and CDs
& Vinyl. For our model, we selected
semantically related source domains
for training: Amazon Fashion for
Amazon Beauty, and Musical Instru-
ments for CDs & Vinyl. The results
show that, despite not being trained
on these target domains, our model
achieves performance comparable to CF-Rec models trained explicitly on the unseen domains. This
demonstrates that C-APO effectively captures user behavioral patterns and item semantics in a man-
ner that generalizes well across domains, highlighting its robustness in cold-start and unseen-domain
scenarios.

H.2 EXPERIMENTS ON NON-AMAZON DOMAINS (MOVIELENS)

Table 7: Performance Comparison on the MovieLens Dataset
Model BERT4Rec GRU4Rec NextItNet SINE STAMP Ours
HR@1 2.26 2.51 2.25 1.93 2.08 2.81
HR@5 12.84 13.43 10.41 11.60 9.86 13.13

NDCG@5 7.38 7.86 6.24 6.61 5.88 8.10

To verify that C-APO is not
limited to Amazon-style review
data, we additionally evaluated
the model on the MovieLens
dataset, which differs substan-
tially in structure despite also be-
ing text-based. Unlike Amazon reviews that contain rich free-form descriptions, MovieLens pro-
vides only short user-generated tags, making it a fundamentally different type of textual signal.

Even under this distinct data structure, C-APO consistently outperformed all baseline models, re-
flecting the same performance trends observed in the five Amazon domains (Table 7). These results
demonstrate that the core principles of our approach—CP-based reasoning and conflict-aware op-
timization—generalize beyond Amazon datasets and remain effective in structurally different do-
mains.

I SERENDIPITY ANALYSIS

Because C-APO increases the likelihood of history-consistent items, one concern is that it may
over-anchor on past behaviors and reduce exploratory recommendations. To assess this, we analyze
serendipity using the standard metric Serendipity(u) = |Ru∩Tu\P |

|Ru| , where Ru are recommendations,
Tu true interactions, and P globally popular items. Empirically, C-APO achieves a serendipity
score of 0.30 versus 0.25 for the SFT-only model, indicating that it recommends more relevant yet
non-popular items rather than collapsing into an echo-chamber pattern. Moreover, as shown in
Fig. 6, moderate C-APO alignment (e.g., β ≤ 1) provides a favorable balance between accuracy and
exploratory diversity.
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J GRADIENT DERIVATION FOR LC-APO

Setup and notation. Let gk := g(xu, yk) be the model reward for item yk given user context xu,
and define

∆gh,c = gh − gc, ∆ge,c = ge − gc, ∆ge,h = ge − gh, ∇k := ∇θg(xu, yk).

The C-APO loss in Eq. 6 can be written as

LC-APO = −E
[
log σ

(
− log

(
ewc,h∆gh,c + ewc,e∆ge,c

))
+ log σ

(
− log

(
ewh,e∆ge,h

))]
, (10)

where σ(·) is the sigmoid function and wc,h, wc,e, wh,e > 0 are the conflict-aware adaptive weights.
For clarity in gradient analysis, the trainable layers of the conflict-aware adaptive weight module
were excluded from differentiation.

Useful identity. For z = z(θ), we will use

∂

∂θ
log σ(−z) = σ(z) ·

(
− ∂z

∂θ

)
. (11)

Therefore, with the leading negative sign in Eq.10, each term contributes a factor +σ(z) · ∂θz to the
gradient.

First term (RP aligned with CP). Let

z1 := log
(
ewc,h∆gh,c + ewc,e∆ge,c

)
= logS, S := ewc,h∆gh,c + ewc,e∆ge,c .

By the chain rule,

∂θz1 =
1

S
∂θS =

1

S

(
ewc,h∆gh,c · wc,h ∂θ∆gh,c + ewc,e∆ge,c · wc,e ∂θ∆ge,c

)
.

Since ∆gh,c = gh − gc and ∆ge,c = ge − gc,

∂θ∆gh,c = ∇h −∇c, ∂θ∆ge,c = ∇e −∇c.

Hence

∂θz1 =
wc,he

wc,h∆gh,c(∇h −∇c) + wc,ee
wc,e∆ge,c(∇e −∇c)

ewc,h∆gh,c + ewc,e∆ge,c
. (12)

Using Eq. 11 with the outer minus sign in Eq. 10, the first term contributes

σ
(
z1
)
· ∂θz1 = σ

(
log
(
ewc,h∆gh,c + ewc,e∆ge,c

)) wc,he
wc,h∆gh,c(∇h −∇c) + wc,ee

wc,e∆ge,c(∇e −∇c)

ewc,h∆gh,c + ewc,e∆ge,c
.

(13)

Second term (CP). Since log
(
ewh,e∆ge,h

)
= wh,e∆ge,h, define

z2 := wh,e∆ge,h = wh,e(ge − gh).

Then
∂θz2 = wh,e ∂θ∆ge,h = wh,e(∇e −∇h). (14)

By the same identity Eq. 11 (with the leading minus in the loss), the second term contributes

σ(z2) · ∂θz2 = σ
(
wh,e∆ge,h

)
wh,e (∇e −∇h). (15)

Final gradient. Combining Eq. 13 and Eq.15 inside the expectation yields

∇θLC-APO

= E

[
σ
(
log
(
ewc,h∆gh,c + ewc,e∆ge,c

)) wc,he
wc,h∆gh,c (∇h−∇c)+wc,ee

wc,e∆ge,c (∇e−∇c)

ewc,h∆gh,c+ewc,e∆ge,c
+ σ

(
wh,e∆ge,h

)
wh,e (∇e −∇h)

]
,

= −E

[
σ
(
log
(
ewc,h∆gh,c + ewc,e∆ge,c

)) wc,he
wc,h∆gh,c (∇c−∇h)+wc,ee

wc,e∆ge,c (∇c−∇e)

ewc,h∆gh,c+ewc,e∆ge,c
+ σ

(
wh,e∆ge,h

)
wh,e (∇h −∇e)

]
,

(16)

which corresponds exactly to Eq. 8 presented in the main paper.
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K PROBABILISTIC INTERPRETATION OF THE PAIRWISE WEIGHTS

We provide a generative interpretation for the conflict-aware adaptive weights wi,j used in our ob-
jective. Let the latent utility of item i ∈ {c, h, e} be

Ui ∼ N (µi, σ̃
2
i ),

where (µi, σ̃i) are (calibrated) parameters inferred from the text-encoder features of the user–item–
rationale tuple. Then, for any pair (i, j),

wi,j ≡ Pr[Ui > Uj ] = Pr[Ui − Uj > 0] = Φ

 µi − µj√
σ̃2
i + σ̃2

j

 ,

where Φ(·) denotes the standard Gaussian CDF. Therefore, the weight wi,j is the pairwise win prob-
ability of i over j under a Thurstone–Mosteller model of noisy utilities (Thurstone, 2017; Mosteller,
1951). The Thurstone–Mosteller model is a classical instance of the random utility framework, in
which the utility of each alternative in a pairwise comparison is modeled as a latent score perturbed
by Gaussian noise. This model has been widely adopted as a foundational approach for modeling
pairwise preferences and ranking data across various domains, including social sciences, psychol-
ogy, and recommender system.

Substituting wi,j into our loss yields a probability-weighted variant of the PL/DPO family in which
pairwise gaps (gi − gj) are modulated by their estimated reliability.

Consequence. When (µi − µj) is large relative to the joint uncertainty
√
σ̃2
i + σ̃2

j , the model
assigns wi,j ≈ 1, amplifying the update in the direction that promotes i ≻ j; when the pair is
uncertain or contradictory, wi,j ≈ 1

2 , attenuating the update; and when (µi − µj) is negative, wi,j

approaches 0, thereby weakening the update that favors i ≻ j.

L BOUNDARY CASES AND REDUCTIONS

We collect simple but instructive reductions of our objective.

Lemma 1 (Reduction to Plackett-Luce (PL) model). If wi,j ≡ 1 for all pairs, LC-APO (Eq. 6) reduces
exactly to the PL objective that jointly enforces yc ≻ yh ≻ ye via a two-stage factorization.

Lemma 2 (RP-only limit). If the CP comparison is disabled by setting wh,e = 0 (or by dropping
the CP term) and wc,h, wc,e = 1, LC-APO reduces to the S-DPO objective (Chen et al., 2024) that
promotes yc above {yh, ye}.

Lemma 3 (Temperature rescaling). If wi,j ≡ λ ∈ (0,∞) is a constant, then LC-APO is equivalent to
applying a temperature 1/λ to all pairwise gaps inside the log-sum-exp. This does not change the
target ordering but rescales the sharpness of the updates.

Implication. These reductions clarify that our method strictly generalizes standard PL/DPO-style
training: it recovers PL when uncertainty is ignored (w ≡ 1), focuses on RP when CP is omitted
(wh,e=0), and smoothly interpolates update strength via a temperature view when w is constant.

M REFINED COMPLEXITY STATEMENTS

Let CLLM denote the cost of one forward/backward pass of the backbone LLM for a single (x, y),
B the batch size, and M = 1 +R the number of candidate responses (one chosen, R rejected; here
R=2).

Proposition 1 (Training cost). C-APO evaluates M responses and combines them via a two-stage
PL factorization, yielding O(BM CLLM) per step. For DPO with a single pair (c,−), the cost is
O(2BCLLM). If the calibrator uses a lightweight encoder with cost Cenc≪CLLM, its contribution is
negligible to leading order.
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Proposition 2 (Inference cost). At inference, scoring M candidates costs O(M CLLM); aggrega-
tion (e.g., softmax/log-sum-exp over M ) is lower order. Thus latency is dominated by backbone
evaluation and scales linearly in M for a fixed input length.

C-APO matches the leading-order complexity of PL/DPO-style training while adding only a
lightweight weighting step; practical latency is governed by the backbone, not by the calibrator.
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