
Improved Multi-Agent Collaboration
with Multi-Turn Reinforcement Learning

Shuo Liu
Khoury College of Computer Sciences

Northeastern University
Boston, MA, 02115, USA

liu.shuo2@northeastern.edu

Tianle Chen
Khoury College of Computer Sciences

Northeastern University
Boston, MA, 02115, USA

chen.tianle@northeastern.edu

Christopher Amato
Khoury College of Computer Sciences

Northeastern University
Boston, MA, 02115, USA

c.amato@northeastern.edu

Abstract

A large amount of work has been done in Multi-Agent Systems (MAS) for model-
ing and solving problems with multiple interacting agents. However, most LLMs
are pretrained independently and not specifically optimized for coordination. Ex-
isting LLM fine-tuning frameworks rely on individual rewards, which require
complex reward designs for each agent to encourage collaboration. To address
these challenges, we model LLM collaboration as a cooperative Multi-Agent Re-
inforcement Learning (MARL) problem. We develop a multi-agent, multi-turn
algorithm, Multi-Agent Group Relative Policy Optimization (MAGRPO), to solve
it, building on current RL approaches for LLMs as well as MARL techniques.
Our experiments on coding collaboration demonstrate that fine-tuning MAS with
MAGRPO enables agents to generate high-quality responses efficiently through
effective cooperation. Our approach opens the door to using other MARL methods
for LLMs and highlights the associated challenges.

1 Introduction

Leveraging billions of parameters and extensive pre-training on large-scale datasets, state-of-the-art
LLMs have demonstrated remarkable capabilities across diverse domains Grattafiori et al. [2024],
Achiam et al. [2023], Anil et al. [2025]. To adapt to specific applications or align with human
preferences, fine-tuning has emerged as a critical secondary training stage. Compared to supervised
fine-tuning, Reinforcement Learning (RL) enables more generalizable learning for complex, multi-
turn tasks through human-aligned reward design, making it an important technique for fine-tuning
Ouyang et al. [2022], Guo et al. [2025], Ziegler et al. [2020].

Likewise, Multi-Agent Systems (MAS) have been extensively studied over the past decades, with
substantial progress in modeling and solving problems involving multiple agents Littman [1994],
Shoham and Leyton-Brown [2009], Stone and Veloso [2000]. In particular, advances in cooperative
MAS have demonstrated strong potential for enabling effective collaboration in distributed settings,
such as games, robotics, and traffic control Samvelyan et al. [2019], Vinyals et al. [2017], Berner
et al. [2019], Amato et al. [2016], Wiering [2000], Liu et al. [2022]. These developments motivate the
application of MAS principles and techniques to LLM collaboration, where multiple LLMs working
together can solve more complex tasks in a more robust and efficient manner.

Multi-Turn Interactions in Large Language Models Workshop NeurIPS 2025

There has been some recent work on coordinating multiple LLMs. Some approaches implement coor-
dination at the inference stage, enabling agents to interact through debate, discussion, or verification
Du et al. [2023], Wu et al. [2023a], Lifshitz et al. [2025]. These methods operate at the prompt level,
with fixed models that are not tuned toward coordination-centric objectives. The agents may have
conflicting answers or spread incorrect information to other participants, limiting performance Cemri
et al. [2025], Estornell and Liu [2024]. Moreover, the design of effective prompts remains difficult
and unclear. Other approaches fine-tune agents independently with individual or role-conditioned
rewards. However, they require carefully curated rewards for each individual or role Slumbers et al.
[2024], Liu et al. [2025a], Subramaniam et al. [2025], and, as independent learning methods, lack
convergence guarantees Tan [1993].

In this paper, we model LLM collaboration as a cooperative MARL problem Albrecht et al. [2024]
and formalize it as a Decentralized Partially Observable Markov Decision Process (Dec-POMDP)
Oliehoek and Amato [2016]. In LLM collaboration, multiple trainable LLMs generate responses
synchronously based on their individual prompts. The external environment evolves according to
the joint responses until the dialog ends. This general model allows a wide range of problems to be
modeled and solved using versions of MARL algorithms. Following the efficient practice of Group
Relative Policy Optimization (GRPO) Guo et al. [2025], we propose Multi-Agent GRPO (MAGRPO)
that trains LLMs in a multi-turn setting. MAGRPO leverages centralized group-relative advantages
for joint optimization, while preserving decentralized execution for each agent. Our method builds
off of state-of-the-art LLM approaches in GRPO and MARL approaches for centralized training and
decentralized execution, such as MAPPO Yu et al. [2022]. Our experiments show that MAGRPO
develops various cooperation schemes, improving response efficiency with high quality.

Our contributions can be summarized as follows: (i) We model the LLM collaboration as a cooperative
MARL problem, where multiple LLMs cooperate to generate joint responses; (ii) We implement the
MAGRPO algorithm, which optimizes agent cooperation through aligned rewards while maintaining
decentralized execution to maintain efficiency; (iii) Our experiments demonstrate that fine-tuning with
MAGRPO improves both response efficiency and quality in coding collaboration; (iv) We provide a
detailed analysis of the limitations of existing approaches and outline open challenges in applying
MARL to LLM collaboration.

2 Related Work

2.1 Test-Time Multi-Agent Interaction

Recent work employs multiple agents with specialized roles interacting through diverse pipelines at
test-time to enhance response quality. In multi-agent debate, agents iteratively formulate positions by
reviewing other agents’ outputs, where the final decision or answer is determined by majority voting
or a summarizer Du et al. [2023], Chan et al. [2023], Liang et al. [2024]. Role-based approaches
allocate tasks across specialized agents Wu et al. [2023a], Qian et al. [2024], Hong et al. [2024]. For
example, an agent may function as a verifier to assess the correctness of outputs Skreta et al. [2023],
Lifshitz et al. [2025], Setlur et al. [2025], while another may act as a macro-planner to orchestrate
workers’ responses. However, these multi-agent frameworks rely on prompt-level interactions among
agents, often leading to ineffective communication and computational inefficiency. Moreover, the
design of effective prompts and role assignment remains unclear, as prompts usually fail to reliably
guide agent behavior, enforce role adherence, or support coherent coordination across tasks. These
limitations motivate us to fine-tune LLMs in MAS to improve their cooperation.

2.2 Multi-Agent Fine-Tuning

Recent work has explored fine-tuning LLMs to improve their performance across diverse domains,
e.g., arithmetic reasoning, navigation, and hidden-role games Ma et al. [2025], Slumbers et al. [2024],
Sarkar et al. [2025]. These approaches typically employ individual rewards or rewards conditioned on
specific roles Park et al. [2025], Liu et al. [2025a], Subramaniam et al. [2025]. Such reward structures
often require careful manual specification, and their underlying rationale is rarely well justified. The
misaligned or conflicting incentives can hinder effective coordination. Moreover, these methods
lack convergence guarantees, as each agent learns independently in a non-stationary environment
where other agents are simultaneously updating their policies. In this paper, we focus on cooperative
scenarios, where LLMs are jointly trained with interpretable, human-aligned rewards.

2

Reward Model

. . .User

System Environment

Policy Optimization

MAGRPO Trainer

Agent 1

Agent 2. . .

Agent n

Dec-POMDP

External

User

Agent 1

Agent 2. . .

Agent n

External

. . .

. . .

Return

Group Relative
Advantage

Equation 1

. . .
Policy Gradient

Equation 2

Figure 1: Illustration of Dec-POMDP and our MAGRPO algorithm.

3 Cooperative MARL for LLM Collaboration

Since LLMs can be viewed as a special class of agents, we leverage advances in MAS to facilitate
their collaboration. We model LLM collaboration as a cooperative MARL problem and outline its
unique challenges. We formalize this problem as a Dec-POMDP, as shown in Figure 1.

3.1 LLM Collaboration

LLM collaboration refers to the problems where LLMs cooperatively solve a class of tasks in MAS.
The tasks are specified in natural language and provided to the agents as prompts. Each LLM agent
generates a response synchronously based on its individual instructions. The set of these responses
jointly forms a solution to the task.

Most tasks cannot be resolved in one turn. Users, external models, or systems validate the solutions
and provide additional requirements or suggestions for LLMs. These components also serve as part
of the environment for LLM collaboration, whose states may change based on the agents’ outputs.
The updates are embedded into prompts for subsequent turns. This iterative process continues until
the task is successfully completed or a predefined turn limit is reached.

As discussed by a number of companies NVIDIA [2024], Anthropic [2024], a team of agents could
be used to generate a complex codebase. The code would be difficult, costly, and time-consuming to
generate with a single agent, but a group of LLMs could do so quickly and cheaply. None of these
agents is self-interested, but they are trainable in a scheme such as the one discussed below. Using a
joint reward allows agents to specialize as needed to complete the task without complex prompt or
reward engineering.

3.2 Problem Formalization

We formalize collaboration among LLMs as a subclass of the cooperative MARL problem, considering
LLM agents and the types of problems they are solving. This problem is a form of a Dec-POMDP
Oliehoek and Amato [2016], which allows cooperation through a joint reward while preserving
scalable decentralized control.

Mathematically, our LLM Dec-POMDP is defined by a tuple ⟨I,S, {Oi}, {Ai}, R, T,H⟩.

• I = {1, · · · , n} denotes the set of n LLM agents, each instantiated with a pre-trained
language model.

• S denotes the full global state space. At turn t, a full state st = (sacc
t , susr

t) consists of parts
that are accessible in the model and provided to the reward model sacc

t ∈ Sacc (e.g., external
models or systems), and the inaccessible user state susr

t ∈ Susr which updates over time

3

but isn’t maintainable. In Dec-POMDP, the state is not directly observable by the agents
(LLMs).

• Oi is the observation space for agent i with O = ×iOi the joint observation space. A local
observation oi,t consists of natural language instructions (i.e., prompts), providing a partial
and noisy view of st.

• Ai is the action space for agent i with A = ×iAi the joint action space. A local action ai,t
is a response in natural language to the given prompt.

• R : Sacc × A → R is the joint reward function implemented via predefined rules or a
pretrained reward model. At turn t, the joint rewards rt are determined by the accessible
part of current state sacc

t and the agents’ joint action at = {a1,t, · · · , an,t}.
• T : S × A → ∆(S) is the underlying stochastic state transition function. At turn t, the

agents’ joint actions at induce a shift to a new state st+1 ∼ T (·|st,at), which reflects the
updates in the user state and the states of external models and systems.

• H is the episode horizon, i.e., the turn limit of the dialog.

In Dec-POMDP, since the states are not directly observed, each agent maintains its local observation-
action history h = {h1, · · · , hn} to infer information about state. A solution to a Dec-POMDP
is a joint policy that maximizes the expected cumulative reward, π∗ = {π∗

1 , · · · , π∗
n} =

argmaxπ Eπ

[∑H−1
t=0 R(sacc

t ,at)
]
. A joint policy is a set of local policies πi, which conditions

on the local observation-action history hi,t = {oi,0, ai,0, . . . , oi,t}.
RL methods for Dec-POMDPs have become a popular topic (e.g., Foerster et al. [2024], Lowe
et al. [2020], Foerster et al. [2018], Rashid et al. [2018], Wang et al. [2021], Yu et al. [2022],
Albrecht et al. [2024]) with methods successful at scaling to large state, action and observation spaces.
Many methods use Centralized Training for Decentralized Execution (CTDE), where they use some
centralized information during training (e.g., a centralized value function estimate) but are still able
to execute in a decentralized manner when training is complete.

3.3 Challenges in LLM Collaboration

LLM collaboration presents unique challenges compared to traditional MARL problems, where LLM
agents receive and process tasks through natural language.

3.3.1 Representations in Natural Language

Unlike traditional cooperative MARL agents, LLM agents operate over natural language, receiving
instructions and generating responses as sequences of tokens. MARL approaches could model
this problem at the token or prompt/response level. At the token level, the number of actions and
observations is smaller, but the problem horizon can be very long. At the prompt/response level, the
actions and observations space is much larger, but the horizon is much shorter. Moreover, token-level
rewards are often uninformative, as both queries and responses must form coherent and semantically
meaningful structures. As adopted in prior RL methods Ouyang et al. [2022], Guo et al. [2025],
Rafailov et al. [2024], we model each LLM agent’s decision-making process as a direct mapping
from input instructions to complete responses to enable efficient and stable training. Nevertheless,
the best modeling and solution approaches remain an open question.

3.3.2 Training Paradigm

As mentioned above, many MARL methods use centralized training for decentralized execution
(CTDE). Unfortunately, standard CTDE methods use centralized value models in the form of central-
ized critics Foerster et al. [2024], Lowe et al. [2020], Yu et al. [2022] or mixers in value decomposition
methods Rashid et al. [2018], Wang et al. [2021]. Such architectures allow additional information
and coordination during training but do not scale well to very large action and observation spaces
(such as those in our problem). Conversely, Decentralized Training and Execution (DTE) methods
Amato [2025] train a set of models, one for each agent in a decentralized manner. DTE approaches
are typically more scalable but don’t use additional information during training (even when it is
available). It is an open question which paradigm to use to maximize performance while maintaining
scalability in the LLM collaboration problem. In this paper, we balance decentralized execution with

4

Algorithm 1: MAGRPO

Require: Dataset D, n pretrained LLMs with policies {πθ1 , · · · , πθn}, reward model R, generation
group size G, learning rate α

1: for each episode do
2: Sample a task ∼ D
3: Initialize observations oi,0,∀i ∈ I, according to the task, and o0 = {o1,0, · · · , on,0}
4: hG

i,0 ← oi,0, ∀i ∈ I, and hG
0 = {hG

1,0, · · · , hG
n,0}

5: for turn t = 0 to H − 1 do
6: Generate a group of responses aGi,t ← πθi(·|hG

i,t), ∀i ∈ I, where hG
i,t = {h

(1)
i,t , · · · , h

(G)
i,t },

aGi,t = {a
(1)
i,t , · · · , a

(G)
i,t }, and aG0 = {aG1,t, · · · , aGn,t}

7: Obtain a joint reward rGt from system
8: Receive new observations oGi,t+1, and update history hG

i,t+1 ← {h
G
i,t, a

G
i,t, o

G
i,t+1}, ∀i ∈ I

9: end for
10: for turn t = H − 1 to 0 do
11: Calculate return R

(g)
t ←

∑H−1
τ=t r

(g)
τ , ∀g ∈ G

12: Estimate Â
(g)
t , ∀g ∈ G for each branch B according to Equation 1

13: Calculate J(θi), ∀i ∈ I for each branch B according to Equation 2
14: θi ← θi + α∇θiJ(θi), ∀i ∈ I
15: end for
16: end for
17: return πθ = {πθ1 , · · · , πθn}

centralized training using group-based Monte Carlo estimates. Experiments show the effectiveness of
our approach on short-horizon tasks.

4 MAGRPO

We propose the Multi-Agent GRPO (MAGRPO) algorithm to jointly train LLM agents in MAS while
maintaining decentralized execution.

Algorithm 1 shows the procedure of MAGRPO. Given a dataset D containing task information (e.g.,
the descriptions of coding problems), n LLMs are optimized, each with a policy parameterized by θi
and guided by a reward model R. In each episode, a task is sampled from the given dataset D, which
is used to construct initial observations o0 = {o1,0, · · · , on,0} and histories h0 = {h1,0, · · · , hn,0}.
Taking inspiration from the single-agent GRPO algorithm Guo et al. [2025], Liu et al. [2025b], at
each turn t, each agent takes action by generating a group of responses aGi,t = {a(1)i,t , · · · , a

(G)
i,t }

following its policy πi(·|hG
i,t) based on its observation-action history hG

i,t = {h
(1)
i,t , · · · , h

(G)
i,t }. The

actions of individual agents are aggregated to form a group of joint actions aGt = {aG0,t, · · · , aGn,t}.
The agents receive a group of joint rewards rGt for their responses aGt), which also conditions on the
accessible part of the state R(·|sacc,G

t ,aGt). The joint actions triggers the transition T (·|sGt ,aGt), where
agents receive new observations oGi,t+1 = {o(1)i,t+1, · · · , o

(G)
i,t+1} and use them to construct histories

hG
i,t+1 = {hG

i,t, a
G
i,t, o

G
i,t+1}. This process continues until terminated at turn H .

We employ stochastic gradient descent to train agents. Without explicit value models, estimating
history-action values from a single rollout incurs high variance. To stabilize training, we esti-
mate the expected return of the current state by averaging over a group of Monte Carlo samples
{R(1)

t , · · · , R(G)
t } for each branch B. As a result, we are able to generate a centralized estimate

(which is common in MARL) without a large value model. For each turn t, the advantage of each
joint action in the group is calculated as,

Â
(g)
t = R

(g)
t −

1

G

|G|∑
g=1

R
(g)
t , (1)

5

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d
Re

tu
rn

 (%
) HE | Single Turn

0 0.5 1.0 1.5 2.0
(K) Steps

0

25

50

75

100

No
rm

al
ize

d
Re

tu
rn

 (%
) HE | Multi-Turn

Metrics
Structure
Syntax
Tests
Cooperation
Total

(a) MAGRPO-ST on HE

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d
Re

tu
rn

 (%
) HE | Single Turn

0 0.5 1.0 1.5 2.0
(K) Steps

0

25

50

75

100

No
rm

al
ize

d
Re

tu
rn

 (%
) HE | Multi-Turn

Metrics
Structure
Syntax
Tests
Cooperation
Total

(b) MAGRPO-MT on HE

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d
Re

tu
rn

 (%
) CHE | Single Turn

0 0.5 1.0 1.5 2.0
(K) Steps

0

25

50

75

100

No
rm

al
ize

d
Re

tu
rn

 (%
) CHE | Multi-Turn

Metrics
Structure
Syntax
Tests
Cooperation
Total

(c) MAGRPO-ST on CHE

0 0.3 0.6 0.9 1.2 1.5
(K) Steps

0

25

50

75

100

No
rm

al
ize

d
Re

tu
rn

 (%
) CHE | Single Turn

0 0.5 1.0 1.5 2.0
(K) Steps

0

25

50

75

100

No
rm

al
ize

d
Re

tu
rn

 (%
) CHE | Multi-Turn

Metrics
Structure
Syntax
Tests
Cooperation
Total

(d) MAGRPO-MT on CHE

Figure 2: Normalized returns: (a) Structural integrity (dashed grey); (b) Syntax correctness (dashed
green); (c) Test pass rate (dashed red); (d) Cooperation (dashed yellow); (e) Total return (solid blue).

where R
(g)
t =

∑H−1
τ=t r

(g)
τ . Inspired by GRPO Guo et al. [2025], Dr. GRPO Liu et al. [2025b],

and MAPPO Yu et al. [2022], the centralized advantage values can be used to update policy πi

(parameterized by θi) for each agent i. MAGRPO does not have importance sampling and epsilon
clipping since it is on-policy, and the weight of the KL divergence term is set to be 0 to encourage
greater policy deviation from the base model,

J(θi) = Eo0∼D,hG∼πθ

[
1

|B|
1

|G|
∑

hG
i ∈B

∑
g∈G

Â
(g)
t log πθi(a

(g)
i,t |h

G
i,t)

]
, (2)

where the gradient is averaged across all the branches (states) and over the group of generations at t.

5 Experiments

In large-scale software development, numerous developers cooperate to implement complex systems.
Employing LLMs as developers is a promising direction, but coordinating them remains challenging
due to diverse cooperation schemes and complex failures. In our experiments, we frame the coding
collaboration task by having 2 Qwen2.5-Coder-3B agents to generate Python functions together,
where a helper agent produces auxiliary functions to support a main function generator without direct
communication. The outputs from both agents, along with the required libraries, are aggregated into
complete code snippets.

5.1 Datasets

We first evaluate MAGRPO on the HumanEval (HE) dataset. HE comprises 164 handwritten
programming problems, each containing a natural language description (prompt), a function signature
(entry_point), and a set of unit tests (test). To guide learning, we design a level-based reward
model that prioritizes fundamental aspects of code generation. Structural integrity verifies the
presence and correctness of both main and auxiliary function definitions; syntactic correctness
ensures compliance with Python syntax; test pass rate assesses functional correctness based on the
proportion of successfully passed unit tests; and a cooperation quality bonus is granted when the
main function properly invokes and utilizes the auxiliary function. The rewards are accumulated only
when all requirements at each preceding level are satisfied.

However, most problems in HE are not designed for coding collaboration, as certain atomic operations
(e.g., strlen(string)) can hardly be decomposed in a way that supports meaningful cooperation.

6

These noisy instances bring instability into the training process or bias it toward inefficient cooperation
schemes, such as the main agent merely wrapping the auxiliary function. Thus, we construct a
cooperation-oriented code generation dataset, CoopHumanEval (CHE), for our evaluation. CHE
includes both original HE problems with the potential for cooperation (e.g., prime_fib(n)) and
additional handwritten programming problems (e.g., compare_areas(shapes)). Its data fields are
the same as HE, with problem descriptions in prompt, function signatures in entry_point, and
designed unit tests provided in test. The problems in CHE are readily decomposable, and agents
can explore more effective cooperation schemes by training with this dataset. Both datasets are split
into training and testing sets with a ratio of 25:8.

5.2 Baselines

We adopt the fixed and fine-tuned single model, along with three multi-agent methods built on fixed
base models, as our baselines. For the single-agent setting, the Qwen2.5-Coder-3B model generates a
Python function based on the problem description in the prompt, with the function name specified in
entry_point. We also fine-tune this model on the training set to adapt it to the task. In the multi-
agent setting, two Qwen2.5-Coder-3B models serve as agents: one generates an auxiliary function,
and the other produces the main function. To minimize the influence of prompts on our comparison,
we keep the problem description fixed and only add minimal coordination instructions. Specifically,
in the naive concatenation scheme, agents are simply informed of their roles and generate outputs
in parallel without communication. The sequential pipeline introduces one-way communication,
allowing the main agent to respond based on the auxiliary agent’s output. The one-round discussion
baseline enables bidirectional communication: agents first receive the same prompts as in naive
concatenation, then the prompts are augmented with the other’s first-turn response in the second turn.

5.3 Results

We optimize the interaction between 2 agents with MAGRPO in both single-turn and multi-turn
settings, i.e., MAGRPO-ST and MAGRPO-MT. To reduce prompt-induced variance, agents are
informed only of the problem description and their roles, using the same initial prompt as in naive
concatenation. In MAGRPO-MT, the agents’ previous responses are given to an external Claude-
Sonnet-4 model, which provides each agent with feedback comprising functionality analysis, error
detection, and revision suggestions.

The performance of MAGRPO-ST and MAGRPO-MT on HE is shown in Figures 2a and 2b. Although
MAGRPO-ST improves the syntactical correctness and develops valid cooperation, its test pass rate
does not show much progress. As for MAGRPO-MT, agents are initially overwhelmed by the external
model’s feedback, resulting in even lower initial returns. They gradually adopt the suggestions
and improve their returns. However, the improvement in test pass rate is still limited due to noisy
entries in the dataset and unreliable feedback. This reflects the complexity and delicacy of coder
coordination, where the main agent must accurately infer the functionality of auxiliary modules and
trust their correctness without direct communication. As shown in Figures 2c and 2d, MAGRPO-ST
and MAGRPO-MT achieve higher overall returns and lower variances when trained on CHE. In
MAGRPO-MT, although agents initially struggle to interpret the feedback, the normalized returns
gradually increase and eventually surpass those of single-turn training. This indicates that, when
trained on a dataset with well-defined cooperative structures and guided by reliable suggestions,
agents can learn to incorporate feedback effectively and improve the quality of their responses.

Table 1 presents a performance comparison between MAGRPO and baselines on HE and CHE. Speed
is measured in tokens per second on a GeForce RTX 5090, and pass@k is shown in percentage. By
GRPO fine-tuning, the performance of Qwen2.5-Coder-3B model only improves slightly as the logic
of test problems differs substantially from that in the training set. Although the naive concatenation
method exhibits high generation speed, it has lower test pass rates than a single model, as the main
agent may rely on incorrect assumptions about the auxiliary function. In the sequential pipeline, the
main agent can access the auxiliary function and compensate for its weaknesses, improving robustness
but at the cost of slower inference. The one-round discussion method involves more communication
between agents, but its effectiveness remains limited due to the potential misaligned cross-adaptation
issue. MAGRPO-ST incorporates diverse cooperation schemes that improve robustness, thereby
obtaining higher unit pass rates. In MAGRPO-MT, an external model can provide additional feedback

7

Method
Speed Pass@1 Pass@3 Pass@5 Pass@10

HE CHE HE CHE HE CHE HE CHE HE CHE

Fixed Single Model 113.8 125.6 38.7 50.0 54.8 56.3 61.2 62.5 67.7 75.0
Fine-Tuned Single Model 114.9 124.8 45.1 62.5 64.5 68.8 67.7 75.0 70.9 81.0

Naive Concatenation 194.9 189.4 42.5 40.1 45.2 43.8 50.6 56.3 64.5 59.2
Sequential Pipeline 99.6 97.4 53.4 57.2 54.8 73.6 62.3 82.7 71.2 86.2
One-Round Discussion 82.5 78.3 41.2 40.9 51.6 52.9 61.1 60.3 70.8 75.3

MAGRPO-ST (Ours) 190.0 192.4 54.8 68.2 55.6 71.4 58.1 75.4 71.6 81.2
MAGRPO-MT (Ours) 95.2 97.3 67.9 73.2 71.0 75.0 80.6 81.3 90.3 87.5

Table 1: Performance of MAGRPO and baselines on speed (tokens/s) and pass@k. Results are
averaged over 10 runs; bold indicates the best performance for each metric on each dataset.

0 0.5 1.0 1.5 2.0
(K) Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

wa
rd

 (%
)

Turn 1
Turn 2

(a) Self-Evolving

0 0.5 1.0 1.5 2.0
(K) Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

wa
rd

 (%
)

Turn 1
Turn 2

(b) Guided-Learning

Figure 3: MAGRPO-MT rewards in 2 learning modes: (a) Turn 1 (blue); (b) Turn 2 (red).

that further strengthens cooperation. As a result, MAGRPO-MT achieves the highest pass rates and
total return across most pass@k metrics.

5.4 Cooperation Schemes and Learning Modes

MAGRPO identifies various cooperation schemes. For example, the auxiliary function handles the
core logic, while the main agent adds backup logic or decorations to improve the overall solution.
Alternatively, the main agent may act as a coordinator, decomposing the problem and assigning
subtasks to the auxiliary agent. In addition, the auxiliary function may also serve as a strategy filter,
guiding the main agent to generate code for specific cases. While coordinator and strategy-filter
schemes can improve inference efficiency, they are more prone to syntax and logical errors. With
limited cooperation-oriented training data, the main agent typically resorts to more conservative roles,
i.e., fallback or decoration. Note that these cooperation schemes emerge during training under a
relatively simple joint reward, more refined design patterns could be found when training agents to
develop large-scale software.

Agents can learn to cooperate through various modes in the multi-turn setting. Figure 3a demonstrates
a self-evolving mode, where agents primarily evolve with the tasks themselves without external
feedback. At the beginning, the second-turn rewards (red) are lower than the first-turn rewards (blue),
since agents struggle to incorporate previous responses effectively. Both curves gradually improve as
agents develop cooperative behaviors, but the performance of the second turn is consistently similar to
the first turn, suggesting that only providing the previous responses is ineffective or hardly interpreted
by the agents. Figure 3b illustrates guided-learning mode, where LLMs leverage external feedback
to improve performance. When using Claude-Sonnet-4 to provide concrete suggestions (e.g., code
edits), the performance of the second turn (red) exceeds first turn (blue), and both outperform those in
the self-evolving, indicating that appropriate guidance helps agents to refine the response. Due to the
computational constraints, most models used in our setup have around 3B parameters and struggle to
interpret vague feedback. We hypothesize that larger models with better reasoning abilities could
benefit from more implicit guidance.

8

6 Conclusion

In this paper, we model LLM collaboration as a cooperative MARL problem and formalize it as
a Dec-POMDP. We introduce the MAGRPO algorithm to optimize their cooperation with aligned
rewards. Our experiments on coding collaboration show that MAGRPO enables agents to generate
higher-quality solutions more efficiently through effective coordination. This work highlights the
potential of MARL methods for scalable and robust LLM collaboration and encourages future
exploration of more cooperation schemes in large-scale software systems.

7 Acknowledgments

This work was partially funded by U.S. National Science Foundation (NSF) grants #2044993 and
#2409351. This work used Delta and DeltaAI advanced computing and data resources at the National
Center for Supercomputing Applications through allocation CIS250443 and CIS250554 from the
Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support program, which is
supported by NSF grants #2138259, #2138286, #2138307, #2137603, and #2138296.

We thank Gregory Bauer and Brett Bode for their help with resolving job failure issues on Delta GPUs,
and members of the Lab for Learning and Planning in Robotics (LLRP) for valuable discussion.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent Reinforcement Learning:
Foundations and Modern Approaches. MIT Press, 2024. URL https://www.marl-book.com.

Christopher Amato. An initial introduction to cooperative multi-agent reinforcement learning, 2025.
URL https://arxiv.org/abs/2405.06161.

Christopher Amato, George Konidaris, Ariel Anders, Gabriel Cruz, Jonathan P How, and Leslie P
Kaelbling. Policy search for multi-robot coordination under uncertainty. The International Journal
of Robotics Research, 35(14):1760–1778, 2016. doi: 10.1177/0278364916679611.

Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk,
Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, et al. Gemini: A family of highly
capable multimodal models, 2025. URL https://arxiv.org/abs/2312.11805.

Anthropic. How we built a multi-agent research system, 2024. URL https://www.anthropic.
com/engineering/built-multi-agent-research-system.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning, 2019. URL https://arxiv.org/abs/1912.06680.

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E.
Gonzalez, and Ion Stoica. Why do multi-agent llm systems fail?, 2025. URL https://arxiv.
org/abs/2503.13657.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate, 2023.
URL https://arxiv.org/abs/2308.07201.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325.

9

https://www.marl-book.com
https://arxiv.org/abs/2405.06161
https://arxiv.org/abs/2312.11805
https://www.anthropic.com/engineering/built-multi-agent-research-system
https://www.anthropic.com/engineering/built-multi-agent-research-system
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2308.07201
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325

Andrew Estornell and Yang Liu. Multi-llm debate: Framework, principals, and interventions. In
Neural Information Processing Systems (NeurIPS), 2024. URL https://openreview.net/
forum?id=sy7eSEXdPC.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon White-
son. Counterfactual multi-agent policy gradients, 2024. URL https://arxiv.org/abs/1705.
08926.

Jakob N. Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness, 2018. URL https://arxiv.org/abs/
1709.04326.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models, 2024. URL https://arxiv.org/abs/2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin
Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent collaborative
framework, 2024. URL https://arxiv.org/abs/2308.00352.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate, 2024. URL https://arxiv.org/abs/2305.19118.

Shalev Lifshitz, Sheila A. McIlraith, and Yilun Du. Multi-agent verification: Scaling test-time
compute with multiple verifiers, 2025. URL https://arxiv.org/abs/2502.20379.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
William W. Cohen and Haym Hirsh, editors, Machine Learning Proceedings 1994, pages 157–
163. Morgan Kaufmann, San Francisco (CA), 1994. ISBN 978-1-55860-335-6. doi: https:
//doi.org/10.1016/B978-1-55860-335-6.50027-1. URL https://www.sciencedirect.com/
science/article/pii/B9781558603356500271.

Bo Liu, Leon Guertler, Simon Yu, Zichen Liu, Penghui Qi, Daniel Balcells, Mickel Liu, Cheston
Tan, Weiyan Shi, Min Lin, Wee Sun Lee, and Natasha Jaques. Spiral: Self-play on zero-sum
games incentivizes reasoning via multi-agent multi-turn reinforcement learning, 2025a. URL
https://arxiv.org/abs/2506.24119.

Shuo Liu, Yunhao Wang, Xu Chen, Yongjie Fu, and Xuan Di. Smart-eflo: An integrated sumo-
gym framework for multi-agent reinforcement learning in electric fleet management problem. In
2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pages
3026–3031, 2022. doi: 10.1109/ITSC55140.2022.9922047.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025b. URL https:
//arxiv.org/abs/2503.20783.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments, 2020. URL https://arxiv.org/abs/
1706.02275.

Hao Ma, Tianyi Hu, Zhiqiang Pu, Boyin Liu, Xiaolin Ai, Yanyan Liang, and Min Chen. Coevolving
with the other you: Fine-tuning llm with sequential cooperative multi-agent reinforcement learning,
2025. URL https://arxiv.org/abs/2410.06101.

NVIDIA. Introduction to llm agents, 2024. URL https://developer.nvidia.com/blog/
introduction-to-llm-agents/.

10

https://openreview.net/forum?id=sy7eSEXdPC
https://openreview.net/forum?id=sy7eSEXdPC
https://arxiv.org/abs/1705.08926
https://arxiv.org/abs/1705.08926
https://arxiv.org/abs/1709.04326
https://arxiv.org/abs/1709.04326
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2305.19118
https://arxiv.org/abs/2502.20379
https://www.sciencedirect.com/science/article/pii/B9781558603356500271
https://www.sciencedirect.com/science/article/pii/B9781558603356500271
https://arxiv.org/abs/2506.24119
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/2410.06101
https://developer.nvidia.com/blog/introduction-to-llm-agents/
https://developer.nvidia.com/blog/introduction-to-llm-agents/

F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Optimal and approximate q-value functions for
decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, May 2008. ISSN
1076-9757. doi: 10.1613/jair.2447. URL http://dx.doi.org/10.1613/jair.2447.

Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs.
Springer, 2016. doi: 10.1007/978-3-319-28929-8.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Chanwoo Park, Seungju Han, Xingzhi Guo, Asuman Ozdaglar, Kaiqing Zhang, and Joo-Kyung Kim.
Maporl: Multi-agent post-co-training for collaborative large language models with reinforcement
learning, 2025. URL https://arxiv.org/abs/2502.18439.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev:
Communicative agents for software development, 2024. URL https://arxiv.org/abs/2307.
07924.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning, 2018. URL https://arxiv.org/abs/1803.11485.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge, 2019. URL https://arxiv.org/abs/1902.04043.

Bidipta Sarkar, Warren Xia, C. Karen Liu, and Dorsa Sadigh. Training language models for social
deduction with multi-agent reinforcement learning, 2025. URL https://arxiv.org/abs/2502.
06060.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal, 2025. URL https://arxiv.org/abs/2502.12118.

Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, Cambridge, UK, 2009. ISBN 9780521899437.

Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-Rubach, Zhi Ji, Lasse Bjørn Kristensen, Kourosh
Darvish, Alán Aspuru-Guzik, Florian Shkurti, and Animesh Garg. Errors are useful prompts:
Instruction guided task programming with verifier-assisted iterative prompting, 2023. URL
https://arxiv.org/abs/2303.14100.

Oliver Slumbers, David Henry Mguni, Kun Shao, and Jun Wang. Leveraging large language
models for optimised coordination in textual multi-agent reinforcement learning, 2024. URL
https://openreview.net/forum?id=1PPjf4wife.

Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8(3):345–383, July 2000. URL http://www.cs.utexas.edu/users/
ai-lab?MASsurvey.

Vighnesh Subramaniam, Yilun Du, Joshua B. Tenenbaum, Antonio Torralba, Shuang Li, and Igor
Mordatch. Multiagent finetuning: Self improvement with diverse reasoning chains, 2025. URL
https://arxiv.org/abs/2501.05707.

Ming Tan. Multi-agent reinforcement learning: Independent versus cooperative agents. In Proceed-
ings of the Tenth International Conference on Machine Learning, pages 330–337, San Francisco,
CA, USA, 1993. Morgan Kaufmann. ISBN 1-55860-307-7.

11

http://dx.doi.org/10.1613/jair.2447
https://arxiv.org/abs/2502.18439
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1803.11485
https://arxiv.org/abs/1902.04043
https://arxiv.org/abs/2502.06060
https://arxiv.org/abs/2502.06060
https://arxiv.org/abs/2502.12118
https://arxiv.org/abs/2303.14100
https://openreview.net/forum?id=1PPjf4wife
http://www.cs.utexas.edu/users/ai-lab?MASsurvey
http://www.cs.utexas.edu/users/ai-lab?MASsurvey
https://arxiv.org/abs/2501.05707

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle
Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, John Quan, Stephen
Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Timothy
Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence, Anders Ekermo, Jacob
Repp, and Rodney Tsing. Starcraft ii: A new challenge for reinforcement learning, 2017. URL
https://arxiv.org/abs/1708.04782.

Bichen Wang, Yuzhe Zi, Yixin Sun, Yanyan Zhao, and Bing Qin. Rkld: Reverse kl-divergence-based
knowledge distillation for unlearning personal information in large language models, 2024. URL
https://arxiv.org/abs/2406.01983.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning, 2021. URL https://arxiv.org/abs/2008.01062.

Marco A Wiering. Multi-agent reinforcement learning for traffic light control. In Proceedings of
the Seventeenth International Conference on Machine Learning (ICML’2000), pages 1151–1158,
Stanford, CA, USA, 2000. Morgan Kaufmann.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023a.
URL https://arxiv.org/abs/2308.08155.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A. Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training, 2023b. URL https://arxiv.org/abs/2306.01693.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative, multi-agent games, 2022. URL https://arxiv.
org/abs/2103.01955.

Pu Zhao, Fei Sun, Xuan Shen, Pinrui Yu, Zhenglun Kong, Yanzhi Wang, and Xue Lin. Pruning
foundation models for high accuracy without retraining, 2024. URL https://arxiv.org/abs/
2410.15567.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2020.
URL https://arxiv.org/abs/1909.08593.

12

https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/2406.01983
https://arxiv.org/abs/2008.01062
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2306.01693
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2410.15567
https://arxiv.org/abs/2410.15567
https://arxiv.org/abs/1909.08593

A Formalization of Multi-Agent Interaction

Many studies adopt Partially Observable Stochastic Games (POSG) to model the LLM interaction in
MAS Slumbers et al. [2024], Park et al. [2025], Liu et al. [2025a], Sarkar et al. [2025]. In this section,
we show that Dec-POMDP offers special merits compared to POSG in the solution concept in the
cooperative settings, thus more suited to model LLM collaboration.

A.1 Dec-POMDP

A Dec-POMDP is defined by ⟨I,S, {Oi}, {Ai}, R, T,H⟩. At each step t, since an agent can-
not directly observe the state st, it usually maintains local observation-action history hi,t =
(oi,0, ai,0, . . . , oi,t) to infer a belief over the underlying state. Decisions are made according to
a local policy πi : Hi,t → ∆(Ai), which maps histories to probability distributions over actions.
The set of all local policies forms the joint policy π = {π1, . . . , πn}. In cooperative settings, the
objective is to maximize shared cumulative rewards. As proved in Oliehoek et al. [2008], there is
always an optimal joint policy in a Dec-POMDP,

π∗ = argmax
π∈Π

Eπ

[
H−1∑
t=0

R(st, at)

]
. (3)

A.2 POSG

A Partially Observable Stochastic Game (POSG), so-called Partially Observable Markov Game
(POMG), does not assume cooperative behavior among agents. It can be either a cooperative,
competitive, or mixed game. A POSG is defined as ⟨I,S, {Ai}, T, {Oi}, O, {Ri}, H⟩, where each
agent has its own reward function Ri : S × A → R. In POSG, each agent seeks to maximize its
individual return under the fixed policies of all others π−i. The optimal policy π⊛

i for each agent
i ∈ I is,

π⊛
i = argmax

πi∈Πi

Eπi,π−i

[
H−1∑
t=0

Ri(st, at)

]
, (4)

The solutions for POSG are Nash Equilibria (NE), where no agents can unilaterally improve their
returns by deviating from their policies. Formally, for all i ∈ I and any alternative policy πi ∈ Πi,
NE satisfy

E

[
H−1∑
t=0

Ri(st, at) | π⊛
i ,π

⊛
−i

]
≥ E

[
H−1∑
t=0

Ri(st, at) | πi,π
⊛
−i

]
. (5)

Like Dec-POMDP, the decision-making in POSG is still concurrent (as stochastic games), where all
agents act synchronously at each time step. In contrast, turn-based interactions, where agents take
turns to act (e.g., chess, Kuhn Poker, tic-tac-toe), are typically modeled as extensive-form games.

A.3 Non-Optimality of POSG Solutions

We illustrate that the solutions of POSG, i.e., NE, may not necessarily lead to joint optimality in
cooperative settings.

Consider a one-step matrix game involving 2 agents, where each agent selects an action from the
action space A = {A(1),A(2)}. The joint action profile determines the utility as presented in Table 2.

a1\a2 A(1) A(2)

A(1) 10 7
A(2) 7 0

Table 2: Joint utility matrix of 2 agents.

This matrix game can be potentially decomposed into 2 POSG in Table 3 through reward shaping.

13

a1\a2 A(1) A(2)

A(1) (5, 5) (3, 4)
A(2) (4, 3) (0, 0)

(a) POSG 1

a1\a2 A(1) A(2)

A(1) (5, 5) (1, 6)
A(2) (6, 1) (0, 0)

(b) POSG 2

Table 3: Return tables of 2 POSG.

In the POSG presented in Table 3a, (A(1),A(1)) is a Nash equilibrium (blue triangle in Fig-
ure 4a). When a1 = A(1), U2(A(1),A(1)) > U2(A(1),A(2)); when a1 = A(2), U2(A(2),A(1)) >
U2(A(2),A(2)). Therefore, the best response for agent 2 is a⊛2 = A(1). Similarly, since
U1(A(1),A(1)) > U1(A(2),A(1)), we obtain a⊛1 = A(1). This NE also achieves joint optimal-
ity with the maximum utility 5 + 5 = 10 (red square in Figure 4a).

0 2 4 6 8
Agent 2 Return

2

4

6

8

Ag
en

t 1
 R

et
ur

n

Joint Return
Deterministic NE
Joint Optima

(a) POSG 1

0 2 4 6 8
Agent 2 Return

2

4

6

8

Ag
en

t 1
 R

et
ur

n

Joint Return
Deterministic NE
Probabilistic NE
Joint Optima

(b) POSG 2

Figure 4: Utility spaces of 2 POSG.

However, certain reward decompositions may yield non-optimal solutions for cooperative games in
Table 3, even when POSG solutions reach NE. For the POSG shown in Table 3b, the deterministic NE
are (A(1),A(2)), (A(2),A(1)) (blue triangles in Figure 4b). When a1 = A(1), agent 2 prefers A(2)

as U2(A(1),A(2)) > U2(A(1),A(1)); when a1 = A(2), agent 2 prefers A(1) since U2(A(2),A(1)) >
U2(A(2),A(2)). Agent 1 faces the same issue. Thus, neither agent can unilaterally improve their
utilities by deviating. However, the collective utilities obtained from both policies yield 6 + 1 = 7 <
10, which are suboptimal compared to the joint optimum (red square in Figure 4b).

In Table 3b, even the probabilistic NE under stochastic policies is still non-optimal. Suppose
agent 1 selects A(1) with probability p, and agent 2 selects A(1) with probability q, R1(A(1), ·) =
5q + (1 − q) = 4q + 1, R1(A(2), ·) = 6q, R1(A(1), ·) = R1A(2), ·) yields q = 0.5; similarly,
R2(·,A(1)) = 5p+ (1− p) = 4p+ 1, R2(·,A(2)) = 6p, R2(A(1), ·) = R2A(2), ·) yields p = 0.5.
This probabilistic NE, π⊛

1 (A(1)) = π⊛
1 (A(2)), π⊛

2 (A(1)) = π⊛
2 (A(2)) leads to overall utilities

3 + 3 = 6 < 10 (orange circle in Figure 4b).

Although appropriate reward shaping techniques can transform a cooperative game into a POSG like
Table 3a to make the NE also jointly optimal, this becomes more challenging when more agents
are involved and episodes become longer. We employ Dec-POMDP to avoid the intricate reward
engineering and seek the joint optimality.

B Cooperation Schemes

By training the auxiliary and main coders to cooperate under minimal constraints (with only the
problem description and their respective roles provided), diverse cooperation schemes naturally
emerge. We present 4 representative schemes observed in our models.

14

B.1 Fallback

The most commonly observed cooperation scheme is the main agent providing a fallback for the
auxiliary function. Although prompted to use the auxiliary output, the main agent may still doubt its
completeness and reimplement the solution as a backup in case of potential errors.

Listing 1: compare_one(a,b)
1 def aux(x, y):
2 # Convert x to a float
3 if isinstance(x, str):
4 x = float(x.replace(",", "."))
5
6 # Vulnerable if y in different types
7 if x < y:
8 return y
9 else:

10 return x
11
12 def compare_one(a, b):
13 try:
14 return aux(a, b)
15 except Exception:
16 # Robust implementation
17 if type(a) == type(b):
18 if a > b:
19 return a
20 elif a < b:
21 return b
22 else:
23 return None
24 elif type(a) == float and type(b) == str:
25 b_float = float(b.replace(",", "."))
26 if a > b_float:
27 return a
28 elif a < b_float:
29 return b_float
30 else:
31 return None
32 elif type(a) == str and type(b) == float:
33 a_str = str(a.replace(",", "."))
34 a_float = float(a_str)
35 if a_float > b:
36 return a_str
37 elif a_float < b:
38 return b
39 else:
40 return None
41 else:
42 return None

For example, the problem compare_one(a,b) asks to return the larger of 2 values in its original type
(string, float, or int), or None if equal. Listing 1 demonstrates how the fallback mechanism provides an
alternative in case of runtime errors in the auxiliary implementation. The aux(x,y) function converts
variable x to a float, resulting in an operand type mismatch if y is a string. The main agent handles the
type error by falling back to its secondary implementation. While the main implementation may still
be vulnerable, this mechanism benefits small models that commonly encounter syntax and runtime
errors. Despite some redundancy, a proper fallback can enhance code robustness.

15

B.2 Decorator

When the main agent trusts the auxiliary to accurately handle the core logic, it typically acts as
a decorator, adding complementary features to enhance the output. The main agent could handle
edge cases for improved robustness or reformat the outputs (e.g., sorting, rounding, and adjusting
units). The necessity of such decorating logic depends on the auxiliary agent’s functionality and
completeness.

Listing 2: is_palindrome(text)
1 def aux1(text):
2 if len(text) == 1:
3 return True
4 else:
5 return aux1(text [1: -1])
6
7 def aux2(text):
8 if len(text) <= 1:
9 return True

10 else:
11 return aux2(text [1: -1])
12
13 def is_palindrome(text):
14 if not text:
15 return True
16
17 # Edge case handler
18 return text [0] == text[-1] and aux1(text)
19
20 # Redundant decorator
21 return text [0] == text[-1] and aux2(text)

Listing 2 illustrates a decorator main function and how its utility varies depending on the completeness
of the auxiliary implementation. In this problem, 2 agents generate codes together to check if a
given string is a palindrome. When paired with aux1 that only handles the recursion boundary
condition of single-character strings, the empty string check of the main serves as a necessary edge
case handler. However, when working with aux2, which already has a more comprehensive edge
case consideration, this handle becomes redundant.

B.3 Coordinator

In large-scale software systems, it would be beneficial to have pipelines for repeated or data-parallel
operations (e.g., batch processing, stream transformations). This corresponds to the coordinator
cooperation scheme in our models, where the main agent divides the tasks into parts and assigns them
to the auxiliary agent.

A simple example involves the main agent acting as an iterator, using a loop (e.g., a for loop) to
structure the problem. The auxiliary function generates partial solutions within each iteration. These
partial results are then aggregated to form the final output. However, this cooperation scheme is
unstable, as it depends heavily on the correct functionality of the auxiliary agent. When the auxiliary
agent fails to complete its subtask, the entire solution breaks down.

16

Listing 3: flip_case(string)
1 def aux(string: str) -> str:
2 result = ""
3 for char in string:
4 if char.islower ():
5 result += char.upper ()
6 elif char.isupper ():
7 result += char.lower ()
8 else:
9 result += char

10 return result
11
12 def flip_case(string: str):
13 flipped = ""
14 for char in string:
15 flipped += aux(char)
16 return flipped

Listing 3 demonstrates a solution to flip the case of characters in a string. The auxiliary function flips
the case of each character, while the main function calls this auxiliary function for each character and
appends it to the result. This scheme can be extended to more complex scenarios, where subtasks are
assigned in a hierarchical structure.

B.4 Strategy Filter

When handling complex problems, the main agent may need to implement logic based on multiple
conditions. In such cases, the auxiliary agent can act as a filter for specific branches of logic, often
appearing within conditional blocks (e.g., following an if statement). This scheme resembles the
adaptive control flow in practice. In rule-based pipelines, an auxiliary agent evaluates preconditions
(e.g., task types, system status, configurations) and directs workers to execute appropriate subroutines,
thereby enhancing project modularity.

Listing 4: x_or_y(n,x,y)
1 def aux(n):
2 if n < 2:
3 return False
4 if n == 2:
5 return True
6 if n % 2 == 0:
7 return False
8 for i in range(3, int(n**0.5) + 1, 2):
9 if n % i == 0:

10 return False
11 return True
12
13 def x_or_y(n, x, y):
14 # Check if n is prime
15 if aux(n):
16 return x
17 else:
18 return y

Listing 4 presents a solution for x_or_y(n,x,y) problem, which returns x if n is prime and y
otherwise. The auxiliary function handles the primality checking, while the main function is respon-
sible for returning results. The same pattern can also be found in the solutions of prime_fib(n),
factorize(n), and largest_prime_factor(n).

17

C Broader Impacts

Prompt-based coordination is often brittle Estornell and Liu [2024], as agents may fail to follow
instructions they were not explicitly trained to interpret. Our method builds on a solid theoretical
foundation in cooperative MARL, explicitly optimizing agents for joint optimality. Our work also
opens opportunities to enhance existing test-time multi-agent interaction methods by integrating
MARL techniques Du et al. [2023], Lifshitz et al. [2025], Wu et al. [2023a], particularly in settings
that involve task decomposition and iterative feedback integration.

This work also explores a new perspective on accelerating LLM inference through cooperative MARL.
While mainstream acceleration techniques (e.g., knowledge distillation, pruning, and quantization)
improve efficiency at the cost of information loss Wang et al. [2024], Zhao et al. [2024], our approach
suggests decentralized coordination among specialized agents, thereby alleviating the burden of
long-context memory and joint decision-making on a single model. Each agent can focus on a
specific subtask, enabling more modular and robust reasoning.

D Limitations and Future Works

Nevertheless, this study is subject to several limitations. First, we focus on homogeneous agents for
simplicity, assuming they perform similar tasks despite being assigned different roles, e.g., both the
auxiliary agent and main agent are generating Python functions. Future research could explore LLM
collaboration among heterogeneous agents with diverse capabilities and functionalities.

Due to computational constraints, we train LLMs with MAGRPO on limited datasets using relatively
small-scale language models. When LLM-based coding agents are deployed in larger-scale projects
involving multiple files and modules, more diverse and complex cooperation schemes are likely to
emerge, which would further demonstrate the potential of decentralized coordination in MAS.

The simplicity of our reward model inevitably leads to narrow reward signals and potential reward
hacking. As suggested by many research studies and industrial practice Uesato et al. [2022], Wu
et al. [2023b], designing more expressive and fine-grained reward models (e.g., multi-aspect re-
wards, process-supervised rewards) is essential for better aligning agent cooperation with human
preferences.

18

	Introduction
	Related Work
	Test-Time Multi-Agent Interaction
	Multi-Agent Fine-Tuning

	Cooperative MARL for LLM Collaboration
	LLM Collaboration
	Problem Formalization
	Challenges in LLM Collaboration
	Representations in Natural Language
	Training Paradigm

	MAGRPO
	Experiments
	Datasets
	Baselines
	Results
	Cooperation Schemes and Learning Modes

	Conclusion
	Acknowledgments
	Formalization of Multi-Agent Interaction
	Dec-POMDP
	POSG
	Non-Optimality of POSG Solutions

	Cooperation Schemes
	Fallback
	Decorator
	Coordinator
	Strategy Filter

	Broader Impacts
	Limitations and Future Works

