
Under review as a conference paper at ICLR 2024

POINTHR: EXPLORING HIGH-RESOLUTION ARCHITEC-
TURES FOR 3D POINT CLOUD SEGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Significant progress has been made recently in point cloud segmentation utilizing
an encoder-decoder framework, which initially encodes point clouds into low-
resolution representations and subsequently decodes high-resolution predictions.
Inspired by the success of high-resolution architectures in image dense prediction,
which always maintains a high-resolution representation throughout the entire
learning process, we consider it also highly important for 3D dense point cloud
analysis. Therefore, in this paper, we explore high-resolution architectures for 3D
point cloud segmentation. Specifically, we generalize high-resolution architectures
using a unified pipeline named PointHR, which includes a knn-based sequence
operator for feature extraction and a differential resampling operator to efficiently
communicate different resolutions. Additionally, we propose to avoid numerous
on-the-fly computations of high-resolution architectures by pre-computing the
indices for both sequence and resampling operators. By doing so, we deliver
highly competitive high-resolution architectures while capitalizing on the benefits
of well-designed point cloud blocks without additional effort. To evaluate these
architectures for dense point cloud analysis, we conduct thorough experiments
using S3DIS and ScanNetV2 datasets, where the proposed PointHR outperforms
recent state-of-the-art methods without any bells and whistles. The source code is
available in the supplementary material and will be made publicly accessible.

1 INTRODUCTION

In recent years, 3D point clouds have gained extensive attention due to their crucial role in many
real-world applications, such as autonomous driving (Aksoy et al., 2020; Li et al., 2020), robotics (Li
et al., 2019; Yang et al., 2020), and AR/VR (Alexiou et al., 2020; Chen et al., 2019). Unlike 2D
images, each point cloud consists of a set of 3D points characterized by their Cartesian coordinates
(x, y, z), providing a view-invariant and geometry-accurate representation of the real-world 3D scene.
3D point cloud segmentation aims to predict semantic labels for all points of the point cloud, which
requires a learned representation that is both spatially accurate (for individual points) and semantically
rich (for category prediction). However, developing effective deep architectures for 3D point cloud
representation learning is non-trivial.

3D scenes represented by point clouds often contain objects of different scales, such as a small cup on
a large table in an office room, which requires the deep model to capture multi-scale contexts within
point clouds. In typical deep neural networks (Chen et al., 2017; He et al., 2016; Long et al., 2015),
we tend to believe that shallow features (high resolution) contain more accurate spatial information
while deep features (low resolution) include more semantic clues. Therefore, previous point cloud
segmentation methods (Qian et al., 2022; Zhao et al., 2021) mainly explore multi-scale information
by downsampling and upsampling features in series using an encoder-decoder paradigm: they first
encode the input point clouds by progressively downsampling the point features and then decode
back to the original scale using upsampling on lower scale features to generate dense predictions.
Specifically, feature interactions only occur in adjacent scale representations, limiting the learning
of rich multi-scale semantics. Additionally, the final largest resolution representation is recovered
step-by-step from low resolution, which compromises spatial accuracy. These designs make such
a vanilla encoder-decoder framework insufficient to capture rich multi-scale contexts. Inspired by
high-resolution architectures for 2D visual recognition (Wang et al., 2020), we introduce PointHR,
which explicitly maintains high-low resolution features in parallel during the entire network for point

1

Under review as a conference paper at ICLR 2024

cloud segmentation. Unlike previous hierarchical methods (Qian et al., 2022; Zhao et al., 2021) that
use only one resolution feature in each stage, PointHR keeps multiple resolutions (from high to low)
simultaneously and facilitates frequent communication between all resolutions within each stage.

Different from structurally-located pixels in 2D images, point clouds consist of a set of irregular
and unordered points, making it non-trivial to employ high-resolution architectures. Therefore, we
approach point clouds for high-resolution architectures as follows. Firstly, the input point clouds
are considered as a sequence of (x, y, z) points, allowing for a general sequence operator to be used
for feature extraction. For example, a popular sequence operator could be self-attention (Vaswani
et al., 2017), which was originally designed to model relationships between a sequence of text tokens.
However, since the self-attention operator has quadratic time complexity O(N2) for a sequence of
length N , it is computationally infeasible to directly apply this operator to a point cloud with tens of
thousands of points. One solution is to constrain the self-attention operator to perform only on each
point and its K nearest neighboring points, thus reducing the complexity to be linear with respect to
length N as demonstrated in Wu et al. (2022); Zhao et al. (2021). Another sequence operator could
be pure MLPs, which can process unordered sequences when feeding permuted training data. To
aggregate local information, K nearest neighbor features are retrieved, followed by MLPs to fuse and
update the current point feature as shown in Lin et al. (2023). Thus, we formulate the basic block as a
knn-based sequence operator, allowing for the use of well-designed point cloud blocks (Lin et al.,
2023; Wu et al., 2022; Zhao et al., 2021) in high-resolution architectures without additional effort.

In addition to the sequence operator, another important aspect of high-resolution architectures
is the resampling operator, which can efficiently communicate different scale features in high
frequency with upsampling and downsampling. A common resampling strategy in point clouds is
a combination of farthest point sampling (Eldar et al., 1997; Qi et al., 2017b) with knn features
aggregation/interpolation. Recently, an efficient grid-based pooling and unpooling strategy (Wu et al.,
2022) has been introduced, which first splits a point cloud into non-overlapping grids and then maps
each grid of points to a new one and vice versa. With the unified aforementioned formulation for
sequence operators, these resampling methods can be easily adopted in PointHR. However, all of
them require calculating the indices for knn collection and resampling in each operation. This incurs
a significant computational cost, particularly when considering the numerous resampling operations
in high-resolution architectures. Fortunately, we have found that the calculations of these indices
only depend on scale, specifically the corresponding point coordinates. These coordinates remain
unchanged throughout the entire network. Therefore, we propose to pre-compute the indices for knn
collection and resampling operation, which are saved to the cache so that indices retrieval is only
needed instead of on-the-fly re-computation.

Our main contributions are summarized as follows:

• We present a new framework for point cloud segmentation, PointHR, which aims to main-
tain high resolutions for learning both semantically-rich and spatially-precise point cloud
representations.

• We explore high-resolution architectures using unified sequence and resampling operators,
allowing off-the-shelf point cloud blocks and layers to be employed in PointHR without
additional efforts. Besides, we pre-compute the indices for knn collection and resampling
operation to avoid on-the-fly re-computation.

• We conduct comprehensive experiments on two popular point cloud segmentation datasets,
namely S3DIS (Armeni et al., 2016) and ScanNetV2 (Dai et al., 2017), where the proposed
PointHR demonstrates new state-of-the-art performance, suggesting the effectiveness of
exploring high-resolution architectures for point cloud segmentation.

2 RELATED WORK

High-Resolution Architectures. High-Resolution Network (HRNet), originally proposed by Sun
et al. (2019) for human pose estimation, maintains multiple branches for multi-scale features, particu-
larly high-resolution representations, which facilitate learning spatially more precise heatmaps for
pose estimation. With its repeated cross-scale feature interactions in deep layers, HRNet also learns
rich semantic features. Consequently, Wang et al. (2020) extended HRNet to general dense predic-
tion tasks such as semantic segmentation and object detection, achieving impressive performances.

2

Under review as a conference paper at ICLR 2024

HRFormer (Yuan et al., 2021) employs emerging attention blocks (Vaswani et al., 2017) to replace
vanilla convolution layers in the high-resolution framework, thereby expanding its modeling capacity.
Additionally, Zhang et al. (2021) adopts HRNet for person re-identification to address the issue of
multiple resolutions of input images. The aforementioned studies have all focused on 2D images, and
we further explore high-resolution architectures for 3D point clouds.

Point Cloud Segmentation. Here we mainly introduce methods that directly take raw points as
input without extra transformations (e.g., voxelization and projection). These point-based methods
usually develop novel modules or frameworks, such as MLPs (Ma et al., 2022; Qian et al., 2022;
Qi et al., 2017a;b), point convolutions (Thomas et al., 2019; Wu et al., 2019), and attentions (Guo
et al., 2021; Lai et al., 2022; Park et al., 2022; Qiu et al., 2023; Zhao et al., 2021), to directly learn
from raw points. Particularly, PointNet (Qi et al., 2017a) was the first to process point clouds using
multi-layer perceptrons (MLPs). PointNet++ (Qi et al., 2017b) improved upon this by introducing
a hierarchical neural network that learns local features. PointNext (Qian et al., 2022), on the other
hand, proposes advanced training strategies to significantly improve the performance of PointNet++.
Additionally, it introduces InvResMLP blocks and formulates the PointNext architecture for further
improvement. Meanwhile, KPConv (Thomas et al., 2019) presents kernel point convolution as a new
point convolution operator that takes neighboring points as input and processes them with spatially
located weights. Recently, the popular transformer architecture has been introduced to point cloud
tasks (Lai et al., 2022; Park et al., 2022; Wu et al., 2022; Zhao et al., 2021). PTv1 (Zhao et al., 2021)
proposes vector attention to aggregate neighbor features. PTv2 (Wu et al., 2022) further introduces
grouped vector attention to more efficiently learn discriminative representations while avoiding
overfitting. Stratified Transformer (Lai et al., 2022) employs local window-based self-attention
and captures long-range contexts by sampling nearby points densely and distant points sparsely.
Differently, in this paper, we mainly explore how to form an effective backbone framework, and the
block designs of the above methods can be trivially integrated in our framework.

3 METHOD

First, we present an overview of high-resolution architectures for 3D point clouds. Next, we delve into
the unified format of sequence operator with various instantiations. Finally, we investigate efficient
multi-scale fusion in conjunction with the resampling operator using the pre-compute strategy.

3.1 HIGH-RESOLUTION ARCHITECTURES

A point cloud can be represented as a sequence of N points P ∈ RN×Craw , where Craw is the
feature dimension of each point that typically includes xyz coordinates as well as other attributes
such as its normal vector. The goal of point cloud segmentation is to predict a semantic category
label for each point (x, y, z) ∈ P . Specifically, the final predictions share the same spatial dimension
with the raw points, i.e., Y ∈ RN,cls, where cls is the total number of semantic categories.

The overall PointHR pipeline for point cloud segmentation is illustrated in Figure 1, where the raw
input point clouds N×Craw is first embedded to N×C0, and then downsampled to N/S×C1. Next,
it starts with a high-resolution branch as the first stage by taking the point feature N/S ×C1 as input.
Subsequently, additional high-to-low resolution branches calculated by spatially dividing the factor
S and doubling the channel of feature dimension are incrementally integrated into the architecture
as new stages. For i = 1, 2, 3, 4, the ith stage consisting of i branches outputs i different scales
point features, and each branch has Mi blocks that is building by stacking Bi sequence operators.
After each stage, the learned multi-resolution features are fused as the input of the next stage in
a per-branch manner. Notably, the resolution corresponds to the number of points when applying
high-resolution architectures for point clouds. The entire framework can be formulated as follows:

F11 → F21 → F31 → F41

↘ F22 → F32 → F42

↘ F33 → F43

↘ F44,

(1)

where point feature Fij ∈ R
N

Si ×2j−1Ci where i ∈ {1, 2, 3, 4} and j ∈ {1, · · · , i}. It should be
also noted that previous hierarchical methods (Qian et al., 2022; Wu et al., 2022) only contain
F11 → F22 → F33 → F44, which is corresponding to the red-arrow flow in Figure 1.

3

Under review as a conference paper at ICLR 2024

Sequence

Operator

Point

Feature

Downsampling Upsampling

𝑁

𝑆
× 𝐶2

𝑁

𝑆3
× 4𝐶4

Decoder

Stage 4Stage 3Stage 2Stage 1
𝑁 × 𝐶0

𝑁

𝑆
× 𝐶3

𝑁

𝑆2
× 2𝐶3

𝑁

𝑆2
× 2𝐶4

𝑁

𝑆
× 𝐶4

𝑁 × 𝐶𝑐𝑙𝑠

𝑁

𝑆4
× 8𝐶4

𝑁

𝑆3
× 4𝐶3

𝑁

𝑆2
× 2𝐶3

𝑁

𝑆
× 𝐶1

𝑁 × 𝐶𝑟𝑎𝑤

Figure 1: The overall PointHR pipeline for point cloud segmentation.

These outputs from the final stage of PointHR join forces with the original resolution feature in the
decoder, enabling the propagation of information from low-resolution to high-resolution. Finally, a
segmentation head that consists of linear layers generates the final prediction of N × Ccls, where
Ccls represents the number of semantic categories. We summarize the typical configurations of
PointHR via the number of modules Mi, the number of blocks Bi, and the number of channels Ci,
e.g., (M1,M2,M3,M4) = (1, 1, 2, 1) and (B1, B2, B3, B4) = (2, 2, 2, 2) corresponding to Figure 1.
A detailed formulation of PointHR configurations is shown in Appendix A.

3.2 SEQUENCE OPERATOR

For 2D images, high-resolution architectures (Wang et al., 2020) usually adopt convolutional layers
as the basic blocks to extract local information, while it is not straightforward to employ such an
operation on point clouds due to the irregular and unordered characteristics. Therefore, to explore
high-resolution architectures for point clouds, we first formulate the aforementioned basic block via
a unified sequence operator, i.e., regarding point clouds as a sequence of points and treating it as a
sequence processing task. By doing this, we hope that most existing point cloud blocks can be directly
used in high-resolution architectures. Specifically, when taking the point clouds P ∈ RN×C as
input, the sequence operator Θ will first embed each point pi where i ∈ {1, · · · , N} into new feature
space p̄i, then K nearest neighbors (KNN) for each point are fetched as p̄j where j ∈ {1, · · · ,K}
to collect local clues. After that, the sequence operator aggregates those local information to the
current point p̂i. Lastly, the final representation p̃i is obtained by incorporating original features
with updated current features. The whole process is illustrated in the left part of Figure 2 and can be
mathematically formulated as follows:

p̄i = Θse(pi) ⇒ p̄j = Θnf (p̄i) (2)
p̂i = Θna(p̄j) ⇒ p̃i = Θsu(p̂i) + pi. (3)

where Θse,Θnf ,Θna, and Θsu indicate Sequence Embed, Neighbors Fetch, Neighbors Aggregation,
and Sequence Update, respectively, in Figure 2.

To show the effectiveness of the aforementioned sequence operator formulation, we discuss several
popular point cloud blocks as the possible instantialization in the following. For example, self-
attention (Vaswani et al., 2017) proposed for handling a sequence of words is capable of capturing
the relationships of all elements in the sequence. Previous approaches (Wu et al., 2022; Zhao
et al., 2021) employ the attention only on each point with its K neighboring points to reduce
time complexity from O(N2) to O(NK2), rather than utilizing a global attention on all sequence
elements. In particular, PTv1 (Zhao et al., 2021) has shown that vector attention is more effective in
handling point clouds than the original scalar attention (Vaswani et al., 2017). It employs attention
weights that are vectors calculated based on the relation operation between query and key, which
can effectively modulate individual feature channels. Specifically, given a point pi and its neighbors
N (pi) = {pj |pj ∈ KNN(pi)}, Multilayer perceptrons (MLPs) are employed to map the point
feature to query qi, key ki, and value vi, and then the vector attention can be formulated as follows:

wij = φ(σ(qi,ki)), pattn
i =

∑
pj∈N (pi)

Softmax(Wi)j ⊙ vj , (4)

4

Under review as a conference paper at ICLR 2024

Ins.

Sequence

Embed

Neighbors

Fetch

Neighbors

Aggregation

Sequence

Update

MLP

KNN

Local

Extractor

MLP

MaxPool

(a)

Ins. 𝒒 𝒗𝒌

𝑊𝑞 𝑊𝑘 𝑊𝑣

𝜎

Softmax

w

(b)

𝒒 𝒗𝒌

𝑊𝑞 𝑊𝑘 𝑊𝑣

𝜎

Softmax

w

(c)

… …𝜑 𝜑

Figure 2: An illustration of the general sequence operator Θ along with its instantialization. Note that
(a) vector attention (Zhao et al., 2021), (b) grouped vector attention (Wu et al., 2022), and (c) pure
MLPs (Lin et al., 2023) are three instantializations of the Local Extractor defined by Equation 4, 5,
and 6 respectively.

where ⊙ represents the Hadamard product. σ denotes a relation operation such as subtraction.
φ : Rc → Rc is the MLPs which calculates attention vectors to re-weight vj by channels before
performing aggregation. PTv2 (Wu et al., 2022) further introduces a grouped vector attention to
improve the model efficiency. Specifically, it is achieved by dividing channels of the value vi ∈ Rc

evenly into g groups (1 ≤ g ≤ c). Then MLPs φ : Rc → Rg outputs a grouped attention vector with
g channels instead of c. Channels within the same group share the same scalar attention weight from
the grouped attention vector. As a result, Equation 4 is modified as follows:

wij = φ(σ(qi,ki)), pattn
i =

∑
pj∈N (pi)

g∑
l=1

c/g∑
m=1

Softmax(Wi)jl · vlc/g+m
j . (5)

The sequence operator can be pure MLPs as well, which can handle unordered sequences when
augmenting the training data by all kinds of permutations. Specifically, in Lin et al. (2023), the
features of K nearest neighbours are used to collect local clues, which is followed by maxpooling
and MLPs to fuse current point features, which can be formulated as follows:

paggre
i = MaxPool(ϕ(pj)), pj ∈ N (pi), (6)

where ϕ is the MLPs that embeds the input point feature pi, and N (pi) represents the neighbors of
pi. From an united perspective, we can consider the instantialization of Equation 2 and 3 as follows:

Θse = MLP, Θnf = KNN, Θsu = MLP. (7)

Notably, the only difference lies in Θna, which acts as the local extractor to capture neighbor
information as shown in the right part of Figure 2, defined by Equation 4, 5, and 6.

3.3 RESAMPLING OPERATOR AND MULTI-SCALE FUSION

Besides the sequence operator, a resampling operator is required to perform cross-resolution inter-
actions between different branches. Specifically, for jth branch where j ∈ {1, · · · , i} in the ith
stage, there are three possible fusion situations: 1) when fusing features from the same branch, a
simple identity connection is applied; 2) when features come from the above ath branch, i.e., higher
resolution than current one, jth − ath number of successive downsampling modules are employed; 3)
if features from the below bth branch, i.e., lower resolution than current one, an upsampling module
is adopted. Finally, those processed features are summed as the updated features for jth branch. For
example, we can calculate the fused features of 2nd branch in the 3rd stage as follows:

F̄32 = F32 + downsampling(F31) + upsampling(F33). (8)

To effectively communicate different scales, the above fusion process are frequently made between and
inside stages. However, those resampling operations, including both downsampling and upsampling,

5

Under review as a conference paper at ICLR 2024

are extremely time-consuming in point clouds due to the unordered characteristics. For example,
when provided with an input point cloud containing N points, the classical farthest point sampling
(FPS) (Eldar et al., 1997; Qi et al., 2017b) requires the calculation of downsampling and upsampling
neighboring indices. This process has a time complexity of O(N2) as mentioned in Hu et al. (2020).
Another option could be the simpler grid pooling and unpooling method proposed in Wu et al. (2022),
which divides a point cloud into non-overlapping grids. The pooling is to sample each grid of points
as a new points, and the unpooling is simply back-projecting the point to the original higher resolution
grid of points.

However, both of them require calculating the indices for knn collection and resampling in each
operation. This leads to a high computational cost, particularly because of the numerous resampling
operations in PointHR. Fortunately, we identify those indices only depend on current point scale,
which stays unchanged throughout the entire network. Specifically, we find that those knn indices
solely rely on point coordinates so that each branch with the same resolution shares the same
knn indices across all stages. As for resampling indices, they can be also shared when operating
two specific resolution branches across different stages. Hence, we propose to pre-compute the
indices for knn collection and resampling operation, which are saved to the cache to avoid on-the-fly
computations, thus making it possible to efficiently employ high-resolution architectures for 3D
dense point cloud analysis. The detailed description can be found in Appendix F.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We evaluate the proposed PointHR on two widely-used benchmarks, i.e., S3DIS (Armeni et al., 2016)
and ScanNetV2 (Dai et al., 2017), for point cloud semantic segmentation. S3DIS contains 271 rooms
in 6 areas collected from three different buildings. Each point in the room is annotated with one of 13
semantic categories such as “ceiling” and “bookcase”. Following previous methods (Wu et al., 2022;
Zhao et al., 2021), we keep Area 5 as the testing set and use remains for training PointHR. ScanNetV2
is another larger dataset, which consists of 1,513 room scenes, where 1,201 scenes for training and
312 for validation. Point clouds are created by sampling vertices from meshes that are reconstructed
from RGB-D frames. Each sampled point is then assigned a semantic label from one of 20 categories,
such as “floor” and “table”. Regarding the evaluation metrics, similar to Qian et al. (2022); Wu et al.
(2022); Zhao et al. (2021), we adopt the mean class-wise intersection over union (mIoU), mean of
class-wise accuracy (mAcc), and overall point-wise accuracy (OA). We further present evaluations
on ShapeNetPart (Yi et al., 2016) and ModelNet40 (Wu et al., 2015) in Appendix B and C.

4.2 IMPLEMENTATION DETAILS

For the configurations of PointHR, unless otherwise stated, we employ (M1,M2,M3,M4) =
(1, 1, 5, 4) and (C1, C2, C3, C4) = (64, 32, 32, 32), Bi = 2 and Ki = 16 for all i ∈ {0, 1, 2, 3}, the
grouped vector attention defined by Equation 5 as the sequence operator, as well as the grid pooling
and unpooling discussed in Section 3.3 as the sampling strategy.

For S3DIS (Armeni et al., 2016), following the practice in Wu et al. (2022); Zhao et al. (2021), the
grid sampling with size 0.04m is first employed on the raw input points. During the training process,
we apply popular data augmentations such flip, scale, jitter, random drop, and we also use the sphere
crop on the entire scene and constrain the maximum number of input points to 100,000. Considering
the training set of S3DIS is relatively small (i.e., only 204 samples), we follow Qian et al. (2022); Wu
et al. (2022); Zhao et al. (2021) to enlarge the size by repeating 30× to obtain 6,120 samples. We train
PointHR using four V100 GPUs for 100 epochs with batch size 12, and set the learning rate to 0.006
and drop it by 1/10 at 60 and 80 epochs. AdamW optimizer (Loshchilov & Hutter, 2017) with the
weight decay 0.05 and cross-entropy loss are applied. The pooling size are set to (0.1, 0.2, 0.4, 0.8)
for gird pooling to achieve approximately 6× downsampling scale. For ScanNetV2 (Dai et al., 2017),
we follow Wu et al. (2022) to employ grid sampling with size 0.02m on the raw point clouds. We
also repeat the its training set (1,201 scenes) by 9× to get 10,809 samples. Considering its larger
scale than S3DIS, AdamW optimizer (Loshchilov & Hutter, 2017) with a smaller weight decay 0.02
are applied. OneCycleLR (Smith & Topin, 2019) scheduler is employed, where the learning raises
from 0.0005 to 0.005 in the first 5 epochs and cosine annealing to 0 in the remaining 95 epochs.

6

Under review as a conference paper at ICLR 2024

Table 1: Quantitative results under mIoU (%), mAcc (%), and OA (%) metrics including per-category
IoU are reported on Area 5 of S3DIS (Armeni et al., 2016). The bold denotes the best performance.

Method mIoU mAcc OA ce
ili

ng

flo
or

w
al

l

be
am

co
lu

m
n

w
in

do
w

do
or

ta
bl

e

ch
ai

r

so
fa

bo
ok

ca
se

bo
ar

d

cl
ut

te
r

PointNet (Qi et al., 2017a) 41.1 49.0 - 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud (Tchapmi et al., 2017) 48.9 57.4 - 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
PointCNN (Li et al., 2018b) 57.3 63.9 85.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
PCT (Guo et al., 2021) 61.3 67.7 - 92.5 98.4 80.6 0.0 19.4 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3
HPEIN (Jiang et al., 2019) 61.9 68.3 87.2 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4
MinkUNet (Choy et al., 2019) 65.4 71.7 - 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
KPConv (Thomas et al., 2019) 67.1 72.8 - 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
CGA-Net (Lu et al., 2021) 68.6 - - 94.5 98.3 83.0 0.0 25.3 59.6 71.0 92.2 82.6 76.4 77.7 69.5 61.5
CBL (Tang et al., 2022) 69.4 75.2 90.6 93.9 98.4 84.2 0.0 37.0 57.7 71.9 91.7 81.8 77.8 75.6 69.1 62.9
PTv1 (Zhao et al., 2021) 70.4 76.5 90.8 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
PointNext (Qian et al., 2022) 70.5 76.8 90.6 94.2 98.5 84.4 0.0 37.7 59.3 74.0 83.1 91.6 77.4 77.2 78.8 60.6
PointMeta (Lin et al., 2023) 71.3 - 90.8 - - - - - - - - - - - - -
PointMixer (Choe et al., 2022) 71.4 77.4 - 94.2 98.2 86.0 0.0 43.8 62.1 78.5 90.6 82.2 73.9 79.8 78.5 59.4
PTv2 (Wu et al., 2022) 71.6 77.9 91.1 - - - - - - - - - - - - -
StraFormer (Lai et al., 2022) 72.0 78.1 91.5 96.2 98.7 85.6 0.0 46.1 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0

PointHR (ours) 73.2 78.7 91.8 94.0 98.5 87.5 0.0 53.7 62.9 80.2 84.2 92.5 75.4 76.5 84.8 61.8

floor wall beam column window door table chair sofaceiling bookcase board clutter

Input Ground TruthPTv2 PointHR

Figure 3: Visualization of point cloud segmentation results on the Area 5 of S3DIS. Note that yellow
circles highlight the improvements made by PointHR over PTv2.

We use (0.06, 0.15, 0.375, 0.9375) for gird pooling to approximate 6× downsampling scale. Other
settings are kept the same as in S3DIS.

4.3 RESULTS ON S3DIS

Quantitative Results: Table 1 demonstrates the results of recent state-of-the-art methods and the
proposed PointHR on the Area 5 of S3DIS. Apparently, our PointHR achieves best performances on
all three metrics, i.e., mIoU (%), mAcc (%), and OA (%). It surpasses different kinds of methods
including transformer-based (Lai et al., 2022; Wu et al., 2022; Zhao et al., 2021), mlp-based (Qian
et al., 2022; Lin et al., 2023; Choe et al., 2022), and graph-based (Thomas et al., 2019; Li et al., 2018b)
approaches. For example, PointHR outperforms the current state-of-the-art model, StraFormer (Lai
et al., 2022), with a clear margin in terms of mIoU, 73.2% vs. 72.0%. It is also worthy noting that
PointHR uses the same block (grouped vector attention) as in PTv2 (Wu et al., 2022), but PointHR
takes the lead on all three metrics, i.e., 73.2% vs. 71.6%, 78.7% vs. 77.9%, and 91.8% vs. 91.1%.
We believe that this is partially because of the high-resolution architectures, which explicitly maintain
multi-scale features in parallel and allow for interactions across scales. Besides, as for per-category
IoU, we find that PointHR achieves better performances on those large flat objects such as “column”,

“door”, and “board”. We thus conjecture that PointHR has a very good ability to efficiently capture
information at different scales to accurately segment both boundary and inner points.

7

Under review as a conference paper at ICLR 2024

Qualitative Results: We visually compare the predictions made by PTv2 (Wu et al., 2022) and
PointHR, as well as ground truths on Area 5 of S3DIS in Figure 3. As we see that the “column”
area is challenging since it usually looks very similar to the “wall” area, but different only in shape.
However, while both the “column” and “wall” have a flat shape in short-range views, they exhibit
distinct characteristics in long-range perspectives. Specifically, the “column” takes on a cube-like
shape, which serves as a key feature for differentiation from the “wall”. Our PointHR can effectively
maintain high-resolution features and incorporate cross-scale fusion within the network architecture.
This enables better capture long-long range contexts, which are crucial for accurate recognition on
both internal and boundary points of “columns”. Similar situations are observed on the “board”.

4.4 RESULTS ON SCANNETV2

Table 2: Quantitative results on ScanNetV2.

Method #Params FLOPs Val (%) Test (%)

PointNet++ (Qi et al., 2017b) 1.0M 7.2G 53.5 55.7
RandLA-Net (Hu et al., 2020) 1.3M 5.8G - 64.5
PointConv (Wu et al., 2019) - - 61.0 66.6
PointASNL (Yan et al., 2020) - - 63.5 66.6
KPConv (Thomas et al., 2019) 15M - 69.2 68.6
CBL (Tang et al., 2022) 18.6M - - 70.5
PTv1 (Zhao et al., 2021) 7.8M 5.7G 70.6 -
PointNext (Qian et al., 2022) 41.6M 84.8G 71.5 71.2
PointMeta (Lin et al., 2023) 19.7M 11.0 72.8 71.4
SparseCNN (Graham et al., 2018) - - 69.3 72.5
MinkUNet (Choy et al., 2019) - - 72.2 73.6
StraFormer (Lai et al., 2022) 8.02M 12.4G 74.3 74.7
BPNet (Hu et al., 2021) - - 73.9 74.9
PTv2 (Wu et al., 2022) 11.3M 14.3G 75.4 75.2

PointHR (ours) 7.1M 10.3G 75.4 76.6

Quantitative Results: Next we
evaluate PointHR on the more
challenging benchmark Scan-
NetV2. Similar to Han et al.
(2020); Liu et al. (2021); Wu
et al. (2022); Yang et al. (2023),
except for the results on valida-
tion set, we have further sub-
mited our predictions on test-
ing set to the official testing
server. All the performances us-
ing mIoU metric are reported
in Table 2. Not surprisingly,
PointHR delivers another state-
of-the-art performance 76.6%,
which surpasses the current best
method, i.e., 75.2% from PTv2 (Wu et al., 2022) even with about 40% fewer parameters and FLOPs
(7.1M vs. 11.3M and 10.3G vs. 14.3G). In addition, PointHR directly taking points as input also
outperforms those voxel-input methods (Hu et al., 2021; Choy et al., 2019) that can conveniently
use 3D convolutions. Note that BPNet (Hu et al., 2021) achieves 74.9% using both point clouds and
corresponding 2D images as input, which is still inferior to PointHR that only works on points.

Qualitative Results: Figure 4 demonstrates the semantic segmentation results obtained by PointHR
on ScanNetV2. Our PointHR performs well on different kinds of scenes such as office, bathroom,
and bedroom. It is also worth noting that PointHR can handle numerous objects in a scene well, as
observed with the many chairs surrounding the table being precisely segmented.

sinktoiletbathtub

Input Ground Truth PointHR Input Ground Truth PointHR

wall cabinet bed chair sofa table door window bookshelf floor picture counter desk curtain

refrigerator shower curtain other furniture

Figure 4: Visualization of point cloud segmentation by the proposed PointHR on ScanNetV2. More
illustrations are available in Appendix H.

4.5 ABLATION STUDIES

All ablation studies are conducted on the validation set of ScanNetV2.

8

Under review as a conference paper at ICLR 2024

Table 3: Ablation studies on model scalability.

Model (M1, · · · ,M4) (C1, · · ·C4) #Params FLOPs mIoU (%)

PointHR-T (1, 1, 2, 1) (64, 16, 16, 16) 0.6M 2.5G 72.7
PointHR-S (1, 1, 3, 2) (64, 16, 16, 16) 1.0M 2.8G 73.0
PointHR-B (1, 1, 3, 2) (64, 32, 32, 32) 3.9M 6.8G 74.9
PointHR-L (1, 1, 5, 4) (64, 32, 32, 32) 7.1M 10.3G 75.4

Model Scalability: We investigate the scalability of PointHR by fixing Bi = 2, Ki = 16 for all i ∈
{0, 1, 2, 3} and increasing modules M = (M1,M2,M3,M4) and channels C = (C1, C2, C3, C4).
Four different scales of PointHR are obtained as demonstrated in Table 3. As we can observe, the
overall trend is that the metric mIoU increase as the model size grows. PointHR-S only marginally
outperforms PointHR-T with deeper depth, which we suspect is because only 16 channels for
{Ci|i ∈ {1, 2, 3}} significantly limit the capacity of model. When doubling the channels to 32 as
PointHR-B, the performance is remarkably boosted from 73.0% to 74.9%. We further increase the
depth to get PointHR-L with the best performance 75.4%.

Sequence Operator: We explore three different sequence operators discussed in Section 3.2, i.e.,
pure MLPs (Lin et al., 2023), vector attention (Zhao et al., 2021), and grouped vector attention (Wu
et al., 2022) defined by Equation 6, 4, and 5 respectively. The results are presented in Table 4 by
comparing PointHR with the specific sequence operator with its original method. As we can see
from the first group, PointHR-B integrated with mlps surpasses PointMeta (Lin et al., 2023) by 1.4%
mIoU but with significantly smaller parameters and FLOPs (2.3M vs.19.7M and 1.8G vs.11.0G) .
Meanwhile, PointHR-B with va improves the performance of PTv1 (Zhao et al., 2021) by a large
margin 4% with approximately half parameters and FLOPs. The above observations confirm the
effectiveness and generalization ability of PointHR.

Resampling Strategy: We compare the furthest point sampling plus KNN to grid pooling under the
model configuration PointHR-B. The FPS version named as PointHR-B-FPS is also pre-computing
the downsampling and upsampling index for later fetching to make a fair comparison. It achieves
73.9% mIoU, which is clearly inferior to 74.9% made by PointHR-B. Besides, the speed of PointHR
is about 40% faster than PointHR-B-FPS as it requires 244 V100 GPU hours while PointHR-B-FPS
needs 412 GPU hours. If the model becomes deeper and increases the frequency of cross scale
interactions, the gap on speed will further grow.

Table 4: Ablation studies on different sequence operators. mlps: pure MLPs (Lin et al., 2023), va:
vector attention (Zhao et al., 2021), gva: grouped vector attention (Wu et al., 2022). HR denotes the
high-resolution architecture.

Method Sequence Operator HR #Params FLOPs Val (%) Test (%)

PointMeta (Lin et al., 2023) mlps ✗ 19.7M 11.0G 72.8 71.4
PointHR-B mlps ✓ 2.3M 1.8G 74.2 -

PTv1 (Zhao et al., 2021) va ✗ 7.8M 5.7G 70.6 -
PointHR-B va ✓ 3.4M 3.0G 74.6 -

PTv2 (Wu et al., 2022) gva ✗ 11.3M 14.3G 75.4 75.2
PointHR-B gva ✓ 3.9M 6.8G 74.9 -
PointHR-L gva ✓ 7.1M 10.3G 75.4 76.6

5 CONCLUSION

In this paper, we explore high-resolution architectures for 3D point cloud segmentation. To achieve
this, we formulate the proposed PointHR in a unified way using a sequence operator and a resampling
operator, enabling use of those off-the-shelf point cloud blocks and modules without additional efforts.
Besides, we propose to pre-compute the indices for knn collection and resampling operation to avoid
on-the-fly computations, thus efficiently employing high-resolution architectures. Comprehensive
experiments on popular point cloud segmentaion datasets, S3DIS (Armeni et al., 2016) and Scan-
NetV2 (Dai et al., 2017), demonstrate the effectiveness of high-resolution architectures for 3D dense
point cloud analysis and also yield new state-of-the-art performances.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Eren Erdal Aksoy, Saimir Baci, and Selcuk Cavdar. Salsanet: Fast road and vehicle segmentation in
lidar point clouds for autonomous driving. In IEEE Intelligent Vehicles Symposium, pp. 926–932,
2020. 1

Evangelos Alexiou, Nanyang Yang, and Touradj Ebrahimi. Pointxr: A toolbox for visualization and
subjective evaluation of point clouds in virtual reality. In International Conference on Quality of
Multimedia Experience (QoMEX), pp. 1–6. IEEE, 2020. 1

Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio
Savarese. 3d semantic parsing of large-scale indoor spaces. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1534–1543, 2016. 2, 6, 7, 9

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 40(4):
834–848, 2017. 1

Yunqiang Chen, Qing Wang, Hong Chen, Xiaoyu Song, Hui Tang, and Mengxiao Tian. An overview
of augmented reality technology. In Journal of Physics: Conference Series, volume 1237, pp.
022082. IOP Publishing, 2019. 1

Jaesung Choe, Chunghyun Park, Francois Rameau, Jaesik Park, and In So Kweon. Pointmixer:
Mlp-mixer for point cloud understanding. In European Conference on Computer Vision (ECCV),
pp. 620–640. Springer, 2022. 7

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3075–3084, 2019. 7, 8

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5828–5839, 2017. 2, 6, 9

Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y Zeevi. The farthest point strategy
for progressive image sampling. IEEE Transactions on Image Processing (TIP), 6(9):1305–1315,
1997. 2, 6

Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. 3d semantic segmentation with
submanifold sparse convolutional networks. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 9224–9232, 2018. 8

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu.
Pct: Point cloud transformer. Computational Visual Media, 7(2):187–199, 2021. 3, 7, 14

Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg: Occupancy-aware 3d instance segmentation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2940–2949,
2020. 8

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. 1

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and
Andrew Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11108–11117,
2020. 6, 8

Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, and Tien-Tsin Wong. Bidirectional projection
network for cross dimension scene understanding. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 14373–14382, 2021. 8

10

Under review as a conference paper at ICLR 2024

Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, and Jiaya Jia. Hierarchical
point-edge interaction network for point cloud semantic segmentation. In IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 10433–10441, 2019. 7

Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia.
Stratified transformer for 3d point cloud segmentation. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022. 3, 7, 8, 14

Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-organizing network for point cloud analysis.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9397–9406,
2018a. 14

Xuyou Li, Shitong Du, Guangchun Li, and Haoyu Li. Integrate point-cloud segmentation with 3d
lidar scan-matching for mobile robot localization and mapping. Sensors, 20(1):237, 2019. 1

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution
on x-transformed points. Advances in Neural Information Processing Systems (NeurIPS), 31,
2018b. 7, 14

Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Michael A Chapman, Dongpu Cao, and Jonathan Li.
Deep learning for lidar point clouds in autonomous driving: A review. IEEE Transactions on
Neural Networks and Learning Systems (TNNLS), 32(8):3412–3432, 2020. 1

Haojia Lin, Xiawu Zheng, Lijiang Li, Fei Chao, Shanshan Wang, Yan Wang, Yonghong Tian, and
Rongrong Ji. Meta architecure for point cloud analysis. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. 2, 5, 7, 8, 9, 15

Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A closer look at local aggregation operators
in point cloud analysis. In European Conference on Computer Vision (ECCV), pp. 326–342.
Springer, 2020. 14

Zhengzhe Liu, Xiaojuan Qi, and Chi-Wing Fu. One thing one click: A self-training approach for
weakly supervised 3d semantic segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1726–1736, 2021. 8

Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel cnn for efficient 3d deep learning.
Advances in Neural Information Processing Systems (NeurIPS), 32, 2019. 14

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3431–3440, 2015. 1

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017. 6

Tao Lu, Limin Wang, and Gangshan Wu. Cga-net: Category guided aggregation for point cloud
semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11693–11702, 2021. 7

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. International Conference on Learning
Representations (ICLR), 2022. 3, 14

Chunghyun Park, Yoonwoo Jeong, Minsu Cho, and Jaesik Park. Fast point transformer. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022. 3

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 652–660, 2017a. 3, 7, 14

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in Neural Information Processing Systems
(NeurIPS), 30, 2017b. 2, 3, 6, 8, 14

11

Under review as a conference paper at ICLR 2024

Guocheng Qian, Hasan Hammoud, Guohao Li, Ali Thabet, and Bernard Ghanem. Assanet: An
anisotropic separable set abstraction for efficient point cloud representation learning. Advances in
Neural Information Processing Systems (NeurIPS), 34:28119–28130, 2021. 14

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Abed Al Kader Hammoud, Mohamed
Elhoseiny, and Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and
scaling strategies. Advances in Neural Information Processing Systems (NeurIPS), 2022. 1, 2, 3, 6,
7, 8, 14, 15

Haibo Qiu, Baosheng Yu, and Dacheng Tao. Collect-and-distribute transformer for 3d point cloud
analysis. arXiv preprint arXiv:2306.01257, 2023. 3

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pp. 369–386. SPIE, 2019. 6

Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning for
human pose estimation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5693–5703, 2019. 2

Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, and Dacheng Tao. Contrastive boundary
learning for point cloud segmentation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8489–8499, 2022. 7, 8

Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese. Segcloud:
Semantic segmentation of 3d point clouds. In International Conference on 3D Vision (3DV), pp.
537–547. IEEE, 2017. 7

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6411–6420, 2019. 3, 7, 8, 14

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems (NeurIPS), 30, 2017. 2, 3, 4

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong
Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning for visual
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 43(10):
3349–3364, 2020. 1, 2, 4

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions On Graphics (TOG), 38(5):
1–12, 2019. 14

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
clouds. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
9621–9630, 2019. 3, 8, 14

Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Hengshuang Zhao. Point transformer v2: Grouped
vector attention and partition-based pooling. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. 2, 3, 4, 5, 6, 7, 8, 9, 15

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920, 2015. 6, 13, 14

Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and Weidong Cai. Walk in the cloud: Learning
curves for point clouds shape analysis. In IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 915–924, 2021. 14

Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and Shuguang Cui. Pointasnl: Robust point clouds
processing using nonlocal neural networks with adaptive sampling. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5589–5598, 2020. 8, 14

12

Under review as a conference paper at ICLR 2024

Lei Yang, Yanhong Liu, Jinzhu Peng, and Zize Liang. A novel system for off-line 3d seam extraction
and path planning based on point cloud segmentation for arc welding robot. Robotics and
Computer-Integrated Manufacturing, 64:101929, 2020. 1

Yu-Qi Yang, Yu-Xiao Guo, Jian-Yu Xiong, Yang Liu, Hao Pan, Peng-Shuai Wang, Xin Tong, and
Baining Guo. Swin3d: A pretrained transformer backbone for 3d indoor scene understanding.
arXiv preprint arXiv:2304.06906, 2023. 8

Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
3d shape collections. SIGGRAPH Asia, 2016. 6, 13

Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao Zhang, Xilin Chen, and Jingdong Wang.
Hrformer: High-resolution transformer for dense prediction. Advances in Neural Information
Processing Systems (NeurIPS), 2021. 3

Guoqing Zhang, Yu Ge, Zhicheng Dong, Hao Wang, Yuhui Zheng, and Shengyong Chen. Deep high-
resolution representation learning for cross-resolution person re-identification. IEEE Transactions
on Image Processing (TIP), 30:8913–8925, 2021. 3

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 16259–16268, 2021. 1, 2, 3,
4, 5, 6, 7, 8, 9, 14, 15

APPENDIX

In this appendix, we begin by presenting the typical configurations table of PointHR. Next, we
evaluate the proposed PointHR on ShapeNetPart (Yi et al., 2016) and ModelNet40 (Wu et al., 2015),
respectively. Then we conduct ablation studies on the decoder design. Subsequently, the per-category
IoUs on the testing split of ScanNetV2 are provided. After that, we demonstrate the details of
pre-compute indices as outlined in Section 3.3. Finally, we deliver more additional visualizations.

A CONFIGURATIONS

Table 5: The typical PointHR configuration. SO: sequence operator; S: scale factor; Mi: the number of
modules; Bi: the number of blocks; Ki: the number of neighbors; Ci: the number of channels.

Res. Stage 1 Stage 2 Stage 3 Stage 4

S× [SO,K1,C1]×B1×M1 [SO,K2,C2]×B2×M2 [SO,K3,C3]×B3×M3 [SO,K4,C4]×B4×M4

S2× [SO,K2,2C2]×B2×M2 [SO,K3,2C3]×B3×M3 [SO,K4,2C4]×B4×M4

S3× [SO,K3,4C3]×B3×M3 [SO,K4,4C4]×B4×M4

S4× [SO,K4,8C4]×B4×M4

B EVALUATION ON SHAPENETPART

We have further evaluated the proposed PointHR on ShapeNetPart (Yi et al., 2016), which stands
as a widely recognized dataset employed for the task of point cloud part segmentation. This dataset
comprises 16,880 3D models, categorized into 16 distinct shape categories, such as “car” and “table”.
In the context of data splitting, 14,006 models are designated for the training set, while the remaining
2,874 models are reserved for the testing set. Notably, each category exhibits a varying number of
constituent parts, ranging from 2 to 6, yielding a total of 50 distinct parts across all categories. The
reported evaluation metric is the instance mean Intersection over Union (mIoU). Table 6 presents the
results of PointHR compared to previous methods. As observed, our PointHR achieves state-of-the-art
performance 87.2% with reasonable parameters 7.4M.

13

Under review as a conference paper at ICLR 2024

Table 6: Results on ShapeNetPart.

Method #Params mIoU (%)

PointNet (Qi et al., 2017a) 3.6M 83.7
PointNet++ (Qi et al., 2017b) 1.5M 85.1
DGCNN (Wang et al., 2019) 1.3M 85.2
PointConv (Wu et al., 2019) - 85.7
ASSANet-L (Qian et al., 2021) - 86.1
PointMLP (Ma et al., 2022) 13.2M 86.1
PVCNN (Liu et al., 2019) - 86.2
PCT (Guo et al., 2021) - 86.4
KPConv (Thomas et al., 2019) 14.3M 86.4
PTv1 (Zhao et al., 2021) 7.8M 86.6
StraFormer (Lai et al., 2022) 8.0M 86.6
CurveNet (Xiang et al., 2021) - 86.8
PointNeXt (Qian et al., 2022) 22.5M 87.0

PointHR (ours) 7.4M 87.2

Table 7: Results on ModelNet40.

Method Inputs #Points OA(%)

PointNet (Qi et al., 2017a) xyz 1024 89.2
PointNet++ (Qi et al., 2017b) xyz 1024 90.7
PointNet++ (Qi et al., 2017b) xyz+norm 5000 91.9
PointCNN (Li et al., 2018b) xyz 1024 92.5
PointConv (Wu et al., 2019) xyz+norm 1024 92.5
KPConv (Thomas et al., 2019) xyz 7000 92.9
DGCNN (Wang et al., 2019) xyz 1024 92.9
PointASNL (Yan et al., 2020) xyz 1024 92.9
PointNext (Qian et al., 2022) xyz 1024 93.2
PosPool (Liu et al., 2020) xyz 5000 93.2
PCT (Guo et al., 2021) xyz 1024 93.2
SO-Net (Li et al., 2018a) xyz 5000 93.4
PTv1 (Zhao et al., 2021) xyz 1024 93.7
PointMLP (Ma et al., 2022) xyz 1024 94.1
PointHR (ours) xyz 1024 93.9

C EVALUATION ON MODELNET40

Although PointHR is specifically designed for point cloud segmentation, it can also be used for
classification tasks with slight modifications. Specifically, we modify the feature propagation direction
in the decoder by changing it from low-to-high to high-to-low, and then applying a global maxpooling.
We evaluate PointHR on ModelNet40 dataset (Wu et al., 2015), which serves as a canonical dataset
widely utilized for point cloud classification. This dataset comprises a total of 9,843 CAD models
allocated to the training set, with an additional 2,468 CAD models designated for the testing set.
These models span across 40 distinct object categories. The primary evaluation metric employed for
assessing model performance is the overall accuracy (OA). We report the performance of PointHR
and other previous approaches in Table 7. Finally, PointHR achieves comparable accuracy to previous
state-of-the-art methods.

D DECODER DESIGN

Table 8: Strategies.

PointHR-T

Sum 71.6%
PG 71.9%
PGR 72.7%

For the decoder design, we conduct ablation studies including 1) directly
sum of different resolution features; 2) progressively fusion of adjacent
features; and 3) progressively fusion of adjacent features with the se-
quence operator for refinement, which are corresponding to the Sum, PG
and PGR of Table 8, respectively. We choose PointHR-T as the baseline
and perform corresponding experiments on ScanNet under mIoU (%).
As shown in Table 8, we find that progressively fusing adjacent features
brings high performance, which can be further enhanced by a following sequence operator for
refinement. Hence, we opt for the final decoder design as the default.

Table 9: Results of per-category IoU (%) on the testing set from ScanNetV2 corresponding to Table 2.

Method m
Io

U

ba
th

tu
b

be
d

bo
ok

sh
el

f

ca
bi

ne
t

ch
ai

r

co
un

te
r

cu
rt

ai
n

de
sk

do
or

flo
or

ot
he

rf
ur

ni
tu

re

pi
ct

ur
e

re
fr

ig
er

at
or

sh
ow

er
cu

rt
ai

n

si
nk

so
fa

ta
bl

e

to
ile

t

w
al

l

w
in

do
w

PointNet++ 55.7 73.5 66.1 68.6 49.1 74.4 39.2 53.9 45.1 37.5 94.6 37.6 20.5 40.3 35.6 55.3 64.3 49.7 82.4 75.6 51.5
RandLA-Net 64.5 77.8 73.1 69.9 57.7 82.9 44.6 73.6 47.7 52.3 94.5 45.4 26.9 48.4 74.9 61.8 73.8 59.9 82.7 79.2 62.1
PointConv 66.6 78.1 75.9 69.9 64.4 82.2 47.5 77.9 56.4 50.4 95.3 42.8 20.3 58.6 75.4 66.1 75.3 58.8 90.2 81.3 64.2
PointASNL 66.6 70.3 78.1 75.1 65.5 83.0 47.1 76.9 47.4 53.7 95.1 47.5 27.9 63.5 69.8 67.5 75.1 55.3 81.6 80.6 70.3
KPConv 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
CBL 70.5 76.9 77.5 80.9 68.7 82.0 43.9 81.2 66.1 59.1 94.5 51.5 17.1 63.3 85.6 72.0 79.6 66.8 88.9 84.7 68.9
PointNext 71.2 -
PointMeta 71.4 83.5 78.5 82.1 68.4 84.6 53.1 86.5 61.4 59.6 95.3 50.0 24.6 67.4 88.8 69.2 76.4 62.4 84.9 84.4 67.5
SparseCNN 72.5 64.7 82.1 84.6 72.1 86.9 53.3 75.4 60.3 61.4 95.5 57.2 32.5 71.0 87.0 72.4 82.3 62.8 93.4 86.5 68.3
MinkUNet 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3 95.1 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7
StraFormer 74.7 90.1 80.3 84.5 75.7 84.6 51.2 82.5 69.6 64.5 95.6 57.6 26.2 74.4 86.1 74.2 77.0 70.5 89.9 86.0 73.4
BPNet 74.9 90.9 81.8 81.1 75.2 83.9 48.5 84.2 67.3 64.4 95.7 52.8 30.5 77.3 85.9 78.8 81.8 69.3 91.6 85.6 72.3
PTv2 75.2 74.2 80.9 87.2 75.8 86.0 55.2 89.1 61.0 68.7 96.0 55.9 30.4 76.6 92.6 76.7 79.7 64.4 94.2 87.6 72.2

PointHR 76.6 79.0 82.3 88.1 74.9 87.1 58.7 91.8 65.5 68.5 97.3 56.0 36.3 58.2 93.3 81.6 82.7 69.8 97.4 89.7 73.9

14

Under review as a conference paper at ICLR 2024

E PER-CATEGORY IOU ON SCANNETV2

We additionally provide the results of per-category IoU (%) on the testing split of ScanNetV2 to
complement the previous Table 2. All the results are obtained from the official testing leaderboard1

and demonstrated in Table 9.

F PRE-COMPUTE INDICES

As discussed in Section 3.3, we propose to pre-compute the indices for knn collection and resampling
operation, which are saved to the cache to avoid on-the-fly computations. Here, we provide an
example to illustrate how to pre-compute the resampling indices.

Taking the FPS with KNN resampling strategy as an example, we need to compute the index mapping
high-resolution to low-resolution for downsampling and the index of K neighbors that interpolate
low-resolution to high-resolution for upsampling. Recall that these down- and upsampling operations
are abundant in PointHR. However, we found that the resampling operations in the later stages
includes those in the previous stages. For example, the index for downsampling from the 2nd to the
3rd branch in stage 3 is the same as the 2nd to 3rd branch in stage 4 because they share the same
resolutions. As such, we can compute all the mapping index, including both downsampling and
upsampling index, in stage 4, which covers resampling relationships of all the stages. Specifically, in
each iteration, we first downsample the input point clouds into four different resolutions and calculate
all the downsampling and upsampling indices between these four resolutions. Thereafter, we feed
the point cloud features, along with the index, to the network. This enables resampling operations to
fetch the corresponding index to obtain down- and up-scale features, thereby speeding up the whole
process. We compared the training latency of one iteration with 3 batch size in one V100 GPU for
PointHR model with and without the precomputed neighbor index. The results showed a latency
of 1.86s and 2.18s, respectively. Note that 100 epochs consist of approximately 360,000 iterations,
indicating that the precomputed neighbor index can save about 32 GPU hours for one training process.
A similar situation arises for employing grid pooling and unpooling.

G MEMORY ANALYSIS

Table 10: Comparisons on memory usage (G).

Method Memory(G)

PointNext (Qian et al., 2022) 43.14
PointMeta (Lin et al., 2023) 20.38
PTv1 (Zhao et al., 2021) 15.13
PTv2 (Wu et al., 2022) 21.50

PointHR-T 9.40
PointHR-S 10.84
PointHR-B 17.53
PointHR-L 23.58

Since our PointHR maintains high-resolution
branch throughout all the stage, the memory
usage would be a concern. However, two de-
signs of PointHR significantly reduce the heavy
memory cost. The first one is that the highest
resolution branch across all stage is N/S instead
of N as illustrated in Figure 1, where S = 6 in
our experiments. The second strategy is that
we employ a small beginning feature dimension,
e.g., the channel of the highest resolution is only
32 for PointHR-L as shown in Table 3. Here we
provide a quantitative comparison on memory
usage between PointHR and recent state-of-the-art methods (Qian et al., 2022; Lin et al., 2023; Zhao
et al., 2021; Wu et al., 2022) using 300K points as an example for input on a single GPU (because
both PTv2 (Wu et al., 2022) and PointHR use a batch of three point clouds with 100K points per
GPU). As shown in the Table 10, all the different configurations of PointHR achieve the reasonable
memory usage, e.g., the largest variant PointHR-L can be trained on the 24GB GPU.

H VISUALIZATIONS

More visualizations on S3DIS and ScanNetV2 are illustrated in Figure 5 and 6. Thanks to its multi-
scale characteristic, the proposed PointHR is capable of predicting accurate semantic categories for
point clouds even on challenging scenes. For example, PointHR segments the difficult boundaries

1https://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_3d

15

https://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_3d

Under review as a conference paper at ICLR 2024

such as legs of chairs and tables precisely, and also makes smooth predictions on the inner area of
large objects like board.

Input Ground Truth PointHR

floor wall beam column window door

table chair sofa

ceiling

bookcase board clutter

Figure 5: Visualizations of point cloud segmentation by PointHR on S3DIS. From left to right: input,
ground truth, and predictions made by PointHR.

16

Under review as a conference paper at ICLR 2024

Input Ground Truth PointHR

sink

toilet

bathtub

wall

cabinet

bed

chair
sofa

table

door
window

bookshelf

floor

picture

counter
desk

curtain
refrigerator

shower curtain

other furniture

Figure 6: Visualizations of point cloud segmentation by PointHR on ScanNetV2

17

