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Abstract
Augmenting large language models (LLMs) to
understand audio – including non-speech sounds
and non-verbal speech – is critically important
for diverse real-world applications of LLMs. In
this paper, we propose Audio Flamingo, a novel
audio language model with 1) strong audio under-
standing abilities, 2) the ability to quickly adapt to
unseen tasks via in-context learning and retrieval,
and 3) strong multi-turn dialogue abilities. We
introduce a series of training techniques, archi-
tecture design, and data strategies to enhance our
model with these abilities. Extensive evaluations
across various audio understanding tasks confirm
the efficacy of our method, setting new state-of-
the-art benchmarks. Our demo website is https:
//audioflamingo.github.io/ and the
code is open-sourced at https://github.
com/NVIDIA/audio-flamingo.

1. Introduction
The ability to understand sound is unarguably important and
necessary for an agent to interact with the world. While
large language models (LLMs) have shown an impressive
ability to understand and reason about the world through
text, their understanding of sound remains limited to tran-
scriptions of speech (Lyu et al., 2023), thus making LLMs
agnostic to important information in non-speech sounds and
non-verbal speech. Even though recent contributions have
improved their ability to understand sound (Gong et al.,
2023c; Lyu et al., 2023; Huang et al., 2023; Deshmukh
et al., 2023; Chu et al., 2023; Tang et al., 2023a), there
exists no model that combines: i) strong audio understand-
ing ability on various tasks (Deshmukh et al., 2023), ii) the
ability to execute multi-turn dialogues (Duan et al., 2023),

1NVIDIA, CA, USA. Correspondence to: Zhifeng Kong
<zkong@nvidia.com>, Wei Ping <wping@nvidia.com>,
Rafael Valle <rafaelvalle@nvidia.com>.

Proceedings of the 41 st International Conference on Ma-
chine Learning, Vienna, Austria. PMLR 235, 2024. Copyright
2024 by the author(s).

and iii) the ability to quickly adapt to unseen tasks with-
out fine-tuning, for example, through in-context learning
(Alayrac et al., 2022) and retrieval augmented generation
(Lewis et al., 2020).

Our contribution to expand LLM’s ability to understand
sound is called Audio Flamingo: a novel audio language
model that supports in-context learning (ICL), retrieval aug-
mented generation (RAG), and multi-turn dialogues. It
achieves state-of-the-art results on multiple audio under-
standing tasks.

Expanding LLM’s ability to understand sound is a chal-
lenging task. The first challenge is extracting features from
variable-length audio, and conditioning the LM on the audio
features. While prior works have designed representations
for audio of any length (Wu et al., 2023), they can lose
temporal information. In this work, we introduce an audio
feature extractor with sliding window based on Elizalde
et al. (2023b), which we believe to capture temporal in-
formation better. To condition the LM on audio inputs,
previous models prepended language tokens with audio to-
kens (Deshmukh et al., 2023; Chu et al., 2023; Tang et al.,
2023a). This approach may have excessive overhead espe-
cially for long audio, as the complexity is quadratic with
respect to the number of audio tokens. In contrast, we use
cross attentions to fuse audio inputs into the LM in a similar
way as Flamingo (Alayrac et al., 2022). In our approach
the complexity is linear in the number of audio tokens, thus
making Audio Flamingo able to generalize to many audio
inputs efficiently.

The second challenge is collecting and training on highly
heterogeneous data. Prior works have collected and com-
bined different datasets for training (Doh et al., 2023; Desh-
mukh et al., 2023; Chu et al., 2023; Gong et al., 2023c). We
follow their approach and curate a heterogeneous dataset
with approximately 5.9 million audio-text pairs. Prior works
have also designed different training curriculum, such as
training on close-ended tasks first followed by open-ended
tasks (Gong et al., 2023c; Tang et al., 2023a). However,
these result in a trade-off between close-ended and open-
ended tasks, limiting the overall performance (Deshmukh
et al., 2023; Tang et al., 2023a). We use a different approach
based on a widely adopted and stable method to train LLMs
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Figure 1. Audio Flamingo versus previous state-of-the-art (Desh-
mukh et al., 2023; Chu et al., 2023; Gong et al., 2023b;c; Tang
et al., 2023a; Ghosh et al., 2023) on a number of audio under-
standing benchmarks. The numbers are normalized such that the
maximum of all models is 100% on each task. Audio Flamingo
sets the new state-of-the-art results on most of these tasks.

(Ouyang et al., 2022). Specifically, we use two training
stages: pre-training and supervised fine-tuning (SFT), each
with different subsets and training techniques. These inno-
vations make Audio Flamingo achieve the state-of-the-art
results on several audio understanding benchmarks with
< 1

3 number of parameters as Chu et al. (2023) and Gong
et al. (2023c).

The third challenge is to give the audio language model the
ability to quickly adapt to new tasks without fine-tuning, for
instance, via in-context learning (ICL) (Brown et al., 2020)
and retrieval. While recent audio language models have
shown zero-shot abilities (Deshmukh et al., 2023; Gong
et al., 2023c), they lack the ability to perform in-context
few-shot learning to new tasks. In this paper, we introduce a
series of techniques to realize this ability. We implement an
efficient retrieval method, introduce an ICL template, and
use retrieved samples to create interleaved ICL datasets for
training. We also introduce a novel cross attention mask for
interleaved samples. As a result, Audio Flamingo can be
quickly adapted to new tasks via ICL and retrieval without
task-specific fine-tuning. Our results confirm the efficacy of
our approach and set new state-of-the-art few-shot bench-
marks.

The last challenge is to give the audio language model
the ability to chat with a user for many rounds. While
prior methods have shown demos of dialogues (Gong et al.,
2023c; Chu et al., 2023), they lack systematic and quanti-
tative evidence. To address this challenge, we create two
multi-turn dialogue datasets with GPT-4 (Achiam et al.,
2023) based on detailed annotations of two datasets, with an
emphasis on correlated context. We obtain a chat model by
fine-tuning Audio Flamingo on these datasets. Our results
show that our chat model has strong multi-turn dialogue

ability and significantly outperforms previous methods.

We evaluate Audio Flamingo on a large and diverse set
of close and open-ended benchmarks. A single Audio
Flamingo model surpasses the previous state-of-the-art on
most benchmarks, and the chat version of Audio Flamingo
significantly outperforms baselines on dialogue benchmarks.
Figure 1 summarizes the benchmark results of Audio
Flamingo. We also briefly discuss about the neural archi-
tecture and hyper parameters in the experiments. Our key
contributions include:

1. We propose Audio Flamingo: a Flamingo-based audio
language model for audio understanding with a series
of innovations. Audio Flamingo achieves state-of-the-
art results on several close-ended and open-ended audio
understanding tasks.

2. We design a series of methodologies for efficient use
of ICL and retrieval, which lead to the state-of-the-art
few-shot learning results.

3. We enable Audio Flamingo to have strong multi-turn
dialogue ability, and show significantly better results
compared to baseline methods.

2. Related work
Multimodal LLMs. There has been tremendous progress
in the area of multimodal LLMs. In addition to text, these
models take inputs from various modalities such as vision
(Tsimpoukelli et al., 2021; Alayrac et al., 2022; Yang et al.,
2023; Driess et al., 2023; Liu et al., 2023a; Li et al., 2023a),
audio (Deshmukh et al., 2023; Gong et al., 2023b; Ruben-
stein et al., 2023), or multiple of them (Han et al., 2023;
Tang et al., 2023b; Moon et al., 2023; Zhao et al., 2023),
and each has a different integration method. In the audio
modality, prior works have looked at speech tasks (Chen
et al., 2023; Rubenstein et al., 2023), general audio under-
standing (Deshmukh et al., 2023; Gong et al., 2023c), music
understanding (Gardner et al., 2023; Won et al., 2023; Li
et al., 2023b; Liu et al., 2023b; Doh et al., 2023), or a combi-
nation of these (Gong et al., 2023b; Tang et al., 2023a; Chu
et al., 2023). The focus of our paper is audio understanding,
which includes non-speech sound and music, and non-verbal
speech. Different from prior works, our model has stronger
audio understanding ability, and is the first audio under-
standing model with i) in-context few-shot learning ability,
ii) retrieval augmented generation ability, and iii) strong
multi-turn dialogue ability.

Audio encoders and representation. Many audio encoders
extract audio features from the spectrogram, including CNN-
based method (Kong et al., 2020) and Transformer-based
methods (Gong et al., 2021; Chen et al., 2022; Défossez
et al., 2022; Radford et al., 2023; Gong et al., 2023a). These
methods are primarily targeted at solving a particular prob-
lem such as speech recognition or event detection. Based
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on these encoders, many joint audio-language embeddings
have been proposed (Elizalde et al., 2023a;b; Wu et al., 2023;
Huang et al., 2022; Li et al., 2023b). These methods use
contrastive learning to map audio and language embeddings
into the same space, and are often trained on a large variety
of audio and language. However, many of these methods
compute a single embedding for an audio and therefore may
lose temporal information. In this paper, we build an audio
encoder with sliding windows based on ClapCap (Elizalde
et al., 2023b) to better capture long-range and temporal
information.

Data augmentation. Due to limited amount of high-
quality human annotated sounds besides speech transcrip-
tions, many works have proposed to augment textural de-
scription with existing LLMs such as GPT-4 (Achiam et al.,
2023). A common strategy is to provide an LLM with
annotated tags, timestamps, and other miscellaneous infor-
mation, and then ask it to generate captions (Wu et al., 2023;
Doh et al., 2023; Mei et al., 2023; Gardner et al., 2023) or
question-answering data pairs (Gong et al., 2023c;b; Liu
et al., 2023b). In this paper, we leverage existing LLMs
to generate two multi-turn dialogue datasets based on de-
tailed annotations, which enable our model strong dialogue
abilities.

In-context learning (ICL). In-context learning is a kind of
few-shot learning ability, where an LLM rapidly adapts to
a desired task at inference time only after looking at a few
examples in the prompt (Brown et al., 2020). It has widely
shown success in natural language tasks (Wei et al., 2021)
and visual-language tasks (Alayrac et al., 2022; Yang et al.,
2023). In the speech domain, ICL has been shown to help
speech-related tasks such as speech recognition, translation,
and processing (Gao et al., 2022; Wang et al., 2023; Hsu
et al., 2023; Chen et al., 2023). However, ICL for general
audio understanding is much less explored. In this paper,
we propose the first audio understanding model with ICL
ability.

Retrieval-augmented generation (RAG). Retrieval-
augmented generation for LLMs is to improve generation
quality by using external knowledge, for example from an
external database, which contains useful and related knowl-
edge. It has been widely applied in natural language tasks
(Guu et al., 2020; Karpukhin et al., 2020; Lewis et al., 2020;
Borgeaud et al., 2022) and visual-language models (Yang
et al., 2023). In the audio-language domain, Ghosh et al.
(2023) proposed a retrieval method for audio captioning
by prepending captions from similar audios to the prompt.
However, it does not provide the retrieved audio to the
model. Consequently, the model loses information on how
similar the retrieved audio is to the test audio. In contrast, we
provide both the retrieved audio and text to our model. The
benefit of this approach is that our model could determine

when and how to use the retrieval based on the similarity
between test and retrieved audio. We provide comparisons
in our few-shot experiments.

3. Method
In this section, we introduce Audio Flamingo, an audio-
understanding language model with few-shot learning via
ICL and RAG. In Section 3.1, we introduce the architecture
used in Audio Flamingo, including the audio feature extrac-
tor, audio representation transformation layers, language
model, and the conditioning method. In Section 3.2, we
introduce the training method of Audio Flamingo, including
the training objective, design of masks, and training stages.

3.1. Architecture

Our neural architecture is composed of four components:
i) an audio feature extractor with sliding window, ii) audio
representation transformation layers, iii) a decoder-only lan-
guage model, and iv) gated xattn-dense layers. Figure 2
summarizes the architecture.

i) Audio feature extractor with sliding window. We use
ClapCap (Elizalde et al., 2023b) as the audio feature extrac-
tor backbone, which we denote as E . ClapCap is hard-coded
to take 7-second of 44.1kHz raw audio as input, then trans-
forms the audio into Mel-spectrogram of hop length 320,
window length 1024, 64 Mel bins, and finally outputs a
1024-dimensional vector representation.

We consider each 7-second segment as a window and use
sliding windows to extract features for longer audio. The
overlap between consecutive windows is 7× 0.75 = 5.25
seconds. Formally, let x(s:t) be the segment of s to
t seconds in audio x. Then, the extracted feature is[
E(x(0:7)), E(x( 74:

7×5
4 )), · · · , E(x( 7(m−1)

4 : 7(m+3)
4 )

]
.

The intuition of this design is to capture long-range and
temporal information that might be ignored in a single
fused representation vector (Wu et al., 2023). We use a
maximum of m = 16 sliding windows, which supports
a maximum of 33.25 second audio length. 1 Long audio
will be cropped and short audio will be zero-padded. If
an entire segment is zero-padded then we will mask the
corresponding embedding at cross attention. If the input
is interleaved data with > 1 audio, we concatenate their
sliding window representations.

ii) Audio representation transformation layers. We in-
crease model capacity by further applying a few audio rep-
resentation transformation layers to the concatenated audio

1We use m = 16 because most training samples are < 30s. Note
that our cross attention complexity is linear in m and therefore
the audio length. In prior self-attention methods the attention
complexity is quadratic in the audio length.
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Figure 2. Neural architecture of Audio Flamingo. It takes interleaved audio and text as input and outputs free-form text.

feature representations described earlier. It is comprised of 3
self-attention layers (Vaswani et al., 2017), with 8 heads and
inner dimension 2048 each. This module is fully trainable.

iii) Language model. We use a decoder-only causal
LM in our architecture. In this paper, we use
OPT-IML-MAX-1.3B (Iyer et al., 2022), a 1.3B parame-
ter model with 24 LM blocks. It has been instruction-tuned
on many natural language tasks.

iv) Conditioning LM on audio representations. We use
the gated xattn-dense layers from Flamingo (Alayrac et al.,
2022) to achieve conditioning on audio inputs. Each layer
has two blocks: 1) a residual block with cross attention and
tanh gating, followed by 2) a residual block with dense
layer and tanh gating. These layers are prepended to each
LM block.

3.2. Training Method

i) Training objective. Let x be the mono-channel audio
input, yins be the instruction text (e.g. question), and yout be
the output text. For conciseness we use z = (x, yins, yout)
to represent each training sample.

We use maximum likelihood estimation (MLE) to train our
model. Let (yout)t be the t-th token and (yout)<t the first
t − 1 tokens of the output. For a non-interleaved sample
z = (x, yins, yout), the log-likelihood is

L(z) =
|yout|∑
t=1

log pθ ((yout)t|x, yins, (yout)<t) . (1)

For an interleaved training sample composed of J samples
zint = {z1, · · · , zJ}, where zj = (xj , yjins, y

j
out), the log-

likelihood is computed over all outputs:

Lint(zint = {z1, · · · , zJ}) =
J∑

j=1

|yj
out|∑
t=1

log pθ

(
(yjout)t|z<j , xj , yjins, (y

j
out)<t

)
.

(2)

Note this interleaved data loss is different from prior models,

which compute losses only on the last output yJout (Yang
et al., 2023), or have either none or indirect conditioning on
prior multimodal inputs x<j (Alayrac et al., 2022; Ghosh
et al., 2023). We expect (2) can help the model look at a var-
ious number (including zero when j = 1) of ICL samples as
well as the associated audio, thus improving robustness and
training efficiency in a similar way as bucketing (Khomenko
et al., 2016), especially when the ICL samples are retrieved
similar samples. The corresponding loss mask is shown on
the right-hand-side of Figure 3.

Let {Di, i ∈ I} be all non-interleaved training datasets, and
{Di′

int, i
′ ∈ Iint} be all interleaved training datasets. The

overall training objective is a weighted mixture of losses on
each dataset:

L = −
∑
i∈I

λiEz∼DiL(z)−
∑

i′∈Iint

λi′Ezint∼Di′
int
Lint(zint),

(3)
where λi’s are the weights for each dataset. The weights
are constant hyper-parameters and have a huge impact on
the final model. They are computed from the pre-defined
number of epochs for each dataset (see Section 4.1 for the
intuition, and Appendix A for details).

ii) Cross attention masks. We use block upper-triangular
cross attention masks for interleaved samples so that the
likelihood of j-th output pθ(y

j
out) is conditioned only on the

first j audio inputs x≤j . We expect this helps making the
model to look at previous audio. Figure 3 demonstrates the
mask.

iii) Two training stages. We divide training into pre-
training and supervised fine-tuning (SFT), a widely adopted
and stable method in training LMs (Ouyang et al., 2022).
During pre-training we only train the audio representation
transformation layers and the gated xattn-dense layers. The
purpose is to obtain a good set of initialization weights for
these layers. During SFT, we unfreeze the entire LM, and
train all modules but the audio encoder. 2

2In initial experiments we found unfreezing the audio encoder
caused training instability.
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Figure 3. Left: the block upper-triangular cross attention masks
between text tokens and audio embeddings. Right: the loss mask
of an interleaved training sample.

4. Data
4.1. Datasets

In this section, we introduce our data strategies, including
dataset collection, generation, and blending. We also intro-
duce templates for each type of dataset.

Dataset sources. We train our model on a variety of au-
dio datasets that can be roughly classified into three types:
music, non-speech general sound, and non-verbal speech.
In this paper, we focus on these data given the immediate
availability of state-of-the-art speech transcription models.
We look at three types of tasks: (1) audio captioning (CAP),
where we would like the model to describe the audio in
a sentence; (2) audio question-answering (AQA), where
we would like the model to answer questions regarding the
audio, and (3) audio classification (CLS), where we would
like the model to classify the sound into one or more labels
corresponding to events, scenes, music genres, instruments,
qualities, and others. An overview of all training datasets is
shown in Table 1.

ICL datasets. In order to give our model in-context learn-
ing and retrieval augmentation abilities, we construct ICL
datasets for each of the raw datasets based on kNN com-
puted on audio embeddings. Let Di be the i-th training
dataset. For each z = (x, yins, yout) ∈ Di, we find its top-k
closest training samples in Di excluding z, where the dis-
tance function is ℓ2 in the fused LAION-CLAP embedding
space (Wu et al., 2023) for the audio part of the sample. We
use Faiss-gpu (Johnson et al., 2019) to accelerate searching.
Figure 4 demonstrates this process.

Dataset staging and blending. We use different datasets
during the pre-training stage and the supervised fine-tuning
(SFT) stage. The selection is based on data quality, diversity,
source, and size as described below. 1) Data quality: low
quality datasets, including those with low-quality or noisy
audio, low-quality text, and inaccurate text annotation, are

Figure 4. Construction of ICL samples based on RAG. We use
LAION-CLAP to find top-k most similar samples from the
database, and use the retrieved audio and text to construct an
ICL training sample.

used for pre-training. 2) Data diversity: datasets with less
diversity or strong biases in label distributions are used
for pre-training. 3) Data sources: datasets containing AI-
generated contents are mostly used for pre-training, whereas
some high-quality subsets may be used for SFT. 4) Data
sizes: very large datasets may be used both for pre-training
and SFT. 5) ICL datasets are used in the SFT stage.

We assign different weights λi when sampling from differ-
ent datasets based on their sizes, quality, and diversity. The
weights are computed from the number of epochs for each
dataset. The details of staging and weights can be found in
Appendix A.

4.2. Templates

Our templates are based on OPT-IML’s template (Iyer et al.,
2022) and Flamingo’s multimodal template (Alayrac et al.,
2022). For a non-interleaved sample, the template is de-
scribe below.

<s>{task description}<audio>{instruction}
Options:\n- option1\n· · ·- optionm
<SEP>{output}<EOC></s>

In this template, <audio> is the special token that informs
the language model the location of audio in the context. The
{task description} is natural language that tells the
language model which task it is handling, for example “The
task is event classification”. The {instruction} is the
language instruction such as a question. The options
sentence is to tell the language model all options for classifi-
cation so that it can classify an audio by outputting free-form
text. The {output} is the ground truth output that will be
trained. The <SEP> token is a separator that indicates the
end of instruction, and <EOC> is the end-of-chunk token
that indicates the end of a sample. Below is the template
for interleaved (ICL) samples with k + 1 tuples of (audio,
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Table 1. All datasets used to train our model. The total number of audio-text pairs is approximately 5.9 million. The total length of audio
is approximately 18.1 thousand hours.

Audio Type Task Datasets #Audio-Text Pairs

General
Sound

CAP
WavCaps (Mei et al., 2023), Macs (Martin Morato & Mesaros, 2021),

∼829 KSoundDescs (Oncescu et al., 2021), Clotho-v2 (Drossos et al., 2020),
WavText5K (Deshmukh et al., 2022), LAION-630k (Wu et al., 2023)

AQA Clotho-AQA (Lipping et al., 2022), Open-AQA (Gong et al., 2023b) ∼1970 K

CLS
AudioSet (Gemmeke et al., 2017), FSD50k (Fonseca et al., 2021),

∼1091 KCochlScene (Jeong & Park, 2022), NonSpeech7K (Rashid et al., 2023),
Chime-Home (Foster et al., 2015), Sonyc-UST (Cartwright et al., 2019)

Music

CAP LP-MusicCaps (Doh et al., 2023), MusicCaps (Agostinelli et al., 2023) ∼1389 K
AQA MusicQA (Liu et al., 2023b), MusicAVQA (Li et al., 2022) ∼94 K

CLS NSynth (Engel et al., 2017), MTG-Jamendo (Bogdanov et al., 2019), ∼459 KFMA (Defferrard et al., 2016), MusDB-HQ (Rafii et al., 2019),

Speech CLS
MSP-Podcast (Lotfian & Busso, 2017), Emov-DB (Adigwe et al., 2018)

∼92 KJL-Corpus (James et al., 2018), Tess (Pichora-Fuller & Dupuis, 2020),
MELD (Poria et al., 2018), OMGEmotion (Barros et al., 2018)

instruction, output).

<s>{task description}Here are similar
samples.
<audio>{instruction1}<SEP>{output1}<EOC>
· · ·
<audio>{instructionk}<SEP>{outputk}<EOC>
<audio>{instruction}
Options:\n- option1\n· · ·- optionm
<SEP>{output}<EOC></s>

4.3. Multi-Turn Dialogue Dataset

We aim at giving our model stronger abilities in deal-
ing with complicated multi-turn dialogues. To achieve
this, we use GPT-4 (Achiam et al., 2023) to generate two
multi-turn dialogue datasets. We construct these datasets
based on the strongly labeled AudioSet-SL (Hershey et al.,
2021) and MusicCaps (Agostinelli et al., 2023), with thresh-
olding based on LAION-CLAP embeddings (Wu et al.,
2023) to filter undesirable samples. We name these two
generated datasets AF-Dialogue-AudioSetSL and
AF-Dialogue-MusicCaps, respectively. The detailed
instructions, filtering method, dataset statistics, and exam-
ples are in Appendix B. We use the following template for
an s-turn dialogue data sample.

<s>The task is dialogue.<audio>
user: {instruction1}
assistant: <SEP>{output1}<EOC>
· · ·
user: {instructions}
assistant: <SEP>{outputs}<EOC></s>

5. Experiments
In this section, we answer the following questions:
Q1. Does Audio Flamingo understand audio better than the
state-of-the-art baselines?
Q2. How significantly does the ICL-based RAG help Audio

Flamingo adapt to new tasks?
Q3. What is Audio Flamingo’s ability to have multi-turn
dialogues with a user?
Q4. Which specific configuration of Audio Flamingo works
the best overall?

5.1. Experimental Setup

We use 8 NVIDIA A100 GPUs to train our model. During
pre-training, we use batch size = 384, AdamW optimizer
(Loshchilov & Hutter, 2017) with learning rate = 1× 10−4

and weight decay = 0.1. For efficiency, we use bf16 with
automatic mixed precision. During supervised fine-tuning
(SFT), we reduce the batch size to 128, the learning rate
to 2 × 10−5, and use fp32 for better numerical precision.
We let the maximum number of interleaved samples to be
8 unless specified. We set the maximum number of text
tokens to be 512.

We compare to the most recent state-of-the-art baselines
on several benchmarks. On each dataset, we choose the
best score among all SOTA baselines as the reference value.
Unless specified, we report accuracy for question-answering
and single-label classification, F1 for multi-label classifica-
tion, and CIDEr (Vedantam et al., 2015) for captioning and
dialogues. Note we use free-form text output to evaluate
our model at all times. We use a single model to evaluate
on all benchmarks except for dialogues, and a chat model
on dialogues.

For zero-shot and few-shot benchmarks, these datasets are
excluded from the pre-training sets and SFT sets. For those
derived from a parent dataset (e.g. AudioCaps audio are
derived from AudioSet), we removed the training samples
from the parent set as well as other child sets derived from
that parent set.
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Table 2. Evaluation of Audio Flamingo versus SOTA baseline methods on in-distribution benchmarks. Reference values are the SOTA
models for each task. Audio Flamingo shows strong audio understanding ability on captioning, question answering, and audio classification.

Dataset Task Metric Previous SOTA ↑ Ours ↑
Clotho-v2 CAP CIDEr 0.441 (Chu et al., 2023) 0.465
ClothoAQAunanimous AQA ACC 74.9% (Chu et al., 2023) 86.9%
ClothoAQAnon-binary AQA ACC 29.1% (Deshmukh et al., 2023) 49.5%
ClothoAQAnumerical AQA ACC 26.2% (Deshmukh et al., 2023) 36.4%
MusicAVQAaudio-only AQA ACC 72.1% (Chu et al., 2023) 71.6%
CochlScene CLS ACC 91.6% (Deshmukh et al., 2023) 83.0%
NonSpeech7k CLS ACC 79.0% (Rashid et al., 2023) 85.1%
FSD50k CLS F1approx 65.6% (Deshmukh et al., 2023) 69.7%
NSinstrument CLS ACC 78.8% (Chu et al., 2023) 77.1%
NSquality CLS F1 46.3% (Deshmukh et al., 2023) 66.7%
NSsource CLS ACC 60.1% (Deshmukh et al., 2023) 78.7%

Table 3. Evaluation of Audio Flamingo versus SOTA baseline methods on zero-shot benchmarks. Reference values are the SOTA models
for each task. Audio Flamingo shows strong zero-shot generalization ability.

Dataset Task Metric Previous SOTA (0-shot) ↑ Ours (0-shot) ↑
AudioCaps (Kim et al., 2019) CAP CIDEr 0.281 (Salewski et al., 2023) 0.502
CREMA-D (Cao et al., 2014) CLS ACC 18.5% (Deshmukh et al., 2023) 26.5%
Ravdess (Livingstone & Russo, 2018) CLS ACC 21.7% (Elizalde et al., 2023b) 20.9%
US8K (Salamon et al., 2014) CLS ACC 71.9% (Deshmukh et al., 2023) 75.0%
GTZAN (Sturm, 2013) CLS ACC 71.0% (Han et al., 2023) 67.9%
Medley-solos-DB (Lostanlen et al., 2019) CLS ACC 61.3% (Deshmukh et al., 2023) 92.7%

5.2. Q1: Strong Audio Understanding Ability

We evaluate our model on several in-distribution (train-test)
benchmarks, and compare to state-of-the-art audio language
model baselines. The results are shown in Table 2. Note that
we define F1approx to measure inexact but similar predicted
labels in FSD50k, where we consider the prediction to be
correct if the sentence BERT similarity between output and
ground truths is > 0.8 (Reimers & Gurevych, 2019; 2020).
This metric is applied to outputs from baselines as well.

Audio Flamingo can match or outperform SOTA baselines
– many of which are much larger LLMs (7B (Gong et al.,
2023c;b; Chu et al., 2023) or 13B (Tang et al., 2023a)) –
on most tasks, indicating our proposed method has strong
audio understanding ability. Our model also listens to the
audio better. On ClothoAQA, our model has 10.4% higher
accuracy than baselines on numerical question answering,
indicating our model understands the number of occurrences
better. On NSynth, our model has 20.4% higher F1 on
quality prediction and 18.6% higher accuracy on source
prediction, indicating our model understands the overall
quality of audio better. In Appendix C.3, we use qualitative
samples to show that our model understands the order of
appearance of different sounds, perceives loudness and its
change over time, and perceives the distances of sounds
from different objects.

5.3. Q2: In-Context Few-Shot Learning

We aim to measure the effect of ICL-based RAG in Audio
Flamingo when it is evaluated on unseen datasets.

First, we report the results on several zero-shot benchmarks
and comparison with SOTA zero-shot methods in Table 3.
The results indicate our method is better on most tasks and
has strong generalization ability.

We then apply ICL-based RAG to these benchmarks. We
compare to our zero-shot results and the SOTA baseline
of audio captioning on AudioCaps. The results on clas-
sification are shown in Table 4, and the comparison on
retrieval-augmented audio captioning is shown in Table 5.
As expected, there is consistent improvement over zero-
shot results, with an average improvement over 10% for
classification. Our method also significantly outperforms
the SOTA retrieval-augmented audio captioning method on
AudioCaps. In Appendix C.1, we show Audio Flamingo
can adapt to unseen labels. In Appendix C.4, we show Au-
dio Flamingo looks at related retrieval (e.g., by taking key
words from retrieved captions), and ignores noisy retrieval.
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Table 4. Evaluation of few-shot results of Audio Flamingo with
ICL-based RAG. ∆ is the absolute improvement of few-shot over
zero-shot results in Table 3. ICL-based RAG leads to consistent
improvement over zero-shot results.

Dataset Ours (8-shot) ↑ ∆ ↑
CREMA-D 31.8% 5.3%
Ravdess 35.2% 14.3%
US8K 94.7% 19.4%
GTZAN 79.5% 11.6%
Medley-solos-DB 95.7% 3.0%

Dataset Ours (16-shot) ↑ ∆ ↑
CREMA-D 35.4% 8.9%
Ravdess 40.2% 19.3%
US8K 91.9% 16.9%
GTZAN 76.3% 8.4%
Medley-solos-DB 96.0% 3.3%

Table 5. Evaluation of retrieval-augmented audio captioning on
AudioCaps. We compare Audio Flamingo to the SOTA baseline
RECAP (Ghosh et al., 2023). Audio Flamingo achieves signifi-
cantly better results than RECAP.

Method RECAP Ours Ours Ours
# Shots 4 4 8 16
CIDEr ↑ 0.359 0.518 0.538 0.546

5.4. Q3: Multi-Turn Dialogues

We measure Audio Flamingo’s ability to answer ques-
tions in a multi-turn dialogue setting. The context is
more complex and strongly correlated between rounds
(e.g. there exist many pronouns and follow-up ques-
tions). We fine-tune Audio Flamingo on the two sets
that we generated (AF-Dialogue-AudioSetSL and
AF-Dialogue-MusicCaps) to obtain a chat model. We
evaluate the chat model on the test split of these two dia-
logue datasets. We take user instructions and let the model
generate answers turn-by-turn (where previous generated
answers become the chatting history for next generation).
We compare to Qwen-Audio (Chu et al., 2023), LTU (Gong
et al., 2023c), and MU-LLaMA (Liu et al., 2023b) in Ta-
ble 6. 3 Our chat model achieves significantly better results
than baseline methods. In Appendix C.5, we use qualitative
samples to show that our chat model captures context such
as prior information and pronouns better.

5.5. Q4: Ablation Studies

Effect of number of few-shot samples. We study different
numbers of in-context few-shot samples and evaluate on
the few-shot benchmarks. In Figure 5, we plot the relative

3While the baseline methods claimed to support multi-turn dia-
logues, we were unable to find quantitative evidence.

Table 6. Evaluation of Audio Flamingo versus base-
line methods on the multi-turn dialogue test sets. A
stands for AF-Dialogue-AudioSetSL, M stands for
AF-Dialogue-MusicCaps, and the superscript H stands for
an additional held-out testset generated with gpt-3.5-turbo.
We report CIDEr, Bleu4 (Papineni et al., 2002), and Rouge-L
(R-L) (Lin, 2004). Methods with the † superscript are fine-tuned
on our dialogue training sets, and methods without † are evaluated
zero-shot on the dialogue test sets. Audio Flamingo significantly
outperforms larger baseline models in all settings, indicating
strong dialogue ability of our proposed model.

Testset Method CIDEr ↑ Bleu4 ↑ R-L ↑
A Qwen-Audio 0.507 0.060 0.292
A LTU 0.580 0.122 0.324
A LTU† 0.823 0.153 0.403
A Ours† 1.622 0.237 0.473
AH LTU† 0.523 0.095 0.343
AH Ours† 1.904 0.219 0.476

M MU-LLaMA 0.585 0.083 0.348
M LTU 0.168 0.065 0.217
M LTU† 0.419 0.108 0.336
M Ours† 1.143 0.142 0.417
MH LTU† 0.558 0.083 0.347
MH Ours† 1.350 0.207 0.448

improvements over zero-shot results. Results show a clear
trend that having more ICL samples improves few-shot
results, and the improvement highly depends on the dataset.

Effect of architecture. In Figure 6, we compare re-
sults between opt-1.3b (Zhang et al., 2022) and the
instruction-tuned opt-iml-max-1.3b (Iyer et al., 2022),
and also compare different audio encoders including Clap-
Cap (Elizalde et al., 2023b), Clap2023 (Elizalde et al.,
2023b), and LAION-CLAP (Wu et al., 2023). In terms
of the LM backbone, the instruction-tuned opt is better in
most tasks. As of audio encoders, LAION-CLAP is worse
in most tasks, ClapCap is better in open-ended tasks, and
Clap2023 is better in most close-ended tasks.

Effect of training data. In Figure 7, we compare Au-
dio Flamingo trained on three different training sets to the
Pengi baseline: (1) no pretraining, SFT on our best available
dataset that is strictly a subset of Pengi’s training set, (2)
pretraining and SFT on this strict subset, and (3) pretraining
and SFT on our curated datasets. Audio Flamingo achieves
better evaluation results than Pengi even if no extra data is
used. In addition, increasing the data amount in pretraining
and SFT can improve the results on average.

6. Conclusion and Future Work
In this paper, we present Audio Flamingo, an audio language
model with a series of innovations that achieves the state-
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Figure 5. Relative improvement of few-shot results over zero-shot
results under different number of ICL samples. Using more ICL
samples consistently improves few-shot results, and the benefit is
dataset-dependent.
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Figure 6. Relative difference of results from different LM back-
bones and audio encoders. The opt-1.3b model without
instruction-tuning is systematically worse than the instruction-
tuned opt-iml-max-1.3b. LAION-CLAP is worse than Clap-
Cap in most cases. Clap2023 is better than ClapCap in close-ended
tasks, but worse in open-ended tasks including captioning and
open question-answering.
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Figure 7. Relative difference of results from different training
datasets compared to the Pengi baseline. Audio Flamingo achieves
better results than Pengi even if no extra data is used. Larger scale
pretraining and SFT lead to better results on these benchmarks on
average.

of-the-art results on several close-ended and open-ended
audio understanding tasks without task specific fine-tuning.
It also has strong ICL and RAG abilities, and has the state-
of-the-art few-shot learning results. Furthermore, we design
a dataset generation strategy and introduce two dialogue
datasets, enabling Audio Flamingo to chat with a user about
the audio for multiple rounds and achieve state-of-the-art
results on dialogue benchmarks.

Our model has several limitations, which we plan to address
in future work. One important future direction is to investi-
gate scaling strategies for using larger LMs. Assuming that
larger LMs could have better knowledge and stronger ability

to follow instructions, we believe that Audio Flamingo could
benefit from a larger LM. A second future direction is to in-
vestigate complex speech-related tasks beyond transcription.
This requires our model to condition on dense embeddings
(Chen et al., 2023). This modification is straightforward
in Audio Flamingo as the architecture is flexible enough
to support new embeddings through the addition of new
cross-attention heads. Another future direction is to build a
audio language model that can output both text and audio
and follow more complex interleaved instructions. Finally,
a future direction towards unifying more modalities is to
combine the audio understanding abilities of our model with
visual language models (Alayrac et al., 2022) such that one
model could understand image, video, and audio.
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A. Dataset Staging, Weights, and Templates
Table 1 includes an overview of datasets (by type) we use to train Audio Flamingo. We construct instructions for each task
and dataset. Below are all instruction templates we use.

Audio Captioning:
◦ Describe the sound/music in a sentence.
◦ Describe the sound/music at length.

Audio Question Answering:
◦ {question}
◦ Please answer this question: {question}
◦ Please answer this question: {question}. Options:\n- yes\n- no

Audio Classification:
◦ Classify this sound. (Options: ...)
◦ Describe the sound in {number} words.
◦ What is the emotion of this speech? (Options: ...)
◦ What is the instrument/genre of this music? (Options: ...)
◦ This music note is produced by

The detailed pre-training datasets and their number of epochs are shown in Table 7. The detailed SFT datasets and their
number of epochs are shown in Table 8.

Table 7. Pre-training datasets and epochs.

Dataset Audio Length #Audio-Text Pairs Epochs
OpenAQA 693.2 hrs 1959.8K 1.0

Laion630kBBCSoundEffects 456.9 hrs 15.1K 5.0
Laion630kFreesound 2494.8 hrs 306.5K 1.0

SoundDescs 749.7 hrs 23.1K 1.0
WavCaps 3793.3 hrs 402.6 K 1.75
AudioSet 2617.8 hrs 950.8K 1.0

WavText5K 23.8 hrs 4.3K 3.0
MSP-Podcast 73.9 hrs 45.1K 1.2

MELD 8.7 hrs 32.9K 2.4
MusicAVQAaudio-visual 142.4 hrs 17.9K 3.0

MusicQA 62.9 hrs 70K 1.2
LP-MusicCapsMSD 5805.7 hrs 1331.8K 1.0

NSynth 321.3 hrs 289.2K 0.4
MTG-Jamendo 3768.9 hrs 55.6K 1.0

15



Audio Flamingo

Table 8. SFT datasets and epochs.

Dataset Audio Length #Audio-Text Pairs Epochs ICL Dataset Epochs
ClothoAQA 7.4 hrs 9.7K 3.5 0.5
OpenAQA 693.2 hrs 1959.8K 0.1 -
Clotho-v2 24.0 hrs 19.2K 2.0 0.5

Laion630kEpidemic 209.4 hrs 40.7K 0.8 0.2
MACS 10.9 hrs 17.3K 0.8 0.2

FSD50k 80.8 hrs 41.0K 0.9 0.3
CochlScene 169.0 hrs 60.9K 1.2 0.3

NonSpeech 7k 6.2 hrs 6.3K 2.4 0.6
Chime-home 5.0 hrs 4.5K 1.5 0.5
Sonyc-UST 34.9 hrs 27.9K 0.8 0.2
Emov-DB 7.8 hrs 6.8K 1.6 0.4
JL-Corpus 1.4 hrs 2.4K 6.0 1.5

Tess 1.6 hrs 2.8K 2.0 0.5
OMGEmotion 3.0 hrs 1.7K 3.0 -

MusicAVQAaudio-only 77.1 hrs 5.7K 5.0 1.0
MusicQA 62.9 hrs 70K 0.35 0.05

LP-MusicCapsMSD 5805.7 hrs 1331.8K 0.025 0.007
LP-MusicCapsMTT 126.4 hrs 46.9K 0.8 0.2
LP-MusicCapsMC 7.4 hrs 7.9K 2.0 -

MusicCaps 7.4 hrs 2.6K 6.0 -
NSynth 321.3 hrs 289.2K 1.0 1.0

MTG-Jamendo 3768.9 hrs 55.6K 0.1 -
MusDB-HQ 29.1 hrs 10.2K 1.0 -

FMA 860.7 hrs 104.2K 0.4 0.1

B. Generated dialogue datasets
B.1. Overview

In this section, we introduce methods to generate our AF-Dialogue-AudioSetSL and AF-Dialogue-MusicCaps
datasets with GPT-4 (Achiam et al., 2023). AF-Dialogue-AudioSetSL is generated based on the annotated events and
timestamps of strongly labeled AudioSet-SL (Gemmeke et al., 2017; Hershey et al., 2021). There are 76k dialogues in the
train split and 1.5k dialogues in test split. AF-Dialogue-MusicCaps is generated based on tags and descriptions of
MusicCaps (Agostinelli et al., 2023). There are 3.3k dialogues in the train split and 1.4k dialogues in the test split. Each
training sample has one to four rounds (QA pairs), and each testing sample has three or four rounds.

B.2. Prompts

Below we show the prompts used to generate audio-based multi-turn dialogues from GPT-4 for the strongly labeled
AudioSet-SL dataset (Gemmeke et al., 2017; Hershey et al., 2021) and the MusicCaps dataset (Agostinelli et al., 2023)
respectively.
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sys prompt: Based on the sound events, create a dialogue between you (the assistant) and a person (the user) about the events in
the audio. Each dialogue should consist of:
1. A user examines the audio, and sends a reasonable and creative message to the assistant. 2. Once the audio is provided, the
assistant thoroughly perceives and comprehends them, responding with helpful answers that provide comprehensive reasoning.
Do not include timestamps in the answer provided by the assistant. 3. Considering the past dialogue i.e. the question and the
answer in the previous timestep, the user chooses another question or further inquiry. 4. The assistant provides a helpful answer
providing comprehensive reasoning regarding the audio content.
The audios are 10 seconds long and the sound events are segmented based on where they occur in the audio. All the questions
asked by the user should be diverse and complex.

Example 1: Sound Events: Sound of Ambulance (siren) (High-pitched and wailing): [0.0s-1.0s]; Sound of Traffic noise,
roadway noise (Droning, loud and intrusive): [0.0s-10.0s]; Sound of Accelerating, revving, vroom (Highpitched, short and
intense): [2.0s-10.0s]; Sound of Generic impact sounds (Loud and sharp): [6.7s-6.8s].
Dialogue:
User: What does the audio sound like?
Assistant: An ambulance siren echoes while traffic noise fades, and an engine revs.
User: Can you describe in more detail about the engine revs?
Assistant: The engine revving is highpitched, short and intense.
User: From the highpitched sound, can you tell me what vehicle it was?
Assistant: It is hard to tell this from the information provided.
User: Are there any other events in the audio that might be relevant?
Assistant: There is a sound of impact which is very loud and sharp.

Example 2: Sound Events: Sound of Outside, rural or natural: [0.000s-10.000s]; Sound of Liquid: [0.474s-0.680s], [4.249s-
5.292s]; Sound of Gurgling, bubbling: [0.474s-0.680s], [4.249s-5.292s]; Sound of Splash, splatter: [1.620s-3.116s]; Sound of
Laughter: [2.745s-4.029s], [5.299s-10.000s]; Sound of Chuckle, chortle: [2.752s-4.029s]; Sound of Speech: [4.551s-4.935s];
Sound of Male speech, man speaking: [4.557s-4.935s]; Sound of Belly laugh: [5.292s-10.000s]
Dialogue:
User: What are the main events in the audio?
Assistant: Liquid sounds, laughter, speech, and a man speaking can be heard in a rural setting.
User: Is is he speaking to other people?
Assistant: As there is sound of laughter present from other people, the man might be speaking to others.
User: Can you explain in more detail about the first event?
Assistant: The liquid sounds are more of splashing, thrashing and splattering sounds.
User: Are there other people laughing with him?
Assistant: Yes, there are other laughter voices along with that of the man.

Based on the above examples, design a four-turn dialogue between the user and assistant for the example given below. The
question asked by the user should use pronouns such as ‘he’, ‘she’, ‘it’, ‘they’ and ‘them’ while referring to entities that have
already occurred in the past questions or answers. Format each QA pair in a single line as a JSON dictionary (key “user” for
question, and “assistant” for answer, wrapped with { and }). Do not include any other explanation.
Example 3:
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sys prompt: Based on the music, create a dialogue between you (the assistant) and a person (the user) about the events in the
music audio. Each dialogue should consist of:
1. A user examines the music, and sends a reasonable and creative message to the assistant. 2. Once the music audio is
provided, the assistant thoroughly perceives and comprehends them, responding with helpful answers that provide comprehensive
reasoning. Do not include timestamps in the answer provided by the assistant. 3. Considering the past dialogue i.e. the question
and the answer in the previous timestep, the user chooses another question or further inquiry. 4. The assistant provides a helpful
answer providing comprehensive reasoning regarding the music content. The more complex and diverse the question, the better.
You can use the list of questions below while asking questions.
List of questions: Is it a live recording or a studio recording?
Is the guitar acoustic or electric?
Is it playing chords, a riff or a solo?
What music style or genre is it?
What key is it in?
How about the time signature?
What’s the tempo? Slow, Medium or Fast?
Does it have vocals?
Is it low pitched or high pitched?
Is the person speaking fast or slow?
What is the language and accent?
What emotion is conveyed by the voice?
What are the vocal characteristics of that emotion?
How old is the person likely to be given their vocal characteristics?

Example 1:
Music description: House music with a thought provoking message in the beginning that eventually builds up and can be used to
create the sense of a social revolution.
Dialogue:
User: What type of music is this?
Assistant: It is house music with synth and drums and a man speaking at the beginning.
User: What is his tone while speaking?
Example 2: He has an intense and energetic tone in his voice.
User: Does he speak till the end?
Assistant: No, he stops speaking halfway and then it is followed by house music.
User: What is the source of this music?
Assistant: This is electronic music.
Example 2:
Music description: Energetic bluesy song with a harmonica and horn section in musical dialogue.
Dialogue:
User: What instruments are playing in this music?
Assistant: This is a jazzy tune with harmonica, trumpet and drums playing.
User: Which key is the music playing in?
Assistant: The key is A Major.
User: How will you explain the tempo of this piece?
Assistant: The music is bouncy and positive with high beats per minute in the beginning and then changes signature halfway
through.
User: What is the source of this music?
Assistant: This is fusion jazz as it has elements of bass and synthesizer.
Based on above examples, design a four-turn dialogue between the user and assistant for the example given below. The question
asked by the user should use pronouns such as ‘he’, ‘she’, ’it’, ’they’ and ‘them’ while referring to entities that have already
occurred in the past questions or answers. Format each QA pair in a single line as a JSON dictionary (key “user” for question,
and “assistant” for answer, wrapped with { and }). Do not include any other explanation.
Example 3:
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B.3. Dialogue filtering

The dialogues generated by GPT-4 as discussed in B.2 do not always follow the prompts, resulting in answers that have
phrases such as “does not specify”, “cannot be determined”, “without additional context” and so on. Hence, follow-
ing Gardner et al. (2023), we filter such QA pairs to improve the data quality and ensure desirable outputs from the
model.

Apart from the manual filtering step, we also filter samples based on the similarity of the answer generated by GPT-4
and the audio samples. Specifically, we compute the cosine similarity between the LAION-CLAP text-embeddings and
audio-embeddings (Wu et al., 2023) for a given QA pair in each dialogue. The distributions of similarities are shown in
Figure 8. We remove samples if the similarity is below a threshold of 0.3.

Figure 8. Distributions of LAION-CLAP similarities before filtering the generated AF-Dialogue-AudioSetSL (left) and
AF-Dialogue-MusicCaps (right) datasets.
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B.4. Examples of generated dialogues

We demonstrate an example of generated dialogue for each of the generated dataset.

[Audio annotations: Sound of Mechanisms (Produces sound through mechanical
means.): [0.119s-10.000s]; Sound of Generic impact sounds (Short, sharp, and loud
bursts.): [0.217s-0.387s], [2.394s-2.727s], [2.889s-3.255s], [3.799s-4.132s],
[4.473s-4.766s], [4.928s-5.188s], [8.129s-10.000s]; Sound of Glass shatter
(High-pitched, sharp, sudden, loud crash.): [1.622s-4.652s]; Sound of Walk,
footsteps (Soft, rhythmic, echoing thuds.): [5.724s-6.106s], [6.455s-6.650s],
[7.024s-7.479s], [7.625s-7.901s]]

User: Can you describe the main events in the audio?
Assistant: The audio mainly consists of mechanical sounds, sharp impact sounds, the shattering of glass, and the sound of
footsteps.
User: What can you tell me about the impact sounds?
Assistant: The impact sounds are short, sharp, and loud bursts. They occur at several points throughout the audio, suggesting
some kind of repetitive action or event.
User: What about the glass shattering, does it happen more than once?
Assistant: The glass shattering sound is a high-pitched, sharp, sudden, loud crash. It occurs once in the audio, lasting for about
three seconds.

[Audio annotations: This is the recording of a cowbell. The cowbell is being
played with the side and the tip of the drumstick repeatedly. This recording could
be sampled for use in beat-making especially for genres that have a heavy usage of
cowbells such as latin dance music.]

User: What instrument is being played in this audio?
Assistant: The instrument being played in this audio is a cowbell.
User: How is it being played?
Assistant: The cowbell is being played with the side and the tip of the drumstick repeatedly.
User: What is the tone of the cowbell?
Assistant: The tone of the cowbell is bright, resonant, and penetrating.
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C. Additional Experiments, Examples and Discussion of Audio Flamingo
We refer readers to visit our demo website: https://audioflamingo.github.io/ for comprehensive demos.

C.1. Additional Few-shot Experiments on Unseen Labels

Audio Flamingo can be adapted to classification with completely unseen labels with the help of ICL-based RAG. In Table
9 we demonstrate Audio Flamingo can be adapted to new classification tasks where none of the labels have been seen
during training. The labels are bird species and gun names, respectively. The huge improvement from zero-shot to few-shot
indicates Audio Flamingo’s strong ability to follow retrieved in-context samples.

Table 9. Accuracy of Audio Flamingo on new classification tasks with unseen labels.

Dataset Zero-shot Few-shot
BG-Gun-Sound (Park et al., 2022) 1.6% 53.5%

Birds-Dataset-Till-2022 (Mohanty) 0.0% 42.2%

C.2. Compute

In this section we compare the computation resources required by our model and baseline models. Pengi (Deshmukh et al.,
2023) is based on GPT2-base and has a total size 308M. It’s trained on 20 V100 GPUs. LTU (Gong et al., 2023c) is based
on LLaMA-7B and has a total size 6.74B. It’s trained on 4 RTX A6000 GPUs for about 3 days. Qwen-Audio (Chu et al.,
2023) is based on Qwen-7B and has a total size of 8.3B. The training cost is unknown. Salmonn (Tang et al., 2023a) is
based on Vicuna-13B. The training cost is unknown. Our proposed Audio Flamingo has a total size of 2.2B. We use 8 A100
GPUs. It takes about 5-6 days for pretraining, about 3 days for SFT, and about 2hrs for dialogue fine-tuning.

C.3. Audio Flamingo understands sound in depth

Audio Flamingo understands occurrences in audio.
[Subjective description of the audio: three people talking in order, with a lot of
noise in the recording.]
Task: Audio Question Answering
Instruction: How many different voices are there?
Ground Truth: Three.
Baseline: One.
Audio Flamingo: Three.

Audio Flamingo understands the order of sounds.
[Subjective description of the audio: a man speaks on a talk show, then the
audience laugh and clap their hands.]
Task: Audio Captioning
Instruction: Describe this sound.
Ground Truth: A man is speaking followed by applause.
Baseline: A crowd of people are speaking and applauding.
Audio Flamingo: A man is speaking and then the audience claps.

Audio Flamingo understands quality of audio.
[Subjective description of the audio: a beautiful and sad piece of instrumental
music starting with keyboard playing chords slowly followed by soft violin.]
Task: Audio Question Answering
Instruction: What is the atmospheric quality of the audio?
Ground Truth: The atmospheric quality of the audio is its ability to create a sense of space and depth, with a focus on creating a
sense of mystery and wonder.
Baseline: The audio has a rich and dynamic quality, which suggests a lively and engaging atmosphere, possibly associated with
music or a musical performance, but it is not specified in the given audio events.
Audio Flamingo: The audio has a melancholic and introspective atmosphere.
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Audio Flamingo perceives loudness and its change over time.
[Subjective description of the audio: a man speaks in a small volume, then there is
very loud burst, and then the man laughs for very short time in a surprised way.]
Task: Audio Captioning
Instruction: Describe the sound in a sentence.
Ground Truth: A man briefly talks followed by a loud burst then laughter.
Baseline: A person is laughing and a gun is fired.
Audio Flamingo: A man is speaking and then a loud bang occurs.

Audio Flamingo understands distances of sounds.
[Subjective description of the audio: a man speaks in the rain, then another man
laughs very slightly, followed by the sound of thunderstorm.]
Task: Audio Captioning
Instruction: Describe this sound.
Ground Truth: A man talking followed by another man laughing as rain falls and thunder roars in the distance.
Baseline: A man is talking and rain is falling.
Audio Flamingo: A man is talking in the rain with thunder in the background.

C.4. Audio Flamingo looks at retrieved samples

Audio Flamingo borrows key words from retrieved samples.
Task: Audio Captioning
Instruction: Describe this sound.
Ground Truth: Paper is crinkling and crumpling, and thumping occurs.
Baseline: Movement of a person in a kitchen with pots and pans on a counter.
Retrieved samples:
1) Some material is crumpled.
2) Plastic is being crumpled.
3) Crinkling of a paper with a small step.
Audio Flamingo: A person crumples up a sheet of paper and crinkles it.

Task: Audio Captioning
Instruction: Describe this sound.
Ground Truth: a woman speaks, and faucet water runs.
Baseline: A woman is talking to a child.
Retrieved samples:
1) A woman speaking and water running.
2) A women voice followed by flowing water from a faucet.
3) Water sprays from a faucet, a person speaks.
Audio Flamingo: A woman speaks while water runs from a faucet.
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Audio Flamingo can ignore noisy retrieved samples and make correct prediction.
Task: Music Genre Classification
Instruction: What is the genre of this music?
Ground Truth: pop.
Retrieved samples:
1) reggae.
2) jazz.
3) disco.
Audio Flamingo: pop.

Task: Music Instrument Classification
Instruction: What is the instrument of this music?
Ground Truth: flute.
Retrieved samples:
1) clarinet.
2) clarinet.
3) clarinet.
Audio Flamingo: flute.

C.5. Audio Flamingo has strong dialogue ability

[Audio annotations: Sound of Chirp, tweet (High-pitched, short, repetitive bird
sounds.): [0.000s-1.157s], [1.543s-2.055s], [3.220s-4.409s], [4.748s-5.709s],
[5.921s-6.780s], [7.094s-7.976s], [8.331s-8.819s], [9.142s-10.000s]; Sound of
Animal (Loud, diverse, and often rhythmic.): [0.000s-1.157s], [1.528s-2.031s],
[3.220s-4.386s], [4.764s-5.701s], [5.929s-6.740s], [7.071s-7.976s], [8.331s-8.795s],
[9.134s-10.000s]; Sound of Bird vocalization, bird call, bird song (Melodic,
rhythmic, varied pitch and tone.): [0.000s-1.165s], [1.528s-2.039s],
[3.213s-4.386s], [4.772s-5.693s], [5.921s-6.701s], [7.047s-7.953s], [8.331s-8.780s],
[9.150s-10.000s]; Sound of Bird (High-pitched, melodic, rhythmic chirping sounds.):
[0.000s-1.173s], [1.535s-1.992s], [3.205s-4.362s], [4.780s-5.669s], [5.906s-6.669s],
[7.016s-7.929s], [8.323s-8.772s], [9.134s-10.000s]; Sound of Speech (S̈ound waves
produced by vocal cords.)̈: [2.024s-3.008s], [4.630s-5.283s], [6.835s-8.134s],
[8.701s-10.000s]; Sound of Female speech, woman speaking: [2.047s-3.039s],
[4.614s-5.315s], [6.843s-8.150s], [8.709s-10.000s]]

User: Can you briefly explain what you hear in the audio?
Ground Truth: The audio primarily consists of bird sounds, including chirping and bird vocalizations. There are also sounds of
other animals. Additionally, there is a woman speaking at certain intervals.
Baseline: Birds are chirping.
Audio Flamingo: The audio features a variety of sounds including bird vocalizations, mechanical sounds, impact sounds, a man
speaking, and a ticking sound.

User: Are the bird sounds continuous?
Ground Truth: The bird sounds are not continuous. They occur at different intervals throughout the audio, with some overlap
with the woman’s speech.
Baseline: Yes, the bird sounds are continuous.
Audio Flamingo: No, the bird sounds are not continuous. They occur at different intervals throughout the audio.

User: Do the bird sounds and the person’s speech overlap?
Ground Truth: Yes, there are instances where the bird sounds and the woman’s speech overlap.
Baseline: Yes, the bird sounds and the woman’s speech overlap.
Audio Flamingo: Yes, the bird sounds and the person’s speech do overlap at certain points in the audio.
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Audio Flamingo

[Audio annotations: Sound of Music (Sound produced by vibrating instruments.):
[0.000s-10.000s]; Sound of Rapping (Rhythmic speech over beats.): [0.000s-10.000s];
Sound of Male singing (Deep, resonant, and powerful tones.): [0.000s-10.000s]]

User: Is the male voice rapping or singing? Ground Truth: The male voice is doing both, rapping and singing in the audio.
Baseline: The male voice is rapping.
Audio Flamingo: The male voice is rapping.

User: What kind of music is it?
Ground Truth: The type of music isn’t specified, but it’s accompanied by rapping and male singing.
Baseline: The kind of music is hip-hop.
Audio Flamingo: The music is a rap song.

User: Is the male voice the only one present?
Ground Truth: Yes, the male voice is the only one specified in the audio, both rapping and singing.
Baseline: Yes, the male voice is the only one present.
Audio Flamingo: Yes, the male voice is the only one present in the audio.

[Audio annotations: Sound of Music (Sound produced by vibrating instruments.):
[0.000s-10.000s]; Sound of Male singing (Deep, resonant, and powerful tones.):
[1.341s-3.734s], [9.289s-10.000s], ]

User: What genre does this music belong to?
Ground Truth: This music belongs to the R&B/Disco genre.
Baseline: It is not specified in the given audio clip.
Audio Flamingo: This music belongs to the R&B genre.

User: Can you tell me more about the vocals in this track?
Ground Truth: Sure, the vocals in this track are from a male singer who is singing in a higher register. His voice has been
modified with effects, making it sound like a voice sample.
Baseline: The vocals in this track are described as rich and full-bodied, but no further details are given about the specific singer
or the lyrics being sung in the audio clip.
Audio Flamingo: The vocals in this track are by a male singer. His voice is deep, resonant, and powerful, adding to the overall
emotional impact of the song.
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