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Abstract

We present DYMAG, a graph neural network based on a novel form of message1

aggregation. Standard message-passing neural networks, which often aggregate2

local neighbors via mean-aggregation, can be regarded as convolving with a simple3

rectangular waveform which is non-zero only on 1-hop neighbors of every vertex.4

Here, we go beyond such local averaging. We will convolve the node features5

with more sophisticated waveforms generated using dynamics such as the heat6

equation, wave equation, and the Sprott model (an example of chaotic dynamics).7

Furthermore, we use snapshots of these dynamics at different time points to create8

waveforms at many effective scales. Theoretically, we show that these dynamic9

waveforms can capture salient information about the graph, including connected10

components, connectivity, and cycle structures. Empirically, we test DYMAG on11

both real and synthetic benchmarks to establish that DYMAG outperforms baseline12

models on recovery of graph persistence, generating parameters of random graphs,13

as well as property prediction for proteins, molecules and materials. Our code is14

available at https://anonymous.4open.science/r/DYMAG-196E/.15

1 Introduction16

Message passing graph neural networks (GNNs) rely on aggregating signals via local averaging,17

which can be interpreted as convolving the node features with a simple, rectangular waveform18

that is non-zero only within one-hop neighborhoods of each vertex. It is known that this type of19

message-passing tends to suffer from over-smoothing if too many iterations are applied and from20

under-reaching if too few are applied [1, 2, 3]. One possible solution is to use multiscale message21

passing [4]. Another approach, [5, 6, 7, 8, 9, 10, 11, 12, 13], more directly related to our work, is22

to use graph wavelets [14, 15]. These wavelets can be viewed as convolving the input features with23

multiscale, oscillatory waveforms, in contrast to the simple, rectangular, one-hop waveforms used in24

message passing.25

Here, we introduce DYMAG, which uses dynamics on the graph to generate waveforms, which we26

will convolve with the node features. We will use these waveforms as a form of multiscale message27

aggregation, which we show can effectively extract graph geometric and topological information and28

outperform baseline methods on graph-level tasks that rely on such graph properties.29

We evaluate DYMAG on a broad spectrum of graph learning benchmarks spanning synthetic, citation,30

molecular, and materials science datasets. To assess its ability to recover generative and topological31

structure, we first test on synthetic graphs, including Erdős-Rényi and stochastic block models,32

where the task involves inferring graph parameters and persistent features. We then evaluate on33

citation networks, including homophilic datasets - Cora [16], Citeseer [17], and PubMed [18] - and34

heterophilic datasets - Texas, Wisconsin, and Cornell [19]. We further demonstrate DYMAG’s scala-35

bility on the largest dataset in the Open Graph Benchmark, ogbn-papers100M [20], demonstrating36

that it can recover topological properties of massive graphs. For molecular property prediction, we37
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consider both protein graphs PROTEINS, ENZYMES, and MUTAG [21] and small-molecule graphs38

(DrugBank [22], Drug Therapeutics Program AIDS Antiviral Screen Data [23]). Finally, we test on39

the Materials Project dataset [24] to predict materials properties such as band gaps. Across these40

varied domains, DYMAG consistently outperforms standard GNNs and approaches the performance41

of pretrained, domain-specific models. Our main contributions are as follows:42

1. We introduce a DYMAG, a novel GNN which uses dynamics-waveform-based message aggrega-
tion and is capable of capturing complex signal patterns on a graph.

2. We show theoretically that our waveforms capture both the low-pass and band-pass portion of the
input features as well as geometric and topological information including the graph spectrum,
connected components, connectivity, cycles, shortest-path distance, and curvature.

3. We show that our method better predicts geometric and topological network properties—such as
curvature and extended persistence images—compared to standard message passing networks.

4. We demonstrate that DYMAG outperforms various message passing networks as well as a large
pretrained domain-specific model on molecular predictions.
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Figure 1: Visualization of Waveforms (a) Waveforms visualized on a path graph with a signal (feature), where
DYMAG provides more diverse waveforms than standard message passing; (b) waveforms and combinations
provide low-pass and bandpass filters in the frequency domain.

2 Related work and Background44

Previous work has either analyzed dynamics on graphs [25, 26, 27, 28, 29, 30, 31] or aimed to use45

dynamics as a framework for understanding GNNs. In the latter case Chamberlain et al. [32, 33],46

Eliasof et al. [34] and Thorpe et al. [35] viewed message passing as a time-discretized diffusion47

PDE and used this insight to design novel GNNs. Unlike those methods, we view PDE solutions as48

waveforms and use convolution against these waveforms to define our aggregation rule. Additionally,49

existing work primarily focuses on parabolic equations while we also consider hyperbolic and chaotic50

dynamics. We provide a further discussion of related work in Appendix A.51

2.1 Graph Signal Processing52

In Graph Signal Processing, a node feature vector x ∈ Rn is viewed as a signal on the vertices of53

a weighted, undirected graph G = (V,E,w), |V | = n [36, 37]. Let L = UΛU⊤ be its Laplacian54

with eigendecomposition Lνk = λkνk, 0 = λ1 ≤ · · · ≤ λn. The graph Fourier transform is defined55

by projecting the signals onto these eigenvectors x̂ = U⊤x. The projection onto the first several56

eigenvectors (small λk) captures the smooth portion of the signal, and the projection onto the later57

eigenvectors (large λk) captures the oscillatory ones. Classical message-passing GNNs often act as58

low-pass filters [38, 39], effectively only keeping the smooth portion of the signal; DYMAG instead59

aggregates with waveforms spanning low, mid, and high bands. (Details in Appendix B.1.)60

2.2 Heat and Wave Dynamics on a Graph61

For α > 0, we define the α-fractional graph Laplacian by Lα := UΛαUT. For each i ∈ V , we let δi62

denote the Dirac signal at i given by δi(k) = 1 if i = k, δi(k) = 0 otherwise. Given the fractional63
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Laplacian, we may then define64

−Lαu
(i)
H (v, t) = ∂tu

(i)
H (v, t), u

(i)
H (v, 0) = δi(v), (Heat) (1)

65

−Lαu
(i)
W (v, t) = ∂2t u

(i)
W (v, t), u

(i)
W (v, 0) = δi(v), ∂tu

(i)
W (v, 0) = cδi(v), (Wave) (2)

as the heat and wave equations with a initial value δi (and initial veclocity cδi for wave). On a66

connected graph G, they admit closed-form solutions:67

u
(i)
H (v, t) =

n∑
k=1

e−tλα
k ⟨νk, δi⟩νk(v), and (3)

u
(i)
W (v, t) =

n∑
k=1

cos(
√

λα
k t)⟨νk, δi⟩νk(v) + t⟨ν1, cδi⟩ν1(v) +

n∑
k=2

1√
λα
k

sin(
√

λα
k t)⟨νk, cδi⟩νk(v). (4)

These expressions extend to disconnected graphs and, by Remark 1 of [40], are invariant to the68

choice of Laplacian eigenbasis. (See Appendix D.1 for details).69

2.3 Chaotic Dynamics on a Graph70

Chaotic dynamics, describing systems that have aperiodic behavior and sensitivity to initial condi-71

tions [41], can be modeled by the Sprott dynamics [42]:72

d

dt
u
(i)
S (vk, t) = −b · u(i)

S (vk, t) + tanh(
∑

vj∈N (vk)

ck,ju
(i)(vj , t)), uS(·, 0) = δi, (5)

Solutions remain bounded for b > 0. For b = 0.25, fully connected graphs with generic couplings or73

sparse graphs exhibit positive Lyapunov exponents (chaos). [43, 42]. (Full details in Appendix B.3.)74

3 Methods75

DYMAG is a graph neural network consisting of two main parts.76

1. Waveform Bank Creation: A diverse bank of multi-scale waveforms is constructed by77

solving the PDEs considered in Section 2. These waveforms define a set of basis functions78

that encode diverse patterns across spatial and temporal scales. (See Section 3.1.)79

2. Multi-scale Aggregations: At each layer 1 ≤ ℓ ≤ L, node representations X(ℓ−1) are80

convolved with the waveform bank. The result is then passed through an MLP to produce81

an updated representation X(ℓ). This step replaces standard message passing mechanisms82

by aggregation via sophisticated, multiscale waveforms. (See Section 3.2.)83
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Figure 2: Visual illustration of DYMAG (a) Waveform bank creation solving PDEs. (b) Multiscale Aggregation
by taking inner product with the waveforms. (c) DYMAG consists of stacked layers and a prediction head.

3.1 Waveform Bank Creation Using PDEs84

Let u(i)(v, t) denote the solution to the chosen PDE dynamics (wave, heat, or Sprott equations) with85

initial condition u(i)(·, 0) = δi(·), where δi(j) = 1 if j = i and 0 otherwise (a Dirac signal centered86

at node i). When applicable (for second-order dynamics), we also set ∂tu(·, 0) = c δi(·), with a87

fixed hyperparameter c ≥ 0. We choose K time points T = (t1, . . . , tK) by fixing a maximal time88

T and then setting tk = kT/K. We then define U = {ui,k}i∈V,1≤k≤K , where ui,k is the vector89
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Algorithm 1: WAVEFORMCRE-
ATION

Input: Graph G = (V,E,w);
sample times: t1, . . . , tK

Output: Waveforms U
1 for vi ∈ V, k = 1, . . . , K do
2 δi(·)← DiracSignals(G, i);
3 u(i)(·, tk)←

SolvePDE(InitCond = δi);
4 ui,k ← u(i)(·, tk);

5 return U = {ui,k}i∈V, 1≤k≤K

Algorithm 2: MULTISCALEAGGR

Input: Graph G = (V,E,w); node
features X(ℓ); waveforms U

Output: Updated features X(ℓ+1)

1 for
vi ∈ V, 1 ≤ j ≤ m, 1 ≤ k ≤ K
do

2 h
(i)
j,k ← u⊤

i,kxj ;

3 yi ← MLP(vec(h
(i)
j,k));

4 return X(ℓ+1) = (y⊤
1 , . . . ,y⊤

n )⊤

Algorithm 3: DYMAG

Input: Graph G = (V,E,w); node
features X = {xj}; sample times
T ; layers L

Output: Output Y
1 U ← WAVEFORMCREATION(G, T );
2 X(0) ← X;
3 for ℓ = 1, . . . , L do
4 X(ℓ) ← MULTISCALEAGGR(X(ℓ−1),U);

5 Y ← READOUT(X(L));
6 return Y

ui,k := u(i)(·, tk) ∈ Rn. We refer to U as the PDE waveform bank (see Algorithm 1 and Figure 2a).90

Each waveform ui,k is centered at node i and corresponds to a snapshot of the PDE dynamics at time91

scale tk. The bank U collects such waveforms across all nodes and multiple time scales, similar to92

wavelets but more flexible thanks to the diverse dynamics. Figure 1 shows basic waveforms and more93

complex patterns created via combinations (from the MLP discussed below).94

We note that U can be computed offline prior to training for increased computational efficiency.95

Additionally, note that the waveforms can be computed efficiently via either Chebyshev approximation96

or a Runge-Kutta scheme. We further discuss and report results on complexity and scalability in97

Appendix C.98

3.2 Multi-scale Aggregation99

In each layer, ℓ, we assume that we are given an n×mℓ feature matrix X(ℓ) (where X(0) consists of100

the initial node features). We let xj ∈ Rn denote the r-th column of X(ℓ), which we interpret as a101

signal defined on V . For each waveform ui,k in the waveform bank U (Section 3.1), we perform an102

inner product with the node features, thought of as a convolution:103

h
(i)
j,k = ⟨ui,k,xj⟩ = uT

i,kxj . (6)

We then combine these convolved features by applying an MLP to the states h
(i)
j,k associated with each104

node vi, i.e., yi = MLP
(
vec

(
h
(i)
j,k

))
. We then reorganize the yi into a transformed feature matrix105

X(ℓ+1) = (yT
1 , . . . ,y

T
n)

T (so that yT
i is the i-th row of X(ℓ+1)). See Algorithm 2 and Figure 2b.106

The inner product, Eqn. 6, can also be interpreted as the feature xj being updated via a message from107

a source node vi at scale k. Indeed, message passing neural networks can be interpreted as performing108

such an inner product with a limited bandwidth rectangular waveform, as shown in Figure 1 and then109

applying the MLP. We remark that since we use waveforms based on PDE solutions of various time110

snapshots, we obtain multi-scale embeddings. As the time tk increases, the waveform effectively111

dilates and spreads to a larger neighborhood of vertices. Furthermore, via the MLP, DYMAG is able112

to learn novel combinations of the waveforms, either from different source nodes or at different time113

scales. This includes the diffusion wavelets [15] which can be obtained by subtracting solutions to114

the heat equation at different time scales [40].115

Downstream Readout After L rounds of Multi-scale aggregation, the resulting node represen-116

tations X(L) = {x(L)
i }i∈V are used for prediction. For node-level tasks, a shared MLP is applied117

independently to each node feature vector. For graph-level tasks, node features are first aggregated us-118

ing a permutation-invariant pooling operation (e.g., global mean or sum), followed by a task-specific119

MLP to produce the graph-level output. See Figure 2c and Algorithm 3.120

3.3 Theoretical Properties Related to Dynamics-based Waveforms on the Graph121

Below, we formulate properties of our waveforms and the information they are able to extract from122

the graph. These results serve as motivation for our method, which utilizes these dynamics as a novel123

aggregation paradigm for graph neural networks. Complete proofs are provided in Appendix D.124
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3.3.1 Frequency Domain Characteristics of Waveform Based Message Aggregation125

Standard message passing can be viewed as convolving the node features with a single, simple,126

rectangular waveform. From the perspective of graph signal processing, this corresponds to a low-127

pass filtering which only preserves the low-frequency (smooth) portion of the node features (See128

Appendix F.) In contrast, DYMAG employees a richer, more sophisticated bank of waveforms, which129

we will show allows DYMAG to extract a variety of different types of information.130

We first consider a function defined by u(i)BP(v, t) = u
(i)
H (v, t1) − u

(i)
H (v, t2) for two fixed times,131

0 < t1 < t2. In the graph-Fourier domain, its response at frequency (eigenvalue) λk is e−t1λ
α
k −132

e−t2λ
α
k . This function (i) is 0 at λk = 0, (ii) tends to 0 as λk → ∞, and (iii) reaches a single maximum133

at λ⋆ =
(

1
t2−t1 log

( t2
t1

))1/α

. Thus, u(i)BP suppresses both very low and very high frequencies, but134

keeps information in a moderate frequency band (which depends on t1 and t2). Therefore, we call135

u
(i)
BP a band-pass function. Notably, DYMAG has the ability to learn this function via the use of the136

MLP which is applied after Eqn. 6. We next consider the solution to the wave equation given by137

Eqn. 4, for simplicity focusing on the case where c = 0. The frequency response at each λk is given138

by cos(
√
λαk t). Since this function peaks and falls in multiple different “bands" we think of it as a139

multi-band-pass function. This leads us to the following proposition.140

Proposition 3.1 (Band-pass information). DYMAG is able to extract band-pass, or even multi-band-141

pass information from the node features.142

Proof sketch. In heat-equation case, DYMAG can learn the band-pass function u(i)BP via suitable143

weights in the MLP. In the wave equation case, DYMAG is able to capture multi-band-pass informa-144

tion as a consequence of the sinusoidal frequency response of the wave solution, uW .145

In addition to the above propositions, we note that DYMAG is also able to learn low-pass information,146

similar to standard message passing networks. This is a direct consequence of the fact that u(i)H147

has a decreasing frequency response e−tλ
α
k . It can also learn high-pass information via function148

u
(i)
High = 1 − u

(i)
H . We next discuss how the frequency-domain characteristics of DYMAG help149

alleviate the following limitations of standard GNNs:150

Over-smoothing: Message passing networks utilize rectangular pulse waveforms, which act as151

low-pass filters, i.e., smoothing operators. With each layer, the features get smoother and smoother,152

eventually become nearly constant, which limits their usefulness. By contrast, DYMAG is able153

to learn band-pass, high-pass, and multi-band-pass information in addition to standard low-pass154

information. This allows it to avoid the oversmoothing problem. (We also demonstrate this empirically155

in Appendix G.)156

Under-reaching: Message passing networks only aggregate within local, one-hop neighborhoods.157

Thus, their receptive field is equal to the number of layers, which must be kept small to avoid158

severe oversmoothing. This limits their ability to capture global structure or long-range interactions.159

DYMAG, on the other hand, performs aggregation via waveforms which are not confined to one-hop160

neighborhoods and is able to capture global structure.161

Heterophily: The local averaging operation in message passing networks, are particularly problem-162

atic on heterophilic graphs where many nodes have different labels than their neighbors. DYMAG’s163

diverse waveform banks are able to capture band-pass, multi-band-pass, and high-frequency infor-164

mation (in addition to low-pass). This makes them well-suited to heterophilic graphs. Additionally,165

we note that our experiment shows that the Sprott dynamics perform particularly well on node166

classification on heterophilic graphs (see Figure 3), perhaps because of their ability to detect subtle167

changes in different portions of the network structure.168

3.3.2 General Properties of Solutions169

The following result shows that DYMAG is able to identify the connected components of G.170

Proposition 3.2 (Identification of Connected Components). Let u(i)(v, t) denote the solution to the171

heat equation, wave equation, or Sprott chaotic dynamics. Suppose that G is not connected. Then,172

for any v which is not in the same connected component as vi, and all t ≥ 0, we have u(i)(v, t) = 0.173
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Proof sketch. We verify that ũ(i)(v, t) := u(i)(v, t)·1v∈C , where C ⊆ V is the component containing174

vi satisfies the same PDE as u(i)(v, t). The result follows by uniqueness of solutions.175

Due to Proposition 3.2, we will assume that G is connected in the following sections. However, we176

note that many of the results still apply to disconnected graphs with suitable modifications.177

3.3.3 Heat Dynamics178

The continuous and global nature of DYMAG allows it to instantaneously have a receptive field over179

the entire graph. Intuitively, this corresponds to information spreading instantaneously over the graph180

(although for small values of t the energy u(i)H (v, ·) will be mostly concentrated near vi). This is181

in contrast to message passing networks where the receptive field about each node is equal to the182

number of layers (which is usually kept small in order to avoid over-smoothing).183

Proposition 3.3. Let G be connected and let L be the random-walk Laplacian Lrw (with α = 1). Let184

u
(i)
H (v, t) be the solution to the heat equation, Eqn. 3. Then u(i)H (v, t) > 0 for all v ∈ V and t > 0.185

Proof Sketch. This is a consequence of a relationship between u(i)H and continuous-time random186

walks established in Lemma D.3.187

Our next two results analyze the energy decay of u(i)H . They suggest that graphs with a larger λ2 will188

have a faster rate of energy decay. The second eigenvalue of a graph can be related to the isoperimetric189

ratio of a graph through Cheeger’s inequality, thereby revealing information on graph structure and190

how “bottlenecked" a particular graph is [44]. Additionally, they show that the properties of heat191

energy decay can distinguish between graph structures. We note that although the assumptions for192

Proposition 3.5 represents a rather specific set of conditions, we expect that when two graphs have193

edges generated according to a similar rule or distribution, the more densely connected graph will194

have more rapidly decaying heat energy.195

Proposition 3.4 (Heat energy). Let G be connected, and let u(i)H (v, t) be as in the solution to the heat196

equation with initial condition δi as in Eqn. (3). Then, e−2tλ
α
n ≤ ∥u(i)H (·, t)∥22 ≤ |ν1(i)|2 + e−2tλ

α
2 .197

Proof sketch. It follows from ∥u(i)
H (·, t)∥22 =

∑n
k=1 e

−2tλα
k |⟨νk, δi⟩|2 =

∑n
k=1 e

−2tλα
k |νk(i)|2.198

Proposition 3.5 (Heat energy between graphs). Let G and G′ be graphs on n vertices with fractional199

Laplacians Lα
G and Lα

G′ and let δi and δi′ be initial conditions for Eqn. (1) on G and G′. Assume:200

(i) Lα
G′ ≽ Lα

G, i.e., vTLα
G′v ≥ vTLα

Gv for all v ∈ Rn, (ii) We have |ν′k(i)|2 ≤ (1 + ηk(t))|νk(i)|2201

for all 1 ≤ k ≤ n, where we also assume ηk(t) := exp(2t((λ′k)
α − λαk ))− 1 ≥ 0.202

Then, with uH and u′H defined as in Eqn. (3), we have ∥(u(i)H )′(·, t)∥22 ≤ ∥u(i)H (·, t)∥22.203

Proof sketch. The result is a consequence of Parseval’s identity.204

Finally, we restate some known results that provide additional foundation linking the behavior of the205

heat equation solutions to graph topology. Lemma 1 of Crane et al. [45] shows that the heat equation206

encodes shortest path distances d(vi, vj) between nodes on the graph:207

Proposition 3.6 (Relation to distances, (Lemma 1 of Crane et al. [45])). Let u(i)H denote the solution208

to Eqn. 1 with initial condition δi (and α = 1). Then, d(vi, vj) = limt→0
log u

(i)
H (vj ,t)

log t .209

We next consider the Ollivier-Ricci curvature. This is a discrete notion of curvature, meant to210

parallel the traditional notion of Ricci curvature in Riemannian geometry. It is defined by κ(vi, vj) =211

1−W1(µvi , µvj )/d(vi, vj),where µv is a probability measure centered around v (see [46] for details),212

W1 the 1-Wasserstein distance, and d(vi, vj) is the distance (shortest path length) from vi to vj . The213

following result from Münch and Wojciechowski [46] relates κ to the heat equation.214

Proposition 3.7 (Relation to Ollivier-Ricci curvature, (Theorem 5.8 of [46])). Let L = D−A be the215

unnormalized Laplacian, then κ(vi, vj) = limt→0+
1
t

(
1− W1(u

(i)
H

(·,t),u(j)
H

(·,t))
d(vi,vj)

)
.216
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3.3.4 Wave Dynamics217

The periodicity of the solution to the wave equation endows it with the ability to capture long range218

interactions. Central to this argument is the wave energy, analyzed in the following proposition which219

focuses on the case where the initial velocity c is equal to zero:220

Proposition 3.8 (Wave energy bounds). Let u(i)W (v, t) be the solution to the fractional wave equation221

Eqn. 4 with initial conditions u(i)W (·, 0) = δi and ∂tu
(i)
W (·, 0) = 0. Then, for any time t ≥ 0, the222

energy of the waveform satisfies |ν1(i)|2 ≤ ∥u(i)W (·, t)∥22 ≤ 1.223

Proof sketch. By Parseval’s identity and the explicit solution in Eqn. (4), we expand: ∥u(i)W (·, t)∥22 =224 ∑n
k=1 cos

2
(√

λαk t
)
|⟨νk, δi⟩|2 =

∑n
k=1 cos

2
(√

λαk t
)
|νk(i)|2. Since cos2(·) ∈ [0, 1] and225 ∑

k |⟨νk, δi⟩|2 = ∥δi∥22 = 1, the result follows.226

This shows that, unlike heat kernels (which decay over time), the wave energy oscillates, retaining227

signal over time, and thus can reflect non-local interactions such as those created by cycles in the228

graph. These oscillations allow the waveforms to “echo” through the graph and revisit distant parts of229

the structure - a behavior well-suited for recovery of topological features.230

The eigenspectrum of a graph, which reveals a wide range of its invariants and properties, is fully231

encoded in the solutions to the wave equation. This leads to the following result:232

Proposition 3.9 (Cycle Length). The size of a cycle graph Cn can be determined from the solution233

to the fractional wave equation at a single node v.234

Proof sketch. The result follows from Lemma D.4 (Appendix) and the fact that the length of a cycle235

graph is contained in its eigenspectrum.236

More generally, when the graph is not a cycle but contains cyclic subgraphs as a prominent topological237

feature, this proposition provides some intuition for why the wave-equation is well suited to pick up238

that a node belongs to a cycle and recover dimension 1 homology.239

4 Empirical Results240

Table 1: Performance of DYMAG on four datasets: PROTEINS, DrugBank, Materials Project (MP), and the
DTS AIDS Antiviral Screen. We report R2 for the first three and balanced accuracy for the Antiviral Screen.
Results are mean ± std over 10-fold CV.

Model PROTEINS DrugBank MP Antiviral Screen
Dihedral Angles TPSA # Aromatic Rings Band Gap Active/Inactive

DYMAG (Heat) 0.89± 0.01 0.97± 0.01 0.97± 0.02 0.61± 0.03 0.54± 0.02
DYMAG (Wave) 0.81± 0.03 0.90± 0.01 0.88± 0.01 0.55± 0.02 0.61± 0.01
DYMAG (Sprott) 0.76± 0.01 0.77± 0.01 0.82± 0.03 0.54± 0.03 0.63± 0.02

MPNN 0.78± 0.01 0.71± 0.01 0.81± 0.01 0.37± 0.05 0.51± 0.02
GAT 0.72± 0.02 0.78± 0.02 0.83± 0.02 0.40± 0.03 0.59± 0.03
GIN 0.69± 0.03 0.69± 0.01 0.77± 0.01 0.38± 0.03 0.60± 0.02

GWT 0.81± 0.02 0.83± 0.02 0.85± 0.01 0.42± 0.02 0.58± 0.02
GraphGPS 0.64± 0.03 0.63± 0.02 0.67± 0.04 0.31± 0.02 0.54± 0.03
GRAND 0.76± 0.03 0.53± 0.04 0.64± 0.03 0.27± 0.03 0.49± 0.03

GRAND++ 0.62± 0.03 0.56± 0.02 0.61± 0.02 0.31± 0.02 0.51± 0.02
CayleyNet 0.75± 0.02 0.72± 0.01 0.79± 0.02 0.41± 0.04 0.55± 0.03
AdaGNN 0.73± 0.01 0.75± 0.02 0.80± 0.01 0.39± 0.03 0.57± 0.02

DRew 0.68± 0.02 0.70± 0.03 0.75± 0.02 0.34± 0.03 0.53± 0.02
GraphCON 0.71± 0.02 0.74± 0.02 0.78± 0.01 0.35± 0.03 0.55± 0.01

GraFF 0.67± 0.02 0.66± 0.02 0.74± 0.03 0.33± 0.04 0.50± 0.03
SWAN 0.74± 0.01 0.76± 0.01 0.80± 0.02 0.43± 0.02 0.58± 0.01

Pretrained 0.83± 0.03 0.98± 0.01 0.97± 0.01 0.62± 0.05 0.59± 0.02
Model (ProtBERT) (MolBERT) (MolBERT) (GeoCGNN) (ProtBERT)

We evaluate DYMAG across diverse tasks to assess its ability to recover geometric/topological241

structure and generalize to downstream biological, chemical, and materials applications. In this242

section, we set α = 1 so that the fractional Laplacian coincides with the ordinary graph Laplacian.243

We conduct some experiments with other exponents α in Appendix I.5. Baselines include message-244

passing GNNs (MPNN [47], GCN [48], GraphSAGE [49], GAT [50], GIN [51]), diffusion-based245

methods (GRAND [33], GRAND++[35]), Bandpass methods (CayleyNet [52], AdaGNN [53]),246
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DE-GNN methods (GraphCON [54], GraFF [55], SWAN [56]), rewiring methods (DRew[57]), and247

GraphGPS [58], a state-of-the art graph transformer. We also compare against a GNN built with248

fixed-scale wavelets (GWT [15]) and a neural approximation algorithm of the extended persistence249

diagram (EPD) [59]. For molecular and materials prediction, we include pretrained models such as250

ProtBERT [60], MolBERT [61], and GeoCGNN [62].251

In Table 1, we highlight the best and second best results, treating ties within one standard deviation252

as equivalent. Results are 10-fold cross-validation means unless noted otherwise. Implementation253

details are in Appendix E, and full results with standard deviations are in Appendix I.254

4.1 Geometric and Topological Properties255

To evaluate the expressivity of DYMAG, we assessed its ability to learn fundamental geometric and256

topological graph properties. Our evaluation centered on two main approaches: (1) direct prediction257

of features such as Ollivier–Ricci curvature and topological persistence images, and (2) performance258

on downstream proxy tasks, including random graph parameter recovery and node classification on259

both homophilic and heterophilic benchmarks.260

The results confirm that DYMAG learns rich and adaptive graph representations. The heat and wave261

dynamics variants proved to be top performers on most tasks, including large-scale node classification262

on the ogbn-papers100M dataset. Notably, the chaotic Sprott dynamics variant demonstrated superior263

performance on heterophilic graphs, highlighting its sensitivity to local graph structure. A detailed264

presentation of these experiments, including full results and additional analyses, is provided in265

Appendix I.1.266

4.2 Proteins, Molecules, and Materials267

We evaluated DYMAG on graphs representing proteins, drug-like molecules, and materials shown in268

Tables 1 and 7 (appendix). We note that DYMAG’s strong performance on these data sets indicates its269

potential to positively impact society by furthering the design of materials, drugs, or other healthcare270

treatments. More specifically, the tasks include predicting geometric and chemical properties such as271

dihedral angles, total polar surface area (TPSA), the number of aromatic rings, band gaps in materials,272

and anti-HIV activity. Datasets include PROTEINS [21], DrugBank [22], the Materials Project [24],273

and the AIDS Antiviral Screen [23]. Across all datasets, DYMAG consistently outperforms standard274

GNNs, GRAND, GRAND++, GraphGPS, GWT, CayleyNet, AdaGNN, GraphCON, GraFF. SWAN,275

and DRew by a wide margin. It matches the performance of powerful, task-specific pretrained models276

within 1 standard deviation overall, and significantly surpasses them on the PROTEINS and AIDS277

datasets.278

Overall, the heat and wave versions of DYMAG perform strongly across all molecular and material279

prediction tasks.The Sprott (chaotic) variant shows more variable performance, which may reflect280

its heightened sensitivity to local graph structure. This behavior appears beneficial in settings with281

recurring structural motifs, such as the Antiviral Screen dataset, and may be less advantageous in282

tasks where such sensitivity is less critical. Additional results, including accuracy and training time,283

are provided in Appendix I.284

5 Conclusion285

We introduce DYMAG as a method for improving aggregation in GNNs. We use dynamics to286

generate a diverse bank of waveforms that span multiple frequency bands. Messages are aggregated287

by taking each node feature, interpreted as a graph signal, and projecting it onto this bank via inner288

products, producing a set of features that encode multi-scale information. The expressiveness of this289

representation, arising from the rich frequency structure of the waveforms, helps mitigate common290

GNN limitations such as oversmoothing, underreaching, and heterophily.291

One limitation of our method is that the Sprott model is extremely sensitive to the graph structure.292

This is useful for some tasks which require detecting minute changes in structure. However, this may293

be undesirable in other settings where one may want similar representations of nearly isomorphic.294

Another limitation is that our method is currently only applicable to supervised tasks. Extending295

DYMAG to unsupervised tasks, such as clustering, denoising, or signal reconstruction could be an296

interesting avenue of future work. Overall, DYMAG establishes a theoretically grounded, empirically297

strong message aggregation paradigm; future work will broaden its application to diverse graph tasks298

and refine the accompanying speed-up techniques.299
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TAG-DS Paper Checklist553

1. Claims554

Question: Do the main claims made in the abstract and introduction accurately reflect the555

paper’s contributions and scope?556

Answer: [Yes]557

Justification: The abstract and introduction summarize the scope and the theoretical and558

empirical contributions made in this paper. These contributions align accurately with the559

content presented in the paper.560

2. Limitations561

Question: Does the paper discuss the limitations of the work performed by the authors?562

Answer: [Yes]563

Justification: We have discussed the limitations of our method and future directions in564

Section 5.565

3. Theory assumptions and proofs566

Question: For each theoretical result, does the paper provide the full set of assumptions and567

a complete (and correct) proof?568

Answer: [Yes]569

Justification: The theoretical results are presented as propositions in Section 3.3. Each570

proposition includes a list of assumptions and a brief sketch of the proof. The complete571

proofs are available in Appendix D and are referenced in the main text.572

4. Experimental result reproducibility573

Question: Does the paper fully disclose all the information needed to reproduce the main ex-574

perimental results of the paper to the extent that it affects the main claims and/or conclusions575

of the paper (regardless of whether the code and data are provided or not)?576

Answer: [Yes]577

Justification: Our primary contribution is the development of novel algorithms for efficient578

message aggregation, which we have described in detail in pseudocode. Additionally, we579

have made the code (https://anonymous.4open.science/r/DYMAG-196E/) used to580

conduct the experiments and the list of datasets (all publicly accessible) available to ensure581

maximum reproducibility.582

5. Open access to data and code583

Question: Does the paper provide open access to the data and code, with sufficient instruc-584

tions to faithfully reproduce the main experimental results, as described in supplemental585

material?586

Answer: [Yes]587

Justification: We have released our code with an URL on an anonymous platform588

(https://anonymous.4open.science/r/DYMAG-196E/), which includes the informa-589

tion for environment setup scripts for accessing and preprocessing the datasets, and code for590

reproducing our experimental results.591

6. Experimental setting/details592

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-593

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the594

results?595

Answer: [Yes]596

Justification: We have included experimental details and settings in Appendix E.597

7. Experiment statistical significance598

Question: Does the paper report error bars suitably and correctly defined or other appropriate599

information about the statistical significance of the experiments?600

Answer: [Yes]601
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Justification: Yes, we have presented error bars of one standard deviation for all the results602

obtained from cross validation, and described them where these results are presented. (Some603

error bars are presented in the appendix due to space constraints.)604

8. Experiments compute resources605

Question: For each experiment, does the paper provide sufficient information on the com-606

puter resources (type of compute workers, memory, time of execution) needed to reproduce607

the experiments?608

Answer: [Yes]609

Justification: We have included computational resources used for the experiments in Ap-610

pendix E.1.611

9. Code of ethics612

Question: Does the research conducted in the paper conform, in every respect, with the613

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?614

Answer: [Yes]615

Justification: The research conforms with the NeurIPS Code of Ethics in every respect.616

10. Broader impacts617

Question: Does the paper discuss both potential positive societal impacts and negative618

societal impacts of the work performed?619

Answer: [Yes]620

Justification: As noted in Section 4, our method improves property prediction for proteins,621

drug molecules, and materials. These advancements have the potential to accelerate the622

development of more effective healthcare treatments, novel drugs, and innovative materials,623

ultimately contributing to improved quality of life. This work is focused on foundational624

research in Graph Neural Networks and does not pose foreseeable risks of negative social625

impact.626

11. Safeguards627

Question: Does the paper describe safeguards that have been put in place for responsible628

release of data or models that have a high risk for misuse (e.g., pretrained language models,629

image generators, or scraped datasets)?630

Answer: [NA]631

Justification: The paper is focused on the foundational research of Graph Neural Networks,632

and does not pose risks of misuse.633

12. Licenses for existing assets634

Question: Are the creators or original owners of assets (e.g., code, data, models), used in635

the paper, properly credited and are the license and terms of use explicitly mentioned and636

properly respected?637

Answer: [Yes]638

Justification: All the code, data, and models used in this paper are properly credited with639

explicit mention with citations and URLs.640

13. New assets641

Question: Are new assets introduced in the paper well documented and is the documentation642

provided alongside the assets?643

Answer: [Yes]644

Justification: We have included documentation alongside the code in the anonymized URL645

we released in the paper.646

14. Crowdsourcing and research with human subjects647

Question: For crowdsourcing experiments and research with human subjects, does the paper648

include the full text of instructions given to participants and screenshots, if applicable, as649

well as details about compensation (if any)?650

Answer: [NA]651
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Justification: This paper does not involve crowdsourcing nor research with human subjects.652

15. Institutional review board (IRB) approvals or equivalent for research with human653

subjects654

Question: Does the paper describe potential risks incurred by study participants, whether655

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)656

approvals (or an equivalent approval/review based on the requirements of your country or657

institution) were obtained?658

Answer: [NA]659

Justification: This paper does not involve crowdsourcing nor research with human subjects.660

16. Declaration of LLM usage661

Question: Does the paper describe the usage of LLMs if it is an important, original, or662

non-standard component of the core methods in this research? Note that if the LLM is used663

only for writing, editing, or formatting purposes and does not impact the core methodology,664

scientific rigorousness, or originality of the research, declaration is not required.665

Answer: [NA]666

Justification: The core method development in this research does not involve LLMs as any667

important, original, or non-standard components.668
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A Related work669

There is a long history of studying dynamics on graphs. For example, Reijneveld et al. [25], Boccaletti670

et al. [26], Simoes [27], Holme and Saramäki [28] analyze complex interactions such as brain671

processes, social networks, and spatial epidemics on graphs. The study of graph dynamics has672

recently crossed into the field of deep learning with Belbute-Peres et al. [29], Sanchez-Gonzalez et al.673

[30], Pfaff et al. [31] using neural networks to simulate complex phenomena on irregularly structured674

domains.675

Differing from the above mentioned works, there have also been several recent papers which aim to676

use dynamics as a framework for understanding GNNs. Chamberlain et al. [32] and Chamberlain677

et al. [33] take the perspective that message-passing neural networks can be interpreted as the678

discretizations of diffusion-type (parabolic) partial differential equations on graph domains where679

each layer corresponds to a discrete time step. They then use this insight to design GRAND, a novel680

GNN, based on encoding the input node features, running a diffusion process for T seconds and681

finally applying a decoder network. Thorpe et al. [35] builds on this work by extending it to diffusion682

equations with “sources” placed at the labeled nodes, leading to a new network GRAND++. They683

then provide an analysis of both GRAND and GRAND++ and show that they are related to different684

graph random walks. GRAND is related to a standard graph random walk, whereas GRAND++ is685

related to a dual random walk started at the labeled data, which can avoid the oversmoothing problem.686

We also note Donnat et al. [63], which used the graph heat equation to extract structural information687

around each node (although not in a neural network context) and Eliasof et al. [34], which used688

insights from hyperbolic and parabolic PDEs on manifolds to design a GNN that does not suffer from689

oversmoothing as well as Kiani et al. [64] which uses convolution using unitary groups to improve690

GNNs ability to learn long-range dependencies.691

Our network method differs from these previous works in several important ways. Most importantly,692

whereas Chamberlain et al. [33] and Chamberlain et al. [32] primarily focused on PDEs as a frame-693

work for understanding the behavior of message passing operations, here we propose to use the694

dynamics associated to the heat equation as a new form of feature aggregation, replacing traditional695

message passing operations. Additionally, we consider both the heat equation (the prototypical696

parabolic PDE) and the wave equation (the prototypical hyperbolic PDE) as well as chaotic dynamics,697

whereas previous work [32, 33, 35] has primarily focused on parabolic equations. Notably, similar to698

GRAND++, the wave-equation and the Sprott versions of DYMAG do not suffer from oversmoothing.699

However, the long-term behavior of these equations differs from the diffusion-with-a-source equation700

used in GRAND++ in that they only depend on the geometry of the network and not on the locations701

of the labeled data. (Additionally, since we do not require labeled data as source locations, our702

method can be easily adapted to unsupervised problems by removing the MLPs.)703

B Detailed Background704

This section is a more detailed version of the background on graph signal processing and dynamics705

provided in Section 2.706

B.1 Graph Signal Processing707

In graph signal processing, node features are interpreted as signals (functions) defined on the nodes708

of a graph [36, 37]. Each signal can then be decomposed into different frequencies defined in terms709

of the eigendecomposition of the graph Laplacian and an associated Fourier transform.710

Formally, we let x : V → R, denote a function (signal) defined on the vertices of a weighted,711

undirected graph G = (V,E,w) with vertices V = {v1, . . . , vn}. For convenience, we will identify712

x with the vector whose k-th entry is x(vk). Thus, we will write either x(vk) or x(k), depending on713

context. We may also write x(v) if we do not wish to emphasize the ordering of the vertices. We let714

L denote a graph Laplacian with eigenvectors ν1, . . . ,νn and eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn,715

Lνk = λkνk. Unless otherwise specified, we will assume that L is either the unnormalized Laplacian716

LU = D −A or the symmetric normalized Laplacian Lsym = D−1/2LUD
−1/2, where D and A are717

the weighted degree and adjacency matrices. In these cases, we may write L = UΛUT, where U718
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is a matrix with columns ν1, . . . ,νn and Λ is a diagonal matrix, Λk,k = λk.1 The graph Fourier719

transform can be defined as x̂ = UTx so that x̂(k) = ⟨νk,x⟩. Since the νk form an orthonormal720

basis, we obtain the Fourier inversion formula x =
∑n

k=1 x̂(k)νk. The eigenvectors νk are referred721

to as Fourier modes and the eigenvalues λk are interpreted as frequencies. Therefore, the Fourier722

inversion formula can be thought of as decomposing a signal x into the superposition of Fourier723

modes at different frequencies.724

Standard message passing neural networks are known to essentially perform low-pass filtering725

[38, 39]; i.e., they preserve the portion of the signal corresponding to the first one or two eigenvectors,726

while suppressing the rest of the signal. As we discussed in Section 3.3.1, the waveforms utilized in727

DYMAG may span a broader range of frequency behavior and can highlight different aspects of the728

frequency spectrum by acting as either as low-pass, high-pass, or band-pass filters.729

B.2 Heat and Wave Dynamics on a Graph730

For α > 0, we define the α-fractional graph Laplacian by Lα := UΛαUT. We note that Lα has the731

same eigenvectors as L and the eigenvalues of Lα are given by λαk , i.e., Lανk = λαkνk. Additionally,732

we see that when α = 1/m for some m ∈ N, we have (L1/m)m = L. For each i, we let δi denote733

the Dirac signal at i given by δi(k) = 1 if i = k, and δi(k) = 0 otherwise. We say that a function734

u
(i)
H (v, t) solves the α-fractional heat equation with a initial value δi if735

−Lαu
(i)
H (v, t) = ∂tu

(i)
H (v, t), u

(i)
H (v, 0) = δi(v). (7)

We say that u(i)W solves the α-fractional wave equation with initial Dirac data δi and an initial velocity736

cδi (where c is a constant) if737

−Lαu
(i)
W (v, t) = ∂2t u

(i)
W (v, t), u

(i)
W (v, 0) = δi(v), ∂tu

(i)
W (v, 0) = cδi(v). (8)

If G is connected, solutions to the heat and wave equations are given explicitly by738

u
(i)
H (v, t) =

n∑
k=1

e−tλ
α
k ⟨νk, δi⟩νk(v), and (9)

u
(i)
W (v, t) =

n∑
k=1

cos(
√
λαk t)⟨νk, δi⟩νk(v) + t⟨ν1, cδi⟩ν1 +

n∑
k=2

1√
λαk

sin(
√
λαk t)⟨νk, cδi⟩νk(v).

(10)

We note that Eqns. 3 and 4 can also be adapted to disconnected graphs with simple modifications.739

Furthermore, following Remark 1 in Chew et al. [40], we note that the solutions u(i)H (v, t) and740

u
(i)
W (v, t) defined in Eqn. 3 and 4 do not depend on the choice of orthonormal basis for the graph741

Laplacian, see Section D.1 for details.742

B.3 Chaotic Dynamics on a Graph743

We next consider dynamics exhibiting chaos, a behavior that may be informally summarized as744

“aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial745

conditions" [41]. As a prototypical example of chaos on graphs, we consider the general, complex,746

and nonlinear graph dynamics on graphs described in Sprott [42]:747

d

dt
u
(i)
S (vk, t) = −b · u(i)S (vk, t) + tanh

 ∑
vj∈N (vk)

ck,ju
(i)(vj , t)

 , uS(·, 0) = δi, (11)
748

where b is a damping coefficient, and the ck,j represent interactions. We refer to Eq. 5 as the Sprott749

equation and denote its solutions by uS(v, t). When b > 0, solutions uS(v, t) remain bounded. In the750

case of fully connected graphs, with b = 0.25, chaotic dynamics (corresponding to positive Lyapunov751

exponents, see, e.g., Arnold and Wihstutz [43]) were observed when a sufficiently large fraction752

1If L is the random walk Laplacian Lrw = D−1LU = D−1/2LsymD
1/2, we may instead obtain an

asymmetric eigendecomposition, Lrw = (D−1/2U)Λ(D1/2U)T, where Lsym = UΛUT.
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of interactions were neither symmetric (cj,k = ck,j) nor anti-symmetric (cj,k = −ck,j). Sparsely753

connected networks also exhibited positive Lyapunov exponents with a value of b = 0.25 [42].754

The explicit purpose of using Sprott dynamics is to generate chaotic dynamics on the graph, which755

we believe would be beneficial for distinguishing isomorphic or structurally similar graphs.756

C Computational Complexity757

Here, we discuss the computational complexity of DYMAG and show that it may be scaled to large758

graphs.759

We utilize Chebyshev polynomials to approximate u(i)H (v, t) and u(i)W (v, t) as defined in Eqns. 3760

and 4 motivated by the success of Chebyshev polynomials in the approximation of spectral graph761

wavelets [14] and GNNs [65]. This removes the need for eigendecomposition (which can have762

O(n3) computational complexity and O(n2) memory). The polynomial approximation has linear763

complexity for sparse graphs [65]. For example, if G is a k-nearest neighbor graph and the order of764

the polynomial is m, then the time complexity for solving the heat/wave equation is O(kmn).765

DYMAG’s runtime complexity is O(r|E|FT ), where |E| is the number of edges, F is the number766

of features, and r is the degree of the Chebyshev polynomial. No closed form solution is available767

for the Sprott dynamics, so we instead use a fourth-order Runge-Kutta method, which has been768

successfully applied to chaotic systems [66, 67]. This approach has complexity O(g|E|FT ), where769

g is the number of solver steps between sampled time steps.770

For each of the underlying dynamics, DYMAG exhibits linear complexity, with respect to the number771

of vertices for sparse graphs (setting |E| = nd̄, where d̄ is the average degree). This makes it772

efficient and scalable to large graphs, where the focus is often on local or node-level properties rather773

than global topological properties (although predicting global properties is the primary focus of our774

work). In such cases, local properties can be examined with a smaller feature set of size F ′ ≪ n, by775

concentrating on subgraphs around nodes of interest. Parallelization is feasible for large sparse graphs776

since the r-th order Chebyshev polynomials act over r-hop neighborhoods, allowing DYMAG to777

scale with standard MPNN techniques. Furthermore, the feature space F can be selected or adjusted778

to be small by utilizing random features, Diracs on a subset of nodes, or natural graph signals.779

Table 2 reports the training time per epoch (in seconds) for different variants of DYMAG and a wide780

range of baselines across four benchmark datasets. We see that the DYMAG variants have competitive781

training times. Table 3 shows the time complexity of precomputing the waveforms. Together, these782

results show that DYMAG scales well to large datasets both in training and preprocessing.783

Table 2: Training time per epoch (s) for DYMAG variants and baselines. Mean ± standard deviation computed
over 5 independent training runs, each with different random seeds, on an NVIDIA A100 GPU with a batch size
of 512.

Method PROTEINS (1,113 graphs) DrugBank (6,712 graphs) MP (69,239 graphs) Antiviral Screen (43,850 graphs)

DYMAG (Heat) 0.48± 0.09 1.80± 0.21 9.6± 1.2 6.3± 0.9
DYMAG (Wave) 0.54± 0.09 1.95± 0.24 10.5± 1.2 6.9± 0.9
DYMAG (Sprott) 0.75± 0.15 2.70± 0.30 13.5± 1.8 9.0± 1.2
MPNN 0.36± 0.06 1.35± 0.15 8.4± 0.9 5.7± 0.6
GAT 0.45± 0.09 1.65± 0.18 10.5± 1.2 6.9± 0.9
GIN 0.39± 0.06 1.59± 0.15 9.0± 0.9 7.8± 0.6
GWT 0.54± 0.12 2.16± 0.24 12.6± 1.5 8.4± 0.9
GraphGPS 0.75± 0.15 3.36± 0.30 18.9± 2.1 13.8± 1.5
GRAND 0.60± 0.12 2.61± 0.27 15.9± 1.8 10.5± 1.2
GRAND++ 0.66± 0.15 2.70± 0.30 16.5± 2.1 11.4± 1.5
CayleyNet 0.90± 0.18 3.87± 0.45 22.5± 2.7 15.6± 1.8
AdaGNN 0.84± 0.15 3.30± 0.36 22.2± 2.4 14.4± 1.8
DRew 0.51± 0.09 1.95± 0.24 12.3± 1.5 8.1± 0.9
GraphCON 0.69± 0.15 2.85± 0.33 17.4± 2.1 11.7± 1.5
GraFF 1.05± 0.21 4.29± 0.54 25.5± 3.0 17.4± 2.1
SWAN 1.20± 0.24 4.80± 0.60 30.0± 3.6 19.5± 2.4
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Table 3: Waveform precomputation time (s) for DYMAG.
Method PROTEINS DrugBank MP Antiviral Screen

DYMAG (Heat) 0.83 3.67 28.3 22.3
DYMAG (Wave) 1.00 4.33 31.3 25.0
DYMAG (Sprott) 10.00 21.70 166.7 123.3

D Proofs of Theoretical Results784

D.1 Proof of independence of eigenbasis785

Here we provide a detailed proof for the result that Equations 3 and 4 are invariant to the choice of786

the Laplacian eigenbasis, as mentioned in Section 2.2:787

The solutions u(i)H and u(i)W do not depend on the choice of eigenbasis (even when the eigenvalues
have multiplicity greater than one). To see this, let Sλ be the set of distinct eigenvalues of L. For
λ ∈ Sλ, let Eλ be the corresponding eigenspace, i.e., the linear space spanned by the set of νk such
that λk = λ. Let πλ denote the corresponding projection operator, i.e.,

πλx =
∑

k:λk=λ

⟨νk,x⟩νk,

for all x ∈ Rn, and observe that πλ is independent of choice of eigenbasis. Then, from Eqn. 3, we788

may then write,789

u
(i)
H (v, t) =

n∑
k=1

e−tλ
α
k ⟨νk, δi⟩νk(v)

=
∑
λ∈Sλ

e−tλ
α ∑

k:λk=λ

⟨νk, δi⟩νk(v)

=
∑
λ∈Sλ

e−tλ
α

πλδi(v).

This establishes that u(i)H is independent of the choice of basis. The argument for u(i)W is identical790

other than using Eqn. 4 in place of Eqn. 3. (For the second term in Eqn. 4 note that we are assuming791

that the graph is connected which implies that λ1 has single multiplicity, i.e., 0 = λ1 < λ2.)792

D.2 Proofs of propositions793

Below, we prove Proposition 3.1, (restated below) the band-pass properties of DYMAG through the794

waveforms.795

Proposition 3.1. (Band-pass information) DYMAG is able to extract band-pass, or even multi-band-796

pass information information from the node features.797

To make Proposition 3.1 more precise, we will separate it out into two propositions. However, first,798

we will introduce some notation and definitions.799

We define heat-kernel as Ht = e−tL
α

, i.e.,

Ht = U diag (exp(−tλ1)α, . . . , exp(−tλαn))UT.

We observe that we may rewrite the solution to the heat equation, with any initial condition uH(·, 0)800

as801

uH(·, t) =
n∑

m=1

e−tλ
α
m⟨νm, u(·, 0)⟩νm = HtuH(·, 0). (12)

In particular, we have ui,k = Htkδi. Thus, we see that the features802

h
(i)
j,k = ⟨ui,k,xj⟩
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defined in Eqn. 6 can be rewritten as803

h
(i)
j,k =

n∑
ℓ=1

Htkδi(ℓ)xj(ℓ)

=

n∑
ℓ=1

n∑
m=1

e−tλ
α
m⟨νm, δi⟩νm(ℓ)xj(ℓ)

=

n∑
ℓ=1

n∑
m=1

e−tλ
α
mνm(i)νm(ℓ)xj(ℓ)

= (Htkxj)(i).

Next, for fixed times t1 < t2, we define804

Ψt1,t2 = Ht1 −Ht2 (13)

as the difference of two heat kernels. In the spectral domain, we note that we may write805

Ψt1,t2x =
n∑

m=1

(e−t1λ
α
m − e−t2λ

α
m)⟨νm,x⟩νm.

The function,806

ψt1,t2(λ) = e−t1λ
α

− e−t2λ
α

, (14)
which is referred to as the frequency response is zero both at λ = 0, and as λ → ∞. Its support is807

concentrated in a frequency band centered around λ⋆ =
(

log(t2/t1)
t2−t1

)1/α

. Therefore, Ψt1,t2 is referred808

to as a band-pass filter. We summarize this in the following proposition.809

Proposition D.1 (Difference of two heat waveforms is band-pass). Let t1 < t2 and define Ψt1,t2 as810

in Eqn. 13. Then the function x 7→ Ψt1,t2x performs a band-pass filtering.811

Proof. This follows immediately from the frequency response illustrated in Eqn. 14 and the subse-812

quent discussion.813

Importantly, we observe that DYMAG has the capacity to learn Ψt1,t2 through the MLP in Algorithm814

2. Therefore, Proposition D.1 shows that DYMAG, with the heat-equation has the capacity to perform815

band-pass filtering. This is in contrast to standard message passing networks which are known to816

effectively perform low-pass filtering (i.e., averaging type operations).817

We next turn our attention to the wave equation, focusing on the case with zero initial velocity (i.e.,818

c = 0) for the sake of simplicity. Similar to the heat-case (Eqn. 12), we may define a wave kernel819

by W t = cos
(
t
√
Lα

)
= U diag

(
cos(t

√
λα1 ), . . . , cos(t

√
λαn)

)
UT and observe that the solution820

to the wave equation, with initial condition uW (·, 0) is given by W tuW (·, 0). In the spectral domain,821

we may write822

Φtx =

n∑
m=1

cos(t
√
λαm)⟨νm,x⟩νm. (15)

The associated frequency response is given by823

ψ(λ) = cos(t
√
λα). (16)

This function attains its maximum absolute value at λ = λm := (mπ/t)2/α, m = 0, 1, 2, . . .824

(band-passes), and vanishes at λ = λm+ 1
2
:= ((2m+1)π/2t)2/α (stop-bands). Hence u(i)W alternates825

between preserving and suppressing successive frequency intervals and thus acts as a multi-band826

filter. We summarize this in the following proposition.827

Proposition D.2 (Wave equation is multi-band). Fix a time t > 0 and, for simplicity, set the initial828

velocity to zero (c = 0). Consider the wave kernel W t = cos
(
t
√
Lα

)
and define Φt as in Eqn. (15).829

Then the function x 7→ Φtx performs a multi-band-pass filtering.830
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Proof of Proposition D.2. This follows from Eqn. 16 and the subsequent analysis of the maxima and831

zeros of ψ(λ).832

833

We now turn our attention to Proposition 3.2.834

Proposition 3.2. (Identification of Connected Components) Let u(i)(v, t) denote the solution to the835

heat equation, wave equation, or Sprott chaotic dynamics. Suppose that G is not connected. Then,836

for any v which is not in the same connected component as vi, and all t ≥ 0, we have u(i)(v, t) = 0.837

Proof of Proposition 3.2. First observe that it suffices to prove the result for 0 ≤ t ≤ T where T is838

arbitrary (since we may then let T → ∞).839

Let u(i) be a solution to the differential equation and consider the function ũ(i) defined by

ũ(i)(v, t) =

{
u(i)(v, t) if v ∈ C
0 otherwise

,

where C is the connected component containing vi.840

We observe that ũ(i) is also a solution since the right hand side of each differential equation is841

localized in the sense that no energy passes between components and the initial condition has support842

contained in C. However, since the right hand side of all three differential equations is Lipschitz843

on [0, T ], Theorem 5, Section 6 of Coddington [68] implies that there is at most one solution to the844

differential equation and thus ũ(i) = u(i) on V × [0, T ]. Therefore, since T was arbitrary, we have845

u(i)(v, t) = 0 for all v /∈ C.846

Importantly, we note that the fractional Laplacian Lα is not a graph shift operator, i.e., we may have
Lα
i,j ̸= 0 even if i ̸= j and {vi, vj} /∈ E. However, it is still component-localized in the sense that

Lα
i,j ̸= 0 implies that vi and vj are in the same connected component. To see this, note that if G

is disconnected, then we can choose an ordering of the vertices so that L is block-diagonal (with
the diagonal blocks corresponding to connected components). This implies that we may choose
an eigenbasis such that each eigenvector νi has its support (non-zero entries) contained in a single
connected component. Therefore, writing Lα in its outer-product expansion,

Lα =

n∑
i=1

λανiν
T
i

implies that Lα is component-localized.847

Proposition 3.3. Let G be connected and let L be the random-walk Laplacian Lrw (with α = 1).848

Let u(i)H (v, t) be the solution to the heat equation, Eqn. 3. Then u(i)H (v, t) > 0 for all v ∈ V and849

t > 0.850

In order to prove Proposition 3.3, we need the following lemma which relates the heat equation851

to a continuous time random walker (see e.g., Fallahgoul et al. [69]) {Xcontinuous
t }t≥0 defined by852

Xcontinuous
t = Xdiscrete

N(t) , where {Xdiscrete
k }∞k=0 is a standard discrete-time random walker (i.e., a walker853

who moves to a neighboring vertex at each discrete time step) and {N(t)}t≥0 is an ordinary Poisson854

process.855

Lemma D.3. Let u(i)H (v, t) be the solution to the heat equation with L chosen to be the random-walk856

Laplacian, L = LRW = I − P where P = D−1A and initial condition δi. Then u(i)H (·, t) is the857

probability distribution of a continuous-time random walker started at vi at time t.858

Proof of Lemma D.3. We first note thatL = Lrw can be written in terms of the symmetric normalized
LaplacianLs = In−D−1/2AD−1/2 asLrw = D−1/2LsD

1/2. Therefore, Lrw is diagonalizable and
may be written as Lrw = SΛS−1 where Ls = UΛU−1 is a diagonalization of Ls and S = D−1/2U .
This allows us to write

P = I − Lrw = S(I − Λ)S−1,
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which implies that for k ≥ 0, we have

P k = S(I − Λ)kS−1.

We next note that Eqn. 3 may be written as u(i)H (·, t) = Htδi, where Ht is the heat kernel defined by859

Ht := e−tL = Se−tΛS−1. (17)

Therefore, it suffices to show that Ht is the t-second transition matrix of the continuous-time random860

walker Xcontinuous
t = Xdiscrete

N(t) .861

By the definition of a Poisson process, N(t) is a Poisson random variable with parameter t. Thus, for
k ≥ 0, t ≥ 0, we have

P(Nt = k) = At(k) = tke−t/k!.

We next observe that for all µ ∈ R we have862

e−t(1−µ) = e−t
∑
k≥0

(tµ)k

k!
=

∑
k≥0

At(k)µ
k. (18)

Substituting λ = 1− µ in Eqn. 18 links the eigenvalues of U t
H and P by863

U t
H = Se−tΛS−1 = S

∑
k≥0

At(k)(In − Λ)kS−1

=
∑
k≥0

At(k)P
k.

This implies that Ht is the t-second transition matrix of the continuous-time random walker and thus864

completes the proof.865

Now we prove Proposition 3.3.866

Proof of Proposition 3.3. Let v ∈ V be arbitrary. As shown in Lemma D.3, u(i)H (·, t) is the probability867

distribution of a continuous-time random walk with initial distribution δi at time t. Therefore, if d is868

the length of the shortest path from v to vi, then869

u
(i)
H (v, t) = P(Xcontinuous

t = v|Xdiscrete
0 = vi)

≥ P(N(t) = d)P(Xdiscrete
d = v|Xdiscrete

0 = vi) > 0.

Proposition 3.4. (Heat energy) Let G be connected, and let u(i)H (v, t) be as in Eqn. 3 and let870

u
(i)
H (t) = u

(i)
H (·, t). Then,871

e−2tλ
α
n ≤ ∥u(i)H (·, t)∥22 ≤ |ν1(i)|2 + e−2tλ

α
2 (19)

for all t > 0. Furthermore, as t converges to infinity, we have872

lim
t→∞

u
(i)
H (t) = ⟨ν1, δi⟩ν1 = ν1(i)ν1. (20)

Proof of Proposition 3.4. From Eqn. 3, and the fact that {νk}nk=1 is an ONB, we see873

∥u(i)H (t)∥22 =

〈
n∑

k=1

e−tλ
α
k ⟨νk, δi⟩νk,

n∑
k=1

e−tλ
α
k ⟨νk, δi⟩νk

〉

=

n∑
k=1

e−2tλ
α
k |⟨νk, δi⟩|2. (21)
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Thus, since λ1 = 0, upper bound in Eqn. 19 is obtained by:874

∥u(i)H (t)∥22 =

n∑
k=1

e−2tλ
α
k |⟨νk, δi⟩|2

= |⟨ν1, δi⟩|2 +
n∑

k=2

e−2tλ
α
k |⟨νk, δi⟩|2

≤ |⟨ν1,x⟩|2 + e−2tλ
α
2

n∑
k=2

|⟨νk, δi⟩|2

≤ |⟨ν1, δi⟩|2 + e−2tλ
α
2 .

The lower bound in Eqn. 19 may be obtained by noting875

n∑
k=1

e−2tλ
α
k |⟨νk, δi⟩|2 ≥ e−2tλ

α
n

n∑
k=1

|⟨νk, δi⟩|2 = e−2tλ
α
n .

Eqn. 20 immediately follows Eqn. 21 and the fact that 0 = λ1 < λ2 ≤ . . . ≤ λn.876

Proposition 3.5. (Heat energy between graphs) Let G and G′ be graphs on n vertices with fractional877

Laplacians Lα
G and Lα

G′ and let δi and δi′ be initial conditions for Eqn. 1 on G and G′. Assume: (i)878

Lα
G′ ≽ Lα

G, i.e., vTLα
G′v ≥ vTLα

Gv for all v ∈ Rn, (ii) We have |ν′k(i)|2 ≤ (1 + ηk(t))|νk(i)|2879

for all 1 ≤ k ≤ n, where we also assume ηk(t) := exp(2t((λ′k)
α − λαk ))− 1 ≥ 0. Then, with uH880

and u′H defined as in Eqn. 3, we have ∥(u(i)H )′(·, t)∥22 ≤ ∥u(i)H (·, t)∥22.881

Proof of Proposition 3.5. By Eqn. 21, we have882

∥u(i)H (·, t)∥22 − ∥(u(i)H )′(·, t)∥22

=

n∑
k=1

e−2tλ
α
k |⟨νk, δi⟩|2 − e−2tλ

′α
k |⟨ν′k, δi′⟩|2

≥
n∑

k=1

[
e−2tλ

α
k − e−2tλ

′α
k (1 + ηi(t))

]
|⟨νk, δi⟩|2

= 0.

Proposition 3.8. (Wave energy bounds) Let u(i)W (v, t) be the solution to the fractional wave equation883

Eqn. 4 with initial conditions u(i)W (·, 0) = δi and ∂tu
(i)
W (·, 0) = 0. Then, for any time t ≥ 0, the884

energy of the waveform satisfies |ν1(i)|2 ≤ ∥u(i)W (·, t)∥22 ≤ 1.885

Proof of Proposition 3.8. The proof is similar to the proof of Eqn. 19. By the same reasoning as in886

Eqn. 21, we have887

∥u(i)W (t)∥22 =

n∑
k=1

cos2
(√

λαk t
)
|⟨νk, δi⟩|2. (22)

Therefore,888

∥u(i)W (t)∥22 =

n∑
k=1

cos2(
√
λαk t)|⟨νk, δi⟩|2 ≤

n∑
k=1

|⟨νk, δi⟩|2 = ∥δi∥22 = 1.

24



The lower bound follows by noting that since λ1 = 0 we have:889

∥u(i)W (t)∥22 =

n∑
k=1

cos2(
√
λαk t)|⟨νk, δi⟩|2

≥ cos2(
√
λα1 t)|⟨ν1, δi⟩|2

= |⟨ν1, δi⟩|2.
= |ν1(i)|2.

To prove Proposition 3.9, we first prove the following Proposition:890

Lemma D.4 (Recovery of eigenspectrum from waveforms). Let G be connected, and let u(i)W (v, t)891

be the solution to the fractional wave equation (Eqn. (4)), with initial conditions u(i)W (·, 0) = δi892

and ∂tu
(i)
W (·, 0) = 0. Then, for any fixed node v, the sequence of values u(i)W (v, t1), . . . , u

(i)
W (v, tm)893

obtained from time samples can be used to approximate the full Laplacian eigenspectrum {λαk}nk=1894

up to arbitrary precision, provided sufficient time resolution.895

Proof. Fix v. Since y = 0, we may rewrite Eqn. 4 as896

f(t) := u
(i)
W (v, t) =

n∑
k=1

cos(
√
λαk t)ck(v)

where ck(v) = ⟨νk, δi⟩νk(v) is a constant with respect to time and depends only on the node897

position.898

Now, let ϵ > 0 be a degree of precision and choose K such that 1
K < ϵ. Approximate

f(t) ≈ f̃(t) :=

n∑
k=1

cos(akt)ck(v)

where ak is the multiple of 1/K such that |ak −
√
λαk | < ϵ. The function f̃ has a finite Fourier899

expansion and therefore is uniquely characterized by finitely many samples which allows us to recover900

the ak and thus approximately recover the λk.901

902

The graph eigenspectrum encodes a wide range of graph invariants and properties. Proposition D.4903

demonstrates that the solutions to the wave equation relate to graph spectral properties, and that this904

entire information is contained in the solutions of the wave equation at each node. Now we prove:905

Proposition 3.9. (Cycle Length) The size of a cycle graph Cn can be determined from the solution906

to the fractional wave equation at a single node v.907

Proof. Denote Cn the cycle graph with vertices numbered 0, . . . , n− 1 and edges (v, v + 1) modulo908

n. Since Cn is 2-regular, the unnormalized and normalized Laplacian differ only by a constant909

multiple of 2. Therefore, without loss of generality, we will focus on the unnormalized Laplacian.910

It is known that an orthogonal eigenbasis is given by {ϕk}k=⌊n/2⌋k=0 ∪ {ψk}⌈(n−1)/2⌉k=1 defined:911

ϕk(v) = cos

(
2πkv

n

)
, ψk(v) = sin

(
2πkv

n

)
,

where the corresponding eigenvalues are given by912

λk = 2− 2 cos

(
2πk

n

)
= 4 sin2

(
πk

n

)
(23)

Consider the case where the wave equation has an initial condition of y = 0 and the initial signal is913

given by x = δa. The solution to this equation at a fixed node v is given by:914
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uW (t) =

⌊n2 ⌋∑
k=1

cos

(
2t sin

(
πk

n

))
cos(2πka/n)ϕk/∥ϕk∥2

+

⌈(n−1)/2⌉∑
k=1

cos

(
2t sin

(
πk

n

))
sin(2πka/n)ψk/∥ψk∥2, (24)

+ ϕ0/∥ϕ0∥2 (25)

where the third term in Eqn. 24 corresponding to the smallest non-zero eigenvalue is nonzero. By
Proposition D.4 each of the λk are uniquely determined by our measurements and

n =
2π

cos−1
(
2−λ1

2

) .
Thus n is uniquely determined by our measurements.915

E Implementation Details916

E.1 Experimental Computation Resources917

All experiments were conducted on a high-performance computing server equipped with an Intel®918

Xeon® Gold 6240 CPU (18 cores, 36 threads, 2.60 GHz base frequency) and 730 GB of system RAM.919

The server is configured with 4 NVIDIA A100 GPUs, each with 40 GB of VRAM, enabling efficient920

parallel training of deep learning models. The system runs on Red Hat Enterprise Linux 8.8 with921

CUDA version 11.8 and cuDNN 8.5.0. Experiments were executed using PyTorch 2.0.0 and Python922

3.10. Unless otherwise stated, all models were trained using mixed precision to optimize memory923

usage and throughput.924

E.2 DYMAG Parameters925

Here we describe the architecture and training setup of DYMAG used to generate the experimental926

results presented in this paper. DYMAG supports both node-level and graph-level tasks, and is927

evaluated on datasets comprising either a single large graph (e.g., citation networks such as PubMed)928

or collections of small graphs (e.g., synthetic graphs, molecular graphs, and protein structures).929

We use a stacked architecture consisting of L = 3 DYMAG layers, each simulating K discrete time930

steps of heat or wave dynamics, where K is selected via grid search specific to each dataset. Between931

layers, we apply a 3-layer MLP with LeakyReLU activations for node-wise transformation. For all932

downstream tasks, we use a 5-layer MLP with LeakyReLU activations as the task-specific head.933

For node-level tasks such as node classification in citation graphs, we directly use the hidden node934

embeddings produced by DYMAG and feed them into the 5-layer MLP to perform classification935

or regression. For datasets composed of multiple small graphs (e.g., synthetic Erdős-Rényi graphs,936

molecular graphs, etc.), we apply mean pooling across the node dimension to obtain a graph-level937

embedding. This pooled embedding is passed to the same 5-layer MLP for classification or regression.938

E.3 Parameters for Sprott Dynamics939

For Sprott dynamics (Eqn. (5)), in our experiments, we set b = 0.25 and the coupling coefficients940

as ck,j ∼ 1√
n−1 (2 · Bernoulli(0.5)− 1), which assigns each ck,j a value of ± 1√

n−1 with equal941

probability.942

E.4 Hyperparameter sensitivity943

The main hyperparameters in DYMAG are the number of time points T , the number of waveform944

samples K, and the fractional derivative exponent α. We conducted a hyperparameter search over T945

using a 1, 2, 5 log-scale scheme (i.e., T ∈ {2, 5, 10, 20, 50, 100}) on Erdős-Rényi graphs with 100 -946
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5000 nodes, selecting the best value based on recovery of generating parameters. For downstream947

tasks, we set T based on the typical graph size; a good heuristic is to scale T with graph diameter. For948

a fixed T , we sample the dynamics at K equidistant time points to create the waveform representation.949

We used K = 100 in all experiments. Additinally, we evaluated sensitivity to the fractional exponent950

α in Table 9, ranging from 0.25 to 1. DYMAG shows strong robustness across tasks, with most951

performance differences within one standard deviation. The only exception is TPSA prediction,952

where α = 1 (i.e., standard diffusion) performs best, likely due to the smooth, global nature of the953

TPSA feature.954

F Classic spectral GNNs: low-pass filtering, over-smoothing, and overfitting955

Classic spectral domain graph neural networks like GCNs and ChebNets are, in theory, capable of956

learning arbitrary spectral responses. However, in practice, their spectral response functions are957

usually limited to low degree polynomial filters [48, 65] with the degree even limited to K = 1 or 2.958

This gap motivates the development of modern, non-low-pass GNNs, which do not require difficult959

spectral computations. The choice of a low-degree polynomial inherently limits a GNN’s ability to960

model long-range relationships, leading to under-reaching. Attempting to fix this by stacking many961

layers often introduces over-smoothing and overfitting.962

G DYMAG Is Effective Against Over-Smoothing and Under-Reaching963

To test DYMAG’s ability to handle heterogeneous node features without oversmoothing, we evaluated
DYMAG on heterophilic graphs. These heterophilic graphs have the characteristic that adjacent nodes
belong to different classes (as opposed to homophilic graphs), and thus smoothing would inhibit
high performance on such datasets. In Table 12, we show that DYMAG outperforms the baselines
on heterophilic datasets such as Texas, Wisconsin, and Cornell as well as homophilic datasets such
as Cora and PubMed. Our claims regarding over-smoothing and under-reaching are backed by
our theoretical results. Proposition 3.1 that establishes that DYMAG has the capacity to perform
band-pass filtering via wave-propagation rather than low-pass filters which perform “smoothing.”
Further, DYMAG combats under-reaching by aggregating information across the graph (or large
swaths of it depending on the T parameter) using multiscale waveforms for aggregation. We further
establish this by computing the Dirichlet energy of DYMAG hidden layer features. We compute the
Dirichlet energy of node embeddings x ∈ Rn using the standard normalized form:

E(x) = x⊤Lx

x⊤x
,

where L is the graph Laplacian and x is the node embedding vector from a hidden layer. This quantity964

reflects how much the embedding varies over adjacent nodes. Values near 0 indicate oversmoothing,965

while values closer to 1 reflect sharper transitions across edges. Table 4 shows that DYMAG generates966

hidden node representations with Dirichlet energy in the 0.4 - 0.5 range, indicating that it preserves967

meaningful variation across the graph without excessive smoothing. In contrast, models like MPNN,968

GIN, and GAT exhibit significantly lower Dirichlet energy, consistent with oversmoothing, where969

node features become too similar and local structure is lost. Only GWT (graph wavelet transform) and970

GraphGPS (graph transformer) achieve comparable or higher energy levels, but DYMAG matches971

or exceeds them in classification accuracy (see Table 8), suggesting a better trade-off between972

smoothness and expressivity.

Table 4: Dirichlet energy of hidden node representations for various models on the ogbn-papers100M dataset.
Values reported are mean ± standard deviation over 3-fold cross validation.

Model Dirichlet Energy

DYMAG (Heat) 0.443± 0.018
DYMAG (Wave) 0.515± 0.014

MPNN 0.303± 0.016
GAT 0.353± 0.029
GIN 0.289± 0.013
GWT 0.419± 0.017
GraphGPS 0.500± 0.015

973
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H DYMAG can be made inductive974

DYMAG can be made inductive with minor modifications. We have specifically designed the975

waveform bank such that there are KT (T is number of time points, and K is the number of976

waveform samples) waveforms centered at every node. With the addition of new nodes, we would977

add these waveforms and also modify other waveforms depending on their proximity to the new978

nodes. In large graphs, T would likely be much smaller than the span of the graph. The “wavelet979

transforms” resulting from the newly placed waveforms are placed back on the new node as a node980

feature which can be used to classify the node. Thus, the computation resulting from the addition of981

these waveforms is incremental. Therefore, our model could be made inductive.982

I Additional Experiments983

I.1 Geometric and Topological Properties984
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Figure 3: Mean squared error (MSE, lower is better) for
predicting the generating parameters of random graphs
and node classification accuracy (higher is better) for ho-
mophilic and heterophilic datasets. (See also Tables 11
and 12)

We first evaluated the expressivity of multiscale985

dynamics as a replacement for message passing986

by training DYMAG to recover geometric and987

topological features, including Ollivier–Ricci988

curvature and the persistence image representa-989

tion [70] of the extended persistence diagram.990

Ollivier–Ricci curvature [71], a discrete analog991

of Ricci curvature from Riemannian geometry,992

captures local graph geometry. We discuss the993

motivation of using Ollivier-Ricci curvature as994

a node regression task in Appendix I.2. For995

persistent homology, diagrams are computed996

from ascending and descending filtrations of997

each node’s 5-hop neighborhood, using node998

degree as the filter [72, 59]. The resulting per-999

sistence images encode connected components1000

(0 homology) and loops (1st homology).1001

We evaluated the model on Erdős-Rényi graphs [73], G(n, p), with n ∈ {100, 200} and p ∈1002

{0.04, 0.06, 0.08}, stochastic block model (SBM) graphs, and several citation graphs. The results1003

are shown in Table 5 and Table 6. DYMAG significantly improves prediction accuracy on both1004

Ollivier–Ricci curvature and persistent homology compared to standard GNNs and GRAND. For1005

persistent homology, DYMAG performs on par with the purpose-built model of Yan et al. [59],1006

a neural approximation of the Union-Find EPD algorithm, despite DYMAG not being designed1007

specifically for this task. DYMAG generalizes well across both synthetic and real-world graphs,1008

including Cora [16], Citeseer [17], and PubMed [18]. We note that while persistent homology1009

can be computed directly, it is computationally expensive with cost O(g3), g being the number1010

of generators [74]. More importantly, these experiments highlight that DYMAG learns rich graph1011

representations that capture topological features when useful for prediction, and it can adapt to the1012

task to extract relevant information for regression or classification.1013

As shown in Figure 3 and Tables 11 and 12, we evaluate expressivity via two tasks as proxies:1014

recovering parameters of random graphs and node classification on homophilic (Pubmed, Citeseer,1015

Cora) and heterophilic (Texas, Wisconsin, Cornell) [19] networks. We see that the heat and wave1016

versions of DYMAG are the top performing models on most of the data sets whereas the Sprott1017

version of DYMAG is the top performing model on the heterophilic data sets, possibly because these1018

data sets need a model which is sensitive to small changes in local graph structure.1019

In Table 8, we evaluate DYMAG on ogbn-papers100M for node classification, complementing the1020

curvature prediction (node regression) results above. The results show that DYMAG-wave and1021

DYMAG-heat outperform other baselines on large graphs, further demonstrating that DYMAG scales1022

effectively to large datasets.1023

We present further experimental validation of DYMAG, focusing on its ability to predict both1024

biomolecular properties and topological descriptors such as curvature.1025
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Table 5: Mean squared error (MSE) for predicting Ollivier–Ricci curvature (κ) and extended persistence images
(EP) across citation and OGBN graph benchmarks. Results are averaged over 10 runs; lower is better. “–”
indicates not applicable, timeout, or out of memory.

Model Cora Citeseer PubMed ogbn-mag ogbn-papers100M
κ EP κ EP κ EP EP EP

DYMAG(Heat) 1.73e-2 1.45e-4 2.09e-2 3.94e-4 7.30e-3 7.93e-3 5.39e-2 9.03e-2
DYMAG(Wave) 1.85e-2 7.41e-5 3.41e-2 1.58e-4 6.51e-3 3.29e-3 8.01e-3 3.25e-2
DYMAG(Sprott) 1.34e-1 3.51e-3 1.46e-1 7.64e-3 2.97e-2 8.96e-2 – –

MPNN 2.40e-1 2.72e-3 2.20e-1 6.83e-3 1.69 4.29e-1 2.93e-1 6.19e-1
GAT 7.36e-1 5.04e-2 9.04e-1 2.93e-2 1.55e-1 4.79e-1 4.47e-1 8.03e-1
GIN 1.56e-1 5.53e-3 1.72e-1 3.94e-3 8.34e-3 1.27e-1 2.49e-1 6.43e-1
GWT 4.07e-2 6.79e-4 3.58e-2 9.12e-4 9.15e-3 2.16e-2 5.83e-2 2.71e-1
GraphGPS 4.41e-1 2.71e-2 2.82e-1 3.16e-2 7.68e-1 1.94e-1 3.78e-1 4.05e-1
GRAND 6.81e-2 8.13e-4 1.24e-1 6.87e-4 2.73e-2 3.37e-2 – –
GRAND++ 1.74e-1 8.16e-3 3.09e-1 4.21e-3 8.72e-2 3.07e-1 – –

Neural EPD Approx. – 5.80e-5 – 1.29e-4 – 2.74e-3 6.73e-3 3.18e-2

Table 6: Mean squared error (MSE) for predicting Ollivier–Ricci curvature (κ) and extended persistence images
(EP) on Erdős–Rényi and citation graphs. Results are shown as mean (standard deviation). DYMAG with heat
or wave dynamics outperforms all baselines. A uniform signal was used on graphs without node features. Due to
computational cost, Ollivier–Ricci curvature was computed only on a 2,000-node subgraph for PubMed and
omitted for OGBN-MAG and OGBN-Papers100M.

Dataset DYMAG(Heat) DYMAG(Wave) DYMAG(Sprott) MPNN GAT GIN GWT GraphGPS GRAND GRAND++ Neural EPD Approx.

Ollivier–Ricci Curvature (κ)

ER (p = 0.04, n = 100) 1.86e-01 1.93e-01 7.44e+00 3.20e+01 2.37e+01 5.93e+00 3.60e-01 1.14e+01 1.10e+01 1.48e+01
(4.01e-03) (8.78e-03) (2.73e-01) (1.28e+00) (5.45e-01) (2.37e-01) (2.96e-02) (1.51e-01) (3.28e-01) (1.80e-01)

ER (p = 0.06, n = 100) 1.80e-01 1.76e-01 7.39e+00 3.19e+01 2.13e+01 2.06e+00 3.63e-01 8.58e+00 9.26e+00 1.61e+01
(8.03e-03) (5.28e-03) (4.47e-01) (5.47e-01) (2.08e+00) (2.62e-02) (1.34e-02) (9.51e-02) (5.83e-01) (6.00e-01)

ER (p = 0.08, n = 100) 1.78e-01 1.79e-01 6.81e+00 3.19e+01 2.99e+01 8.62e-01 3.47e-01 9.13e+00 2.27e+00 1.35e+01
(8.39e-03) (2.83e-03) (2.23e-01) (1.33e+00) (2.74e-01) (9.19e-02) (2.15e-02) (3.42e-01) (2.18e-02) (3.76e-01)

ER (p = 0.04, n = 200) 3.63e-01 3.58e-01 1.52e+00 1.81e+01 6.74e+00 7.86e-01 7.39e-01 3.07e+00 5.90e-01 2.06e+00
(9.09e-03) (1.47e-02) (8.83e-02) (1.01e+00) (5.36e-01) (1.93e-02) (6.13e-02) (8.83e-02) (5.74e-02) (1.36e-02)

ER (p = 0.06, n = 200) 3.19e-01 2.63e-01 5.28e-01 1.74e+01 4.39e+00 3.39e-01 6.86e-01 1.61e+00 7.38e-01 1.82e+00 N/A
(6.32e-02) (1.03e-02) (1.47e-02) (1.88e-01) (1.76e-01) (1.68e-02) (8.37e-03) (7.56e-02) (9.22e-03) (2.54e-02)

ER (p = 0.08, n = 200) 2.14e-01 2.57e-01 5.73e-01 1.55e+01 6.18e+00 4.27e-01 5.93e-01 9.92e-01 4.33e-01 1.76e+00
(9.55e-03) (5.22e-02) (1.35e-02) (7.13e-01) (1.41e-01) (2.64e-02) (6.76e-03) (3.25e-02) (1.28e-02) (5.41e-02)

Cora 1.73e-02 1.85e-02 1.34e-01 2.40e-01 7.36e-01 1.56e-01 4.07e-02 4.41e-01 6.81e-02 1.74e-01
(4.44e-04) (2.99e-03) (5.98e-03) (8.12e-03) (3.65e-02) (2.05e-03) (5.47e-04) (2.16e-02) (1.02e-03) (5.03e-03)

Citeseer 2.09e-02 3.41e-02 1.46e-01 2.20e-01 9.04e-01 1.72e-01 3.58e-02 2.82e-01 1.24e-01 3.09e-01
(1.04e-03) (2.29e-02) (5.76e-03) (2.82e-03) (8.06e-03) (1.51e-03) (6.59e-04) (2.63e-02) (5.66e-03) (5.61e-03)

PubMed 7.30e-03 6.51e-03 2.97e-02 1.69e+00 1.55e-01 8.34e-03 9.15e-03 7.68e-01 2.73e-02 8.72e-02
(3.00e-05) (1.68e-04) (2.67e-03) (9.92e-02) (7.06e-03) (5.55e-04) (5.12e-04) (1.38e-02) (6.70e-04) (1.11e-03)

Extended Persistence Image (EP)

ER (p = 0.04, n = 100) 1.48e-02 6.37e-03 6.63e-01 7.83e-01 3.82e+00 4.83e-01 3.76e-02 9.17e-01 7.72e-01 2.39e+00 3.07e-03
(1.26e-03) (3.30e-03) (1.01e-02) (1.25e-02) (1.41e-01) (1.90e-02) (3.46e-03) (4.13e-02) (4.33e-02) (1.08e-01) (5.43e-05)

ER (p = 0.06, n = 100) 8.65e-03 2.79e-03 6.24e-01 7.35e-01 1.57e+00 4.09e-01 3.54e-02 6.31e-01 5.72e-01 1.15e+00 1.37e-03
(7.91e-04) (1.42e-03) (7.97e-03) (1.46e-02) (7.12e-02) (2.64e-02) (2.64e-03) (5.82e-02) (3.03e-02) (5.05e-02) (2.26e-05)

ER (p = 0.08, n = 100) 8.82e-03 2.54e-03 5.71e-01 9.46e-01 6.65e-01 3.92e-02 3.29e-02 4.85e-01 1.07e-02 8.59e-01 1.90e-03
(2.59e-04) (6.41e-04) (1.57e-02) (5.08e-02) (6.56e-02) (1.86e-03) (2.03e-03) (7.19e-03) (1.14e-04) (5.42e-02) (4.81e-05)

ER (p = 0.04, n = 200) 8.91e-03 5.18e-03 8.04e-02 6.73e-01 1.93e-01 3.72e-02 2.88e-02 3.92e-01 7.31e-02 2.85e-01 3.24e-03
(9.43e-05) (1.94e-03) (2.70e-03) (2.66e-02) (2.18e-03) (2.92e-03) (1.54e-03) (2.58e-02) (2.31e-03) (1.84e-02) (1.28e-05)

ER (p = 0.06, n = 200) 7.41e-03 4.76e-03 1.39e-01 7.29e-01 5.48e-01 3.69e-02 2.57e-02 3.68e-01 8.39e-02 3.28e-01 4.30e-03
(1.23e-04) (4.62e-04) (4.08e-03) (2.10e-02) (2.81e-02) (5.56e-04) (8.74e-04) (5.41e-03) (4.93e-03) (2.78e-02) (5.53e-05)

ER (p = 0.08, n = 200) 4.57e-03 1.62e-03 1.35e-01 1.28e+00 1.87e-01 3.96e-02 2.43e-02 3.12e-01 4.12e-02 3.48e-01 1.12e-03
(6.46e-05) (5.01e-04) (3.22e-03) (9.03e-02) (1.52e-02) (9.58e-04) (5.02e-04) (1.15e-02) (6.35e-04) (4.65e-03) (1.73e-05)

Cora 1.45e-04 7.41e-05 3.51e-03 2.72e-03 5.04e-02 5.53e-03 6.79e-04 2.71e-02 8.13e-04 8.16e-03 5.80e-05
(9.14e-06) (1.61e-05) (3.30e-04) (1.17e-04) (3.90e-03) (1.73e-04) (1.53e-05) (1.40e-03) (2.59e-05) (1.37e-04) (3.22e-07)

Citeseer 3.94e-04 1.58e-04 7.64e-03 6.83e-03 2.93e-02 3.94e-03 9.12e-04 3.16e-02 6.87e-04 4.21e-03 1.29e-04
(2.45e-05) (2.91e-05) (6.28e-04) (6.02e-04) (1.00e-03) (7.05e-05) (4.80e-05) (7.36e-04) (2.17e-05) (7.09e-05) (9.21e-07)

PubMed 7.93e-03 3.29e-03 8.96e-02 4.29e-01 4.79e-01 1.27e-01 2.16e-02 1.94e-01 3.37e-02 3.07e-01 2.74e-03
(3.55e-04) (5.51e-04) (5.26e-03) (2.60e-02) (3.41e-02) (1.13e-02) (2.77e-04) (1.58e-02) (7.31e-04) (2.06e-02) (6.85e-05)

ogbn-mag 5.39e-02 8.01e-03 – 2.93e-01 4.47e-01 2.49e-01 5.83e-02 3.78e-01 – – 6.73e-03
(5.95e-04) (1.28e-03) (5.77e-03) (1.89e-02) (3.04e-03) (8.10e-04) (1.24e-02) (1.04e-04)

ogbn-papers100M 9.03e-02 3.25e-02 – 6.19e-01 8.03e-01 6.43e-01 2.71e-01 4.05e-01 – – 3.18e-02
(6.49e-03) (7.21e-04) (2.36e-02) (4.13e-02) (1.15e-02) (2.15e-02) (1.12e-02) (1.05e-04)
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Table 7: Accuracy (mean ± standard deviation) of each model on the ENZYMES, PROTEINS, and MUTAG
datasets, averaged over 10-fold cross-validation. DYMAG variants based on heat and wave dynamics achieve
the best or second-best performance across all datasets.

Model ENZYMES PROTEINS MUTAG

DYMAG(Heat) 0.82± 0.02 0.54± 0.04 0.79± 0.02
DYMAG(Wave) 0.79± 0.02 0.71± 0.02 0.83± 0.02
DYMAG(Sprott) 0.60± 0.04 0.64± 0.03 0.74± 0.03
MPNN 0.63± 0.01 0.67± 0.01 0.76± 0.02
GAT 0.65± 0.01 0.64± 0.01 0.75± 0.02
GIN 0.68± 0.01 0.69± 0.02 0.77± 0.02
GWT 0.66± 0.01 0.66± 0.02 0.72± 0.02
GraphGPS 0.70± 0.02 0.68± 0.02 0.78± 0.02
GRAND 0.71± 0.02 0.65± 0.02 0.76± 0.02
GRAND++ 0.74± 0.01 0.69± 0.01 0.80± 0.02

In Table 6, we present the complete results for predicting Ollivier–Ricci curvature and extended1026

persistence images using synthetic and real-world datasets comprising of Erdős–Rényi graphs and1027

citation networks. For all experiments, DYMAG is trained using a uniform signal as input. Ground1028

truth Ollivier–Ricci curvature values are computed directly from the adjacency matrix, and per-1029

sistence images are generated using node degree as the filtration function. Results are reported1030

as mean with standard deviation in parentheses. Across all settings, DYMAG variants with heat1031

or wave dynamics consistently outperform baseline methods. Given the high computational cost1032

of computing Ollivier–Ricci curvature on large graphs, we restricted the PubMed evaluation to a1033

subgraph comprising the 2,000 most highly cited papers and omitted this evaluation for OGBN-MAG1034

and OGBN-Papers100M.1035

In Table 7, we evaluated the performance of DYMAG on three publicly available datasets for1036

biomolecular graph classification from the TUDatasets benchmark [75]. The ENZYMES dataset1037

[76] consists of protein secondary structures with ground truth annotations of catalytic activity.1038

In the PROTEINS dataset [21], the task is to classify whether a protein functions as an enzyme.1039

The MUTAG dataset [77] contains small nitroaromatic compounds, and the task is to classify their1040

mutagenicity on the S.typhimurium bacterium. DYMAG achieves strong validation accuracy across1041

all datasets, with the wave equation variant performing best on PROTEINS and MUTAG.1042

In Table 11, we present results corresponding to Figure 3, where the task is to recover generating1043

parameters of random graphs. On both Erdős–Rényi and stochastic block model (SBM) datasets,1044

DYMAG achieves the best overall performance, further validating its capacity to capture latent1045

structural properties.1046

In Table 8, we evaluated DYMAG on ogbn-papers100M for node classification, in addition to1047

the curvature prediction (node regression) results. The results show that DYMAG-wave and -heat1048

outperform other baselines.1049

Table 8: Classification accuracy on the ogbn-papers100M dataset. Results are reported as mean ± standard
deviation. DYMAG-wave and DYMAG-heat outperform other baselines. Models marked with a dash (–) did not
scale to the dataset’s size.

Model Accuracy (%)

DYMAG (Heat) 68.1± 0.3
DYMAG (Wave) 69.4± 0.3
DYMAG (Sprott) –

MPNN 55.2± 0.3
GAT 62.1± 0.5
GIN 58.7± 0.4
GWT 65.3± 0.5
GraphGPS 68.9± 0.4
GRAND –
GRAND++ –
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I.2 Ollivier-Ricci Curvature1050

Olivier-Ricci curvature [78] is used extensively in the graph learning community for graph rewiring1051

[79], community detection [80, 81], and graph sparsification [82]. In particular, negative curvature1052

values identify bridges between communities in a graph, making them informative for rewiring graphs.1053

In our setting, curvature is an important geometric quantity for graph tasks. Moreover, it is a fairly1054

challenging node level task, and often requires information about optimal transport between nodes1055

[83, 84]. Therefore, it is an ideal target for node regression task.1056

In Riemannian geometry, Ricci curvature quantifies how a space deviates from being locally Euclidean1057

by measuring volume distortion along geodesics. The discrete Ollivier-Ricci formulation extends this1058

notion to graphs by capturing how neighborhood structures contract or expand under local optimal1059

transport, thereby providing a principled measure of local geometric distortion.1060

To evaluate the capacity of DYMAG to capture such local geometric properties, we consider the task of1061

predicting node-level Ollivier-Ricci curvature [71]. Ground truth curvature values are computed using1062

the GraphRicciCurvature package (v0.5.3.1). The method first calculates edge-level curvature1063

scores via optimal transport between neighborhood distributions, and then aggregates these values to1064

the node level by averaging over all incident edges.1065

Because Ollivier-Ricci curvature is determined entirely by the graph topology - specifically, the1066

adjacency structure and any edge weights - it does not require node features. We therefore compute1067

curvature values directly from the graph’s adjacency matrix. The resulting node-level values are used1068

as regression targets in a node-level prediction task.1069

We report results on both real-world and synthetic graphs in Table 6. Due to the computational cost1070

of Ricci curvature estimation on large graphs, we restrict evaluation on PubMed (19,717 nodes) to a1071

subgraph comprising the 2,000 most highly cited nodes.1072

I.3 Extended Persistence Image1073

To compute extended persistence diagrams for graphs, we define a scalar filtration function f : V → R1074

that assigns a real value to each node. By default, we use node degree, but the framework supports1075

any scalar-valued function (e.g., centrality, clustering coefficient, or domain-specific metadata).1076

From this node-level function, edge values are induced by setting f(u, v) = max{f(u), f(v)}. We1077

then construct a filtration over the graph using both sublevel and superlevel sets: in the sublevel1078

filtration, nodes and edges are added in order of increasing f , capturing the evolution of connected1079

components and cycles; in the superlevel filtration, nodes and edges are included in decreasing order,1080

allowing for the identification of global topological features that persist across the entire graph. The1081

extended persistence diagram combines information from ordinary, relative, and extended homology1082

classes to characterize these multiscale topological changes.1083

Each extended persistence diagram contains a collection of birth–death pairs for two types of features:1084

dimension 0 features correspond to connected components, while dimension 1 features correspond to1085

cycles. To convert these diagrams into a vector representation, we map each birth–death pair (b, d) to1086

a birth–persistence pair (b, p) where p = d− b. We then place a Gaussian kernel (with bandwidth1087

σ = 0.005) centered at each (b, p) coordinate and discretize the resulting function onto a grid to1088

obtain persistence images [70]. To reflect the distinct statistical profiles of the two types of features,1089

we use different grid resolutions: for dimension 0 features, which are typically short-lived, we use a1090

compact 25 × 1 grid; for dimension 1 features, which exhibit greater variability in both birth and1091

persistence, we use a full 25 × 25 grid. These two images are flattened and concatenated into a1092

650-dimensional vector.1093

We treat persistence image prediction as a graph-level regression task. The pooled graph embedding1094

from DYMAG is passed through a 5-layer MLP to predict the flattened persistence image vector.1095

Results using node degree as the filtration function are reported in Table 6 (bottom). In Table 13,
we present results obtained using clustering coefficient as the filtration function. The clustering
coefficient of a node v is defined as

c(v) =
2T (v)

deg(v)(deg(v)− 1)
,
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where T (v) is the number of triangles through node v and deg(v) is the degree of node v. Compared1096

to degree-based filtrations, the higher MSE values in this setting suggest that persistence images1097

generated using clustering coefficients are more challenging to predict.1098

I.4 Node Classification Accuracy on Homophilic and Heterophilic Datasets1099

In Table 12, we also consider node classification on homophilic (Pubmed, Citeseer, and Cora) and1100

heterophilic (Texas, Wisconsin, and Cornell) networks from Pei et al. [19]. On the homophilic1101

real-world graph datasets, we see that the wave version of DYMAG outperforms the heat/Sprott1102

versions, achieving performance that is roughly comparable with the more standard GNNs. However,1103

on the heterophilic datasets, we see that DYMAG with chaotic Sprott dynamics outperforms other1104

models.1105

I.5 Fractional Heat Equation Dynamics1106

In Tables 9 and 10, we conduct experiments investigating the role of α in the fractional Laplacian Lα.1107

We highlight the case α = 1 in gray to emphasize that when α = 1, the fractional Laplacian reduces1108

to the standard (non-fractional) graph Laplacian. The values of α that achieve the best performance1109

are highlighted in blue. In cases where there is a tie and α = 1 is one of the co-best methods (e.g., in1110

the MP dataset), we highlight the α = 1 case in gray and the other top-performing method in blue.1111

Table 9, reports the mean squared error (MSE) for predicting extended persistence images. We1112

observe that varying α significantly impacts the model’s performance. For most Erdős–Rényi (ER)1113

graphs with n = 100 nodes, lower values of α yield better performance than the standard Laplacian1114

(α = 1), suggesting that fractional heat diffusion processes capture relevant graph features more1115

effectively in this context. For larger graphs with n = 200 nodes, the optimal α is still lower than 1,1116

though not as low as 0.25.1117

In Table 10, which reports the R2 scores for predicting various geometric and graph topological1118

properties of molecules, we observe that the performance across different α values is relatively similar,1119

indicating robustness to the choice of α. For example, on the PROTEINS dataset for predicting1120

dihedral angles, the highest R2 score is 0.89 at both α = 0.25 and α = 0.50, while at α = 1, the1121

score is 0.87. In the case of the Materials Project (MP) dataset for predicting band gap, there is a tie1122

in performance between α = 0.50 and α = 1.00, both achieving an R2 score of 0.59.1123

Overall, these results demonstrate that non-local smoothing achieved with the fractional Laplacian1124

featuring various α parameters allows the model to perform better on certain tasks. Specifically,1125

fractional Laplacians with α < 1 can enhance performance in recovering the topology of randomly1126

generated graphs, while different values of α do not significantly impact DYMAG’s performance on1127

molecular and material science datasets.1128

Table 9: Mean squared error (MSE) for predicting extended persistence images using vertex degree as the
filtration function (lower is better). We compare DYMAG models with wave dynamics across different fractional
orders α. The first group of ER graphs are generated with n = 100 nodes, and the second with n = 200 nodes.

Graph Fraction α
0.25 0.50 0.75 1.00

ER(p = 0.04, n = 100) 4.47e-2 ± 1.0e-3 3.51e-2 ± 7.2e-4 1.39e-2 ± 2.6e-4 1.48e-02 ± 1.26e-03
ER(p = 0.06, n = 100) 3.60e-3 ± 1.6e-4 6.03e-3 ± 8.3e-5 6.24e-3 ± 1.8e-4 8.65e-03 ± 7.91e-04
ER(p = 0.08, n = 100) 4.72e-3 ± 1.8e-4 7.39e-3 ± 2.1e-4 8.60e-3 ± 3.1e-4 8.82e-03 ± 2.59e-04

ER(p = 0.04, n = 200) 8.12e-3 ± 5.0e-4 7.73e-3 ± 3.4e-4 9.28e-3 ± 8.5e-4 8.91e-03 ± 9.43e-05
ER(p = 0.06, n = 200) 7.85e-3 ± 3.6e-4 4.98e-3 ± 9.3e-5 4.52e-3 ± 1.8e-4 7.41e-03 ± 1.23e-04
ER(p = 0.08, n = 200) 5.02e-3 ± 1.6e-4 3.47e-3 ± 9.7e-5 1.12e-3 ± 2.5e-4 4.57e-03 ± 6.46e-05

Cora 2.84e-3 ± 3.2e-4 1.79e-3 ± 4.0e-4 5.16e-4 ± 8.0e-6 1.45e-04 ± 9.14e-06
Citeseer 1.35e-3 ± 9.7e-5 1.04e-3 ± 1.0e-4 6.34e-4 ± 1.2e-5 3.94e-04 ± 2.45e-05
PubMed 5.62e-3 ± 8.8e-5 1.17e-4 ± 1.0e-5 2.35e-4 ± 7.4e-6 7.93e-03 ± 3.55e-04
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Table 10: Performance of DYMAG (heat dynamics) across different fractional orders α on four datasets:
PROTEINS, DrugBank, Materials Project (MP), and the DTS AIDS Antiviral Screen. We report R2 score
(higher is better) for the first three datasets and balanced accuracy for the Antiviral Screen. Results are reported
as mean ± standard deviation over 10-fold cross-validation.

α
PROTEINS DrugBank MP Antiviral Screen

Dihedral Angles TPSA # Aromatic Rings Band Gap Active/Inactive

0.25 0.89 ± 0.04 0.94 ± 0.02 0.96 ± 0.03 0.57 ± 0.04 0.52 ± 0.02
0.50 0.89 ± 0.03 0.92 ± 0.02 0.96 ± 0.02 0.59 ± 0.01 0.56 ± 0.01
0.75 0.86 ± 0.02 0.92 ± 0.03 0.97 ± 0.03 0.58 ± 0.02 0.56 ± 0.02
1.00 0.89 ± 0.01 0.97 ± 0.01 0.97 ± 0.02 0.61 ± 0.03 0.54 ± 0.02

Table 11: Mean squared error (MSE) for the prediction of generating parameters of random graphs (lower
is better). The number of nodes for each type of random graph is specified in each data column (i.e. n ∈
{100, 250, 500, 1000, 2500}).

Method Erdős–Rényi Stochastic Block Model
100 250 500 1000 2500 100 250 500 1000 2500

DYMAG(Heat) 7.46e-3 7.13e-3 3.60e-3 4.19e-3 3.04e-3 6.41e-1 8.10e-1 1.79 4.52 6.27
DYMAG(Wave) 8.29e-3 6.58e-3 3.17e-3 3.25e-3 1.04e-3 8.25e-1 9.40e-1 1.26 2.28 2.35
DYMAG(Sprott) 4.33e-2 4.92e-2 7.08e-3 3.68e-3 5.49e-3 5.17 3.37 4.25 4.08 6.27

MPNN 1.37e-2 1.14e-2 9.26e-3 9.49e-3 8.02e-3 2.93 3.07 3.68 7.14 10.26
GAT 3.05e-2 5.60e-2 1.35e-2 3.74e-2 2.69e-2 11.79 9.42 10.83 13.62 18.60
GIN 1.08e-2 9.37e-3 7.74e-3 6.98e-3 4.81e-3 1.74 2.59 2.92 4.37 9.15

GWT 9.72e-3 1.04e-2 6.29e-3 6.56e-3 5.41e-3 2.47 3.18 2.14 4.87 6.52
GraphGPS 5.28e-2 8.48e-2 1.26e-2 1.31e-2 8.24e-3 12.06 8.21 9.44 11.63 12.67
GRAND 6.36e-2 4.22e-2 9.27e-3 6.58e-3 5.30e-3 14.52 16.78 13.50 11.28 8.58

GRAND++ 8.52e-2 6.91e-2 2.84e-2 1.29e-2 8.72e-3 23.71 26.84 19.64 16.97 15.42

Table 12: Node classification accuracy (%) on homophilic and heterophilic datasets.

Method Homophilic Datasets Heterophilic Datasets
Cora Citeseer PubMed Cornell Wisconsin Texas

Homophily 0.81 0.80 0.74 0.30 0.21 0.11
Nodes 2,708 3,312 19,717 183 251 183
Classes 7 6 3 5 5 5

DYMAG(Heat) 88.16 76.92 89.73 73.52 67.46 64.41
DYMAG(Wave) 89.62 77.16 89.63 76.44 78.47 81.24
DYMAG(Sprott) 60.81 67.42 64.18 88.19 86.72 87.63

MPNN 83.93 72.81 80.43 65.17 65.29 45.87
GAT 87.28 75.03 86.94 54.27 59.14 48.62
GIN 88.95 76.04 89.74 74.68 68.47 73.87
GWT 86.23 75.92 88.37 70.34 66.25 62.11

GraphGPS 87.31 75.87 88.91 73.95 69.13 74.01
GRAND 84.18 73.62 80.39 81.94 74.65 77.06

GRAND++ 84.33 75.61 80.53 80.27 78.38 82.58
TrigoNet 90.07 ± 1.33 78.91 ± 1.28 89.93 ± 0.58 80.12 ± 3.77 - 81.53 ± 4.02

PDE-GCNM 88.60 78.48 89.93 89.73 91.76 93.24
GCN+Multiscale QDC 87.85 ± 5.44 73.78 ± 4.53 88.32 ± 0.47 66.22 ± 5.44 64.71 ± 4.47 73.70 ± 4.53
GAT+Multiscale QDC 87.68 ± 3.87 77.57 ± 5.56 88.04 ± 3.33 77.57 ± 3.87 88.04 ± 4.06 67.57 ± 5.56

H2GNN+Multiscale QDC 88.38 ± 3.72 77.34 ± 4.84 89.13 ± 3.51 76.01 ± 3.72 86.66 ± 3.65 86.84 ± 4.17
GCNII* 88.01 77.13 90.30 76.49 81.57 77.84

Diag-NSD 87.14 ± 1.06 77.14 ± 1.85 89.42 ± 0.43 86.49 ± 7.35 88.63 ± 2.75 85.67 ± 6.95
O(d)-NSD 86.90 ± 1.13 76.70 ± 1.57 89.49 ± 0.40 84.86 ± 4.71 89.41 ± 4.74 85.95 ± 5.51
Gen-NSD 87.30 ± 1.34 76.32 ± 1.65 89.33 ± 0.35 85.68 ± 6.51 89.21 ± 3.84 82.97 ± 5.13

33



Table 13: MSE (lower is better) for extended persistence image prediction (clustering-coefficient filtration,
degree features).

Model Cora Citeseer PubMed

DYMAG(Heat) 2.48 7.35 1.28
DYMAG(Wave) 1.76 2.45 6.04
DYMAG(Sprott) 8.37 13.58 6.26
MPNN 4.20 12.6 7.94
GAT 9.25 4.45 7.50
GIN 9.89 7.34 2.17
GWT 4.12 6.94 3.22
GraphGPS 14.3 11.7 9.45
GRAND 13.1 10.8 6.07
GRAND++ 15.1 6.49 4.75

Neural EPD Approx. 9.38 1.94 4.52

J Dataset Description1129

Cora [16] is a citation network comprising 2,708 scientific publications classified into one of seven1130

categories. Each node represents a publication and is associated with a 1,433-dimensional binary1131

feature vector indicating the presence or absence of specific words from a predefined dictionary.1132

Edges represent the 5,429 citation links between documents.1133

Citeseer [17] is a citation network containing 3,312 scientific publications categorized into six classes.1134

Each node corresponds to a publication and is described by a 3,703-dimensional binary feature vector1135

based on the presence or absence of specific dictionary words. The graph includes 4,732 citation1136

links, forming edges between related documents.1137

PubMed [18] is a citation network of 19,717 biomedical research articles from the PubMed database,1138

all related to diabetes, and categorized into three classes. Each node represents a publication and is1139

associated with a 500-dimensional feature vector based on TF-IDF weighted word frequencies. The1140

graph contains 44,338 citation edges.1141

Cornell, Texas, and Wisconsin [19] are subgraphs extracted from the WebKB dataset, comprising1142

webpages from the computer science departments of the respective universities. Each node represents1143

a webpage, described by a bag-of-words feature vector derived from its textual content. Edges1144

correspond to hyperlinks between pages. The classification task involves predicting the type of1145

webpage (e.g., student, faculty, course, project, staff). These graphs are relatively small, with 183-2511146

nodes and 295-499 edges. Notably, all three datasets exhibit strong heterophily, where connected1147

nodes often belong to different classes, posing a challenge for traditional homophily-based graph1148

learning methods.1149

ogbn-papers100M and ogbn-mag are large-scale academic graphs from the Open Graph Benchmark1150

(OGB) collection. ogbn-papers100M is a directed citation network comprising over 111 million1151

papers indexed in the Microsoft Academic Graph (MAG) [85], where each node represents a paper1152

with a 128-dimensional word2vec feature vector, and edges denote citation links. ogbn-mag is a1153

heterogeneous graph also derived from MAG, containing four node types - papers (736K), authors1154

(1.1M), institutions (8.7K), and fields of study (60K) - and four directed edge types: authorship,1155

citation, affiliation, and topic assignment. Only paper nodes have input features (128-dimensional1156

word2vec embeddings), while the other node types are featureless.1157

PROTEINS [21], part of the TUDataset benchmark suite [75], is a graph classification dataset1158

consisting of 1,113 protein structures, each labeled as either an enzyme or a non-enzyme. In each1159

graph, nodes represent amino acids, and edges are formed between pairs of amino acids that are1160

within 6 Ångströms of each other in 3D space.1161

ENZYMES [76], part of the TUDataset benchmark suite [75], contains 600 protein tertiary structures1162

categorized into six enzyme classes, as defined by the BRENDA enzyme database. Each protein is1163

represented as a graph, where nodes correspond to amino acids and edges capture spatial or sequential1164

proximity.1165
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MUTAG [86], part of the TUDataset benchmark suite [75], is a graph classification dataset consisting1166

of 188 chemical compounds labeled according to their mutagenic effect on Salmonella typhimurium.1167

Each compound is represented as a graph, where nodes correspond to atoms (with one-hot encoded1168

atom types as features) and edges represent chemical bonds. There are 7 discrete node labels. The1169

task is to predict the binary mutagenicity label based on molecular structure.1170

DrugBank [22] is a publicly available resource that integrates detailed information about drugs and1171

their molecular targets. We use version 5.0 of the database, released in 2018, which contains 6,7121172

drug entries, including 1,448 FDA-approved small-molecule drugs. While the database includes1173

a wide range of chemical, pharmacological, and structural properties, we focus on predicting two1174

geometry- and topology-related molecular attributes: total polar surface area (TPSA) and the number1175

of aromatic rings. Each molecule is represented as a graph, with atoms as nodes and bonds as edges.1176

The Materials Project (MP) dataset [24] consists of a large collection of inorganic compounds1177

labeled with physical and chemical properties computed using density functional theory (DFT). We1178

use version 2018.6.1, which includes 69,239 materials and a range of properties such as formation1179

energy, bulk and shear moduli, and electronic band gap. In our experiments, we focus on predicting1180

the band gap (e.g., in eV), a key electronic property available for 45,901 compounds. Each material1181

is represented as a graph, with atoms as nodes and edges defined by interatomic bonds or distances1182

derived from crystal structures.1183

The Antiviral Screen Dataset [23] originates from the Drug Therapeutics Program (DTP) AIDS1184

Antiviral Screen, which evaluated the anti-HIV activity of 43,850 chemical compounds based on their1185

ability to inhibit HIV replication. Each compound is represented as a molecular graph, with atoms1186

as nodes and bonds as edges. Screening outcomes were originally categorized into three groups:1187

confirmed active (CA), confirmed moderately active (CM), and confirmed inactive (CI). As part1188

of the MoleculeNet benchmark [87], the CA and CM categories are merged, resulting in a binary1189

classification task: predicting whether a compound is active (CA/CM) or inactive (CI).1190
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