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Abstract

Transparency in AI healthcare decision-making is crucial for building trust among
AI and users. By incorporating rationales to explain reason for each predicted
label, users could understand Large Language Models (LLMs)’s reasoning, facili-
tating better decision-making based on the classification results. In this work, we
introduce a new task - Sentiment Reasoning - for both speech and text modalities,
along with our proposed multimodal multitask framework and one of the world’s
largest speech sentiment analysis dataset. Sentiment Reasoning is an auxiliary
task in sentiment analysis where the model predicts both the sentiment label and
generates the rationale behind it based on the input transcript. Our study conducted
on both human transcripts and Automatic Speech Recognition (ASR) transcripts
shows that Sentiment Reasoning helps improve model transparency by providing
rationale for model prediction with quality semantically comparable to humans
while also improving model’s classification performance (2% increase in both
accuracy and macro-F1) via rationale-augmented fine-tuning. Also, no significant
difference in the semantic quality of generated rationales between human and ASR
transcripts. All code, data (English-translated and Vietnamese) and models are
published online: https://github.com/leduckhai/Sentiment-Reasoning.

1 Introduction

In recent years, speech sentiment analysis has emerged as a significant interdisciplinary field at
the intersection of natural language processing (NLP), machine learning, and automatic speech
recognition (ASR). This field focuses on the automated detection and interpretation of human
emotions and attitudes conveyed through speech, overcoming the limitations of text-only sentiment
analysis [1] by analyzing the attitude expressed through human voice. The global market for sentiment
analysis is projected to expand from an estimated value of US$4 billion in 2023 to US$10.1 billion
by 2030, exhibiting a compound annual growth rate (CAGR) of 14.2% over the forecast period from
2023 to 2030 [2].

Sentiment analysis plays a pivotal role across diverse domains, with healthcare being particularly
significant. In healthcare customer service, it facilitates real-time evaluation of customer satisfaction,
enhancing empathetic and responsive interactions [3, 4]. Moreover, sentiment analysis aids in
monitoring the emotional well-being of patients [5], including those with mental health issues such as
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Figure 1: Visualized pipeline for Sentiment Reasoning. Given an input transcript (either human
transcript or ASR transcript), the model learns to output the sentiment label (POSITIVE, NEUTRAL,
or NEGATIVE) and its rationale (the reason for this label). It comprises of two tasks: Sentiment
Classification and Rationale Generation. Traditional sentiment analysis only includes Sentiment
Classification task, while our framework generates corresponding rationale to explain the reason
behind each predicted sentiment label. 9 examples with sentiment labels and their corresponding
rationales in our dataset are shown in Table 5 in the Appendix.

suicide [6]. However, these studies only work on text-only sentiment analysis instead of speech-based
sentiment analysis.

Despite its potential, speech sentiment analysis presents several technical challenges. First, emotions
conveyed through speech are subjective [7], complex [8], and dependent on speaking styles [9],
making accurate sentiment classification difficult even for humans [10], thereby necessitating the role
of explainable artificial intelligence (AI). Second, given the critical nature of healthcare decisions,
where errors can have severe consequences, transparency in AI decision-making is essential to build
trust among machines, healthcare professionals, and patients [11].

To tackle challenges above, reasoning in AI is crucial for sentiment analysis because it enables deeper
understanding beyond surface-level sentiment polarity via the textual explanations. By incorporating
rationales to explain reason for each predicted sentiment label, users could understand the model’s
reasoning, facilitating better decision-making based on the classification results. Therefore, we
introduce a novel multimodal framework for a novel task: Sentiment Reasoning, which comprises
of two tasks: (i) Sentiment Classification, in which the model learns to output the sentiment
label (POSITIVE, NEUTRAL, or NEGATIVE), and (ii) Rationale Generation, in which the model
generates rationale (the free-form text that explains reason for this label). Our contributions are as
follows:

1. We introduce a new task: Sentiment Reasoning for both speech and text modalities, along
with the first speech sentiment analysis dataset MultiMed-SA

2. We propose our novel multimodal speech-text Sentiment Reasoning framework
3. We empirically evaluate the baselines on our dataset using state-of-the-art backbone models
4. We provide in-depth analysis of rationale / Chain-of-Thought (CoT)-augmented training

All code, data (English-translated and Vietnamese) and models are published online1.

2 Data

2.1 Data Collection

The dataset employed for constructing the Sentiment Reasoning dataset was VietMed [12], a large
and publicly accessible medical ASR dataset. We then annotated sentiment labels (POSITIVE,
NEUTRAL, or NEGATIVE) and their corresponding rationales (the reason for this label). The

1https://github.com/leduckhai/Sentiment-Reasoning
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dataset includes 16 hours of audio recordings, making it one of the largest and the first medical-
domain speech sentiment analysis dataset in the world. To the best of our knowledge, it is surpassed
only by the MOSEI dataset [13] and Switchboard Sentiment dataset [14].

As for generalizability, our dataset comprises real-world doctor-patient conversations covering a broad
spectrum of all available ICD-10 codes (all medical topics), wherein doctors diagnose conditions,
explain medical issues, and provide treatment advice.

2.2 Data Annotation

The annotation task consists of two primary steps. First, annotators are required to perform Sentiment
Classification. Second, annotators are instructed to provide a rationale behind each class (Rationale
Generation). To ensure consistency, our TESOL-certificated professional linguist has developed an
initial guideline inspired by [14], which was also adopted by various well-known works [15, 16], and
revised it frequently if necessary. Details of data annotation pipeline, annotation guidelines, and data
imbalance are shown Section B in the Appendix.

2.3 Data Quality Control

During the independent annotation process conducted by three annotators, we observed a low inter-
annotator agreement (Cohen’s kappa coefficient below 0.5 for the inter-annotator agreement between
the two annotators), a common occurrence in real-world datasets as noted by Chen et al. [14]. To
address this issue, we implemented an alternative label merging approach. We convened a discussion
meeting involving the three annotators and two reviewers (one professional linguist and one with a
biomedical background). Each annotator was required to justify their chosen sentiment label and its
corresponding rationale. A label and its rationale were selected based on the consensus of all three
annotators and two reviewers, rather than a majority vote, as employed in other studies [17, 18].

2.4 Data Statistics

Split Label Count Percentage
Neutral 2844 49.94%

Train Negative 1694 29.74%
Positive 1157 20.32%
Neutral 958 43.88%

Test Negative 701 32.11%
Positive 524 20.01%

Table 1: Distribution of sentiment labels in the dataset.

Table 1 shows the distribution of sentiment labels in the dataset. In total, the dataset comprises 7878
samples with sentiment labels with rationales. This distribution reflects the dataset’s slight emphasis
on neutral content, typical in medical conversations involving detailed explanations and advice.

3 Sentiment Reasoning Framework

3.1 Informal Definition

As shown in Figure 1, in Sentiment Reasoning, given an input transcript (either human transcript
or ASR transcript), the model learns to output the sentiment label (POSITIVE, NEUTRAL, or
NEGATIVE) and its rationale (the reason for this label). It comprises of two tasks: Sentiment
Classification and Rationale Generation.

9 examples with sentiment labels and their corresponding rationales in our dataset are shown in Table
5 in the Appendix.

3



3.2 Formal Definition

Let xT
1 :“ x1, x2, ..., xT be an audio signal of length T . Let C be the set of all possible sentiment

classes, we should build a speech Sentiment Reasoning model f that both estimates the probability
ppc|xT

1 q for each c P C and generates its rationale sequence rM1 of M length.

The decision rule to predict a single sentiment class is:

xT
1 Ñ ĉ “ argmax

cPC
fpc|xT

1 q (1)

The decision rule to generates the corresponding rationale sequence is:

xT
1 Ñ rM1 “ argmax

r˚
hpr˚|xT

1 q (2)

For text-based Sentiment Reasoning, the input audio signal xT
1 could be replaced with a word sequence

(human transcript) wN
1 of length N, thus ASR model is not needed.

3.3 ASR Model

An ASR model aims to convert audio signal into text by mapping an audio signal xT
1 to the most

likely word sequence wN
1 . The relation w˚ between the acoustic and word sequence is:

w˚ “ argmax
wN

1

ppwN
1 |xT

1 q (3)

By utilizing Bayes’ Theorem, the probability ppxq can be ignored during maximization since it merely
serves as a normalization factor and does not affect the outcome:

ppwN
1 |xT

1 q “
ppxT

1 |wN
1 qppwN

1 q

ppxT
1 q

9ppxT
1 |wN

1 qppwN
1 q

(4)

Therefore:
w˚ “ argmax

wN
1

ppxT
1 |wN

1 q
loooomoooon

acoustic model

¨ ppwN
1 q

loomoon

language model

(5)

3.4 Language Model for Sentiment Reasoning

3.4.1 Sentiment Classification

Let the transcribed audio signal (ASR transcript) wN
1 serve as the input for the Sentiment Classification

model g, which maps wN
1 to a class label ĉ:

wN
1 Ñ ĉ “ argmax

cPC
gpc|wN

1 q (6)

g is trained to minimize a loss function L pgpwN
1 q, ĉq. The optimal parameters θ of the model

are found by solving the optimization problem minθ L pgpwN
1 ; θq, ĉq. Once trained, the model can

predict the class of the transcribed audio signal by evaluating ĉ “ gpwN
1 q.

3.4.2 Rationale Generation

Let the transcribed audio signal (ASR transcript) wN
1 serve as the input for the Rationale Generation

model h, which maps wN
1 to a rationale sequence rM1 of M length:

wN
1 Ñ rM1 “ argmax

r˚
hpr˚|wN

1 q (7)

h is trained to minimize a loss function L phpwN
1 q, rM1 q. The optimal parameters θ of the model are

found by solving the optimization problem minθ L pgpwN
1 ; θq, rM1 q. Once trained, the model can

generate rationale of the transcribed audio signal by evaluating rM1 “ hpwN
1 q.
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4 Experimental Setups

4.1 ASR Model

We employed hybrid ASR setup using wav2vec 2.0 encoder [12] to transcribe speech to text.
First, we generated alignments obtained by using Gaussian-Mixture-Model/Hidden-Markov-Model
(GMM/HMM) as labels for wav2vec 2.0 [19] neural network training. The labels used in the acoustic
modeling are context-dependent phonemes, triphones in this case. In GMM/HMM process, we used
a CART (Classification And Regression Tree) [20] to tie the states s, resulting 4501 CART labels:

ppxT
1 |wN

1 q “
ÿ

rsT1 s

T
ź

t“1

ppxt, st|st´1, w
N
1 q

“
ÿ

rsT1 s

T
ź

t“1

ppst|st´1, w
N
1 q

looooooomooooooon

transition prob.

¨ ppxt|st, st´1, w
N
1 q

loooooooooomoooooooooon

emission prob.

(8)

After inputting CART labels for hybrid wav2vec 2.0 training, we employed frame-wise cross-entropy
(fCE) loss [21] to train the acoustic model.

To transcribe speech given the acoustic observations, the acoustic model and n-gram language model
[22] should be combined based on the Bayes decision rule using Viterbi algorithm [23] which
recursively computes the maximum path to a find best-path in the alignment graph of all possible
predicted words to the acoustic observations:

wN
1 “ arg max

N,wN
1

p
´

N
ź

n“1

ppwn|wn´1
n´mq

¨ max
rsT1 s

T
ź

t“1

ppxt, st|st´1, w
N
1 q

¯

(9)

Finally, acoustic model and n-gram language model pruning (beam search) is used to only focus on
the most promising predicted words at each time step t [24].

The final ASR model has 118M trainable parameters and Word-Error-Rate (WER) of 29.6% on
VietMed test set.

4.2 Language Model for Sentiment Reasoning

4.2.1 Encoder

The encoder architecture is naturally well-suited for Sentiment Classification, which can be refor-
mulated into the classical classification task. To this end, we directly apply a linear classifier to the
output of the encoders. However, encoders can not generate rationales.

We use phoBERT (110M params) [25], a version of RoBERTa [26] pre-trained on 20GB Vietnamese
text, and ViHealthBERT (110M params) [27], phoBERT trained on 32GB of Vietnamese text in
the healthcare domain. For ViHealthBERT, we report the syllable version which achieved better
performance than the word version.

4.2.2 Generative Models

We reformulated Sentiment Classification into a text-to-text problem, where given the input transcript
wN

1 , the generative model g and the predicted sentiment class c, we have gpwN
1 q “ c with c P C “

t"0", "1", "2"u where ”0”, ”1”, ”2” corresponds to the labels NEGATIVE, NEUTRAL and POSITIVE.

Encoder-Decoder: BARTpho (139M params) [28] is the Vietnamese variant of BART [29] trained
on 20GB of Vietnamese text from Wikipedia and news corpus. ViT5 (223M params) [30] is the
Vietnamese version of T5 [31] trained on 71GB of Vietnamese text from CC100 [32].

Decoder: We use Vistral-7B-Chat [33] and vmlu-llm2. Both models have Mistral-7B[34] as
their backbone. These models were chosen based on their performance on the vmlu benchmark

2https://huggingface.co/vtrungnhan9/vmlu-llm
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(Vietnamese Multitask Language Understanding)3 which compares the performance of Vietnamese
Large Language Models (LLMs) on various language understanding tasks.

4.3 Training with Rationale

Previous works [35–38] have shown that rationale-augmented targets consistently improve the per-
formance of generative language models. Furthermore, having the option to output the model’s
rationale during inference is highly desirable in many scenarios. Our rationale-augmented training
methods are based on, to our knowledge, the current state-of-the-art CoT-distillation approaches for
each architecture.

(i) Multitask Training [37]: We train our encoder-decoders using distilling step-by-step. Distilling
step-by-step is a multitask training approach that prepends particular prefixes to the input, guiding
the model to output either the answer or generate a rationale. Hsieh et al. found that it consistently
improves encoder-decoders performance compared with single-task training which treats rationale
and label predictions as a single task.

(ii) Post-thinking [36]: For decoder-based models, we augment the training targets by append the
human rationale to the label (<LABEL> <RATIONALE>) in a single prompt. Previous works
have shown that post-thinking achieved impressive performance [36, 35] and compared to pre-
thinking where the model first generates its chain-of-thought then provide the label (<RATIONALE>
<LABEL>), post-thinking is more stable and token-efficient [36, 35] as the model suffers less from
hallucination, consistently yields better performance and is more resource efficient as users can
already retrieve the target label from the first generated token.

4.4 Rationale Format

We further study the effects of the format of the rationale on the performance of the generative
models. In particular, given the human rationale and human label, we further prompt GPT-3.5-turbo4

to enhance the rationale into two different format:

• Elaborated rationale: An elaborated version of the human rationale that is 1-2 sentence(s)
long, grounded on the provided human rationale and the sentiment label.

• CoT rationale: A step-by-step, elaborated version of the human rationale, which includes
the following steps: (1) identifies the medical entity, (2) extracts the progress of the corre-
sponding medical entity in the transcript, and (3) provides the elaborated rationale on the
sentiment grounded on the provided human rationale, the sentiment label, and information
from steps (1) and (2). This approach is inspired by aspect-based sentiment instruction-
tuning approaches [39].

4.5 Evaluation Metrics

For Sentiment Classification task, we employ both accuracy and F1 score, the harmonic mean of
precision and recall. It is particularly useful for evaluating models, as it considers both false positives
and false negatives, providing a more comprehensive performance metric than accuracy alone.

For Rationale Generation, we employ ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
score [40], which is a set of metrics used to evaluate the quality of generated text by comparing the
overlap of n-grams [22], word sequences, and word pairs between the generated texts and reference
texts. Also, we employ BERTScore [41], which is an evaluation metric that leverages pre-trained
BERT embeddings [42] to compute cosine similarity scores between generated texts and reference
texts, capturing contextual and semantic nuances more effectively than traditional count-based metrics
like ROUGE. BERTscore correlates well with human judgment on sentence-level as proved by Zhang
et al. [41], which therefore could replace human evaluation.
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Model Acc. F1 Neg. F1 Neu. F1 Pos. Mac F1 R-1 R-2 R-L R-Lsum BERTscore
Encoder (Label Only)

PhoBERT 0.6674 0.6969 0.6607 0.6377 0.6651
ViHealthBERT 0.6752 0.6970 0.6718 0.6535 0.6741

Encoder-Decoder (Label Only)
ViT5 0.6628 0.6922 0.6687 0.6007 0.6545
BARTpho 0.6523 0.6870 0.6571 0.5841 0.6427

Decoder (Label Only)
vmlu-llm 0.6592 0.6768 0.6769 0.5911 0.6483
Vistral7B 0.6716 0.6858 0.6771 0.6398 0.6676

Encoder-Decoder (Label + Rationale)
ViT5 0.6633 0.6936 0.6572 0.6335 0.6615 0.3910 0.2668 0.3653 0.3660 0.8093
BARTpho 0.6619 0.7029 0.6460 0.6265 0.6585 0.3871 0.2613 0.3658 0.3683 0.8077

Decoder (Label + Rationale)
vmlu-llm 0.6729 0.7039 0.6714 0.6307 0.6687 0.3947 0.2467 0.3789 0.3796 0.8086
Vistral7B 0.6812 0.7152 0.6765 0.6425 0.6781 0.4155 0.2788 0.3880 0.3900 0.8101

Table 2: Baseline performance of encoders, encoder-decoders, and decoders on the Vietnamese human
transcript. From left to right is: Accuracy, F1-{negative, neutral, positive, macro}, ROUGE-{1, 2, L, Lsum},
BERTscore. The Label Only models are models trained only with the label, serving as the baseline, while Label
+ Rationale indicates models trained with rationale. As the Label Only models are not trained to generate
rationale, we do not evaluate them on ROUGE and BERTscore.

Model Acc. F1 Neg. F1 Neu. F1 Pos. Mac F1 R-1 R-2 R-L R-LSum BERTscore
Encoder (Label Only)

PhoBERT 0.6166 0.6418 0.6231 0.5658 0.6102
ViHealthBERT 0.6198 0.6307 0.6261 0.5934 0.6167

Encoder-Decoder (Label Only)
ViT5 0.6157 0.6412 0.6258 0.5523 0.6064
BARTpho 0.6056 0.6364 0.6156 0.5311 0.5944

Decoder (Label Only)
vmlu-llm 0.6216 0.6296 0.6551 0.5186 0.6011
Vistral7B 0.6299 0.6377 0.6537 0.5609 0.6174

Encoder-Decoder (Label + Rationale)
ViT5 0.6189 0.6305 0.6286 0.5837 0.6143 0.3571 0.2202 0.3350 0.3366 0.8044
BARTpho 0.6129 0.6523 0.6028 0.5665 0.6072 0.3956 0.2652 0.3728 0.3774 0.8106

Decoder (Label + Rationale)
vmlu-llm 0.6395 0.6585 0.6557 0.5723 0.6289 0.3853 0.2386 0.3663 0.3671 0.8092
Vistral7B 0.6354 0.6485 0.6479 0.5892 0.6285 0.3558 0.2237 0.3343 0.3394 0.7994

Table 3: Baseline performance of encoders, encoder-decoders, and decoders on the Vietnamese ASR transcript.
Further information about our metrics can be found in Table 2.

Model Acc. F1 Neg. F1 Neu. F1 Pos. Mac F1
Encoder-Decoder (Label + Rationale)

ViT5_human 0.6633 0.6936 0.6572 0.6335 0.6615
ViT5_elaborate 0.6661 0.6903 0.6799 0.5985 0.6562
ViT5_cot 0.6619 0.6968 0.6552 0.6237 0.6586
BARTpho_human 0.6619 0.7029 0.6460 0.6265 0.6585
BARTpho_elaborate 0.6564 0.7031 0.6528 0.5870 0.6476
BARTpho_cot 0.6464 0.6922 0.6611 0.5287 0.6273

Decoder (Label + Rationale)
Vistral7B_human 0.6812 0.7152 0.6765 0.6425 0.6781
Vistral7B_elaborate 0.6688 0.6846 0.6647 0.6564 0.6685
Vistral7B_cot 0.6706 0.6725 0.6807 0.6477 0.6670
vmlu-llm_human 0.6729 0.7039 0.6714 0.6307 0.6687
vmlu-llm_elaborate 0.6867 0.7203 0.6868 0.6353 0.6808
vmlu-llm_cot 0.6821 0.6966 0.6779 0.6711 0.6819

Table 4: Performance of generative models on the different rationale formats on our test set. Hu-
man/elaborate/CoT specifies the format of rationale the model was trained on. Details in Section 4.4
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Figure 2: Confusion matrix of the predicted classes versus the actual labels on human transcript,
obtained from Vistral7B trained with human rationale

5 Results and Analysis

We evaluate and analyze our models performance on Table 2. Based on the obtained results, we make
the following observations:

1. Encoders are efficient yet effective sentiment classification baselines: Encoder models yields
the best performance compared to their encoder-decoder and decoder counterparts, with high accuracy
scores (> 0.665) and stable F1 scores (macro F1 of both models > 0.665). Furthermore, compared
to other models, encoders are more parameter efficient which makes them highly economical for
training and deployment. We further observe that domain-specific encoders yield notably better
performance, with ViHealthBERT outperforming phoBERT in accuracy (+0.8%) and macro F1
(+0.9%).

2. ASR errors have a marginally negative impact on sentiment classification performance: For a
fair comparison in real-world environments, WERs for human annotators on a standard conversational
spontaneous English ASR dataset, such as Switchboard [43], range from 5% to 15% [44]. In contrast,
more challenging real-world ASR datasets show WERs for human annotators between 17% and 31%
[45]. Given the complexity of real-world medical conversational settings, WER of 29.6% by our ASR
model is therefore within an acceptable range. Despite the WER of 29.6%, the performance drop
in macro F1 scores across all sentiment classification baselines is small, amounting to the absolute
value of only about 5%.

3. Rationale-augmented training improve model performance: Consistent with previous findings,
performing CoT-augmented training on both encoder-decoders and decoders improve our models
performance compared to the baseline. Aside from ViT5, other models seem to have benefited from
rationale-augmented training, especially the decoder-based LLMs. We observe an average absolute
accuracy gain of approximately +0.8%, average absolute macro-F1 gain of approximately +1.3%,
average relative macro-F1 gain of approximately +2.1% for these models compared to their label-only
counterparts. We further conducted a Student’s t-test [46] and found that the gains are statistically
significant for α “ 0.1. This pattern holds for the results in Table 4. We observe a decline in all of
our models performance on ASR data which is anticipated due to its WER of 29.6 %. Nonetheless,
the models trained with rationale perform noticeably better than models without, with an average
absolute accuracy gain of +0.85%, absolute macro F1 gain of +1.4%, and relative macro F1 gain of
+2.5%. Moreover, as shown in Section D in the Appendix, rationale-augmented training also help
boost the model’s performance on English subset, with an average absolute accuracy gain of +1.6%,
absolute macro F1 gain of +2.2%, and relative macro F1 gain of +3.6%.

4. The format of post-thinking rationale doesn’t affect the generative models performance: We
study the effects of the format of post-thinking rationale on the performance of generative models
on Table 4 and observe that it is unclear whether there is a performance gain from more elaborated

3https://vmlu.ai/leaderboard
4https://platform.openai.com/docs/models
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rationales. This result agrees with previous findings [35]. Particularly, we observe that some models
trained on the elaborated rationales have better performance (ViT5 and vmlu-llm). However, for the
other models, there is a notable decline in all metrics.

5. Models are likely to misclassify POSITIVE and NEGATIVE transcripts as NEUTRAL: Firstly,
we study the confusion matrix of our best model on human transcript, Vistral7B finetuned with
human rationale, on Figure 2. We observe a notable misclassification tendency between NEUTRAL
and the other two classes (23.43% and 27.08% with NEGATIVE and POSITIVE respectively). On
the other hand, we found that models can easily distinguish NEGATIVE transcripts from POSITIVE
ones. This reflects the ambiguity of sentiment analysis data, as in certain cases there is not enough
distinctive features that differentiate neutral from other sentiments. Furthermore, given the slightly
imbalanced nature of our dataset with fewer POSITIVE examples, its average F1 score is the lowest
among the three labels across all models. Secondly, by analyzing at the model’s generated rationale
shown in Table 7 in Section E in the Appendix, we hypothesize that the model is confounded by the
appearance of certain keywords that elicit either extremely positive ( hữu ích (helpful)) or negative,
disease-related words and sentiment which pushes the model away from the NEUTRAL label.

6. Analysis of Generated Rationale: Compared to human rationale, we observe from Table 2 and
Table 3 that the models trained with rationale have high BERTscore (around 0.8) with low ROUGE
score, indicating that while the vocabulary used in the rationale is different, the overall semantic of
the generated rationale remains similar to that of humans. Also, no noticeable changes in the semantic
quality of rationale between human transcripts and ASR transcripts because BERTScore is still about
0.8 on both settings.

6 Conclusion

In this work, we introduce a new task - Sentiment Reasoning - for both speech and text modalities,
along with the framework and one of the world’s largest speech sentiment analysis dataset. In
Sentiment Reasoning, given an input transcript (either human transcript or ASR transcript), the model
learns to output the sentiment label (POSITIVE, NEUTRAL, or NEGATIVE) and its rationale (the
reason for this label). It comprises of two tasks: Sentiment Classification and Rationale Generation.

We thoroughly evaluate the use of rationale during training to improve our models’ interpretability and
performance. We found that rationale-augmented training improves model performance in Sentiment
Classification in both human and ASR transcripts (2% increase in both accuracy and macro-F1). We
also found that the generated rationales generally have different vocabulary to that of human but with
similar semantics. Finally, we found no significant difference in the semantic quality of generated
rationales between human and ASR transcripts.

7 Limitations

Hybrid ASR: This study utilized the hybrid ASR system, which is generally recognized as superior in
performance compared to the attention-based encoder-decoder or end-to-end ASR systems [47–49].
However, the hybrid ASR requires multiple steps, beginning with acoustic feature extraction and
progressing through GMM-HMM modeling before transitioning to DNN-HMM modeling, which
complicates reproducibility for non-experts.

Cascaded speech sentiment analysis approach: We employed a cascaded approach for Sentiment
Reasoning. This approach uses a previously trained ASR model to generate ASR transcripts that
are subsequently input into a language model (LM) for downstream Sentiment Classification and
Rationale Generation tasks. Consequently, the weights in the ASR model remain unchanged while
the LM weights are updated. In this setting, only semantic features from speech are utilized, omitting
other trainable acoustic features, like prosody, tones, etc. In spoken language processing, where
semantic features play a more important role than other acoustic features, cascaded approach is
prefered due to its straightforwardness, simplicity and superior accuracy [50–53]. Future work should
consider the end-to-end sentiment analysis task, where weights in both the ASR model and LM are
updated simultaneously, as it might hold promise for improved performance.
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A Related Works

A.1 Multimodal Speech Sentiment Analysis

It is widely known that there have been two re-
search directions in the field of speech sentiment
analysis, as also confirmed by Chen et al. [14].

• Single modality model (unimodal): In
speech sentiment analysis, single modal-
ity models focus on utilizing a single
type of data to predict sentiment. These
models may rely exclusively on acoustic
features, such as pitch, tone, and rhythm,
to infer emotional states from spoken
language [54–57]. Alternatively, they
might use raw waveforms [58–60] or the
textual content of transcripts to predict
sentiment [61]. The strength of single
modality models lies in their simplic-
ity and specialization, allowing them to
hone in on specific attributes of the data
source they are designed for. However,
this specialization can also be a limi-
tation, as these models might miss out
on the richer, more nuanced informa-
tion that can be gleaned from combining
multiple data types. Despite this, single
modality models remain a fundamental
approach in the field, providing valuable
insights and serving as a benchmark for
more complex multimodal systems.

• Multimodality models: In speech sen-
timent analysis, multimodality models
leverage the combined strengths of both
acoustic and textual data to provide
more accurate and nuanced sentiment
predictions. While traditional models
might rely solely on either the acous-
tic features—such as tone, pitch, and
rhythm—or the text derived from speech
transcripts, multimodal models integrate
these two data streams. This integration
allows for a more holistic understanding
of sentiment, as it captures the emotional
cues present in the speaker’s voice along
with the contextual and semantic content
of the spoken words. By maximizing
the mutual information between these
modalities, multimodal models can bet-
ter discern subtleties in speech that sin-
gle modality models might miss, leading
to accuracy improvements [62–66].

Our dataset is ideal for both single modal and
multimodal research, as it includes both acoustic
and text features.

A.2 ASR-based Speech Sentiment Analysis

Speech sentiment analysis on ASR transcripts is a
field that aims to interpret and classify sentiments
conveyed in spoken language. As technology ad-
vances, ASR systems have become increasingly
proficient at transcribing spoken words into text
with high accuracy [67, 19, 68–71], providing a
rich source of data for sentiment analysis. Senti-
ment analysis algorithms then analyze the tran-
scribed text from speech signal, utilizing language
models as decoders to detect positive, negative,
or neutral sentiments [72–76].

In the era of deep learning, as surveyed by Al-
Qablan et al. [77], many researchers have been
applying deep learning methods to the senti-
ment analysis process on transcript, leading to
the development of various models like Convolu-
tional Neural Networks (CNN), Recurrent Neu-
ral Networks (RNN), Long Short-Term Memory
(LSTM), and Bidirectional LSTM (BLSTM) [78–
80]. CNNs, primarily used for image processing,
have been adapted for text by treating sentences as
sequences of words and applying convolutional
filters to capture local features. This approach
helps in identifying crucial patterns within the
text that are indicative of sentiment [81, 82]. On
the other hand, RNNs are designed to handle se-
quential data by maintaining a hidden state that
captures the history of previous inputs, making
them suitable for understanding the context and
temporal dependencies in sentences. However,
traditional RNNs face challenges with long-term
dependencies due to issues like vanishing gradi-
ents, which is where LSTMs come in. LSTMs, an
advanced form of RNNs, address these issues by
incorporating gates that regulate the flow of in-
formation, allowing them to maintain and update
long-term dependencies effectively. Furthermore,
BLSTMs enhance this by processing the input se-
quence in both forward and backward directions,
thus capturing dependencies from both past and
future contexts simultaneously. This bidirectional
approach is especially useful for sentiment analy-
sis, where the interpretation of a word can depend
heavily on both preceding and succeeding words.
Together, these architectures provide powerful
tools for sentiment analysis, each contributing
unique strengths that can be leveraged depending
on the specific requirements and characteristics
of the data at hand [83–85].

Developed by Google, BERT (Bidirectional En-
coder Representations from Transformers) [86]
revolutionized NLP tasks by enabling models to
understand the context of words in a sentence
more effectively through its bidirectional train-
ing approach. Unlike previous models that read
text input sequentially, BERT reads the entire

20



sequence of words at once, capturing the full con-
text and nuances of language. This capability al-
lows BERT to excel in sentiment analysis, where
understanding the subtleties of human emotion
and opinion is paramount [87, 88]. BERT’s pre-
training on vast amounts of text data, followed by
fine-tuning on specific sentiment analysis tasks,
further enhances its performance. By leverag-
ing its powerful language representations, BERT
can handle the complexities of sentiment analy-
sis, such as sarcasm, idiomatic expressions, and
context-dependent sentiment shifts, making it a
preferred choice for applications ranging from
social media monitoring to customer feedback
analysis. The model’s ability to generalize across
various domains and languages also contributes
to its widespread adoption, offering robust and
scalable solutions for sentiment analysis in di-
verse settings [89–92].

A.3 Speech Sentiment Analysis in
Healthcare

Sentiment analysis in healthcare is an emerging
field that leverages NLP and machine learning
techniques to analyze and interpret the emotional
tone conveyed in biomedical textual data. This
technology is particularly useful for understand-
ing patient feedback, monitoring public health
trends, and improving patient-provider communi-
cation. By analyzing large volumes of data from
sources such as social media, online reviews,
electronic health records (EHRs), and patient sur-
veys, sentiment analysis can provide valuable in-
sights into patient experiences, satisfaction levels,
and overall public sentiment towards healthcare
services and policies. For instance, analyzing
patient reviews on healthcare platforms can help
identify common concerns and areas needing im-
provement, allowing healthcare providers to ad-
dress issues proactively and enhance the qual-
ity of care. Additionally, sentiment analysis can
play a critical role in mental health monitoring
by detecting signs of distress or dissatisfaction in
patient communications, enabling timely inter-
vention and support. As this technology contin-
ues to evolve, it holds the promise of transform-
ing healthcare by fostering a more patient-centric
approach, enhancing service delivery, and ulti-
mately improving patient outcomes [93]. How-
ever, the sentiments expressed in clinical narra-
tives have not been extensively analyzed or ex-
ploited, based on the total number of previous
works we have identified to the best of our knowl-
edge:

• Sentiment analysis from the medical
web: Most sentiment analysis research
in the medical domain focuses on web

data, such as medical blogs and forums,
to mine patient opinions or assess qual-
ity [94, 3, 4, 95–100].

• Sentiment analysis from biomedical lit-
erature: In addition to the analysis of
medical social media data, biomedical
literature has been examined concern-
ing the outcomes of medical treatments.
Within this framework, sentiment de-
notes the results or efficacy of a treat-
ment or intervention [101, 102].

• Sentiment analysis from medical text
(except biomedical literature): Several
researchers have focused on leverag-
ing supplementary sources of medical
texts to implement sentiment analysis
and emotion detection methodologies,
suicide notes or patient questionnaire for
example [6, 5, 103, 104].

To the best of our knowledge, no literature among
those cited has addressed speech sentiment anal-
ysis specifically within the domain of healthcare.

B Details about Data

B.1 Data Annotation Pipeline

We use LLM pre-labeling as it helps speed up the
labeling process through providing the annotators
with the initial sentiment labels and the corre-
sponding rationales. In the relabeling process,
annotators go through each sample and inspect it
manually. If the annotators deem the label and the
rationale is appropriate, they can quickly move to
the next sample. If not, the annotators can update
the label and rationale to be more appropriate.

The data annotation process is as followed.
First, all the subtitles are separated into differ-
ent chunks. These segments are subsequently
input into gpt-3.5-turbo, which conducts a weakly
supervised 3-label classification task to catego-
rize each segment as NEGATIVE, NEUTRAL, or
POSITIVE. In addition to the sentiment label, gpt-
3.5-turbo also provides a brief synthetic rationales
for the classification, such as ’Negative medical
condition’ or ’Objective description’. The labels
and rationales generated by gpt-3.5-turbo are sub-
sequently reviewed and independently corrected
by a team of 3 developers.
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B.2 LLM Prompt for Pre-labeling

gpt-3.5-turbo

Annotate the sentiment (neutral, positive
or negative) of the following sentence and
provide a very short justification. The
procedure is as follows:
1. If the segment shows clear emotional
signs, annotate based on these signs.
2. If no emotional markings are present,
determine if the segment is an objec-
tive description. Positive for beneficial
facts/features, negative for detrimental
facts/features, and neutral otherwise.
3. If not objective, check if there’s a pref-
erence expression. Positive for likes or
positive views, negative for dislikes or
negative views, and neutral if no prefer-
ence is expressed.
4. If too short to determine sentiment,
label as neutral.
{3 in-context learning examples}

B.3 Annotation Guidelines

The definition of "sentiment" encompasses both
"emotions" and "facts" in our work. Existing
works [14, 105, 106, 15, 16] use both emotions
and facts for sentiment labeling.

• Emotion: Existing literature includes
“emotion” as part of “sentiment” [14,
106, 105] and sentiment analysis can be
considered a more abstract level of emo-
tion recognition, e.g. polarity of emo-
tions [105].

• Facts: Many sentiment analysis sys-
tems require statements that describe
events/situations to be given a sentiment
label [14, 105].

The annotation task consists of two primary steps.
First, annotators are required to perform Senti-
ment Classification. Second, annotators are in-
structed to provide a rationale behind each class
(Rationale Generation).

To ensure consistency, our TESOL-certificated
professional linguist has developed an initial
guideline inspired by [14], which was also
adopted by various well-known works [15, 16],
and revised it frequently if necessary as followed:

B.3.1 Output Annotation

The NEGATIVE label is for chunks that discuss
negative, serious diseases, disorders, symptoms,
risks, negative emotions, or counter-positive

statements (e.g. "This would NOT bring a good
outcome"). It also applies to incomplete chunks
where the amount of negativity is greater than the
amount of positivity.

The NEUTRAL label is for incomplete chunks
where the ratio of negativity is equal to the ratio
of positivity, as well as chunks that describe pro-
cesses, ask questions, provide advice, or are too
short.

The POSITIVE label is for chunks that discuss
positive outcomes, recovery processes, positive
emotions, or counter-negative statements (e.g.
"This will reduce discrimination"). It also applies
to incomplete chunks where the ratio of positivity
is greater than the ratio of negativity.

It is important to note that all chunks are con-
sidered independent, even though they may be
incomplete and related to preceding or follow-
ing chunks. Given that this data is derived from
spoken language, the chunks contain a significant
amount of filler words, which are disregarded in
the labeling process. The majority of the NEU-
TRAL labels are attributed to chunks that involve
sharing advice or descriptions. Additionally, the
presence of modal verbs (e.g., should, would,
need) often indicates advice sharing, thereby clas-
sifying the chunk as NEUTRAL regardless of its
content.

B.4 Annotation Flowchart

Inspired by the well-known annotation flowchart
provided by Chen et al. [14], we asked annota-
tors to adopt the annotation flowchart and we ,if
necessary, revised as follows:

1. Does the segment exhibit distinct emo-
tional cues indicative of sentiment, such
as laughter for positive affect or yelling
for negative affect?

• Yes – Annotate the corresponding
class and also note that:
– (a) In some instances, individ-

uals may laugh to mitigate the
discomfort associated with de-
livering negative statements. In
such cases, it should be classi-
fied as neutral.

– (b) If individuals exhibit a
sneer (a smile or laughter with
a mocking tone), the corre-
sponding sentiment should be
classified as negative in such
instances.

• No - Jump into Step 2
2. Does the segment provide an objective

account of the facts?
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• Yes - If the segment lists sev-
eral positive attributes (e.g., good
progress in medical treatment,
good signs of health improvement),
it is classified as positive. Con-
versely, if it lists several negative
attributes, it is classified as nega-
tive. In the absence of a clear pre-
ponderance of either, the segment
is considered neutral.

• No - Jump into Step 3

3. Does the segment exhibit a preference?

• Yes - If the subjective opinion or
preference conveys a like or dis-
like, or expresses a positive (e.g.,
"it is beneficial that...") or negative
sentiment, it should be annotated
accordingly.

• No - It’s neutral

4. If the utterance is insufficient in length
to accurately assess sentiment, it should
be classified as neutral.

B.5 Data Imbalance Discussion

As shown in Table 1, NEUTRAL category is the
most predominant, accounting for a significant
portion of the dataset. With 3802 instances for
both train and test set, NEUTRAL sentiments
make up approximately half of the dataset. This
prevalence of NEUTRAL sentiment is expected,
as also seen by a real-world conversational dataset
[14], given the nature of medical consultations,
which often involve objective descriptions, expla-
nations, and advice. The NEGATIVE category
is the second most common, with around 2395
instances. NEGATIVE sentiments include discus-
sions about serious diseases, negative emotions,
and adverse medical outcomes. The substantial
presence of negative sentiments reflects the med-
ical context, where discussions about illnesses
and symptoms are common. The POSITIVE cat-
egory, while the least common, still represents a
significant portion of the dataset with 1681 in-
stances. POSITIVE sentiments typically involve
discussions about recovery processes, positive
outcomes, and favorable emotions.

A slight bias in the distribution of the labels to-
wards NEUTRAL in our dataset (49.94% in the
train set, 43.88% in the test set) reflects the nature
of real-world medical conversations, rather than
a weakness of our work. For context, in compa-
rable real-world sentiment analysis datasets such
as Switchboard-Sentiment [14], the distribution
is as follows: 30.4% of the speech segments are
labelled as POSITIVE, 17% of the segments are

labelled as NEGATIVE, and 52.6% of the seg-
ments are labelled as NEUTRAL.

To address this labeling bias issue, future works
can leverage techniques for fine-tuning models in
data imbalance regimes, such as focal loss [107],
class weighting [108].

B.6 Data Samples

Table 5 shows 9 examples with 3 samples per
sentiment label in our dataset.

C Details about Experimental
Setups

C.1 Training Setup

Our encoders and encoder-decoders were trained
on a cluster of 2 NVIDIA A40s with 46 GBs of
memory. All models were trained on 30 epochs
with with a learning rate of 2e-5 and batch size of
64. We evaluated every epoch with early stopping
with patience = 3.

For the decoder-based LLMs, due to their massive
number of parameters, we use LoRA [109] for
fine-tuning with hyperparameters: the rank of the
update matrices r “ 8, and the LoRA scaling
factor α “ 3. We train our LLMs for 5 epochs
with learning rate 2e-4.

We use the best model checkpoints for evalua-
tion. Note that we do not perform hyperparam-
eter tuning as we only aim to provide the initial
benchmark results as well as studying the effects
of CoT-augmented finetuning.

C.2 Student’s T-Test

A Student’s t-test, is a statistical method used to
compare the means of one or two populations
through hypothesis testing. It can assess whether
a single group mean differs from a known value
(one-sample t-test), compare the means of two
independent groups (independent two-sample t-
test), or determine if there is a significant dif-
ference between paired measurements (paired or
dependent samples t-test). Figure 3 below is the
code for reproducing Student’s t-test experiments.

D Results on English subset

We use Google Translate to translate our data
into English. To ensure that our translated data
is usable, we randomly sampled 50 transcripts
and check their quality. We further train English
models on this English subset of our dataset to
ensure full usability.
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Transcript ENG Translation Label Rationale
bệnh nhân sẽ có những cái rối loạn
về mặt cảm xúc đôi khi có những
bệnh nhân đã rơi vào trạng thái trầm
cảm và đôi khi

The patient will suffer from emotional
disorder and sometimes depression NEG. Emotional disorder

não đột quỵ đó thì nó liên quan đến
việc hình thành các cục máu đông
và việc cục máu đông đã nó trôi ra
là đi

Stroke is related to the formation of
blood clots and the fact that these
blood clots travel

NEG. Negative medical
condition

nhầm lẫn với một cái nhóm thuốc
khác đó là nhóm thuốc gọi là thuốc
chống tiểu cầu tiểu cầu mà cụ

It’s often confused with
antiplatelet drugs NEG. Confusion

điểm cần thiết phải lưu tâm rõ ràng
là cái người là bị béo phì đó

A crucial point is that the
overweight patient NEU. Sharing advice

ra đó là cái hormone cortisol trong
máu cũng như là hormone về
catecholamine nó

The cortisol hormone in blood as well
as catecholamine NEU. Objective description

of hormones

có thể gọi đây là thuốc lẫn máu
hay là một số cái tên khác mà thì
nó có thể

You could call these blood-thinning
drugs or other names, and it can NEU. Objective description

của nó không có cao nhưng mà rất
là hình thức thì rất là may mắn là
những năm gần đây thì mình có
một cái nhóm thuốc khác

It is not expensive, luckily, in recent
years there are another group of
medicine

POS. Expressing luck

để mà giảm xóa bỏ cái chuyện
hình thành cái cục máu đông đó
hiện ta sẽ dùng một số biện pháp
trong đó thì chủ

To reduce and eliminate the formation
of these blood clots, we use several
measures, one of which is

POS. Avoid forming
blood clots

nhóm thuốc này á thì nó là rất là
lâu đời và nó không có mất tiền
rất là rẻ là

This group of drugs has been around
for a very long time and is very
cheap, with no cost

POS. Long-standing and
inexpensive medication

Table 5: 9 examples with 3 samples per sentiment label and its corresponding rationale

The result of our experiments is in Table 6. More
information on the models used can be found in
the same table. Overall, we found that rationale-
augmented training also help boost the model’s
performance. This finding is consistent with what
when observed in our experiments in Section 5.

E Error Analysis

We report our best model’s misclassified tran-
scripts with the highest label confidence (defined
as the softmax of the logits of the model pre-
diction) in Table 7. By analyzing at the model’s
rationale, we hypothesize that the model is con-
founded by the appearance of certain keywords
that elicit either extremely positive ( hữu ích
(helpful)) or negative, disease-related words and
sentiment which pushes the model away from the
NEUTRAL label.
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Figure 3: Python code for reproducing Student’s t-test experiments

Model Acc. F1 Neg. F1 Neu. F1 Pos. Mac F1
Encoder (Label Only)

mBERT [110] 0.6001 0.5972 0.6320 0.5408 0.5900
BERT [110] 0.6143 0.6338 0.6245 0.5653 0.6079

Encoder-Decoder (Label Only)
mT0 [111] 0.6216 0.6303 0.6418 0.5670 0.6130
Flan-T5 [112] 0.6157 0.6295 0.6385 0.5462 0.6048

Encoder-Decoder (Label + Rationale)
mT0 [111] 0.6175 0.6495 0.6253 0.5535 0.6094
Flan-T5 [112] 0.6326 0.6487 0.6390 0.5978 0.6285

Decoder (Label only)
Mistral7B [113] 0.6290 0.6536 0.6322 0.5850 0.6236

Decoder (Label + Rationale)
Mistral7B [113] 0.6454 0.6768 0.6364 0.6176 0.6436

Table 6: Baseline performance of encoders, encoder-decoders, LLMs on the English human
transcript. Further information about our metrics can be found in Table 2.
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Transcript Label Pred. Human Rationale Model Rationale
VI: trả lại cho họ chất lượng cuộc
sống bình thường như bao
người khác là được nghe được
nói thế nhưng điều kỳ diệu đã
ENG: give them back a normal
quality of life like everyone
else, but a miracle has
happened

NEU. POS.
Mô tả khách quan
(Objective
description)

chất lượng cuộc sống
bình thường
(normal quality of life)

VI: những chia sẻ vô cùng hữu
ích và thiết thực vừa rồi ạ
có thể thấy là hầu hết người
bệnh nằm điều trị trong
ENG: with the extremely useful
and practical shares shared
just now, it can be seen that
most of the patients are in
hospital for treatment)

NEU. POS.
Mô tả khách quan
(Objective
description

thông tin hữu ích và
thiết thực
(useful and practical
information)

VI: khám suốt tiểu đường nó
vẫn mệt mỏi vô khám tai
biến bộ não vô khám nhưng
mà xương thì nó loãng
xương rất là nhiều
ENG: even after being examined
for diabetes, she still feels
tired, has had a stroke, and
has not been examined for
stroke, but her bones have
a lot of osteoporosis

NEU. NEG.

Mối quan tâm và
vấn đề sức khỏe
(Health concerns
and problems)

triệu chứng tiêu cực
của bệnh tiểu đường
và loãng xương
(negative
symptoms of
diabetes and
osteoporosis)

Table 7: Some misclassified transcripts from our best model with high confidence (>0.99). VI means
the Vietnamese transcript, EN means the transcript translated to English
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