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ABSTRACT

Neural Image Classifiers are effective but inherently hard to interpret and suscep-
tible to adversarial attacks. Solutions to both problems exist, among others, in the
form of counterfactual examples generation to enhance explainability or adversar-
ially augment training datasets for improved robustness. However, existing meth-
ods exclusively address only one of the issues. We propose a unified framework
leveraging image-to-image translation Generative Adversarial Networks (GANs)
to produce counterfactual samples that highlight salient regions for interpretabil-
ity and act as adversarial samples to augment the dataset for more robustness.
This is achieved by combining the classifier and discriminator into a single model
that attributes real images to their respective classes and flags generated images
as ”fake”. We assess the method’s effectiveness by evaluating (i) the produced
explainability masks on a semantic segmentation task for concrete cracks and (ii)
the model’s resilience against the Projected Gradient Descent (PGD) attack on a
fruit defects detection problem. Our produced saliency maps are highly descrip-
tive, achieving competitive IoU values compared to classical segmentation models
despite being trained exclusively on classification labels. Furthermore, the model
exhibits improved robustness to adversarial attacks, and we show how the discrim-
inator’s ”fakeness” value serves as an uncertainty measure of the predictions.

1 INTRODUCTION

In this study, we focus on Neural Networks (NN) for binary image classification, which have found
applications in fields ranging from medical diagnosis (Marques et al., 2020; Albahar, 2019; Skouta
et al., 2021) to structural health monitoring (Rao et al., 2021; Xu et al., 2019) and defect detection
(Kwak et al., 2000; Tao et al., 2018; Drass et al., 2021). The remarkable precision, coupled with
their computational efficiency during inference, enables seamless integration of NNs into existing
systems and workflows, facilitating real-time feedback immediately after data acquisition, such as
following a CT scan or while a drone captures images of concrete retaining walls to detect cracks.

Despite their capabilities, NNs have some shortcomings. They are susceptible to adversarial at-
tacks that can deceive model predictions with subtle, human-imperceptible perturbations (Szegedy
et al., 2013; Nguyen et al., 2015; Kurakin et al., 2018). Moreover, NNs typically lack interpretabil-
ity, providing no rationale for their classifications. Efforts to improve interpretability have yielded
techniques like Grad-CAM (Selvaraju et al., 2017) and RISE (Petsiuk et al., 2018), which produce
attribution masks highlighting influential image regions. However, these masks are often blurry and
lack precision (Adebayo et al., 2018; Ghorbani et al., 2019; Stalder et al., 2022; Riedel et al., 2022).
Recent research has explored counterfactual-based explanations using GANs to address these limi-
tations (Chang et al., 2018; Nemirovsky et al., 2020; Charachon et al., 2022; Mertes et al., 2022).

These attribution methods are typically implemented post-hoc, implying that the classifier is pre-
trained and remains unaltered during the counterfactual training process. In contrast, methods en-
hancing robustness train classifiers and GANs concurrently (Tsipras et al., 2018; Woods et al., 2019).
By rigidly fixing the classifier’s parameters, current explainability approaches forfeit the opportu-
nity to train a more robust classifier. Our approach combines these methodologies, allowing for joint
training of classifiers and GANs. This not only uses adversarial samples for interpretation but also
creates classifiers resistant to minor, imperceptible image modifications. The result is a more robust
classifier and GANs that generate relevant, visually coherent counterfactuals.

1



Under review as a conference paper at ICLR 2024

Generator objectives
Discriminator objectives

Class probabilities

real &
no

damage

real &
damage fake

Figure 1: Overview of our Counterfactual Image Generation Framework. Input images from both
classes are converted to class predictions and counterfactual samples by the generator G. The real
and generated images are classified by the discriminator D as real and belonging to class 0, real
and belonging to class 1, or fake. Conversely, G must deceive D by producing realistic samples
attributed to the opposite class by D. The absolute difference between real and generated images
highlights salient regions.

Therefore, we introduce a unified framework that merges the generation of adversarial samples
for enhanced robustness with counterfactual sample generation for improved interpretability. We
extend the binary classification objective to a 3-class task, wherein the additional class signifies
the likelihood that a sample has been adversarially modified, thus combining the discriminator and
classifier into a single model. Conversely, the generator is responsible for image-to-image translation
with a dual objective: to minimally alter the images such that they are classified into the opposing
class by the discriminator and to ensure that these generated instances are indistinguishable from
the original data distribution. This methodology has the benefits of (i) creating adversarial examples
that augment the dataset, making the classification more robust against subtle perturbations, and (ii)
creating pairs of original input images and their counterfactual versions whose absolute difference
reveals the most salient regions employed by the classifier for making the predictions.

In summary, our contributions are:

• An end-to-end framework that merges adversarial robustness and explanations.

• Specialized architectures of our generator G and discriminator D specifically tailored to
their respective objectives.

• Validation of our approach on two benchmark datasets: the CASC IFW database for fruit
defects detection and the Concrete Crack Segmentation Dataset for structural health moni-
toring.

• Demonstrating improved robustness of our models against PGD attacks compared to con-
ventional classifiers in addition to D providing a reliable estimate of the model’s predictive
confidence.

• Qualitative and quantitative analysis showing that our method, trained on classification la-
bels, significantly outperforms existing attribution techniques, such as GradCAM, in gener-
ating descriptive and localized saliency maps in addition to achieving an Intersection over
Union (IoU) score that is only 12% lower than models trained on pixel-level labels.

The rest of the paper is structured as follows: Section 2 summarizes related work, while our method-
ology is outlined in Section 3. In Section 4 we demonstrate the effectiveness of the approach with
extensive empirical experiments. Finally, Section 5 provides a discussion of the results and Section 6
concludes the work.
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2 RELATED WORK

Adversarial Perturbations. Neural Network image classifiers are prone to, often imperceptible,
adversarial perturbations (Szegedy et al., 2013; Nguyen et al., 2015; Kurakin et al., 2018). The
Fast Gradient Signed Method (FGSM) was introduced to generate adversarial examples using input
gradients (Goodfellow et al., 2014). Building on this, Madry et al. (2017) proposed Projected Gra-
dient Descent (PGD), an iterative variant of FGSM and considered a ”universal” adversary among
first-order methods.

Subsequent advancements include Learn2Perturb (Jeddi et al., 2020), which employs trainable noise
distributions to perturb features at multiple layers while optimizing the classifier. Generative Ad-
versarial Networks (GANs) have also been explored for crafting adversarial samples, where the
generator aims to mislead the discriminator while preserving the visual similarity to the original
input (Xiao et al., 2018; Zhang, 2019).

Attribution Methods. A different avenue for increasing trust in overparameterised black box NNs
is to devise methodologies that explain their decision-making. In the realm of image classifica-
tion, early techniques focused on visualizing features through the inversion of convolutional layers
(Zeiler & Fergus, 2014; Mahendran & Vedaldi, 2015), while others employed weighted sums of fi-
nal convolutional layer feature maps for saliency detection (Zhou et al., 2016). GradCAM advanced
this by using backpropagation for architecture-agnostic saliency localization (Selvaraju et al., 2017).
Extensions include GradCAM++ (Chattopadhay et al., 2018), Score-CAM (Wang et al., 2020), and
Ablation-CAM, which forgoes gradients entirely (Ramaswamy et al., 2020). Gradient-free tech-
niques like RISE (Petsiuk et al., 2018) employ random input masking and aggregation to compute
saliency, whereas LIME (Ribeiro et al., 2016) uses a linear surrogate model to identify salient re-
gions.

Combining both gradient-based and perturbation-based methods, Charachon et al. (2021a) utilize a
linear path between the input and its adversarial counterpart to control the classifier’s output vari-
ations. Fong & Vedaldi (2017) introduce gradient-based perturbations to identify and blur critical
regions, later refined into Extremal Perturbations with controlled smoothness and area constraints
(Fong et al., 2019). Generative models have also been employed for this purpose. Chang et al. (2018)
generate counterfactual images using generative in-fills conditioned on pixel-wise dropout masks
optimized through the Concrete distribution. Narayanaswamy et al. (2020) leverage a CycleGAN
alongside a validation classifier to translate images between classes. A dual-generator framework is
proposed by Charachon et al. (2021b) to contrast salient regions in classifier decisions, later refined
with a discriminator to obviate the need for a reconstruction generator (Charachon et al., 2022).
These frameworks use a pre-trained, static classifier, as well as different generators for translating
images from one domain to another.

Combining Adversarial and Attribution methods. Tsipras et al. (2018) noted that non-minimal
adversarial examples contained salient features when networks were adversarially trained, thus
showing that perturbation could improve robustness and be used as explanation. Similarly, Woods
et al. (2019) create adversarial perturbations of images subject to a Lipschitz constraint, improving
the classifier’s robustness and creating adversarial examples with discernible features for non-linear
explanation mechanisms.

To the best of our knowledge, we are the first to explore the avenue of counterfactual image gener-
ation for achieving two critical goals: creating importance maps to identify the most salient regions
in images and boosting the classifiers’ robustness against adversarial attacks and noise injection.
Previous works operate in a post-hoc manner, generating counterfactuals based on a pre-trained,
static classifier. This approach limits the potential for the classifier to improve in terms of robust-
ness, as it remains unaltered during the counterfactual training process and thus remains vulnerable
to subtle perturbations that flip its predicted labels. In contrast, our method trains the generator and
a combined discriminator-classifier model simultaneously. This end-to-end approach improves the
classifier’s interpretability by generating counterfactual samples and bolsters its robustness against
adversarial perturbations.
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3 METHODOLOGY

This study introduces a method that uses GANs to simultaneously improve the interpretability and
robustness of binary image classifiers. We reformulate the original binary classification problem
into a three-class task, thereby unifying the classifier and discriminator into a single model D. This
augmented model classifies samples as either undamaged real images, damaged real images, or
generated (fake) images.

The generator G is tasked with creating counterfactual images; modified instances that are attributed
to the opposite class when evaluated by D. As D improves its discriminative capabilities throughout
training, G adaptively produces increasingly coherent and subtle counterfactuals.

These counterfactual images serve two essential roles: (i) they function as data augmentations,
enhancing model robustness by incorporating subtle adversarial perturbations into the training set,
and (ii) the absolute difference between original and counterfactual images highlights salient regions
used by D for classification, thereby improving model interpretability. The entire methodology is
visually represented in Figure 1.

3.1 MODEL ARCHITECTURE

3.1.1 GENERATOR

The generator G performs image-to-image translation for transforming an input image x into a
counterfactual example x̂ = G(x) that is misclassified by D: not only should D be unable to detect
that the counterfactual was generated by G, it should also attribute it to the wrong class. We employ
a UNet (Ronneberger et al., 2015) architecture based on convolutional layers, denoted CNN UNet,
as well as Swin Transformer blocks, named Swin UNet (Cao et al., 2022; Fan et al., 2022). To
convert these networks into generative models, we adopt dropout strategies suggested by Isola et al.
(2017) and introduce Gaussian noise at each upsampling layer for added variability.

In addition to the above, G is equipped with an auxiliary classification objective. We implement this
by adding a secondary branch after weighted average pooling from each upsampling block. This
branch, comprised of a fully connected network, predicts the class label of the input image. The
pooling operation itself is realized through a two-branch scoring and weighting mechanism (Yang
et al., 2022). More detail about the modified UNet architecture is provided in Appendix A.1.

3.1.2 DISCRIMINATOR

The discriminator, denoted as D, is tasked with both discriminating real from generated images
and determining the class to which the real images belong. To achieve this, two additional out-
put dimensions are introduced, extending the traditional real/fake scalar with values for undamaged
and damaged. These values are trained using categorical cross-entropy and are therefore inter-
dependent. Integrating the discriminator and classifier into a unified architecture creates a model
whose gradients inform the generator to create realistic counterfactual images. Our experimenta-
tion explores various backbones for the discriminator, including ResNets and Swin Transformers
of varying depths and a hybrid ensemble of both architecture types, combining a ResNet3 and a
Swin Tiny Transformer into a single model. We will hereafter be referring to the latter as ”Hybrid”
discriminator.

3.2 TRAINING PROCESS

Consider x to be an instance from the space of real images X , which is partitioned into subsets
Xy ⊂ X , each corresponding to a class label y ∈ {0, 1}. Our generator G is a function G : X →
X×R2, where G(x) = (x̂, ŷ) includes both the counterfactual image x̂ and a class probability vector
ŷ = [p0, p1] . For notational convenience, we introduce Gimg(x) = x̂ and Gcls(x) = ŷ as the image
and class prediction branches, respectively. Our discriminator-classifier D is characterized by the
function D : X → R3, producing a tripartite output D(x) = [p0, p1, pfake] where each component
represents the probability of x being (i) real and from class 0 (undamaged), (ii) real and from class
1 (damaged) or generated (fake).
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3.2.1 LOSS FUNCTIONS

The discriminator D is optimized through a categorical cross-entropy loss, which forces it to cor-
rectly classify real images while identifying those artificially generated by Gimg.

LD = −Ex∼X0 [logD(x)0]− Ex∼X1 [logD(x)1]− Ex∼X [logD(Gimg(x))fake] (1)

Conversely, G is trained to deceive D by generating images that are not only misclassified but also
indistinguishable from the actual data distribution.

LG = Ex∼X0
[logD(Gimg(x))0] + Ex∼X1

[logD(Gimg(x))1] + Ex∼X [logD(Gimg(x))fake] (2)

To improve G’s capability in producing counterfactual images, we incorporate an auxiliary classifi-
cation loss LGcls . This term essentially reflects the objective function of D, improving the ability of
G to determine the input’s class label, which is essential for generating high-quality counterfactuals.

LGcls = −Ex∼X0
[logGcls(x)0]− Ex ∼ X1 [logGcls(x)1] (3)

Moreover, to ensure that G produces minimally perturbed images, an L1 regularization term LGs
is

added. We selected the L1 norm for its effect of promoting sparsity in the perturbations, leading to
more interpretable and localized changes.

LGs
= Ex∼X [|x−Gimg(x)|] (4)

The overall objective function is thus a weighted sum of these individual loss components, where
the weighting factors λi are tunable hyperparameters.

L = LD + λ1LG + λ2LGcls + λ3LGs
(5)

3.2.2 CYCLE-CONSISTENT LOSS FUNCTION

The adversarial nature of GANs often leads to training instability, particularly if the generator and
discriminator evolve at different rates. Although, among other methods, Wasserstein GANs (Ar-
jovsky et al., 2017) have proven effective at stabilizing GAN training via earth-mover’s distance,
they generally presuppose a univariate discriminator output. The discriminator outputs a 3D vector
in our architecture, making the extension to a multi-variate Wasserstein loss non-trivial.

To counteract this limitation and enhance the gradient flow to G, we employ the cycle-consistent loss
term, LGc

, similar to the method proposed by Charachon et al. (2022). However, while Charachon
et al. relied on two generators for the domain translation, we employ a single model, G, to create
nested counterfactuals (counterfactuals of counterfactuals) over c cycles:

LGc
=

c∑
i=1

(−λc)
i−1

(
Ex∼X0

[
logD(Gi

img(x))0
]

+Ex∼X1

[
logD(Gi

img(x))1
]

+Ex∼X
[
logD(Gi

img(x))fake
])

(6)

Here, c ∈ Z≥1 represents the number of cycles, and λc ∈ (0, 1] scales the influence of each half-
cycle on the overall objective.

By doing so, the generator is exposed to a stronger gradient sourced from multiple cycles of coun-
terfactuals, thereby resulting in more informed parameter updates. This cycle-consistent loss thus
serves as an additional regularization term that bolsters both the training stability and the expressive
capability of the generator.

3.2.3 GRADIENT UPDATE FREQUENCY

An additional strategy to maintain equilibrium between G and D involves carefully controlling the
update frequency of each during the training process. By updating D more frequently, we aim
to ensure that D is sufficiently accurate in distinguishing real from generated instances, thereby
providing more meaningful gradient signals for G to learn from.
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4 EXPERIMENTS

4.1 DATASETS AND EVALUATION

CASC IFW Database (2010) (Li et al., 2009): This binary classification dataset contains over 5,800
apple images. It features an even split of healthy apples and those with Internal Feeding Worm (IFW)
damage. Prior studies have conducted extensive architecture and hyperparameter optimizations (Is-
mail & Malik, 2022; Knott et al., 2023). Our experiments yield performances closely aligned with,
though not identical to, these preceding works. To ensure rigorous evaluation, our adversarially
trained models are compared to the re-implemented versions of the models rather than their reported
metrics.

For this task, we selected the weight of the sparsity term λ3 = 0.1 whereas all other terms are
weighted by 1. Furthermore, G received a gradient update for every second update of D.

Concrete Crack Segmentation Dataset (Özgenel, 2018): The Concrete Crack Segmentation
Dataset features 458 high-resolution images of concrete structures, each accompanied by a binary
map (B/W) that indicates the location of cracks for semantic segmentation. By cropping these
images to the dimensions used by current CV models, it is possible to increase the dataset by ap-
proximately 50-fold. Our baseline model evaluations align with those reported in previous studies
(Kim et al., 2021; Ali et al., 2022), validating our implementation approach.

Here, we opted for a higher value of λ3 = 2 to ensure consistency between input and counterfactual
images. The other terms are again weighted by 1. G and D were updated with the same frequency.

4.2 DATA PREPROCESSING

We use a consistent data augmentation pipeline for both datasets, including random cropping and
resizing to 224x224 pixels. We also apply slight brightness, hue, and blur adjustments, along with
randomized flipping and rotations, to enhance diversity in the dataset and bridge the gap between real
and generated data distributions. None of the two datasets provide predefined training, validation,
and test splits. However, according to the previous works mentioned above, we randomly split them
into subsets of size 70%, 10%, and 20%, whereby the splitting is performed prior to image cropping
to avoid data leakage.

Healthy Damaged
Input x Output x̂ |x− x̂| Input x Output x̂ |x− x̂|

Figure 2: Examples of counterfactual images on the CASC IFW test set generated by our Swin UNet
G trained in conjunction with a Hybrid D. The input x is fed to the generator G, which produces
the counterfactual x̂ with its Gimg branch. The absolute difference between x and x̂ highlights the
salient regions in the image.
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4.3 COUNTERFACTUAL IMAGE QUALITY ASSESSMENT

Figure 2 shows counterfactual examples of the Swin UNet-based G when trained alongside a Hybrid
D. The model demonstrates remarkable efficacy in synthesizing counterfactual images by either
introducing or eradicating apple damage with high fidelity.

Besides qualitative visual evaluation, we also perform a quantitative analysis by calculating the
Fréchet inception distance (FID) between generated images and real images from the dataset. Ta-
ble 1 shows the influence of different architectural combinations for both G and D on the quality of
produced counterfactuals. Importantly, the employment of cycle consistency loss positively impacts
convergence, enhancing the model’s robustness against mode collapse. Furthermore, the compara-
tive analysis clearly demonstrates the superiority of the Swin UNet backbone for G over its CNN
UNet counterpart.

Table 1: Comparison of Fréchet inception distance (FID) for different Generator-Discriminator com-
binations with and without cycle-consistency loss on the CASC IFW Database. Missing FID entries
indicate combinations of G and D did not converge due to a mode collapse.

G
D Cycles ResNet3 ResNet18 ResNet50 Swin Small Hybrid

CNN UNet 0 0.086 0.205 - - -
1 0.064 0.049 0.168 - -

Swin UNet 0 0.072 0.162 0.139 - 0.021
1 0.073 0.043 0.114 0.021 0.016

All subsequently reported results for G and D were obtained with models that included the cycle
consistency term in their loss function.

4.4 CLASSIFICATION PERFORMANCE

We investigate the classification performance of both G and D under various architectural back-
bones, including ResNet variants and Swin Transformers. These models are compared against their
non-adversarially trained equivalents on a range of classification metrics.

Table 2: Classification Metrics on CASC IFW test split. Models G and D employ our counterfactual
pipeline; equivalent models conventionally trained for classification.

Model Accuracy F1-Score Precision Recall
ResNet18 0.932 0.946 0.946 0.946
ResNet50 0.937 0.949 0.955 0.944
Swin Small 0.978 0.983 0.982 0.983
Hybrid 0.980 0.984 0.984 0.985
CNN UNet 0.924 0.942 0.903 0.985
Swin UNet 0.980 0.984 0.981 0.986
ResNet18 D 0.836 0.853 0.967 0.763
ResNet50 D 0.866 0.885 0.954 0.826
Swin Small D 0.952 0.963 0.937 0.990
Hybrid D 0.979 0.983 0.979 0.987
CNN UNet G 0.919 0.936 0.923 0.950
Swin UNet G 0.979 0.983 0.987 0.980

The performance summary, presented in Table 2 reveals that the adversarial training routine does
not lead to a significant drop in accuracy and that the models employing a Swin Transformer as
backbone yield a better performance over ResNet-based models.
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(a) Projected Gradient Descent (b) Additive Gaussian noise on the input

Figure 3: Effects of two perturbation methods on the F1 scores of our best-performing model and its
equivalent components trained on the typical classification task. The predictions of D were obtained
by taking the argmax between p0 and p1. The third value, pfake, is also depicted with a dashed grey
line.

4.5 ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

Figure 3 shows the effects of adding perturbations to the input images by plotting the strength of
the attack against the F1-score: step size for PGD over 10 iterations with 0.1 maximum perturbation
at L∞ norm using the Adversarial Robustness Toolbox Nicolae et al. (2018) (left), and standard
deviation for added Gaussian noise (right) . Figure 3a shows that D with a ”Hybrid” architecture
is more robust compared to its non-adversarial counterpart. Since we performed targeted PGD
attacks, the ”fakeness” value pfake does not yield insight into the attack’s strength. On the other
hand, it is highly effective in detecting noise, as shown in Figure 3b. G maintains comparable
robustness to both PGD and noise injection without a significant difference in F1-score relative to a
non-adversarial Swin UNet.

Regarding the observed decline in F1-score to zero as perturbations intensify, this might initially
appear counterintuitive, given that two random vectors would yield an expected F1-score of 0.5.
However, it’s important to note that these models are specifically fine-tuned to identify defects.
At higher noise levels, defects become statistically indistinguishable from undamaged instances,
causing the model to label all samples as undamaged, resulting in zero true positives and thus an
F1-score approaching zero.

We conducted a comprehensive evaluation to determine the effectiveness of the ”fakeness” value
pfake in measuring a model’s prediction confidence. Our methodology involved calculating the neg-
ative log-likelihood loss per sample and comparing it to the Pearson correlation coefficient with
pfake. After analyzing our Swin UNet G and Hybrid D models, we found that the class predictions
had a coefficient of 0.081 and 0.100, respectively. These results indicate that the loss is positively
correlated with pfake, which can therefore serve as a dependable measure of model uncertainty at
inference time. More details on our analysis and calculations are provided in Appendix A.3.

4.6 SALIENCY MAP QUALITY ASSESSMENT

We evaluate if the absolute difference |Gimg(x)−x| between the input image x and its counterfactual
Gimg(x) are effective at highlighting salient regions in the image on the Concrete Crack Segmenta-
tion Dataset. Figure 4 shows that both CNN and Swin UNet G models trained with our adversarial
framework produce saliency masks that are more accurate and predictive compared to GradCAM.
In fact, the SwinUNet G generates highly localized and contrast-rich saliency masks, closely resem-
bling those produced by segmentation models trained on pixel-level annotations. The similar quality
between masks produced by models trained with pixel-level labels and our adversarial models can
be quantified when computing the IoU values between the masks and the ground-truth segmentation
masks. Figure 5 shows that our SwinUNet G reaches IoU scores merely 12% lower than the best-
performing segmentation models despite never having seen pixel-level annotations. On the other
hand, the other attribution method, GradCAM, reaches IoU scores well below ours.
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Segmentation Attribution Methods
Input Ground Truth CNN UNet SwinUNet GradCAM CNN UNet G SwinUNet G

Figure 4: Segmentation mask comparison for concrete cracks. Models trained on pixel-level annota-
tions are shown in the two center columns, while those trained on classification labels are displayed
in the three right-most columns. CNN UNet G and Swin UNet G are our adversarial models.

5 DISCUSSION

Figure 5: IoU Scores for concrete crack
segmentation using pixel-level annotations
in CNN- and Swin UNet, and class la-
bels for CNN UNet G, Swin UNet G, and
GradCAM. Scores are plotted across varying
mask binarization thresholds.

The proposed framework shows great potential in
producing high-quality saliency maps despite re-
lying only on classification labels. Annotating a
dataset with class labels instead of segmentation
masks requires significantly less effort. This allows
the assembly of larger and more diverse datasets, po-
tentially further narrowing the gap between segmen-
tation and attribution methods.

However, this implementation is constrained to bi-
nary classification tasks. While multi-class adapta-
tion techniques exist (Charachon et al., 2022), we ar-
gue that high-quality explanations are best generated
through comparisons of each class against the back-
ground. Therefore, we would address a multi-class
problem by breaking it into several binary classifica-
tion objectives. Additionally, the method requires a
balanced dataset for stable training of both G and D,
which can be problematic in anomaly and defect de-
tection contexts where datasets are notoriously im-
balanced.

6 CONCLUSION

Our research presents a unified framework that addresses both interpretability and robustness in
neural image classifiers by leveraging image-to-image translation GANs to generate counterfactual
and adversarial examples. The framework integrates the classifier and discriminator into a single
model capable of both class attribution and identifying generated images as ”fake”. Our evalua-
tions demonstrate the method’s efficacy in two distinct domains. Firstly, the framework shows high
classification accuracy and significant resilience against PGD attacks. Additionally, we highlight
the role of the discriminator’s ”fakeness” score as a novel uncertainty measure for the classifier’s
predictions. Finally, our generated explainability masks achieve competitive IoU scores compared
to traditional segmentation models, despite being trained solely on classification labels.
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Çağlar Fırat Özgenel. Concrete crack images for classification. Mendeley Data, 1(1), 2018.

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
black-box models. arXiv preprint arXiv:1806.07421, 2018.

Harish Guruprasad Ramaswamy et al. Ablation-cam: Visual explanations for deep convolutional
network via gradient-free localization. In proceedings of the IEEE/CVF winter conference on
applications of computer vision, pp. 983–991, 2020.

Aravinda S Rao, Tuan Nguyen, Marimuthu Palaniswami, and Tuan Ngo. Vision-based automated
crack detection using convolutional neural networks for condition assessment of infrastructure.
Structural Health Monitoring, 20(4):2124–2142, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Henrik Riedel, Sleheddine Mokdad, Isabell Schulz, Cenk Kocer, Philipp L Rosendahl, Jens Schnei-
der, Michael A Kraus, and Michael Drass. Automated quality control of vacuum insulated glazing
by convolutional neural network image classification. Automation in Construction, 135:104144,
2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. arXiv e-prints, art. arXiv:1505.04597, May 2015. doi:
10.48550/arXiv.1505.04597.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Ayoub Skouta, Abdelali Elmoufidi, Said Jai-Andaloussi, and Ouail Ochetto. Automated binary
classification of diabetic retinopathy by convolutional neural networks. In Advances on Smart
and Soft Computing: Proceedings of ICACIn 2020, pp. 177–187. Springer, 2021.
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A APPENDIX

A.1 GENERATIVE UNET ARCHITECTURE
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Figure 6: Our adapted SwinUNet architecture. Modifications compared to the architecture proposed
by Cao et al. (2022) involve the use of a vector quantization layer, concatenated noise at every
upsampling layer, replacing PixelShuffle with nearest neighbor upsampling the last block and a
class probability prediction branch using weighted average pooling and a fully-connected network.

We experiment with two different architectures for the generator: the classical CNN-based UNet
architecture and a modified version, Swin UNet (Cao et al., 2022; Fan et al., 2022), where the
convolutions are replaced with Swin Transformer blocks.

We incorporate stochasticity into the model in both architectures by introducing noise at each up-
sampling layer. Specifically, a noise vector z is sampled from a standard normal distribution, i.e.,
z ∼ N (0, I), where the dimensionality of z is d, a model hyperparameter. This vector is subse-
quently linearly projected into a higher-dimensional space of dimensions RHi×Wi×c, where Hi and
Wi denote the height and width of the feature map at a given layer i, and c represents the num-
ber of channels introduced to the feature map, another model hyperparameter. The noise is then
concatenated to the feature maps at each upsampling layer.
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Let ui ∈ RHi×Wi×Ci represent the i-th upsampling layer of the U-Net architecture. The noise is
concatenated to the feature map as follows:

ui = W1iConcat(ui,W0iz) (7)

where W0i is a weight matrix of dimensions c×Hi×Wi×d, and W1i a weight matrix of dimensions
Ci × Hi × Wi × (Ci + c), thus projecting the feature map back to its original dimensions.

This modification is designed to induce variation in the model’s output. Past research has indicated
that when noise is incorporated solely at the bottleneck of the generator, the model often neglects
this noise during the learning process Isola et al. (2017). By strategically injecting small amounts
of noise at each upsampling stage, the generator is compelled to accommodate this noise more
attentively, resulting in a model capable of generating a more robust and diverse array of images.

G is equipped with an auxiliary classification objective, which is implemented by adding a secondary
branch after weighted average pooling from each upsampling block. This secondary branch consists
of a fully connected network that predicts the class label of the input image. The pooling operation
is realized through a two-branch scoring and weighting mechanism (Yang et al., 2022).

For the Swin UNet, we made further modifications such as the use of a Swin Transformer pre-
trained on Imagenet (Russakovsky et al., 2015) as the encoding part of the UNet. Additionally, we
employed a Vector Quantization layer at the bottleneck, inspired by current state-of-the-art image-to-
image translation models (Rombach et al., 2022). The adapted Swin UNet architecture is illustrated
in Figure 6.

A.2 COUNTERFACTUAL IMAGE QUALITY ASSESSMENT

Table 3: Comparison of Fréchet Inception Distance (FID) across various Generator-Discriminator
architectures on the CASC IFW Database, under conditions with and without cycle-consistency
loss. ”Set” specifies which images were included in the calculation: ”full” means all images and
counterfactuals, ”und.” includes all undamaged images and counterfactuals from damaged images,
”dam.” are all damaged images and counterfactuals from undamaged images. Missing FID values
indicate non-convergence due to mode collapse.

G
D Cycles Set ResNet3 ResNet18 ResNet50 Swin Small Hybrid

CNN UNet

0
full 0.086 0.205 - - -
und. 0.177 0.302 - - -
dam. 0.176 0.293 - - -

1
full 0.064 0.049 0.168 - -
und. 0.171 0.182 0.272 - -
dam. 0.169 0.165 0.269 - -

Swin UNet

0
full 0.072 0.162 0.139 - 0.021
und. 0.192 0.211 0.251 - 0.178
dam. 0.178 0.254 0.285 - 0.159

1
full 0.073 0.043 0.114 0.021 0.016
und. 0.189 0.157 0.174 0.163 0.139
dam. 0.168 0.164 0.321 0.183 0.132

Table 3 contains all FID scores computed over three different subsets of the dataset: in ”full”, all
real images were compared against all counterfactual images, in ”und.”, undamaged images were
compared against counterfactuals that originated from damaged images and should now not contain
damages anymore, and ”dam.” contains all damaged images and counterfactuals from undamaged
images which should now contain damage. Note that the scores on ”dam.” and ”und.” are expectedly
worse because they do not contain both the real image and its counterfactual, whereas ”full” does.
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A.3 FAKENESS AS UNCERTAINTY ESTIMATION

The objective is to determine the degree to which pfake correlates with the model’s prediction error
as quantified by the negative log-likelihood loss.

lnll(p
(i)
1 , y(i)) = −

[
y(i) log(p1) + (1− yi) log(1− p1)

]
(8)

To calculate the cross-correlation coefficient r we employ the Pearson correlation coefficient for-
mula:

r =

∑N
i=1(l

(i)
nll − L̄nll)(p

(i)
fake − p̄fake)√(∑N

i=1(l
(i)
nll − L̄nll)2

)(∑N
i=1(p

(i)
fake − p̄fake)2

) (9)

where N represents the total number of samples, L̄nll and p̄fake are the average negative log-
likelihood loss and average ”fakeness” value across all samples, respectively.

A positive value of the cross-correlation coefficient r would indicate that pfake is a reliable indicator
of the model’s prediction confidence, while a value close to 0 would suggest otherwise.

Table 4: Pearson correlation coefficient calculated between the negative log-likelihood loss on pre-
dictions from G and D against the uncertainty measure pfake produced by D on the CASC IFW
Database for all combinations of G and D backbone architectures.

G
D ResNet3 ResNet18 ResNet50 Swin Small Hybrid

CNN UNet Gcls(x) -0.014 -0.011 0.007 - 0.062
D(x) -0.003 0.071 0.197 - 0.118

Swin UNet Gcls(x) 0.011 0.012 0.003 0.067 0.073
D(x) 0.169 0.060 0.130 0.064 0.100

When examining the correlation values presented in Table 4, it becomes evident that most of them
exhibit positive correlations, except for a few weaker models. This observation implies that the ”fak-
eness” value obtained from D can be effectively employed during the inference process to ascertain
the model’s prediction confidence level.
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A.4 COUNTERFACTUAL IMAGES FOR CONCRETE CRACKS

Input x Output x̂ |x− x̂| Input x Output x̂ |x− x̂|

Figure 7: Examples of counterfactual image generation on the Concrete Crack Dataset. The input x
is fed to the generator G, which produces the counterfactual x̂ with its Gimg branch. The absolute
difference between x and x̂ highlights the salient regions in the image.

Table 5: Comparison of Segmentation Scores on the Crack dataset test split. Reported values are the
maximum over the quantiles in Fig. 5.

Model Accuracy F1-Score IoU
GradCAM 0.954 0.341 0.206
UNet 0.975 0.976 0.780
Swin UNet 0.981 0.982 0.825
UNet (G*) 0.971 0.964 0.622
Swin UNet (G*) 0.976 0.974 0.720

*G are generators and D discriminators trained in our adversarial setting
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