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Abstract—High-flow nasal cannula (HFNC) and non-invasive
ventilation (NIV) are commonly used respiratory support thera-
pies for acute respiratory failure (ARF). However, current ran-
domized trials provide limited guidance for individualized treat-
ment decisions in this patient population. We propose RepFlow-
CFR, a deep counterfactual inference model designed to estimate
the individualized treatment effects (ITEs) of HFNC versus NIV.
The model was applied to retrospective data from ICU cohorts at
two independent health systems, UC San Diego (UCSD) Health
and UC Irvine (UCI) Health. The primary outcome was the
need for invasive mechanical ventilation (IMV). After adjusting
for confounders, a multivariable logistic regression analysis at
the UCSD site showed that concordance with the RepFlow-CFR
model’s recommendations was significantly associated with a
lower risk of IMV. Specifically, the odds ratio (OR) for IMV
was 0.661 (p<0.001) for concordance with a NIV recommen-
dation and 0.677 (p=0.019) for concordance with an HFNC
recommendation. These results demonstrated a more significant
and consistent protective effect compared to baseline methods
like Causal Forest and X-learner. The findings underscore the
model’s potential to provide data-driven, personalized guidance
for respiratory support decisions in critically ill patients.

Index Terms—Counterfactual Inference, Individualized Treat-
ment Effect, Respiratory Failure, High-Flow Nasal Cannula, Non-
Invasive Ventilation

I. INTRODUCTION

Acute respiratory failure (ARF) remains one of the most
critical conditions requiring prompt intervention in intensive
care units (ICUs). As the need for respiratory support esca-
lates, two commonly adopted non-invasive modalities are high-
flow nasal cannula (HFNC) and non-invasive ventilation (NIV)
[1]-[6]. These therapies can help prevent deterioration requir-
ing invasive mechanical ventilation (IMV), which is associated
with higher risks of complications and mortality. However,
selecting between HFNC and NIV is often challenging due to
overlapping indications and patient heterogeneity [7]-[10].

Randomized controlled trials (RCTs) have assessed the
comparative effectiveness of HFNC and NIV, but often pro-
vide inconsistent conclusions, primarily due to their focus on
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average treatment effects and narrowly defined populations.
Clinical guidelines recommend specific modalities for well-
characterized scenarios, such as NIV for hypercapnic COPD
exacerbations or HFNC for de novo hypoxemia [9], [10].
Yet, many ICU patients do not fit neatly into these guideline-
defined categories, and coexisting conditions often complicate
the decision-making process. This variability underscores the
need for individualized, data-driven guidance that can adapt
to the nuances of each patient.

To address this, machine learning (ML) offers tools to
estimate individualized treatment effects (ITEs) from obser-
vational data by leveraging high-dimensional clinical features
[11]-[13]. However, many existing ML models are limited by
confounding bias and loss of clinically important covariates
during representation learning [14], [15]. In this study, we in-
troduce RepFlow-CFR, a deep counterfactual inference model
that combines counterfactual regression [14] with conditional
normalizing flows [16] to estimate robust ITEs. By modeling
both observed and latent confounding, our approach generates
interpretable predictions of IMV risk under HFNC and NIV,
aiming to improve decision support for personalized respira-
tory therapy.

II. METHODS
A. Study Design and Cohort

We conducted a retrospective study using de-identified
electronic health records from adult patients (> 18 years)
admitted to ICUs at UC San Diego Health (UCSD) between
January 1, 2016, and December 31, 2023, and at UC Irvine
Health (UCI) between January 1, 2021, and August 31, 2024.
Patients were included if they had an ICU stay of at least 5
hours, had recorded vitals and labs before prediction, and were
not invasively mechanically ventilated before ICU admission.
Each ICU stay was treated as a separate encounter. We ex-
cluded encounters with Do Not Resuscitate (DNR) orders and
those involving surgery within 24 hours to avoid confounding
from perioperative care. Ethical approval was obtained from
the UC San Diego Institutional Review Board.

B. Vent.io Risk Threshold and Treatment Definition

To identify patients at high risk for invasive mechanical
ventilation (IMV), we used the pretrained Vent.io respiratory
failure model [17]. The model outputs a risk score for IMV



based on a 5-class labeling scheme, and we applied a threshold
corresponding to 60% sensitivity to define high risk. We
defined 70 as the first time the score crossed this threshold.
We then identified patients who received HFNC or NIV as
their first respiratory support after 70. This defined our early
intervention cohort, referred to as HFNC/NIV group.

C. Feature Processing

We extracted 50 vitals and labs, 6 demographic features,
12 features related to the components of the SOFA and
SIRS criteria, 12 medication categories, and 62 comorbidi-
ties. Vitals/labs were resampled into hourly bins; multiple
measurements per hour were aggregated using medians. For
each variable, we computed three views: baseline (72-hour
average), local trend (delta), the time since the variable was
last measured (TSLM). Missing values were forward-filled up
to 24 hours, with remaining gaps imputed using the training
cohort median, which yielded 150 input features per encounter.

D. RepFlow-CFR Framework

We proposed the RepFlow-CFR model, a flow-based con-
founder adjustment model that integrates representation learn-
ing, normalizing flows and counterfactual inference. Figure 2
presents the architecture overview of the RepFlow-CFR model,
which contains three modules as follows.

Stage 0 (CFR-based representation learning): We utilized
the counterfactual regression architecture (CFR) [14] that
includes shared representation layers and two distinct heads
for predicting outcomes under different treatments. The shared
representation layers, based on the Vent.io architecture, include
a TSLM layer for adjusting the importance of labs and vitals,
followed by a feedforward neural network. By training the
CFR model, the shared representation is encouraged to balance
the distribution of measured confounders across treatment
groups. The loss function is formulated as:

Lo = E[Lcrr (7, a,y) + X -IPMG ({ ¢ }i,a=nrne, { @i fi,a=N1v)]s

where IPMg; is the empirical probability metric (e.g., Wasser-
stein distance), Lcpr is the prediction loss, and A denotes
the trade-off parameter that balances prediction accuracy and
representation distribution matching.

After training Stage 0, we assume that the learned rep-
resentation ¢ captures sufficient information from measured
covariates such that potential outcomes are conditionally inde-
pendent of treatment assignment, given ¢ and a latent variable
u representing unmeasured confounding as:

Y(A) L Al ¢,u,
where Y and A denote the outcome and treatment, respec-
tively.
The observed distribution is defined as p(y | ¢,a) = [p(y |

o, u,a)p(u | ¢,a)du. The interventional distribution, which
removes the influence of a on u is
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If p(u | ¢,a) = p(u | ¢), we will have p(Y(a) =y | ¢) =
p(y | ¢, a). However, in observational studies, this assumption
rarely holds due to treatment assignment bias or unmeasured
confounding. Directly using p(y | ¢,a) to estimate counter-
factual outcomes would lead to biased inference. To address
this, RepFlow-CFR includes two additional stages to explicitly
model and account for this hidden bias.

Stage 1 (Modeling outcome distribution): We used a condi-
tional normalizing flow (CNF) to model the observed outcome
distribution p(y | ¢, a), where a € {NIV,HFNC}. The CNF
learns an invertible transformation f qu),a that maps a standard
normal latent variable U ~ A/ (0, I) to the outcome space. The
loss function is formulated as:

n
Ly =Y —logp(f}, ..(U) = ).
i=1

Stage 2 (Adjusting for hidden confounding): Since the
learned representation ¢ may not satisfy unconfoundedness
due to unmeasured confounding, we introduced a second CNF
ffs,w It transforms a new latent variable U ~ N(0,1) to
an interventional latent variable that approximates p(u | ¢).
The resulting latent sample is then passed through the Stage
1 transformation f dlv,a’ which shifts the latent distribution
p(u | ¢,a) toward the interventional distribution p(u | ¢).

This adjustment allows us to account for hidden biases
arising from factors like clinician decision-making, treatment
selection bias, and unobserved patient severity. The loss func-
tion is formulated as:

n
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E. Training and Evaluation

The UCSD dataset was split into 80% training and 20%
validation. Each model stage was trained independently using
the Adam optimizer with early stopping based on validation
loss. Bayesian optimization tuned learning rates, flow depth,
and regularization strength. To ensure robustness of model
estimation during inference, we drew 100 latent samples per
encounter from the Stage 2 CNF and mapped them through
the Stage 1 transformation to obtain predicted outcomes.
These were then averaged to produce stable estimates for
each treatment condition. Model performance, including both
predictive accuracy and ITE estimation quality, was evaluated
on the entire UCSD early HFNC/NIV cohort. To assess
generalizability, we further conducted external validation on
an independent early HFNC/NIV cohort from UCT site.

The predicted Individual Treatment Effect (ITE) was de-
fined as the difference between the predicted probability of
IMV under NIV and under HFNC, when each was given
as the first intervention following the Vent.io TO timepoint.
To assess predictive performance, we reported two standard
metrics for IMV prediction: the Area Under the Receiver
Operating Characteristic Curve (AUC) and the Area Under
the Precision-Recall Curve (PR-AUC). ITE estimation quality
was further evaluated by examining patient outcomes under
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treatment concordance. As baseline comparisons, we included
commonly used data-driven ITE estimation methods in clinical
settings, including Causal Forest [11], X-Learner [12], and the
CFR model.

III. RESULTS
A. Cohort Characteristics

We identified 1,956 ICU encounters from UCSD and 169
from UCI that met inclusion criteria. Patients were strati-
fied based on the initial post-TO treatment: HFNC or NIV.
Compared to HFNC-treated patients, those receiving NIV had
higher comorbidity burden and were more likely to have
chronic pulmonary or cardiovascular conditions.

B. IMV Predictive Performance

RepFlow-CFR achieved an AUC of 0.820 and a PR-AUC
of 0.566 on the UCSD early HFNC/NIV cohort, which is
comparable to the baseline CFR model (AUC: 0.821, PR-
AUC: 0.571). However, when externally validated on the
UCI early HFNC/NIV cohort, performance declined, with
RepFlow-CFR achieving an AUC of 0.630 and a PR-AUC
of 0.444, compared to CFR’s AUC of 0.656 and PR-AUC of
0.415. To improve generalizability, we fine-tuned both CFR
and RepFlow-CFR using 25% of the UCI early HFNC/NIV
cohort. After fine-tuning, RepFlow-CFR achieved an AUC of
0.727 and a PR-AUC of 0.553, while CFR achieved an AUC
of 0.758 and a PR-AUC of 0.590 on the UCI site.

C. Outcomes with Treatment Concordance

Our primary clinical outcome was the need for invasive
mechanical ventilation (IMV). We evaluated whether patients
received treatments in concordance with the ITE predicted
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Overview of the RepFlow-CFR model, which contains CFR-based representation learning, output distribution modeling and hidden confounding

preferred treatment: NIV or HFNC, and compared IMV out-
comes across different ITE estimation methods. Treatment
concordance was defined as receiving the treatment predicted
to be beneficial (concordant), while discordance referred to
receiving the opposite treatment.

As illustrated in Figure 2, IMV rates were generally lower
in the concordant group than in the discordant group across
both sites, particularly for patients predicted to benefit from
NIV. At UCSD, all methods showed lower IMV rates in the
NIV-concordant group, with RepFlow-CFR achieving a rate
of 19.27% compared to 27.06% in the discordant group. For
HENC, RepFlow-CFR also demonstrated the most favorable
concordance effect, with a concordant rate of 20.07% ver-
sus 25.93% discordant. At UCI with RepFlow-CFR HFNC-
concordant patients had an IMV rate of 13.33%, substantially
lower than the 20.00% observed in the discordant group. While
most methods showed consistent trends favoring concordance,
X-learner at UCI showed a slightly higher IMV rate in the
HFNC-concordant group (28.00%) than discordant (18.75%),
deviating from the overall pattern.

To evaluate whether concordance with the predicted treat-
ment is independently associated with reduced need for IMV,
we conducted multivariable logistic regression adjusted for
age, gender, SOFA score, CCI score, and Vent.io score (Ta-
ble II). The strongest effect was observed for RepFlow-CFR at
the UCSD site, where concordance with both NIV and HFNC
was significantly associated with lower IMV risk (OR=0.661,
p < 0.001 and OR=0.677, p = 0.019, respectively). In
contrast, baseline models such as Causal Forest and X-learner
did not consistently show significant protective effects. For
example, the CFR model at UCSD showed that HFNC con-
cordance was paradoxically associated with increased IMV
risk (OR=1.846, p < 0.001), highlighting the potential harm



TABLE I
BASELINE CHARACTERISTICS OF PATIENTS IN UCSD AND UCI EARLY HFNC/NIV COHORTS.

Variable UCSD (NIV) UCSD (HFNC) UCI (NIV) UCI (HFNC)
Characteristic
Encounters, N 591 1365 38 131
Age (years), mean (SD) 63 (16.3) 61 (16.6) 66 (15.0) 63 (17.6)
Male, N (%) 369 (62.4) 806 (59.0) 20 (52.6) 86 (65.6)
Organ dysfunction, median (IQR)
Charlson Comorbidity Index 3.0 (1.0-5.0) 2.0 (1.0-5.0) 3.0 (1.0-6.0) 2.0 (0.0-3.0)
Congestive Heart Failure, N (%) 245 (41.5) 315 (23.1) 15 (39.5) 29 (22.1)
Chronic Obstructive Pulmonary Disease, N (%) 161 (27.2) 234 (17.1) 4 (10.5) 8 (6.1)
SOFA score at Vent.io TO, median (IQR)? 1.0 (0.0-3.0) 1.0 (0.0-3.0) 2.0 (1.04.0) 1.0 (0.0-3.0)
Outcomes, N (%)
IMVP 122 (20.6) 334 (24.5) 9 (23.7) 38 (29.0)
Mortality 147 (24.9) 431 (31.6) 9 (23.7) 29 (22.1)
Hospice 6 (1.0) 11 (0.8) 5(13.2) 31 (23.7)
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Fig. 2. Comparison of IMV outcomes by treatment concordance and ITE estimation method. Bars represent IMV rates across four treatment groups (NIV
concordance, NIV discordance, HFNC concordance, HENC discordance) for each ITE method.

of following incorrect recommendations.

IV. DISCUSSION

We developed and validated RepFlow-CFR, a deep counter-
factual model designed to estimate ITEs of HENC versus NIV
as the initial respiratory support for critically-ill ICU patients
at risk of invasive mechanical ventilation. The model integrates
deep representation learning and conditional normalizing flows
to account for both measured and unmeasured confounders.
Using 100 latent samples per encounter, we conducted a
sensitivity analysis to estimate counterfactual outcomes under
both treatment arms. Patients whose treatments aligned with
model-predicted ITEs had significantly lower rates of IMV in
both development and external validation cohorts. Compared
to baseline methods including Causal Forest, X-Learner, and
conventional CFR, RepFlow-CFR demonstrated more robust
and consistent performance, particularly in external settings
after fine-tuning.

These findings emphasize the limitations of relying solely
on average treatment effects from RCTs, which may mask
meaningful heterogeneity in individual patient responses. Al-
though clinical guidelines offer recommendations for specific

subpopulations (e.g., those with respiratory acidosis from
COPD or cardiogenic pulmonary edema), many ICU patients
present with complex, overlapping conditions not addressed
by such guidelines. Consequently, treatment decisions are
often based on clinical judgment, which may vary across
providers. RepFlow-CFR offers a data-driven complement to
existing guidelines, particularly when ambiguity exists. Its
ability to model nuanced patient characteristics and predict
individualized outcomes suggests potential utility in guiding
escalation respiratory support decisions in critical care settings.

Nonetheless, this study has important limitations. As a
retrospective analysis, it remains subject to the inherent
constraints of observational data, including potential biases
from undocumented clinical indicators or clinician intent.
Although our CNF-based sensitivity analysis mitigates some
of these concerns, prospective validation is needed to con-
firm clinical effectiveness. Moreover, our cohorts were drawn
from two academic hospitals in the same geographic region,
which may limit generalizability to broader or non-academic
populations. Future research should evaluate the integration
of RepFlow-CFR into clinical workflows, ideally combining
model-predicted ITEs with clinician expertise and existing



TABLE II
MULTIVARIABLE LOGISTIC REGRESSION RESULTS (ODDS RATIOS AND P-VALUES) FOR PREDICTING THE NEED FOR IMV

Method Site NIV concordance  HFNC concordance Age Gender CCI  SOFA  Vent.io
UCSD  0.443 (p < .001) 0.778 (p = .033) 0.988 1.046 0929 1.044 1.276
Causal Forest
ucCI 0.415 (p = .153) 0.903 (p = .786) 0.994 1.046 1.089  1.051 1.032
< UCSD  0.109 (p < .001) 0.356 (p < .001) 0.984 1.035 0.932  1.066 1.267
-learner
UCI 0.409 (p = .089) 0.731 (p = .397) 1.012 0.723 0971  1.094 1.292
CFR UCSD  0.185 (p < .001) 1.846 (p < .001) 0.992 1.039 1.049  1.120 1.294
UcCI 0.495 (p = .245) 0.987 (p = .783) 0.992 1.042 1.069  1.038 0.972
UCSD  0.661 (p < .001) 0.677 (p = .019) 0.988 1.003 0.933  1.047 1.143
RepFlow-CFR
ucCI 0.482 (p = .373) 0.243 (p = .121) 0.988 0.938 0.988  1.092 0.747
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