BEYOND SCORE: A MULTI-AGENT SYSTEM TO DIS-
COVER CAPABILITY AND BEHAVIORAL WEAKNESSES
IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

A key task for researchers working on large language models (LLMs) is to com-
pare the results and behavioral performance of different models, thereby identi-
fying model weaknesses and enabling further model improvements. However, as
LLMs are applied in an increasing range of scenarios and the number of bench-
marks continues to grow, the difficulty of accurately identifying weaknesses in-
creases. Additionally, with the emergence of Reasoning LL.Ms, researchers need
to analyze the chain-of-thought (CoT) behaviors of models to gain insights—this
makes the task of directly analyzing model capabilities based on benchmark eval-
uation results more onerous and unreliable. To address these issues, we pro-
pose AGENT4WEAKNESS, a framework that uses multi-agent collaboration to
generate evaluation reports with user requirements for LLM evaluation. Specif-
ically, AGENT4WEAKNESS employs multiple mainstream LLMs for evaluation
and comparison, incorporating professional statistical tools to provide richer sta-
tistical insights. Besides, AGENT4WEAKNESS features a dedicated agent de-
signed to extract relevant information from the results according to user require-
ments, ensuring the final analysis is tailored to user needs. We show that reports
generated by AGENT4WEAKNESS achieve an improvement of 2.6 out of 10 across
four dimensions compared with the baseline, with high consistency with human
evaluations, which proves the high quality of the reports. Furthermore, perfor-
mance improvements guided by the reports from AGENT4WEAKNESS lead to a
3.7 gain by addressing the discovered weaknesses, demonstrating significant prac-
tical value of AGENT4WEAKNESS.

1 INTRODUCTION

As large language models (LLMs) advance, the evaluation to identify model weaknesses becomes
increasingly crucial, which we call Weakness Discovery (Zhao et al., [2024; Zeng et al., [2025)).
This process aids in the understanding, development, and improvement of current LLMs (Chang
et al., |2024; |Peng et all) [2024). Specifically, weakness discovery conducts a deeper analysis of
direct evaluation data (e.g., response, accuracy) to identify more specific differences in capabilities
on certain models or datasets (Chang & Bergen, 2024; Hu & Zhoul [2024). Previous weakness
discovery work can be categorized into two types. One approach involves encoding and clustering
questions or model outputs, identifying clusters with low performance as weaknesses (Zeng et al.,
20255 [Tian et al., [2025} |Lee et al., 2025). The other approach analyzes weaknesses of the model on
an instance-by-instance basis (Murahari et al., 2024} |[Yang et al., 2024; [Moayeri et al., 2025)).

However, as shown in Figure |1} existing weakness discovery methods exhibit two primary limita-
tions: (i) Insufficient Comparison: Current methods primarily report performance differences with-
out analyzing the nature of these disparities, such as their statistical significance and confidence,
which limits the substantive value of the evaluation results (Mizrahi et al., 2024; Luettgau et al.,
2025). (ii) Inflexible Evaluation: Current works are restricted to fixed evaluation perspectives and
lack the flexibility to generate diverse results based on user requirements, which limits the general
applicability of such methods (Brawer et al., [2023).

a

LLMs Database E @ * & ©o0o ‘g AIME2025 Aider

Evaluate Evaluate
Evaluation Data Evaluation Data
Prompt Scores Response Model Response Benchmark Scores Running Time Token Number = « «

Any User Requirement

: \
' '
'

% Fixed Pipeline s Weakness of Model Capabilities Disadvantage of Time Cost E
o
) '
o Weakness of Model Behavior Weakness of Specific Capabilities g
'

I:|— Discovery | TTTTTTTTTTITTTITTTIIITIITTOR A Discovery 7T

I A ettt e
~ |I| H
1 Analysis Report '
'
'
B IIII Capability Behavior 0
— ZIS Weakness Weakness H
Score Trend Leaderboard H
statistics fools /

Previous Work, Agent4Weakness

Figure 1: The comparison between the previous weakness discovery method (left) and our work
(right). Previous works lack statistical analysis of evaluation data and are limited to generating
analyses from fixed perspectives. In contrast, our work provides richer statistical analyses and aligns
its evaluation with user requirements, thereby demonstrating higher reliability and flexibility.

Given these shortcomings, we argue that an effective weakness discovery method should satisfy the
following criteria: (i) Sufficient Comparison: It should not only identify performance differences but
also assess their nature, like significance and confidence, to ensure the findings are substantive. (ii)
Flexible Evaluation: It should be capable of generating customized evaluation results for specific
aspects according to user needs, ensuring high generalizability.

Based on the above analysis, we propose AGENT4WEAKNESS, a multi-agent system equipped with
diverse customized tools (Table [I) that perform weakness discovery based on user queries. The
illustration of AGENT4WEAKNESS is shown in Figure |1} To provide substantive value, we incor-
porate professional statistical tools, making the discovered weaknesses more general and robust.
AGENT4WEAKNESS also analyzes user needs and retrieves relevant information to generate cus-
tomized evaluation results, flexibly meeting user requirements.

To validate the effectiveness of AGENT4WEAKNESS, we conduct experiments on 104 models and
27 datasets, from which we select 8 representative models for in-depth analysis. First, we evalu-
ate the reports generated by AGENT4WEAKNESS across four dimensions, including Requirement
Fulfillment, Content Value, Factuality, and Readability. The reports show a significant improve-
ment of 2.6 points out of 10 when evaluated by LLMs, compared to the baseline. Through human
studies, we find that LL.M-assigned scores align well with human ratings. This result confirms the
high quality of the reports generated by AGENT4WEAKNESS. In addition, AGENT4WEAKNESS
achieves an improvement of 3.4 over the baseline in the Content Value dimension, demonstrating
that our method can generate rich analyses of evaluation disparities, providing a sufficient compar-
ison. Furthermore, AGENT4WEAKNESS scores an improvement of 3.4 compared to the baseline
in the Requirement Fulfillment dimension, indicating that our method ensures the reports meet user
requirements, showcasing its flexibility in evaluation. Additional experiments reveal that model
performance improves by 3.7 when guided by the weakness discovered from AGENT4WEAKNESS,
further validating that such reports can effectively drive performance improvements and highlighting
the potential for practical applications of our method.

Our contributions are as follows:

* To address the shortcomings of insufficient comparison and inflexible evaluation in existing weak-
ness discovery methods, we propose AGENT4WEAKNESS, which leverages multi-agent collabo-
ration to ensure that the generated reports are both sufficient and flexible.

* Experimental results on 104 models and 27 datasets demonstrate that the reports generated by
AGENT4WEAKNESS achieve the improvement of 2.6 points out of 10 compared with the baseline
across four evaluation dimensions and the high consistency between model and human scores,
confirming the high quality of the reports produced by our method.

Memory Bank, l Case Example

Short-term Memory e ey Analyze Weakness Pattems in Instruction Following of Deepseek-V3.1-0821-thinking. (W2)

History. Persisted Artifacts Previous Results Analysis Task 1

refrieved metrics Abilty Analysis

Al Messages | Human Messages
mined patterns Behavioral analysis

Analysis Task:

/
'
'
'

Total 22 tools Part Three: Detailed Patter Infroduction

|

|

|

|

, ! Weakness Case Analysis of Deepseek-V3.1-0821-thinking on MultiChallenge
R et ttetetalatetets T Get -rrrmrsrmmsoess { Update *} Get 7 } Analysis Result:
e B T bttt o . . . VLG
f ; Memory Memo Memory "y p Analysis of Weakness Reasoning Pattemns for Deepseek-V3.1-0821-thinking on
Lo Analysis Team Assion s WY1 (29 muichallenge
X0 . Tasks Cb’) ! 5 L m2 i | agents Stafistical Overview:
g = Query comprehension ON“——— NP3 | | Weakness Based on 60 low-scoring cases, Deepseek-V3,1-0821-thinking exhibits a systematic
3T . Andlytical step formulation Analyzer " aneRepo der 1 S50 | weakness in instruction following on the MulfiChallenge benchmark...
S anney " | | Core Weakness Reasoning Patterns:
L . ToskCompleted. /'\\) I Pattem 1: Lapses in Constraint Memory and Instruction Negligence...
Call Return
Tools () Results } Generate Final Report
’ ‘1,/: Custom Tools Flexible Generic Expandable } Anclyslf Report on Degpseek-VS.‘l -0821-Thinking: Inferential Pattern Comparison of

| ! | Instruction Following with SOTA Models
! i
: - get evaluation info - fiter cases by insight o UYL : R o
H . t abiity insight tool « fiter multi model | 09| This analysis is based on the instruction adherence dimension data from the
' ERrElsll iy IR Eafifelel s (eI GeESD ! | OpenBenchmark evaluation set, focusing on the performance of the Deepseek-
| + get significance tool « get cases by pattem ' Agentd V3 1-0821-thinking model
! « get insight model metric scores tool « save important info v BT Analysis
' SR 5 o :
: D
\ '

1

Figure 2: The left side shows the overview of AGENT4WEAKNESS, including the Planner, Analyzer,
and Reporter, which perform capability and behavior analysis. The right side presents a concrete
example of capability weakness analysis for the models.

* Guided by the reports generated by AGENT4WEAKNESS, model performance improves by an
average of 3.7 using the discovered weakness, demonstrating the practical value of our method.

2 METHODOLOGY

At a high level, our method builds an agent-based system that leverages model evaluation data to
answer user queries. We first collect and organize diverse evaluation results from a wide range
of models and benchmarks, covering multiple capability dimensions. On top of this evaluation
corpus, we design a multi-agent workflow, equipping agents with specialized tools that allow them to
retrieve, process, and analyze the evaluation data. When a user issues a query, the system coordinates
these agents to plan the analysis steps, invoke the appropriate tools for evidence gathering, and
compose a structured response. In this way, the method provides not only quantitative comparisons
across models but also interpretable explanations of their weaknesses and behavioral tendencies.

2.1 OVERVIEW

Task Definition. Formally, given a user query ¢ € Q and evaluation data Dey,, our system
AGENT4WEAKNESS produces a structured report y €) that integrates quantitative evidence with
typical failure traces:

y = AGENT4WEAKNESS(q, Deyar)- 2.1

Data and Query. To obtain comprehensive evaluation data, we evaluate 104 models across 27
datasets organized into seven capability dimensions—Comprehensive, Reasoning, Math, Code, In-
struction Following, Knowledge & Hallucination, and Multilingual (details in Appendix [C). Given
a user query ¢ and evaluation data D, (instance-level responses and derived statistics such as ac-
curacy, Best/Worst-of- N, runtime, token usage, and raw responses at the instance/benchmark level),
AGENT4WEAKNESS produces the report y that integrates evidence with typical failure traces.

Agent Workflow. The system consists of three agents: Planner P, Analyzer A, and Reporter R.
Each agent is specified by (i) role (input—output mapping), (i) tools (only A uses external tools),
and (iif) memory with long-term K (persisted artifacts such as retrieved metrics, mined patterns, and
reusable templates) and short-term H (within-run conversational/plan state). All prompts embed
background and priors about the evaluation setting, and each agent receives its own prompt together
with the cross-agent history A for grounding and consistency (Appendix [E). Overall, the Planner
turns the user query into an analysis plan, the Analyzers derive weakness observations, and the
Reporter composes the final report.

Two Complementary Analyses Tasks. Based on the granularity of available data, we decompose
the task into two levels. Capability analysis performs numerical calculations to discover weaknesses,
such as estimating per-dimension performance vectors, computing gaps, and assessing significance
and tiering. Behavioral analysis mines repeated reasoning patterns from raw responses by contrast-
ing low-scoring cases of the model with high-scoring cases from other models.

2.2 PLANNER

Role and Memory. The Planner interprets ¢ and Dey, in context, aligns them with background
priors, and constructs a weakness-oriented analysis plan 7 that defines slices, comparisons, and re-
quired tool uses (for both capability and behavioral analyses). It also decides whether to continue or
to replan when Analyzer observations is underperforming. Long-term memory Kp stores reusable
plan schemas, subgoal taxonomies, and adequacy thresholds per dimension; short-term memory Hp
maintains the current plan, assigned slices, and the latest observations to enable iterative refinement.
Formally, with cross-agent history up to step ¢t —1 denoted by Hj.;—1,

(r,d,H%) = P(q, Deva, Kp, Hp, H1.t—1), d € {continue, replan}. 2.2)

The Planner’s prompt includes demonstrations that translate user intent into capability- and
behavior-oriented subgoals, enumerate target slices, and schedule analyzers to derive progressive
observations with principled stopping criteria, ensuring the flexible requirement fulfillment.

Table 1: Examples of the tools used in AGENT4WEAKNESS include their names, purposes, and
categories, with detailed tool information provided in Appendix [E

Tool Purpose Category

get ability tool Return a Markdown table listing scores of multiple Data acquisition
models across capability dimensions and benchmarks.

get significance tool Using the specified model as the baseline, compute Data analysis
other models’ score differences, percentage changes,
improvements, and statistical significance relative to the

baseline.
get cases by pattern Automatically analyze all cases of the specified bench- In-depth analy-
mark. sis

2.3 ANALYZER

Role, Tool, and Memory. The Analyzer executes 7w over D,y and produces observations o that
are of high factuality and content value. It uses three families of tools: (i) Data acquisition Tgaq for
retrieving benchmark summaries, per-slice statistics (means/variances, Best/Worst-of-N), usage sig-
nals (token, runtime), and filtered case sets under predicates (error type, length, timeouts, etc.); (ii)
Statistical analysis Ty, for computing paired gaps against references, ranking and tiering, bootstrap
confidence intervals, effect sizes, and capability/benchmark correlations; (iii) In-depth analysis Tgeep
for scalable pattern mining over raw responses using a fast model-as-tool to summarize repeated be-
haviors (e.g., premature finalization, tool-call misfires, brittle chain-of-thought). We select one tool
from each category for presentation in Table|l} Long-term memory K 4 persists retrieved evidence,
indices to representative cases, and mined pattern schemas; short-term memory H 4 caches the cur-
rent tool-call trace and samples for rapid within-run access. The Analyzer’s input—output is

0 = .A(ﬂ', Deval, Ka, Hy; 7:1aq7 Tstat, 7(-166])) . (2.3)

Capability Analysis. When diagnosing a capability weakness in the set of capability dimensions
¢ € C, the Analyzer primarily invokes 7gaq and 7T to compute evidence, such as performance
vectors and reference summaries, gaps with uncertainty (e.g., bootstrap Cls, p-values), and tier
assignment. This yields quantitative evidence used to localize and prioritize capability deficits.

Behavioral Analysis. When diagnosing a behavioral weakness, the Analyzer constructs a contrast
set by pairing low-scoring cases from m* with high-scoring matched cases from R by Tgaq. It then

applies Tgeep to mine frequent weakness patterns and validate them against raw traces, producing
evidence, such as contrastive summaries (error type, trigger, missing step), pattern set Py, With
prevalence and representative exemplars, and hypotheses linking patterns to capability gaps (e.g.,
hallucination under tool-latency — knowledge & control). This yields qualitative evidence that
explains why the evaluation scores are low.

2.4 REPORTER

Role and Memory. The Reporter turns a multiset of analyzer outputs {o;} into a concise report y
that ranks weaknesses by impact, pairs each claim with quantitative evidence (metrics/tables) and
qualitative traces (typical failure cases), and preserves clarity across the seven dimensions. Long-
term memory Ky stores templates and stable claim<+evidence linking patterns into K 4; short-
term memory Hy maintains the evolving outline and pending citations to ensure coherence and
completeness. Its input—output mapping is

y = R({oi}it1, Kr, Hr, Hit). (2.4)

Practically, the Reporter performs evidence binding (claims — linked metrics and cases), resolves
redundancies across overlapping slices, and enforces style constraints (headlines, captions, and ci-
tation format) specified in the prompt, yielding a final evaluation report that is readable yet fully
traceable to the underlying computations.

3 EXPERIMENTS

3.1 SETTINGS

We first evaluate several models on a range of benchmarks, recording a comprehensive set of sta-
tistical metrics and the corresponding model responses. A detailed list of all 104 models and 27
benchmarks is provided in Appendix [C|

Models. We employ Claude-Opus-4.1-thinking (Anthropic, 2025) to run AGENT4WEAKNESS
and analyze the evaluation results of 8 representative models, including: GPT-5-high (Ope-
nAl, 2024), Grok-4 (xAl, 2025), Claude-Opus-4.1-thinking (Anthropic, [2025), Gemini-2.5-
pro (Google, 2025b)), Qwen-3-235B-A22B-Thinking-2507 (Qwen Team,|2025)), Seed-1.6-Thinking-
250715 (ByteDance, 2025)), Deepseek-V3.1-0821-Thinking (DeepSeek-Al et al., 2025), and
Gemini-2.5-Flash-0520 (Googlel 2025a), which are all mainstream LLMs currently.

Queries. We conduct the following inquiries for each model, including: QI. Analyze the weak-
nesses in the model’s capabilities. Q2. Analyze the disadvantages of the model in terms of time cost
and token consumption. Q3. Analyze the weaknesses in the model’s behavior. Q1 and Q2 perform
capability analysis and Q3 performs behavior analysis. We select these three queries because they
comprehensively explore model weaknesses and present challenging cases that require analyzing a
large amount of evaluation data for sufficient comparison and in-depth analysis.

Baseline. To highlight the quality of the analysis generated by AGENT4WEAKNESS, we establish
a direct answering baseline. This baseline involves feeding all relevant performance weakness data
into the model and prompting it to answer the query directly. We do not compare with prior works
because existing methods rely on fixed pipelines that cannot flexibly accommodate all of our queries.
Moreover, prior studies analyze each model in isolation without incorporating evaluation data from
other models, which would render our comparison unfair.

Evaluation. To assess the quality of the analysis generated by AGENT4WEAKNESS, we conduct
both human and model-based evaluations. Specially, we employ professional evaluators to score the
generated analyses across four dimensions, each on a scale from 0 to 10. The detailed scoring rubric
is shown in Table 2] Furthermore, we also use Claude-Opus-4.1-thinking to assign scores following
the same rubrics, and we report the average score over 5 runs.

3.2 MAIN RESULTS

Our experimental results are shown in Table [3] where the reported scores are LLM ratings.
AGENT4WEAKNESS consistently outperforms the baseline, achieving average improvements of

Table 2: Definitions of four dimensions and the deduction rules on a 10 point scale.

Criteria Primary Definition Deduction Logic

Evaluates the agent adherence
to both general and specific * Non-adherence: —1 points
instructions within query.

Requirement
Fulfillment

Incomplete structure: —1 to —3 points

Missing a primary category: —3 points
Missing a secondary category: —1 to —2 points
Incomplete case presentation table: —2 points
Unsound analysis: —1 to —2 points
Inappropriate primary category: —2 points
Inappropriate secondary category: —1 point

Assesses the utility of the
output, including structural
integrity and the soundness of
the analysis.

Content Value

Verifies the accuracy and
Factuality reliability of data citations and ¢ A single instance of a factual error: —2 points
external links.

Measures the clarity, fluency of
the language, and the
effectiveness of case
presentation.

* Expressive or logical flaws: —0.5 points per
instance
» Poor reading experience: —1 point

Readability

Table 3: Comparison of model evaluations for the baseline and AGENT4WEAKNESS across 4 evalu-
ation dimensions and 3 queries, with a maximum score of 10. Avg denotes the average scores across
the three queries on the same dimensions. The highest average score is highlighted in bold.

Method Query \ Requirement Fulfillment Content Value Factuality Readability
Ql 6.7 5.7 6.4 7.9
. Q2 3.7 3.0 3.3 6.4
Baseline Q3 6.9 6.6 7.3 8.3
Avg | 5.8 5.1 5.7 7.5
Q1 8.8 8.3 9.7 7.5
Q2 9.9 8.6 8.0 8.4
AGENT4WEAKNESS Q3 8.9 8.7 8.1 8.7
Avg | 9.2 8.5 8.6 8.2

3.4, 3.4, 2.9, and 0.7 on Requirement Fulfillment, Content Value, Factuality, and Readability, re-
spectively. These results demonstrate that AGENT4WEAKNESS not only enables thorough model
comparison and highlights content value while flexibly satisfying user needs, but also produces
weakness analyses with high factual accuracy and readability.

Finding 1. Performance gains are particularly pronounced on complex queries. The improve-
ments of AGENT4WEAKNESS are larger on Q2 and Q3 than on Q1. Q1 primarily involves pairwise
performance comparisons, whereas Q2 requires synthesizing multiple factors such as runtime and
token usage, and Q3 demands deeper reasoning analysis across benchmarks. The baseline struggles
with these more complex cases, whereas AGENT4WEAKNESS demonstrates robust performance.

Finding 2. The largest benefits appear in Requirement Fulfillment and Content Value. Com-
pared to the baseline average of 5.8 and 5.1, AGENT4WEAKNESS achieves 9.2 and 8.5, respectively.
While the baseline can produce shallow comparisons, excessive input length harms instruction ad-
herence and the absence of specialized tools limits its analytical depth (Liu et al.l [2024; Wu et al.,
2025)). By contrast, AGENT4WEAKNESS generates substantially richer and more faithful reports.

Finding 3. The gain in Readability is modest but consistent. Although AGENT4WEAKNESS
outperforms the baseline (8.2 vs. 7.5), improvements are smaller than in other dimensions. This
is because models inherently exhibit their own stylistic tendencies, such as habitual word choices
and preferred rhetorical structures. Even with explicit guidance on report style, it is challenging to
achieve significant gains in readability (Wang et al.| [2025a).

Baseline Agent4Weakness

83.7

100 100
77.0 1004 % 97

~
W
L

Performance
[
S
.
w
¥
N)
Performance

(o8]
W
L

751
501

13.0 25

0

LT i 0 T T T T
Dimension Model Calculation Reflection Symbol Lexical

Figure 3: Accuracy in identifying weakness ca- Figure 4: Accuracy of AGENT4WEAKNESS
pability dimensions and underperforming mod- in detecting weaknesses across four behavioral
els, compared with baselines. patterns.

Finding 4. Model-based scores align strongly with human evaluation. To validate the reliability
of model ratings, we collect human annotations, with details in Appendix D] The results show strong
positive correlations: Pearson r = 0.801, 95% CI = [0.12, 0.97], t(5) = 2.99, p ~ 0.03; Spearman
p =0.944, p < 0.01 (n = 7). This indicates very high rank-order alignment and substantial linear
agreement, with only minor deviations in magnitude across individual items.

4 DISCUSSION

4.1 RQI1. CAN OUR METHOD ACCURATELY IDENTIFY MODEL WEAKNESSES?

To validate whether AGENT4WEAKNESS accurately identifies model weaknesses, we conduct ver-
ifiable analyses. For capability analysis, we input the scores of 106 models on 51 benchmarks and
ask both AGENT4WEAKNESS and the baseline to identify the benchmark where a given model ranks
the lowest, and the model that ranks the lowest within a specified capability dimension. The target
models are consistent with those in the main experiments, and the capability dimensions include
overall, reasoning, math, code, instruction following, knowledge, and multilingual capabilities. To
ensure fairness, AGENT4WEAKNESS does not include tools that directly return these answers; in-
stead, the agent must retrieve the relevant data, compute results, or verify them using auxiliary tools.
As shown in Figure 3] AGENT4WEAKNESS improves accuracy by an average of 55.9 points over
the baseline, demonstrating its effectiveness. We observe that errors mainly arise from hallucina-
tions due to overly long contexts after multiple tool calls, while the baseline struggles to identify the
weakest models or dimensions from large-scale data (Liu et al.,|2024; (Wu et al., [2025)).

For behavioral analysis, we instruct AGENT4WEAKNESS to detect quantifiable patterns in the out-
puts of a specified model, including calculation errors, reflection mechanisms, symbol preferences,
and lexical preferences. As shown in Figure d] AGENT4WEAKNESS accurately identifies these
behavioral features and computes their frequencies, confirming its ability to detect both capability
and behavioral weaknesses in models. The accuracy of detecting calculation errors is the lowest
because the model needs to call external tools or perform calculations on its own. This challenge
is particularly evident in high-difficulty mathematical benchmarks such as AIME (AIME, [2025)
and OlympiadBench (He et al., 2024), where identifying a miscalculation at a specific step is more
difficult than recognizing symbols or words.

4.2 RQ2. ARE THE ROLES AND TOOLS EMPLOYED IN AGENT4WEAKNESS EFFECTIVE?

To assess the contribution of roles and tools in AGENT4WEAKNESS, we conduct ablation studies
(Table[d). For the role input, we keep only the task-specific instructions and the preceding agents’
context in the role prompt, removing background about the evaluation and any prior knowledge.
For tools, AGENT4WEAKNESS uses data acquisition, data analysis, and deep analysis tools; in the
ablated variant, we retain only data acquisition.

Based on the experimental results in Table] we can observe that: (i) When ablating background
knowledge, scores on Requirement Fulfillment and Readability also decline, as the agents no longer
sufficiently understand the query or the provided data. The resulting reports are less structured and
more hyperbolic, further reducing readability. (i7) When ablating tools, Content Value and Fac-
tual Accuracy degrade the most, because tools help verify data fidelity and enable more thorough

Table 4: Ablation study across three queries (Q1-Q3), with a maximum score of 10. Metrics are
Requirement Fulfillment (R), Content Value (C), Factuality (F), and Readability (R).

Method Q1 Q2 Q3
R C F R R C F R R C F R
AGENT4WEAKNESS 88 83 9.7 75 99 86 80 84 89 8.7 8.1 8.7

Ablating roles 83 74 86 67 79 80 77 61 46 16 16 6.1
Ablating tools 79 70 83 74 93 84 79 77 53 43 20 6.0
AIME2025 Aider LiveBench —— Original Score 1t Increase with Agent4Weakness
1.0 1 0
80 9.6
9 1.0 2.7
. 6.4
60
50 - -
Seed-1.6-Thinking DeepSeek-V3.1 Gemini-2.5-Flash

Figure 5: The original model scores versus the scores after implementing the weakness analysis and
improvement suggestions provided by AGENT4WEAKNESS.

comparisons and deeper analyses of model weaknesses. (iii) Comparatively, the performance degra-
dation from ablating Requirement Fulfillment is not significant for Q1 and Q2, but it is substantial
for Q3. This suggests that while the model is inherently inclined to identify information about capa-
bilities and output costs, it does not proactively analyze its own behavior. Such behavioral analysis,
in turn, necessitates a more fine-grained examination of the evaluation data.

4.3 RQ3. CAN ANALYSIS GENERATED BY AGENT4WEAKNESS IMPROVE MODEL
PERFORMANCE?

To evaluate the accuracy and effectiveness of AGENT4WEAKNESS, we feed its analysis of a model’s
evaluation results back into the same model to determine if the analysis improves performance.
Specifically, we input the evaluation results of models on AIME2025 (AIME, 2025)), Aider (Gau-
thier], [2025)), and the LiveBench 2025-04-25 version (White et al.| 2025) into AGENT4WEAKNESS,
respectively. Subsequently, we provide the behavioral weaknesses and improvement suggestions
identified by AGENT4WEAKNESS to the same model and observe its performance change. As
shown in Figure[5] AGENT4WEAKNESS consistently improves the model performance by an aver-
age of 3.7 points through prompt modifications, demonstrating the effectiveness of our analysis.

Specifically, we have the following key findings: (i) The performance of the model improves be-
cause targeted prompts about potential weaknesses in reasoning patterns and corresponding sug-
gestions for improvement enhance its reasoning behavior. For instance, AGENT4WEAKNESS iden-
tifies that the reasoning process of DeepSeek-V3.1 on AIME2025 questions is disorganized. It
therefore suggests using markers such as “### Step 1 to structure the reasoning and adding ver-
ification of intermediate results after each step. After receiving this prompt, the model exhibits
a more organized reasoning process and consistently adopts the reasoning markers. Furthermore,
AGENT4WEAKNESS finds that DeepSeek-V3.1 applies congruence properties superficially, with-
out considering the structures of group theory and ring theory. It thus recommends fully utilizing
modular arithmetic, the Chinese Remainder Theorem, and Euler’s theorem, and conducting a deeper
analysis of the group-theoretic structures and algebraic properties of higher-order congruences. The
prompted model then applies these theorems in its reasoning to solve problems successfully, leading
to a performance increase. (if) The improvement on Seed-1.6-Thinking is not significant. This is
because Seed-1.6-Thinking has a weaker capability for instruction following in our experiments,
which prevents it from adhering well to the corrective suggestions. (iif) The most substantial im-
provement is observed on Aider. For code tasks, the correct action to fix an error is highly specific.
Therefore, when an error is prompted to the model, it can learn a very concrete and executable rule.
For example, our method finds that Gemini-2.5-Flash tends to engage in preemptive error analysis,
introduce general debugging methods, or discuss hypothetical problems, which results in incorrect
or excessively long error analyses. It therefore suggests that error analysis should occur only when
correcting the code and should focus on the direct cause of the current, specific problem.

5 RELATED WORK

As benchmark scores are insufficient for revealing fine-grained and in-depth model weaknesses,
prior research focuses on identifying these granular deficiencies from detailed evaluation results
(Moayeri et al.,[2025; Brown et al.,|[2025; |Wang et al., 2025b)).

5.1 CAPABILITY WEAKNESS DISCOVERY

Existing methods identify model weaknesses by extracting the capabilities required to answer ques-
tions and organizing them into sets or capability trees. For example, QualEval (Murahari et al.,[2024)
utilizes a LLM to summarize potential taxonomies from samples and then maps all benchmark ques-
tions to specific categories. Thus, QualEval can identify the domains and skills that correspond to
lower performance as weaknesses. Similarly, EvalTree (Zeng et al.| [2025) constructs hierarchical
capability trees to profile model performance. Each node in the tree represents a specific capability,
and the structure facilitates the identification of performance deficits at various levels of granularity.
This method enables a more detailed understanding of model weaknesses across different capa-
bilities. SkillVerse (Tian et al., 2025) introduces a tree-structured framework for assessing model
proficiency. By organizing capabilities into a hierarchical structure, SkillVerse allows for a nuanced
analysis of model strengths and weaknesses, guiding targeted improvements.

However, existing works are limited to simple performance comparisons, failing to meticulously
consider non-performance metrics Hu & Zhou|(2024). Furthermore, these methods overlook refer-
ential information from other models, which results in conclusions with low confidence (Luettgau
et al., [2025). Moreover, existing works employ fixed pipelines, thereby confining the analysis of
model weaknesses to limited aspects (Brawer et al., 2023). In contrast, AGENT4WEAKNESS is
implemented as a multi agent system that incorporates professional statistical tools to achieve com-
prehensive comparisons and flexible evaluation.

5.2 BEHAVIORAL WEAKNESSES DISCOVERY

Previous works analyze deficiencies in model behavior to better understand the models and guide
their improvement (Chang & Bergen, [2024). ReportCards (Yang et al., |2024) provides human-
interpretable, natural language summaries of model behavior, focusing on specific skills or top-
ics. This qualitative approach facilitates the identification of behavioral patterns that may indicate
underlying weaknesses. CoT Encyclopedia (Lee et al., 2025) employs a clustering technique to
group evaluation data based on observed patterns, deriving scores for different model capabilities.
This method allows for the identification of behavioral trends across various tasks, contributing to a
deeper understanding of model performance.

However, their methods are fixed and lack interactivity, making them unable to flexibly meet user
needs. Additionally, they do not incorporate other models in their weakness analysis. For example,
a model may make errors on highly challenging questions, but even the best models are beyond their
cognitive limits on such questions, meaning that these weaknesses are not the primary behavioral
weaknesses of the analyzed model.

6 CONCLUSION

We introduce AGENT4WEAKNESS, a tool-augmented multi-agent framework that converts raw
evaluation data into targeted weakness reports with both sufficient comparison and flexible eval-
uation. At the evaluation of 104 models and 27 benchmarks, AGENT4WEAKNESS improves LLM
scores by 2.6/10 on average and exhibits strong agreement with human raters. A 3.4 score improve-
ment in Content Value proves that AGENT4AWEAKNESS has high sufficient evaluation. Besides,
AGENT4WEAKNESS surpasses a strong baseline by a 3.4 score improvement in Requirement Ful-
fillment, showing that our method can generate reports with flexible evaluation. Ablation results
further confirm that explicit role design and targeted tool use are key drivers of these gains. Fur-
ther evaluation experiments show that using the report generated with AGENT4WEAKNESS, per-
formance improves 3.7 compared with baselines, showing the practical value of our method. By
producing evidence-grounded findings that localize weaknesses, AGENT4WEAKNESS provides a
practical foundation for weakness discovery in the LLM era.

7 REPRODUCIBILITY

We have provided all prompts of this paper in Appendix [E] We release the code in |https:
//anonymous . 4open.science/r/agent_code.

REFERENCES

AIME. AIME problems and solutions, 2025. URL |https://artofproblemsolving.com/wiki/
index.php/AIME_Problems_and_Solutions.

Anthropic. Claude-Opus-4.1: A large language model. https://www.anthropic.com/news/
claude-opus-4-1, 2025. Accessed: June 2025.

Jake Brawer, Kayleigh Bishop, Bradley Hayes, and Alessandro Roncone. Towards a natural lan-
guage interface for flexible multi-agent task assignment, 2023. URL https://arxiv.org/abs/
2311.00153.

Davis Brown, Prithvi Balehannina, Helen Jin, Shreya Havaldar, Hamed Hassani, and Eric Wong.
Adaptively profiling models with task elicitation, 2025. URL https://arxiv.org/abs/2503.
01986l

ByteDance. doubao-seed-1.6: A large language model. https://www.volcengine.com/docs/
82379/1536428, 2025. Accessed: August 2025.

Tyler A. Chang and Benjamin K. Bergen. Language model behavior: A comprehensive survey.
Computational Linguistics, 50(1):293-350, 03 2024. ISSN 0891-2017. doi: 10.1162/coli_a_
00492. URL https://doi.org/10.1162/coli_a_00492.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang,
and Xing Xie. A survey on evaluation of large language models. 15(3), March 2024. ISSN
2157-6904. doi: 10.1145/3641289. URL https://doi.org/10.1145/3641289,

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,

10

https://anonymous.4open.science/r/agent_code
https://anonymous.4open.science/r/agent_code
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://www.anthropic.com/news/claude-opus-4-1
https://www.anthropic.com/news/claude-opus-4-1
https://arxiv.org/abs/2311.00153
https://arxiv.org/abs/2311.00153
https://arxiv.org/abs/2503.01986
https://arxiv.org/abs/2503.01986
https://www.volcengine.com/docs/82379/1536428
https://www.volcengine.com/docs/82379/1536428
https://doi.org/10.1162/coli_a_00492
https://doi.org/10.1145/3641289

Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. DeepSeek-V3 Technical Report, 2025. URL
http://arxiv.org/abs/2412.19437. Realsed: March 2025; Accessed: August 2025.

Paul Gauthier. Aider llm leaderboards. https://aider.chat/docs/leaderboards/, 2025.

Google. Gemini-2.5-Flash: A large language model. |https://cloud.google.com/vertex-ai/
generative-ai/docs/models/gemini/2-5-flash, 2025a. Accessed: August 2025.

Google. Gemini-2.5-Pro(preview 05-06): A large language model. https://cloud.google.com/
vertex-ai/generative-ai/docs/models/gemini/2-5-pro, 2025b. Accessed: August 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench:
A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828-3850, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.211. URL https://aclanthology.org/2024.acl-1long.211/.

Taojun Hu and Xiao-Hua Zhou. Unveiling llm evaluation focused on metrics: Challenges and
solutions, 2024. URL |https://arxiv.org/abs/2404.09135.

Seongyun Lee, Seungone Kim, Minju Seo, Yongrae Jo, Dongyoung Go, Hyeonbin Hwang, Jinho
Park, Xiang Yue, Sean Welleck, Graham Neubig, Moontae Lee, and Minjoon Seo. The cot ency-
clopedia: Analyzing, predicting, and controlling how a reasoning model will think, 2025. URL
https://arxiv.org/abs/2505.10185.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173, 2024. doi: 10.1162/tacl_a_00638. URL
https://aclanthology.org/2024.tacl-1.9/.

Lennart Luettgau, Harry Coppock, Magda Dubois, Christopher Summerfield, and Cozmin Ududec.
Hibayes: A hierarchical bayesian modeling framework for ai evaluation statistics, 2025. URL
https://arxiv.org/abs/2505.05602.

Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror, Dafna Shahaf, and Gabriel Stanovsky.
State of what art? a call for multi-prompt LLM evaluation. Transactions of the Associ-
ation for Computational Linguistics, 12:933-949, 2024. doi: 10.1162/tacl.a_00681. URL
https://aclanthology.org/2024.tacl-1.52/.

Mazda Moayeri, Vidhisha Balachandran, Varun Chandrasekaran, Safoora Yousefi, Thomas FEL,
Soheil Feizi, Besmira Nushi, Neel Joshi, and Vibhav Vineet. Unearthing skill-level insights for
understanding trade-offs of foundation models. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=kNHVViEPWK.

Vishvak Murahari, Ameet Deshpande, Peter Clark, Tanmay Rajpurohit, Ashish Sabharwal, Karthik
Narasimhan, and Ashwin Kalyan. QualEval: Qualitative evaluation for model improvement.
In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 2093-2111, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.115. URL
https://aclanthology.org/2024.naacl-long.115/.

OpenAl Introducing gpt-5. |https://openai.com/index/introducing-gpt-5/, 2024.

Ji-Lun Peng, Sijia Cheng, Egil Diau, Yung-Yu Shih, Po-Heng Chen, Yen-Ting Lin, and Yun-Nung
Chen. A survey of useful llm evaluation, 2024. URL https://arxiv.org/abs/2406.00936.

Qwen Team. Qwen3-235B: A large language model, 2025. URL https://huggingface.co/Qwen/
Qwen3-235B-A22Bl Accessed: August 2025.

Yufei Tian, Jiao Sun, Nanyun Peng, and Zizhao Zhang. Skillverse : Assessing and enhancing llms
with tree evaluation, 2025. URL https://arxiv.org/abs/2506.00319.

11

http://arxiv.org/abs/2412.19437
https://aider.chat/docs/leaderboards/
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
https://aclanthology.org/2024.acl-long.211/
https://arxiv.org/abs/2404.09135
https://arxiv.org/abs/2505.10185
https://aclanthology.org/2024.tacl-1.9/
https://arxiv.org/abs/2505.05602
https://aclanthology.org/2024.tacl-1.52/
https://openreview.net/forum?id=kNHVViEPWK
https://aclanthology.org/2024.naacl-long.115/
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2406.00936
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://arxiv.org/abs/2506.00319

Zhengxiang Wang, Nafis Irtiza Tripto, Solha Park, Zhenzhen Li, and Jiawei Zhou. Catch me if you
can? not yet: Llms still struggle to imitate the implicit writing styles of everyday authors, 2025a.
URL https://arxiv.org/abs/2509.14543.

Zongqi Wang, Tianle Gu, Chen Gong, Xin Tian, Siqi Bao, and Yujiu Yang. From rankings to
insights: Evaluation should shift focus from leaderboard to feedback, 2025b. URL fhttps://
arxiv.org/abs/2505.06698.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh
Sandha, Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie
Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-limited LLM
benchmark. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=sKYHBTAxVa.

Xiaodong Wu, Minhao Wang, Yichen Liu, Xiaoming Shi, He Yan, Lu Xiangju, Junmin Zhu, and
Wei Zhang. LIFBench: Evaluating the instruction following performance and stability of large
language models in long-context scenarios. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 16445-16468, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.803. URL https://aclanthology.org/2025.acl-1long.803/.

xAlL Grok4: A large language model. https://docs.x.ai/docs/models#models-and-pricing,
2025. Accessed: August 2025.

Blair Yang, Fuyang Cui, Keiran Paster, Jimmy Ba, Pashootan Vaezipoor, Silviu Pitis, and Michael R.
Zhang. Report cards: Qualitative evaluation of language models using natural language sum-
maries, 2024. URL https://arxiv.org/abs/2409.00844.

Zhiyuan Zeng, Yizhong Wang, Hannaneh Hajishirzi, and Pang Wei Koh. Evaltree: Profiling lan-
guage model weaknesses via hierarchical capability trees, 2025. URL |https://arxiv.org/abs/
2503.08893.

Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Chong Meng, Shuaigiang Wang, Zhicong
Cheng, Zhaochun Ren, and Dawei Yin. Knowing what LLMs DO NOT know: A simple yet
effective self-detection method. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Pro-
ceedings of the 2024 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 7051-7063,
Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024 .naacl-long.390. URL https://aclanthology.org/2024.naacl-1long.390/.

12

https://arxiv.org/abs/2509.14543
https://arxiv.org/abs/2505.06698
https://arxiv.org/abs/2505.06698
https://openreview.net/forum?id=sKYHBTAxVa
https://aclanthology.org/2025.acl-long.803/
https://docs.x.ai/docs/models#models-and-pricing
https://arxiv.org/abs/2409.00844
https://arxiv.org/abs/2503.08893
https://arxiv.org/abs/2503.08893
https://aclanthology.org/2024.naacl-long.390/

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only to polish our paper for better clarity and fluency, without involving the core
research content. All contents were checked and edited by the authors to ensure the quality and
alignment. The authors take full responsibility for the final version of the paper.

B ETHICS

All models used in this paper are publicly available, and our usage follows their licenses and terms.
Additionally, we confirm that the compensation provided to evaluators is significantly higher than
the local minimum wage.

C EVALUATION BACKGROUND

C.1 MODELS

We evaluate the following models: qwen-3-next-80b-a3b-thinking, qwen-3-next-80b-a3b-instruct,
gwen3-max-preview, GPT-5-high, qwen-3-4b (think), GPT-OSS-20b-medium, Hunyuan-T1-
0711, gwen-3-coder-plus, qwen-3-235b-a22b-instruct-2507 (nothink), qwen-3-235b-a22b-thinking-
2507, Grok-4, Grok-3, Llama-4-Maverick, Llama-4-Scout, Grok-3-mini-high, ChatGPT-4o-latest,
Doubao-1.5-Lite-32k.250115, Doubao-1.5-Pro-32k.250115, Doubao-1.5-Thinking-Pro-M.250415,
Doubao-1.5-Thinking-Pro.250415, Seed-1.6-Flash.250615, Seed-1.6-Thinking.250615, Seed-1.6-
AutoCoT.250615-AutoCoT, Seed-1.6-AutoCoT.250615-NoCoT, DeepSeek-R1-0528, o04-mini-
high, qwen-plus-0428 (nothink), GPT-4.1-nano, DeepSeek-V3-0324, Gemini-2.0-Flash, Claude-
4-Sonnet-nothinking, GPT-40-1120, 03-mini-high, Minimax-Text-01, GPT-4.1-mini, Baichuan4-
Turbo, o1-high, Gemini-2.0-Flash-Lite, qwen-max-0125 (nothink), GLM-4-Air.0414, Mistral-large-
2411, Nova-pro, Yi-lightning, Claude-3.7-Sonnet, GPT-4.1, Gemini-2.5-flash.0520, qwen-3-235b-
a22b-2504 (think), qwen-turbo-0428 (nothink), SenseNova-V6-Turbo, SenseNova-V6-Pro, Gemini-
2.5-pro.0605, ERNIE-4.5-Turbo-32K, GLM-Z1-Air.0414, Claude-3.7-Sonnet-thinking, Claude-
4-Sonnet-thinking, qwen-3-30b-a3b (think), qwen-3-32b (think), ERNIE-X1-Turbo-32K, 360-
gpt2-ol, SenseNova-V6-Reasoner, Claude-4-Opus-nothinking, StepFun-2-16k, Claude-4-Opus-
thinking, StepFun-R1-V-mini, Kimi-Thinking-preview, Gemini-2.5-Pro, Gemini-2.5-Flash, dots-
IIm1, Gemini-2.0-flash-lite-preview.0617, Hunyuan-T1-0529, GPT-40-mini, ERNIE-4.5-Turbo-
128K-Preview.0629, ERNIE-4.5-300b-a47b, 03-high, qwen-plus-0714 (nothink), qwen-turbo-0715
(nothink), Kimi-K2, qwen-3-coder-480b-a35b-instruct, Gemini-2.5-Flash-Lite, qwen-3-30b-a3b-
instruct-2507 (nothink), qwen-3-30b-a3b-thinking-2507, Seed-1.6-Thinking-agent-preview, GLM-
4.5, GLM-4.5-AirX, GLM-4.5-Air, GPT-OSS-20b-high, GPT-5-mini-high, GPT-5-nano-high, GPT-
5-chat, GLM-4.5-X, GPT-5-medium, Claude-Opus-4.1-nothinking, 360-zhinao2-01.5, StepFun-3,
Claude-Opus-4.1-thinking, Deepseek-V3.1-0821-nothinking, Deepseek-V3.1-0821-thinking, Seed-
1.6-AutoCoT.250615-CoT, Seed-1.6-Flash.250715, Seed-1.6-Thinking.250715, Kimi-K2-0905,
GPT-0SS-120B-low, GPT-OSS-120B-medium, and GPT-OSS-120B-high.

C.2 BENCHMARKS

We consider the following benchmarks: MMLU pro, MMLU, Humanity Last Exam, GPQA di-
amond, SuperGPQA, LiveBench, MixEvalHard, ArenaHard, ARCAGI, ProcBench, KORBench,
ZebralLogicBench, AIME 2025, AIME 2024, HARP, Omni MATH, OlympiadBench, SWE Bench
Verified, SWE Lancer, Aider, LiveCodeBench, MultiChallenge, IFEval, Collie Hard, Chinese Sim-
pleQA, SimpleQA, and MMMLU.

D HUMAN EVALUATIONS

We present the average human and model scores on Q1, as shown in TableE} The results indicate a
high consistency between human and model evaluations, with fluctuations not exceeding 0.3.

13

Table 5: Comparison of model scores and human scores on Q1.

| Requirement Fulfillment Content Value Factuality —Readability

Human 8.8 8.0 9.5 7.5
Model 8.8 8.3 9.7 7.5

E PROMPTS

Background
You are working inside the PostEvalAgent system.

1. What is “PostEvalAgent”?

PostEvalAgent is a multi-agent system for analyzing LLM evaluation results. It helps us better
understand the data produced by evaluations, thereby improving our understanding of models and
guiding optimization.

2. A quick introduction to the evaluated data

To clarify the task, we briefly introduce the evaluation data, which has several layers:

- case (smallest unit): Contains fields such as ‘prompt‘, ‘response‘, ‘ground truth‘, ‘metric_name°,
‘score, ‘tag‘, etc.; uniquely identified by a global ‘__internal_id__°.

- exercise: An aggregation of multiple cases; it may correspond to the full set or a subset of
a benchmark, or a filtered/processed set. It has a globally unique ‘exercise_id‘; ‘version_sid®
distinguishes different versions of the same exercise.

- collection: A weighted aggregation over multiple exercises; collections can be recursively
combined into a tree. Leaves are exercises, and non-leaf nodes represent capability dimensions or
subcollections.

- insight: Aggregated evaluation results for one or more models on the same (or similar) collection.
It includes results and statistics at case / exercise / collection granularities.

- model name: The model’s name as it appears in an insight; some names may be verbose.

- dimension: The path from the root node of an insight to a child node, e.g., ‘root—Overall
Capability—Instruction Following‘, meaning the root branches to *Overall Capability*, which
further branches to *Instruction Following*.

3. What does PostEvalAgent analyze?

The analysis target is an insight. In one sentence:

‘insight = case, exercise, collection evaluated by one or more models‘. Details by layer:

- Case-level results: For each case, in addition to the basics above, the evaluation process produces
derived data (e.g., aggregated fields at the case level). If the same case is evaluated N times, we
compute derived indicators such as boN (best-of-N) and woN (worst-of-N). We will provide tools to
inspect the available fields at the case level for use in subsequent analysis.

- Exercise-level results: Aggregations over multiple cases produce statistics such as mean score,
mean response length, token usage, emoji frequency, etc.

- Collection-level results: When multiple exercises are treated as leaves, their root node aggregates
leaf scores by weight to produce collection-level results. Some capabilities (e.g., “Mathematics”)
may be composed of multiple exercises.

insight (evaluation results over a collection for one or more models)

|-- collection (aggregated from exercises; may be a tree)

| -- subcollection / capability dimension (human-defined, non-leaf)

| |-- exercise (a set of cases; can be a full benchmark, subset, or processed set)
| | |-- case (smallest unit; includes prompt, response, score, tag, __internal_id__,
etc.)

| | |-- case ...

| |-- exercise ...

|-- subcollection / capability dimension

|-- exercise ...

14

4. What does PostEvalAgent primarily do?

- Capability Analysis: Models are evaluated across multiple benchmarks, each testing different
capabilities. Scores are normalized to [0, 1] and presented as percentages (e.g., ‘0.87 = 8§7%°),
reflecting a model’s capability.

- For each capability dimension (i.e., a benchmark or a group of benchmarks assessing the same
capability), one model attains the highest score, representing the top level within our analysis data. In
some scenarios (e.g., model selection), rank is more important than absolute score; in others (e.g.,
strategy iteration vs. baseline), absolute scores are crucial for measuring differences.

- Behavioral Analysis: A model’s responses are closely tied to training data, architecture, and
server-side policies. We analyze actual responses within one or more benchmarks, focusing on:
language style, format adherence, safety/alignment, instruction following, and common error patterns
(e.g., hallucinations, concept drift).

Roles and Tasks

1. You are a professional AI model performance planning specialist, acting as one node
within PostEvalAgent, with the ability to deeply understand user needs and propose solutions.

2. Your task is to design a plan for the user’s query—grounded in the *Background* and *Tool
Information*. The plan is split into multiple plans, and each plan can retrieve, process, and analyze
data to reach conclusions.

3. Your plan will be executed by an analyzer agent, which will return results.

4. After the current round completes, decide whether to generate a new plan based on the execution
results. If the user’s question is not yet solved, continue planning; otherwise hand off to the reporter
node to produce the analysis report.

5. If this is not the first plan: Carefully analyze failure causes and history to create a better,
non-duplicative new plan that addresses previously unresolved issues.

Principles

1. Focus, not breadth: Start from details; avoid generic analysis.

2. Diversity, not singularity: Analyze from multiple data angles; single-source conclusions are
weak.

4. Quantification, not assumption: Use data to support your points.

5. Clarity, not verbosity: Be direct on simple questions; be logically structured on complex ones.
6. Decomposition, not averaging: Break down capability differences at fine granularity to uncover
deeper insights.

7. Comparison, not absolutes: When expressing strengths and weaknesses, use comparisons—a
higher score does not necessarily imply higher capability.

8. Explicitness, not omission: Be concrete and specific. When citing comparisons, SOTA, or
metrics, explicitly name the compared models and scores, the SOTA model and score, and define
metrics and how they are computed. Any value not directly observed must explain its data source
and computation method.

9. Candor, not force: If data are insufficient, say so. Do not force conclusions merely to complete a
report.

10. Plainness, not flourish: Use simple, clear, concrete language; avoid “Al-speak™ and grandiose
rhetoric so users can understand and accept the analysis more easily.

11. Objectivity, not subjectivity: Organize and analyze data; do not speculate.

Instructions and Constraints

1. Understand the background: The first step must be to understand the current state of
the analysis data—this underpins everything that follows. Using the available tools and the user’s
question, enumerate insight, collection, exercise, case, etc.

2. Acquire information: The plan should comprehensively mine the data.

3. Step constraints:

- Each plan must have no more than ‘max_step_num° total steps (fewer steps with more substance is
fine).

15

- Each step must have a clear goal.

- Combine closely related research points to keep content substantial and relevant.

- Do not include a final step for “summarizing information” or “writing the report.” This planning
stage is only for data collection and processing.

Analysis Ideas

Below are common analysis approaches—use them flexibly based on the user’s query and ac-
tual data.

1. Overall Overview: When the user wants a comprehensive view of an insight:

- High-level summary: Gather general information about the insight—how many models, how
many exercises, and the number of cases forming this evaluation.

- Quick takeaways: Which models rank near the top? Which rank lower?

- Notable details: Point out anomalies or interesting highlights—for example, a model that excels
or struggles dramatically on a specific exercise or capability dimension.

- Other: “Play it by ear” based on the data; tailor to the content.

2. Benchmark Information: When the user wants basic information about benchmarks:

- Insight basics: e.g., case/exercise/collection details such as brief problem descriptions, counts, and
a benchmark’s weight within its collection.

- Other: Consolidated information at the exercise and collection levels as appropriate.

3. Strengths or Weaknesses: If the user asks about a model’s strengths/weaknesses on a
collection/subcollection/exercise:

- Identify the analysis and comparison models: If no comparison is specified, use mix-SOTA as
the baseline.

- Understand the insight: Using the tools, determine how many exercises and cases are involved,
etc.

- Consider both rank and score:

- Rank shows relative position: A high rank supports a genuine advantage; you can also call
‘analyze_model_tiers_tool‘ to contextualize a model among many.

- Score shows absolute ability: Some exercises (e.g., *BrowseCamp*) cluster at low scores for
everyone; in others, even small gains (e.g., breaking into double digits) can represent meaningful
capability breakthroughs.

4. Comparing Statistical Metrics: If the user asks about token/time statistics for a model
on a collection/subcollection/exercise:

- Identify the analysis and comparison models: If unspecified, use mix-SOTA.

- Understand the insight: Use the tools to examine the number of exercises, etc.

- Collect comparative metrics: For the analysis and comparison models, gather information such
as token usage and organize as tuples like ‘jexercise, score, token, model namey ‘.

- Compare and conclude:

- Does the analysis model consume abnormally more tokens than the comparison model?

- Under similar token budgets, does the analysis model perform much worse or much better?

- Any other notable observations.

4. Outliers: If the user wants to verify that evaluations ran normally and reflect true capa-
bility:

- If a model is specified, focus on it; otherwise, analyze globally; if the data are huge, prioritize the
most relevant parts.

- Score anomalies: Missing scores for certain exercises; misaligned case sets; extremely high error
rates.

- Statistical anomalies: Output token lengths much longer/shorter than peers.

- Capability hierarchy inversions: A top-ranked first-level capability but significantly lower-ranked
sub-capabilities (or vice versa).

- Other anomalies: Carefully inspect data to find issues that could affect conclusions.

- Not outliers: Conclusions drawn only from absolute scores are not anomalies (do not label an
anomaly based solely on a single high/low score).

5. Capability Correlations: If the user wants to know whether capabilities rise and fall to-

16

gether, exhibit “see-saw” effects, or correlate with certain statistics:

- Choose models: Prefer user-specified models; otherwise, select a small set and explain your
rationale in the planning.

- Co-movement analysis: Using the insight data, analyze correlations of the same model across
different collections/exercises and across different models on the same exercise/subcollection.

- See-saw effect: Using scores across models/exercises, analyze whether gains in one capability
trade off with another—especially when the user is iterating strategies against a baseline.

- Stats vs. scores: For selected exercises, analyze relationships between statistics (e.g., reason-
ing/prediction tokens, time, cost) and performance:

- Token counts: Compare reasoning/prediction tokens across models and relate them to perfor-
mance.

- Completion time: Assess inference efficiency.

- Cost comparison: Compare token/time costs with performance gains.

Analyzer Tools

Output Requirements

1. First, provide your reasoning in a ‘thought‘ field—e.g., what data you need, which tools
you will use, how you will process the data, and what conclusions you expect to reach.

2. Then output the plan strictly in the JSON format below. Do net include any extra explanation or
“‘json fences.

3. To do better planning, structure your ‘thought® carefully and split the user’s question into several
plans, for example:

- Prompt: “Predict the number of goals in the Spain vs. Denmark match.”

- Thought: The user’s question is vague; likely they mean a match happening around now. In the
first round, perform a broad search to determine which match they refer to — Based on initial results
and the time of asking, infer it is probably the Nations League — In the second round, focus on the
Nations League and the two teams to gather evidence: (1) current performance in this competition;
(2) head-to-head history and forward-looking projections.

4. Regardless, planning output must strictly follow the schema below. Do not leave any
field empty.

““ts

interface Step

description: string; // Describe in detail the goal of this step, what data to obtain/process, and how it
relates to other steps.

need_search: boolean; // Default: false (reserved for future use).

title: string; / A one-line title to show the user; follow the principles above—avoid meaningless titles.
step_type: string; // Default: analyze”

interface Plan

locale: string; // Based on the user’s language (e.g., ”zh-CN”).

thought: string; // Detailed reasoning so the analyzer better grasps the overall approach.
reporter_ready: boolean; // Default: false. Set to true when the analyzer has enough info to answer the
question.

is_replan: boolean; // Default: false. Set true if a re-plan is needed (only one re-plan is allowed).

title: string;

steps: Stepl[]; / Leave empty if reporter_ready = true.

1113

17

Background
You are in the “PostEvalAgent” system.

1. What is “PostEvalAgent”?
PostEvalAgent is a multi-agent system for analyzing LLM evaluation results. It helps us better
understand the data produced by evaluations, thereby understanding models and improving them.

2. A brief overview of the evaluated data
To better understand the tasks, we outline the layers of the evaluation/analysis data:

- case (smallest unit): contains fields such as ‘prompt‘, ‘response‘, ‘ground truth‘, ‘met-
ric_name‘, ‘score’, and ‘tag*; it is uniquely identified by a global ‘__internal_id__°.

- exercise: aggregated from multiple cases; may correspond to a benchmark’s full set, a subset, or a
filtered/processed set. It is uniquely identified by ‘exercise_id‘; ‘version_sid‘ distinguishes different
versions of the same exercise.

- collection: a weighted aggregation over multiple exercises; collections can be further combined
to form a tree structure. Leaves are exercises; non-leaf nodes represent capability dimensions or
*subcollections®.

- insight: an aggregation of evaluation results for one or more models on the same (or similar)
collection. It contains results and statistics at the case / exercise / collection levels.

- model name: the model’s name within an *insight*; some model names can be lengthy.

- dimension: a path from the root node of an *insight* to a child node, e.g., ‘root-;Comprehensive
Ability-¢ Instruction Following*, indicating a branch from *root* to *Comprehensive Ability* and
then to *Instruction Following*.

3. What does PostEvalAgent analyze?
The analysis target is the *insight*. In one sentence:
‘insight = case, exercise, collection evaluated for one or more models. Details by level:

- Case-level results: information for each case. Beyond the basic fields above, the evalua-
tion process can produce new, derived data (e.g., aggregations at the case level). If the same case is
evaluated *N* times, we compute derived indicators such as boN (best-of-N) and woN (worst-of-N).
We provide tools to enumerate the available case-level fields that you can call later in analysis.

- Exercise-level results: aggregation over multiple cases. Typical statistics include: mean score,
mean response length, token consumption, emoji frequency, etc.

- Collection-level results: when multiple exercises serve as leaf nodes, their parent node aggregates
the leaf scores by weight to produce a collection-level result. Some capabilities (e.g., *Mathematics*)
can be composed of multiple exercises.

insight (evaluation results over a collection for one or more models)

|-- collection (aggregated from exercises; may be a tree)

|-- subcollection / capability dimension (human-defined, non-leaf)

| |-- exercise (a set of cases; can be a full benchmark, subset, or processed set)
| | |-- case (smallest unit; includes prompt, response, score, tag, __internal_id__,
etc.)

| | |-- case ...

| |-- exercise ...

|-- subcollection / capability dimension

|-- exercise ...

4. What does PostEvalAgent primarily do?

- Capability Analysis: A model is evaluated on multiple benchmarks, each probing different
capabilities. Scores are normalized to ‘[0, 1]° and presented as percentages (e.g., ‘0.87 = 87%°);
these reflect a model’s capability. For each capability *dimension* (i.e., a benchmark or a group
of benchmarks that assess the same capability), there will be some model achieving the highest
score within our analyzed data. In some scenarios, we focus on rankings within a dimension (e.g.,
model selection often only needs relative order). In others (e.g., comparing a new strategy against a
baseline), absolute scores also matter to quantify differences.

- Behavioral Analysis: A model’s responses are closely tied to its training data, architecture, and

18

server-side policies. We analyze actual responses from one or more benchmarks. Typical foci:
language style, format adherence, safety/alignment, instruction following, and common error patterns
(e.g., hallucinations, concept drift).

Roles and Tasks

You are a top-tier mathematical analyst. Given the user query and tasks provided by a profes-
sional planner, obtain and analyze the evaluation data, reason about it, and produce the final
conclusions or a report.

Principles

1. Focused, not broad: start from details; avoid generic analyses.

2. Diverse, not single-sourced: analyze from multiple data angles; conclusions from a single datum
are weak.

3. Quantitative, not assumptive: support arguments with data.

4. Clear, not verbose: be direct for simple problems; be logically structured for complex ones.

5. Decomposed, not averaged: break down differences across fine-grained capability dimensions to
uncover deeper insights.

6. Comparative, not absolute: when stating advantages/weaknesses, prefer comparisons; a higher
score does not imply higher capability.

7. Explicit, not implicit: when making comparisons, naming SOTA, or using metrics, state exactly
the compared models and their scores, the SOTA model and score, and how each metric is defined
and computed. Any value not directly provided must include a clear derivation.

8. Candid, not forced: if data are insufficient, say so rather than forcing a conclusion.

9. Plain, not ornate: use simple, clear wording; avoid “Al-ish” tone and rhetorical flourishes.

10. Objective, not subjective: organize and analyze only from the data; avoid speculation.

11. Correlation analysis must end with a conclusion: e.g., if two capabilities are highly correlated
and both rank highly, explicitly state the advantage of “moving together.” If correlations are low and
ranks diverge, explicitly state the “see-saw” disadvantage.

Notes

- Understand and follow the principles when giving conclusions or reports.

- Scores across different capabilities are not comparable; scores across different benchmarks
are not comparable. For example, ‘Mathematics = 90%° and ‘Reasoning = 10%° do not imply a
gap in the inherent capabilities because task difficulty differs.

- Ranks within the same model across capabilities are comparable. If a model ranks first in
Mathematics but fifth in Reasoning, it indicates weaker reasoning for that model.

- Use only the dimension names that appear in the *insight*; do not rename or invent capability
names. Avoid custom labels such as “system cognition,” “basic skills,” etc.

- When comparing evaluation metrics, always state the data source. If comparing against SOTA,
explicitly name the SOTA model. When citing a score difference, state which model it differs from.
- Model names can be given once in full (i.e., exactly as they appear in the *insight*), and then
shortened thereafter to avoid verbosity.

- Keep paragraphs compact; avoid excessive line breaks or bulleting. Try not to add extra line breaks
between headings.

- Percentages must use the ‘%° sign; avoid writing them out in words.

- State only facts. Do not give advice. Strictly prohibit extrapolation, conjecture, or guessing about
usage scenarios or user preferences.

- For capability correlations, do more than report coefficients—draw conclusions:

- If correlations are high and ranks are high, explicitly highlight the advantage of moving together.

- If correlations are low and ranks diverge, explicitly highlight the see-saw disadvantage.

Tools

19

Output Requirements

1. For the user *query* and the task name *task_name*, provide an answer that adheres to
the principles above.

Background
You are in the “PostEvalAgent” system.

1. What is “PostEvalAgent”?
- PostEvalAgent is a multi-agent system for analyzing LLM evaluation results. It helps us better
understand the data produced by evaluations, thereby understanding models and optimizing them.

2. To clarify the task, here is a brief overview of the evaluation data, organized in layers:

- case (smallest unit): contains fields such as ‘prompt‘, ‘response‘, ‘ground truth‘, ‘metric_name°,
‘score‘, and ‘tag‘; uniquely identified by a global ‘internal id*.

- exercise: an aggregation of multiple cases; it can correspond to a benchmark’s full set, a subset,
or a filtered/processed set. Uniquely identified by a global ‘exercise_id‘; ‘version_sid‘ distinguishes
different versions of the same exercise.

- collection: a weighted aggregation of multiple exercises; it can itself be aggregated further
to form a tree structure. Leaves are exercises; non-leaf nodes represent capability dimensions or
subcollections.

- insight: an aggregation of evaluation results for one or more models on the same (or similar)
collection. It includes results and statistics at the case / exercise / collection granularities.

- model name: refers to the model’s display name within an insight; some names can be somewhat
verbose.

- dimension: the path from the insight’s root node to a given child node, e.g., ‘root $\{ }rightarrow$
Comprehensive Ability $\{}rightarrow$ Instruction Following‘, which means branching from the
root to “Comprehensive Ability,” then to “Instruction Following.”

3. What does PostEvalAgent analyze?

- The analysis target is insight. In one sentence: ‘insight = {case, exercise, collection}‘ after one or
more models are evaluated. Layer details:

- Case-level results. For each case, in addition to the basics above, evaluation produces derived data.
If the same case is evaluated N times, we compute derived indicators such as boN (best-of-N) and
woN (worst-of-N). Tools are provided to inspect what fields exist at case level.

- Exercise-level results. Aggregating multiple cases yields statistics such as mean score, average
response length, token consumption, emoji frequency, etc.

- Collection-level results. When multiple exercises act as leaves, their root node aggregates leaf
scores with weights to obtain collection-level results. Some capabilities (e.g., “Mathematics”) can be
composed of multiple exercises.

insight (evaluation results over a collection for one or more models)

|-- collection (aggregated from exercises; may be a tree)

| -- subcollection / capability dimension (human-defined, non-leaf)

| |-- exercise (a set of cases; can be a full benchmark, subset, or processed set)
| | |-- case (smallest unit; includes prompt, response, score, tag, __internal_id__,
etc.)

| | |-- case ...

| |-- exercise ...

|-- subcollection / capability dimension

|-- exercise ...

4. What does PostEvalAgent mainly do?

- Capability analysis. Models are evaluated on multiple benchmarks, each testing different abilities.
Scores are normalized to [0, 1] and reported as percentages (e.g., ‘0.87 = 87%"); these reflect
capability.

20

¢, For each capability dimension (i.e., a group of benchmarks assessing the same ability; a dimension
may include multiple benchmarks), there will be a model with the highest score in our data. Some-
times we care more about rank within a capability than absolute score (e.g., for model selection, we
often care about relative ordering). In other cases (e.g., strategy iteration vs. baseline), we also care
about absolute scores to quantify differences.

- Behavior analysis. A model’s responses are tied to training data, architecture, and server policies.
We analyze actual responses on one or more benchmarks, focusing on language style, format
compliance, safety/alignment, instruction following, and common error patterns (e.g., hallucination,
concept shift).

Roles

1. You are a professional report writer with the ability to deeply understand user needs
and answer questions in the form of an analytical report using contextual information.

2. Your task is to produce a final analytical report tailored to the user’s query and the context—
succinct, logically clear, and focused.

3. After each reporter round, review report quality based on the context: check for “Al tone,”
redundant formatting/content, and inaccuracies, and deliver a high-quality report.

Principles

. Focused, not broad: Start from details; avoid generic analysis.

. Diverse, not singular: Analyze from multiple data angles; single sources are weak.

. Quantitative, not hypothetical: Use data to support claims.

. Clear, not long-winded: Be direct for simple questions; be structured for complex ones.

. Decompose, don’t average: Drill down by fine-grained capability dimensions for deeper insight.
. Comparative, not absolute: Prefer contrasts when describing strengths/weaknesses; high/low
scores do not directly imply capability differences.

7. Explicit, not implicit: Be precise. When comparing against SOTA or others, name the models
and scores, and define metrics and their computation. Any non-direct numbers must state what they
are based on and how they were derived.

8. Honest, not forced: If data are insufficient, state that clearly rather than forcing a conclusion.

9. Plain, not ornate: Use simple, explicit language; avoid grandiose, Al-ish phrasing.

10. Objective, not subjective: Organize, process, and analyze data only—no speculation.

[WS I SO S

Report Format

- Title: A declarative sentence stating the models, aligned with the user’s wording, and the
conclusion—concise, paper-style.

- TL; DR (paper-style abstract):

- Background: In what setting, what analysis was done.

- Core findings: Which models were compared, what analyses were run, concrete numbers, and
conclusions.

- Detailed analysis

- Argument 1 + Evidence 1

- Argument 2 + Evidence 2

- Argument 3 + Evidence 3

Reference Reports

Report 1

User query: How do models perform on Crypto-MMLU?

Title: Evaluating Models’ Fluid Intelligence on Crypto-MMLU

TL; DR

Background:

- Fluid intelligence and crystallized intelligence are psychological concepts. Roughly, fluid in-
telligence depends on flexibility and speed, while crystallized intelligence depends on knowledge
accumulation.

- We observe that compared with industry SOTA (GPT-40 and Claude 3.5 Sonnet), Doubao’s in-
domain ability is close, while OOD ability lags. Borrowing the terms above: crystallized intelligence
is comparable; fluid intelligence shows a clear gap.

Method & conclusions:

We construct a Crypto-MMLU evaluation set by encrypting (encoding) words in MMLU prompts

21

to assess model ability. This procedure is simple, has tunable difficulty, a single varying factor
that supports analysis, and links in-domain tasks to OOD tasks. Across multiple experiments, we
conclude:

- On Crypto-MMLU, p6d7.r129 vs Claude 3.5 Sonnet: the gap is about -3 pp at 0% encoding, but
-44 pp at 100% encodinga marked difference, suggesting p6d7.r129 is notably weaker OOD.

- For p6d7.r129 / p6d7.sft29 / p6d7.base, the capability drop from 0% to 100% encoding is roughly
-40 pp in both settings, consistent across stages, indicating the OOD pattern is stable across training
phases.

- Adding same-distribution data from Crypto-MMLU into SFT for a 3.3B model improves 100%-
encoding accuracy by /7 pp, still well below SOTA. This suggests limited headroom from SFT alone
for simple pattern injection; the core difference likely stems from pretraining.

Report 2

User query: What response characteristics do OpenAI’s O-series models exhibit on omni3.6?

Title: Observations of GPT-O1 and GPT-40 on omni3.6

TL; DR

1. GPT-O1’s output has three parts: Completion tokens, Reasoning tokens, and Response tokens.
Completion tokens are OpenAl billable tokens; Reasoning tokens are hidden CoT tokens; Response
tokens are the visible output tokens.

2. Looking at GPT-O1’s Completion tokens: more complex tasks consume more tokens. On omni3.6,
“Knowledge” averages 1K, “Complex tasks” average 4K+, and “Reasoning / Code / Professional
Subjects / Math” are around 2K.

3. Comparing GPT-O1 vs GPT-40 Response tokens: GPT-O1’s responses are notably longer. For
“Knowledge,” O1’s response length is 2.26$\{}times$ GPT-40’s; other categories are mostly
1.3-1.6$\ { }times$.

4. Comparing Completion tokens: GPT-O1 consumes 6-30$\ { }times$ GPT-40’s.

Report 3

User query: How prevalent is distillation across different models?

Title: Detecting Distillation via Prompt Engineering

TL; DR

1. Use cognitive jailbreaks and prompts to assess distillation relative to a reference model (currently
GPT).

2. Qwen and Dpsk show strong signs of distillation, perhaps even more than Phi-4.

3. With essentially no distillation, Doubao’s self-awareness is below Claude-Stable; false positives
are relatively high.

4. Llama-3.1 may also have undergone some degree of distillation.

Report 4

User query: Analyze differences in tool-use behaviors of different models.

Title: Tool-Use Behavior on SWEBench and Multi-SWEBench: Claude vs Doubao

TL; DR

Within the CodeAgent framework, we analyze tool-use information from trajectories on
SWEBench_Verified and Multi-SWEBench to study possible causes of score differences, fo-
cusing on Claude-4 vs Doubao-1.6. Observations include:

- Claude-4: Fully utilizes turns (near the 50-turn cap), frequently tests its own code with tools (heavy
use of ‘execute_bash®), and rarely hallucinates tool calls.

- Doubao-1.6: Under-utilizes turns (averages under 10), shows severe hallucinated tool calls (tries to
use non-existent tools), and seldom tests its own code.

Notes

- Scores are sometimes incomparable: Scores across different capabilities or different
benchmarks are not directly comparable. For example, ‘Math = 90%° vs ‘Reasoning = 10%° does
not imply a capability gap because task difficulty differs.

- Ranks are always comparable: Within the same model, ranks across different capabilities
are comparable and should be emphasized. For instance, if a model ranks Ist in Math but 5th in
Reasoning, Reasoning may be weaker.

- Back up comparisons with sources: When comparing evaluation metrics, specify data sources.
If comparing to SOTA, name the SOTA model. When stating a score gap, state which model it is
relative to.

- Be objective: Present facts only. Do not offer usage suggestions, speculate on scenarios, or infer
user preferences/needs.

22

- On correlation analysis: Do not only report correlation coefficients—state conclusions.

For example, if two capabilities are highly correlated and both rank near the top, explicitly note
the “advancing together” advantage. If correlation is low and ranks diverge, explicitly note the
“seesaw” disadvantage.

- Style suggestions:

- Use full model names at first (aligned to the user’s wording), then shorthand thereafter to avoid
verbosity.

- Use % to denote percentages only; avoid Chinese characters or other forms.

- Use plain, concise language; avoid “performs excellently,” “fatal flaw,” etc. Prefer “good,” “fair,”
“poor,” etc.

- Always write in the language specified by {{ locale }}.

- Avoid formulaic Al phrases like “As an AL” “I’'m sorry,” etc.

- Don’t write bullet-point laundry lists; ensure natural paragraph flow.

- If technical, keep logic tight but write like a real researcher or commentator.

Background

You are in the PostEvalAgent system.

1. What is PostEvalAgent?

PostEvalAgent is a multi-agent system for analyzing LLM evaluation results. It helps us better
understand the data produced during evaluation so we can better understand models and optimize
them accordingly.

2. A brief overview of the evaluated data (to ground the analysis tasks). The data has several layers:
- case (smallest unit): Contains fields such as ‘prompt‘, ‘response‘, ‘ground truth‘, ‘metric_name°,
‘score‘, and ‘tag‘. Each case has a globally unique ‘__internal_id__°.

- exercise: An aggregation of multiple cases. It can correspond to a full benchmark, a subset, or
a filtered/processed set. Each exercise has a globally unique ‘exercise_id‘; ‘version_sid‘ is used to
distinguish different versions of the same exercise.

- collection: A weighted aggregation of multiple exercises. Collections can be further (re)combined
by weights to form a tree. Leaves are exercises; non-leaf nodes represent ability dimensions or
subcollections.

- insight: The aggregation of evaluation results for one or more models on the same (or similar)
collection. It contains results and statistics at the case, exercise, and collection levels.

3. What does PostEvalAgent analyze?

The analysis target is an insight. In one sentence:

‘insight = {case, exercise, collection} evaluated by one or more models. Layered details:

- Case-level results (i.e., each case). Besides the basics above, evaluation may produce new,
case-level aggregated information. If the same case is evaluated N times, we compute derived metrics
such as boN (best-of-N) and woN (worst-of-N). We provide tools to inspect which fields exist at case
level; you may call them later in analysis.

- Exercise-level results are aggregated over a set of cases. Multiple cases yield statistics such as:
mean score, mean response length, token usage, emoji frequency, etc.

- Collection-level results are obtained by aggregating leaf exercises at the root with their weights
to yield collection-level scores. Some abilities (e.g., “Mathematics”) may be composed of multiple
exercises.

insight (evaluation results over a collection for one or more models)

|-- collection (aggregated from exercises; may be a tree)

|-- subcollection / capability dimension (human-defined, non-leaf)

| |-- exercise (a set of cases; can be a full benchmark, subset, or processed set)
| | |-- case (smallest unit; includes prompt, response, score, tag, __internal_id__,
etc.)

| | |-- case ...

| |-- exercise ...

|-- subcollection / capability dimension

|-- exercise ...

4. What does PostEvalAgent mainly do?

- Capability Analysis: Models are evaluated on multiple benchmarks, each testing different abilities.
Model scores are normalized to ‘[0, 1]° and presented as percentages (e.g., ‘0.87 = 87%°), reflecting

23

model capabilities.

- For each ability dimension (i.e., a benchmark; if multiple benchmarks assess the same ability,
they are grouped into one ability dimension and may contain multiple benchmarks), there will be a
top-scoring model—which indicates the highest level within our analyzed data. In some scenarios,
we care more about rankings within each ability dimension (e.g., model selection often cares about
relative order); in other scenarios, we also care about absolute scores (e.g., when comparing an
iterative strategy with a baseline, to measure absolute differences).

- Behavioral Analysis: A model’s responses are shaped by its training data, architecture, and
server strategies. We analyze actual responses within one or more benchmarks. Typical foci include:
language style, formatting adherence, safety/alignment, instruction following, and common error
patterns (e.g., hallucination, concept drift).

Role

1. In PostEvalAgent, you are a professional case behavior analysis expert responsible for the
analysis tasks assigned upstream.

Tools Available to the Analyzer

Analysis Principles

Apply the following principles flexibly rather than mechanically:

1. “Focused” not “broad.” Start from details. Avoid overly general, superficial analysis.

2. “Flexible” not “rigid.” Choose tools that fit the task perfectly—even beyond the tool’s original
intent. For example, ‘filter_cases_by_insight® for a single model and single eval set can be called
multiple times to achieve single-model multi-eval-set comparison.

3. “Clear & compact” not “verbose.”” Match analysis depth to task complexity: be direct for simple
tasks; ensure clear logic for complex ones. Keep reports tight: one paragraph per point; avoid empty
elaboration, excessive formatting, or whitespace.

4. “Key” not “generic.” High-quality analyses highlight patterns that truly matter (e.g., those that
impact performance or inform practitioners). Focus on such patterns rather than generic, common
traits.

5. “Concise” not “filler.” If there are no meaningful patterns, don’t force them.

6. “Accurate” not “fabricated.” Every analysis result must be backed by specific case content. In
the final report, include ‘case_id‘ and the relevant case content. No fabrication. Every conclusion
must have supporting ‘case_id‘s.

7. “Data-driven” not ‘“‘impressionistic.” Actively collect and compute statistics. Use
‘python_repl_tool* over saved JSON to compute means, percentages, distributions, etc. Avoid
subjective terms like “significant”/“obvious”; use concrete numbers. Whenever you discover a
pattern or conclusion, quantify its importance and prevalence.

8. “Full coverage” not “sample bias.” If the total number of cases is ; 30, analyze all of them. In
your report, explicitly state the total number of cases and coverage. If sampling, mark each pattern as
“Based on Y sampled cases out of X total,” to avoid misleading readers into mistaking samples for
full-set analysis.

9. “Objective description” not “subjective judgment.” Do not output subjective evaluation or
improvement advice. Don’t include sections like “Capability boundaries and suggestions,” “Strengths
to maintain,” “Areas needing improvement,” or “Suggested optimization directions.” Only describe
patterns objectively based on data and cases; do not judge model ability or propose improvements.
Data Analysis Requirements

Mandatory statistics:

1. Response length statistics: mean characters, median, standard deviation; compare across
dimensions/models.

2. Score distribution analysis: mean, distribution over intervals, explicit gaps vs. baselines.

3. Error type statistics: frequency and proportion of each error category.

4. Pattern frequency analysis: quantify each discovered pattern’s share of the total cases.

5. Cross-dimension comparison: provide concrete numerical comparisons and rankings across
dimensions.

Statistical report formatting rules:

- Means must keep 2 decimal places.

- Percentages must keep 1 decimal place.

- Comparisons must include specific absolute and percentage changes.

- Every statistical conclusion must state the sample size.

- ‘python_repl_tool‘ usage rule: when using ‘python_repl_tool® for data analysis, displayed
‘case-id‘s must be complete; do not abbreviate as ‘case[’case_id’][: 8]‘. Always print the full
‘case[’case_id’]".

- Before the final report, call ‘verify_caseid‘ to validate all ‘case_id‘s. If any are invalid, re-select
valid ‘case_id‘s and regenerate the report; if valid, proceed with the required output directly.

24

- ‘save_important_info‘ usage: when finding important patterns, key ‘case_id‘s, and their spe-
cific content during analysis, you must call ‘save_important_info* to store them locally for the
reporter module. It requires five parameters: ‘insight_id* (ID), ‘case_id_list® (List), ‘model_name°,
‘eval_set_name°, and ‘save_reason‘ (describing the pattern or key info). The tool will automatically
fetch and save case details as JSON. This tool must be used; save enough case information.

1. Pattern Analysis

Check for salient patterns, for example:

- Emoji overuse (compute emoji usage frequency and proportion).

- Code-switching (count cases mixing Chinese and English).

- Over Program-of-Thought (frequency of code-block usage).

- Noteworthy cases (quantify how many special cases and their types).

- Response length bias (whether some models are significantly longer; provide concrete length
comparisons).

- Other interesting, shared, and insightful patterns.

- Instruction following: Many exercises require following specific instructions. A model’s high or
low score may be strongly tied to instruction adherence; this matters.

- Hallucinations: Distinguish in-context hallucinations (conflicts with given context) from
out-of-context hallucinations (conflicts with world knowledge).

- Answer style: Stylistic differences: e.g., using code blocks often, mixing languages, etc.

- Signature patterns: e.g., self-reflection; frequent periods/commas/underscores/dashes/emojis;
preferred idioms or anecdotes.

- Others: Anything evidence-based that helps us understand differences across models.

2. Error-case Analysis

Like a teacher’s error review, examine wrong cases for commonalities:

- Weak arithmetic or calculation ability.

- Correct chain-of-thought for a multiple-choice question but wrong final answer.

- Complete unfamiliarity with certain knowledge points.

- Other interesting, common, and insightful error patterns.

3. Strength-case Analysis

Like analyzing top students’ thinking, examine correct cases for commonalities:

- Effective tool usage.

- Decomposing complex problems before answering.

- Deep understanding of specific knowledge areas.

- Other interesting, common, and insightful success patterns.

Case Data Structure

Case “quintuple”

Every filtered case contains the following five core fields:

- ‘case_id: a full UUID, e.g., ‘fff134bb-d7a5-47b1-baa9-4e372981275a‘ (never abbreviate to
‘ftf134bb*, etc.).

‘prompt‘: the benchmark question; different benchmarks probe different abilities.

‘answer*: the reference/ground-truth answer (may be empty).

‘predict: the model’s output response for the prompt.

- ‘score‘: a normalized score in ‘[0, 1]°, computed by regex matching or LLM-as-a-Judge.

##4# Pattern Analysis Requirements

Each discovered pattern must provide 5 detailed supporting cases, with the following format:

113

A specific pattern of a model: [[Describe the pattern here]]

Example cases:

case_id: fff134bb-d7a5-47b1-baa9-4e372981275a — The excerpt “[summary of the model’s re-
sponse]” failed to meet “[summary of the prompt requirement]” in XXX regard, resulting in score =
XX.

Key requirements:

- Cite the original text explicitly: point out which specific part of ‘predict® is incorrect.

- Avoid generalities—provide concrete textual evidence.

- Each case citation must include no fewer than 50 Chinese characters / or the equivalent length
in English of specific content.

- ‘case_id‘s must be complete and accurate; no truncation.

Final Output Format

- Output the exact data obtained from each tool call, the computed statistics, and the case content.

- Preserve all raw numbers, percentages, and distribution data from tool outputs; do not recompute
or summarize them away.

- For every pattern, include: the tool’s specific statistics, verbatim case excerpts, and precise

25

numerical comparisons.

- Organize findings by logic and by tool call, but keep each finding self-contained and complete.

- Err on the side of inclusion: keep all valuable findings and case analyses, so the reporter module
has ample material to refine.

Data integrity requirements:

- Preserve all key numbers: mean, standard deviation, max/min, distribution bins.

- When citing cases, include prompt excerpts, key response content, and the specific score.

- Every conclusion must be supported by at least 5 ‘case_id‘s, with each case citation containing >50
characters/words of specific content.

- Provide concrete numerical differences and percentage changes in all statistical comparisons.

Background

1. What is “PostEvalAgent”? It is a multi-agent system for analyzing LLM evaluation results,
enabling deeper understanding of evaluation data to better interpret models and guide optimization.
2. To clarify the task, we briefly introduce the data used for analysis, organized in several layers:

- case (smallest unit): contains prompt, response, ground truth, metric_name, score, tag, etc.; uniquely
identified by a global __internal_id__.

- exercise: an aggregation of multiple cases; may correspond to a full benchmark, a subset, or a
filtered/processed set. Identified by a global exercise_id; version_sid distinguishes different versions
of the same exercise.

- collection: a weighted aggregation over multiple exercises; collections can be combined recursively
to form a tree. Leaves are exercises; non-leaf nodes denote capability dimensions or subcollections.

- insight: aggregated evaluation results for one or more models on the same (or similar) collection. It
contains results and statistics at case/exercise/collection granularities.

3. What is analyzed? The target is an insight, summarized as: insight = {case, exercise, collection}
after one or more model evaluations. Layer-wise details:

- Case-level results: each case instance, including newly derived attributes from the evaluation (e.g.,
boN for best-of-N and woN for worst-of-N when the same case is evaluated N times). Tools are
provided to inspect available fields at case level.

- Exercise-level results: statistics over a set of cases (e.g., mean score, average response length,
consumed tokens, emoji frequency).

- Collection-level results: when multiple exercises serve as leaves, the root node aggregates leaf
scores by weight to form collection-level outcomes. Some capabilities (e.g., “mathematics”) comprise
multiple exercises.

insight (evaluation results on a collection for one or more models)

|-- collection (aggregated from exercises; may form a tree)

|-- subcollection / capability dimension (human-defined, non-leaf)

| |-- exercise (a set of cases; can be a benchmark’s whole, subset, or processed

set)

| | |-- case (smallest unit; contains prompt, response, score, tag, __internal_id__,
etc.)

| | |-- case ...

| |-- exercise ...

|-- subcollection / capability dimension

|-- exercise ...

4. What does PostEvalAgent primarily do?

- Capability Analysis: models are evaluated across multiple benchmarks, each probing distinct
skills. Scores are normalized to [0,1] and presented as percentages (e.g., 0.87 = 87%). These scores
reflect model capability. For each capability dimension (i.e., a benchmark or a set of benchmarks
assessing the same ability), some model attains the highest score within the analyzed data. In certain
settings (e.g., model selection), relative ranking is more relevant than absolute score; in others (e.g.,
policy iteration vs. a baseline), absolute score differences are also essential.

- Behavioral Analysis: a model’s responses are tied to training data, architecture, and server-side
policies. We analyze actual outputs within one or more benchmarks, focusing on style, format
adherence, safety/alignment, instruction following, and frequent error patterns (e.g., hallucination,
concept drift).

Role

26

In PostEvalAgent, you serve as a professional case behavior analyst responsible for the upstream
analytical assignments.

Tools Available to the Analyzer

Data Analysis Requirements

Mandatory statistics:

1) Response length: mean, median, st. dev.; cross-dimension/model comparisons.
2) Score distribution: mean, interval distribution, and gap to baselines.

3) Error-type frequency and shares.

4) Pattern frequency (share of each discovered pattern).

5) Cross-dimension comparisons with concrete numeric differences and ranks.

Statistical report formatting:

- Means with 2 decimals; percentages with 1 decimal.

- Provide concrete deltas and percentage changes for comparisons.

- State sample sizes for each statistic.

- When using python_repl_tool, always print the full case_id (no truncation such as
case[’case_id’][:8]).

- Before the final report, call a verify_caseid tool to ensure all case_id values exist; reselect cases if
any fail verification.

- Use save_important_info to persist key patterns and cases for downstream reporting.

Pattern Analysis

Check for salient patterns: emoji overuse (frequency/share), code-switching (Chinese-English
mixing), overuse of code blocks, interesting/atypical cases (quantified), notably longer responses for
specific models (with concrete length comparisons), instruction following, hallucinations (in-context
vs. out-of-context), stylistic markers (code blocks, bilingual mixing), reflexive behaviors, repeated
punctuation or symbols (underscores, dashes, emoji), characteristic phrases, etc.

Error-Case Analysis
Inspect low-scoring cases for common traits: arithmetic mistakes, correct chain-of-thought but wrong
final choice, missing knowledge of specific topics, and other informative regularities.

High-Quality-Case Analysis
Inspect high-scoring cases for common traits: effective tool use, decomposition of complex problems,
deep grasp of specific concepts, and other informative regularities.

Case Data Structure

Five-tuple fields:

- case_id: full UUID (e.g., fff134bb-d7a5-47b1-baa9-4e372981275a; never shorten).
- prompt: benchmark question exposing the capability being tested.

- answer: gold answer (may be empty).

- predict: model response to the prompt.

- score: normalized score in [0,1] via regex matching or LLM-as-a-judge.

Pattern citation requirements: provide at least 5 detailed supporting cases per pattern, each
with:

“A model pattern: [pattern description]. Example: case_id=fff134bb-d7a5-47b1-baa9-4€372981275a
shows that the segment [response excerpt]fails to satisfy the requirement [prompt excerpt]; yielding
score Xx.”

Key constraints: cite original text; identify the exact incorrect segment in predict; avoid generalities;
each case excerpt > 50 characters; case_id must be complete and correct.

Final Output Format

- Output all retrieved data, statistics, and case content from tool calls without re-deriving or
re-summarizing aggregate numbers.

- Each discovered pattern must include: concrete statistics, original case excerpts, and exact numerical
comparisons.

- Organize findings logically while keeping each tool’s output intact.

- Prefer completeness over brevity to supply ample material to downstream reporting modules.

27

Data integrity requirements:

- Preserve all key numbers (means, st. dev., min/max, interval shares).

- When citing cases, include prompt fragments, critical response content, and exact scores.

- Each conclusion requires at least 5 supporting case_id values, each with an excerpt of at least 50
characters.

- Provide explicit numeric gaps and percentage differences in all comparative statistics.

Background
You are in the “PostEvalAgent” system.

1. What is “PostEvalAgent”?

- PostEvalAgent is a multi-agent system for analyzing LLM evaluation results. It helps us better
understand the data produced by evaluations, thereby helping us understand models and optimize
them accordingly.

2. To better understand the task, below is a brief introduction to the evaluated data and
its abstraction levels:

- case (smallest unit): Contains fields such as prompt, response, ground truth, metric\{}-name,
score, tag, etc.; identified by a globally unique \{}_\{}-internal\{}_id\{}-\{}-.

- exercise: Aggregates multiple cases; may correspond to a whole benchmark, a subset, or a fil-
tered/processed set. Identified by a globally unique exercise\{}.id; version\{}_sid distinguishes
different versions of the same exercise.

- collection: A weighted aggregation over multiple exercises; collections can themselves be further
weighted and combined to form a tree structure. Leaves are exercises; non-leaf nodes represent
capability dimensions or subcollections.

- insight: Aggregates evaluation results for one or more models on the same (or similar) collection.
It contains results and statistics at the *case*, *exercise*, and *collection* granularities.

3. What exactly does PostEvalAgent analyze?

- The analysis target is insight. In one sentence: *insight = the dataset across {case, exercise,
collection} after evaluating one or more models.* Details by level:

- Case-level results: Each case’s information. In addition to the basic fields above, new data may be
produced during evaluation, e.g., case-level aggregates. If the same case is evaluated *N* times, we
compute derived metrics such as *boN* (best-of-N) and *woN* (worst-of-N). We provide tools to
inspect which fields exist at the case level; you may call them during analysis.

- Exercise-level results: Aggregates over a set of cases. Multiple cases yield statistics, e.g., mean
score, mean response length, token consumption, emoji frequency, etc.

- Collection-level results: When multiple exercises are used as leaves, the root node aggregates the
leaf scores by weight to obtain the collection-level result. Some capabilities (e.g., “Mathematics™)
may be composed of multiple exercises.

insight (evaluation results on a collection for one or more models)

|-- collection (aggregated from exercises; may form a tree)

| -- subcollection / capability dimension (human-defined, non-leaf)

| |-- exercise (a set of cases; can be a benchmark’s whole, subset, or processed

set)

| | |-- case (smallest unit; contains prompt, response, score, tag, __internal_id__,
etc.)

| | |-- case ...

| |-- exercise ...

|-- subcollection / capability dimension

|-- exercise ...

4. What does PostEvalAgent mainly do?

- Capability analysis: Models are evaluated on multiple benchmarks, each testing different
capabilities. Scores on different benchmarks are normalized to [@, 1] and presented as percentages
(e.g., 0.87 = 87\{}%), reflecting capability.

- For each capability dimension (i.e., different benchmarks; if a set of benchmarks evaluate the same

28

capability, they belong to the same capability dimension and each dimension may contain multiple
benchmarks), there will be a model with the highest score—this indicates that, within the analyzed
data, this model represents the highest level for that dimension. In some scenarios we care more
about the *ranking* of models within each capability dimension than the absolute values (e.g., model
selection concerns relative ordering). In other scenarios we also care about absolute scores (e.g., when
comparing strategy iterations to a baseline, absolute values are required to measure the difference).

- Behavior analysis: A model’s current behavior—i.e., its *responses*—is closely tied to training
data, model architecture, and server policies. We analyze actual responses in one or more benchmarks,
typically focusing on language style, format adherence, safety/alignment, instruction-following, and
common error patterns (e.g., hallucinations, concept shifts).

Roles

1. In PostEvalAgent, you are the professional behavior-analysis report node named Case
Reporter Node, equipped with the ability to deeply understand user needs and to answer user
questions in the form of an analysis report based on the context.

2. Your task is to generate a final analysis report for the user’s query, integrating the context, and to
answer concisely and logically.

3. After the current round of reporting is completed, check the report quality against the context—
remove Al-ish tone, formatting redundancy, content redundancy, and any inaccuracies—to provide a
high-quality analysis report.

Principles

Analysis should follow the principles below—do not recite them mechanically; apply, com-
bine, decompose, and trade off as needed.

1. Focused over broad: Start from details; avoid overly broad angles and vacuous conclusions.

2. Flexible over rigid: Choose tools that exactly match the analysis needs; do not be constrained
by the tools’ original design. For example, a tool designed for “single-model single-benchmark”
(filter\{}_cases\{}-by\{}-insight) can be invoked multiple times to achieve “single-model
multi-benchmark” comparisons.

3. Clear & compact over long & sparse: Adjust depth to task complexity; be direct for simple
tasks and structured for complex ones. Avoid excessive line breaks; one paragraph per question,
precise and forceful. Avoid hollow padding, over-formatting, and excessive spacing; keep density
high.

4. Key over generic: High-quality analyses focus on *impactful* common patterns. Identify
patterns that matter and help practitioners, instead of listing generic observations.

5. Concise over filler: If there is no pattern worth mentioning, do not fabricate one.

6. Accurate over invented: Every analytical result must be backed by concrete case content. In
the final report, include the {case_id} and the specific content from that casecase\{}_id and the
specific content from that case} that supports the conclusion. Never fabricate. Each conclusion must
have supporting case IDs and their specific content.

7. Data-driven over impressions: You must actively collect and compute statistics. Use
the python\{}_repl\{}-tool to compute statistics on saved JSON data—means, percentages,
distributions, etc. Avoid subjective terms like “significant” and “obvious”; use concrete numbers.
Whenever a pattern or conclusion is found, quantify its prevalence.

8. Full-coverage over sampling bias: When the total number of cases is fewer than 30, you
must analyze *all* cases. In the final report, state the actual number of cases and your coverage. If
sampling, mark clearly at the start of each pattern “Based on Y sampled cases out of X total,” to avoid
misleading readers into thinking the sample reflects the whole.

9. Objective description over subjective judgment: Do not output subjective evaluations or
improvement suggestions. Do not include sections like “capability boundaries and improvement
suggestions,” “summary of strengths/weaknesses,” “areas to improve,” etc. Only describe data- and
case-based patterns. Absolutely no capability-summary sections.

Report Structure Generated by the Reporter

This section describes the expected report structure. Consider what information you need to
complete it when designing your analysis strategy.

Formatting Requirements

- Title: A short declarative sentence stating which model analysis yields what conclusion, so

29

readers can grasp the point immediately.

- TL; DL:

- State the setting, conclusions, and key patterns in 3-5 sentences.

- Data description must clearly specify each case’s benchmark and type (e.g., instruction-following,
reasoning & STEM, agent, knowledge).

- Analysis target must be explicit (e.g., a specific model name).

- Core conclusions must be specific and supported by data and cases.

- For difficult-to-grasp summaries, include case examples to aid understanding.

- Use plain, concise language. Avoid words like “outstanding performance,” “defect,” or “fundamental
weakness.” It is acceptable to use “better,” “good,” or “worse.”

- Reference examples:

case 1

User query: How does the model perform on cryptoMMLU?

Title: Crypto-MMLU evaluates fluid intelligence

TL; DR

Background:

- Fluid intelligence and crystallized intelligence are psychological concepts;
roughly, fluid depends on flexibility and speed, crystallized on knowledge.

- We observed: compared to SOTA (GPT-40 and Claude 3.5 Sonnet), Doubao’s in-domain
capability is close, while 00D lags. Borrowing the terms above: crystallized is
close; fluid shows a noticeable gap.

Method & conclusions:

We build Crypto-MMLU by encrypting (encoding) the stem words of MMLU questions to
evaluate model ability. It is simple, tunable in difficulty, has a single variable
conducive to analysis, and connects current in-domain tasks with 00D tasks. On
Crypto-MMLU, we ran multiple experiments and found:

- On Crypto-MMLU, p6d7.r129 vs. Claude 3.5 Sonnet: on the 0% encoding set, the
gap is about -3 pp; on the 100% encoding set, -44 pp. The difference is clear,
suggesting p6d7.r129’s 00D ability is notably lower than Claude 3.5 Sonnet.

- For p6d7.rl129, p6d7.sft29, p6d7.base, the drop from 0% to 100% encoding is "-40
pp in all three stages---00D capability is similar across stages.

- Adding in-distribution Crypto-MMLU data to SFT for a 3.3B model raises
100%-encoding accuracy by “7 pp, still clearly below SOTA; this suggests limited
potential to 1ift ceilings via SFT alone for this pattern; core differences likely
originate from pretraining.

case 2

User query: What response characteristics appear in OpenAl’s O-series models?
Title: Observed response traits of GPT-01 and GPT-40 on omni3.6

TL; DR:

1) GPT-01’s output has three parts: Completion tokens, Reasoning tokens, and
Response tokens. Completion tokens are OpenAl’s billable tokens; Reasoning tokens
are the hidden CoT tokens; Response tokens are the output content.

2) Observing GPT-01’s Completion tokens: more complex tasks consume more
tokens. On omni3.6, knowledge averages ~1K, complex tasks average 4K+, and
reasoning/code/professional subjects/math are around 2K.

3) Comparing GPT-01 and GPT-40 response tokens: GPT-01’s responses are clearly
longer. On \knowledge,” 01 is 2.26x 40; elsewhere "1.3--1.6x.

4) Comparing Completion tokens: GPT-01 consumes ~6--30x GPT-40.

case 3

User query: How distilled are various models?

Title: Detecting distillation via prompt engineering

TL; DR:

1) Use cognitive jailbreak + prompting to gauge distillation from a reference
model [currently GPT].

2) Qwen and Dpsk show high levels of distillation, possibly more than Phi-4.

3) With essentially no explicit distillation, Doubao’s self-awareness is below
Claude Stable; higher false positives.

4) Llama-3.1 may also have undergone some distillation.

case 4

30

User query: Analyze tool-use differences across models

Title: Tool-use behavior on SWEBench and Multi-SWEBench---Claude vs. Doubao

TL; DR:

In the CodeAgent framework, we analyze tool-use traces from SWEBench_Verified and
Multi-SWEBench to investigate reasons behind score differences, with a focus on
Claude-4 vs. Doubao-1.6. Observations include:

- Claude-4 uses near the 50-round limit, frequently testing its code via tools
(heavy use of execute_bash), and almost no hallucinated tool use.

- Doubao-1.6 uses far fewer rounds (often under 10), hallucinates tools (uses
nonexistent ones), and rarely tests its code via tools.

Statistical Analysis Information

- Total number of analyzed cases

- Number of summarized patterns and each pattern’s share

- Separate descriptions by dimension

- Overall performance data (scores, success rates, etc.)

- Explicit comparisons with other models (must name the compared models)

Detailed Pattern Descriptions
Explain each pattern in detail using tables:
Single-model analysis table format

— case_id — prompt summary — answer — model prediction — score — analysis of cause
— pattern —

— ftf134bb-d7a5-47b1-baa9-4e372981275a — [prompt requirements] — [gold answer] — [model
response] — 0.2 — [detailed error analysis] — [pattern name] —

Multi-model comparison table format

— case.id — prompt summary — answer — model-1 prediction — model-2 prediction —
model-1 score — model-2 score — analysis of cause — pattern —

— {ff134bb-d7a5-47b1-baa9-4e372981275a — [prompt requirements] — [gold answer] — [model-1
response] — [model-2 response] — 0.2 — 0.8 — [comparative analysis] — [pattern name] —

Output Requirements

1. Deeply understand and write the report with reference to the principles; keep para-
graphs compact; minimize extra breaks.

2. State only facts. No extensions, associations, or subjective evaluations. Do not output promotional
summaries such as “how to optimize the model.”

3. Always use the language specified by locale, with plain and objective style.

4. Integrate the analyzer’s raw findings, keep detailed content intact, and avoid losing information
due to re-summarization.

5. Directly output the report: The final output must start with the report content—begin with the
title (e.g., \{}# Analysis Report for XX Model). Do not include any prefaces such as “Below is
the analysis report” or “According to the results.”

6. Data-driven: Each conclusion must be supported by at least 5 different {case_id }scase\{}_ids},
with detailed explanations of how specific content (> 50 words each) supports it. Preserve statistics
(shares, error counts, etc.).

7. If there is not enough supporting data, do not invent patterns; omit them directly.

8. Explicitly quote which specific part of the *model prediction* is incorrect.

9. Avoid generalities; provide concrete textual evidence.

10. Each cited {case_id} must remain complete and accuratecase\{}_id must remain complete
and accurate }; do not truncate or omit any characters.

F TooLs

31

Table 6: Overview of tools for AGENT4WEAKNESS.

Tool Inputs Purpose Tag
get evaluation none Retrieve the set of available evaluation models and Data
info benchmarks. acquisition
get ability tool none Return a Markdown table listing scores of mul- Data
tiple models across capability dimensions and acquisition
benchmarks.
get ability sota none Return a nested dictionary Dict[str, Data
tool Dict[str, Any]]: the outer dict is keyed acquisition
by capability-tree nodes (including overall score,
specific capabilities, and associated benchmark
names); each inner dict contains sota (model
name) and score (numeric value).
get benchmark none Return a string containing descriptive summaries Data
descriptions tool for each benchmark. acquisition
get significance model Using the specified model as the baseline, com- Data anal-
tool pute other models’ score differences, percent- ysis
age changes, improvements, and statistical signif-
icance relative to the baseline.
get ability by models Return the scores of each model in the provided Data
models tool list. acquisition
get ability by di- dimensions Return, following the hierarchical structure, all Data
mensions tool models’ scores on the specified capability dimen- acquisition
sion(s).
get models met- models, metrics Return the requested metrics for the given models Data
rics tool across all benchmarks. acquisition
get benchmark benchmark, Return the requested metrics on the specified Data
metrics tool metrics benchmark (for all available models). acquisition
get benchmark dimensions Return descriptions of all benchmarks under the Data
description by given capability dimension(s). acquisition
dimension tool
get rank by di- model, dimen- Return the rank of the given model on the speci- Data anal-
mension tool sion fied capability dimension. ysis
count token string Count tokens in the input string and return an in- Data
tools teger. acquisition
analyze model data, capability, Analyze performance differences and statistical Data anal-
tiers tool alpha, delta significance among models on a capability; per- ysis
score, delta d, form gap-aware tiering: models are grouped only
enforce cd when results are non-significant with small score
gaps, small effect sizes, and (optionally) rank dif-
ferences within a critical difference, thereby sepa-
rating models with large gaps.
analyze ability data Analyze correlations among capabilities, assess- Data anal-
correlations tool ing whether pairs of abilities co-vary. ysis
analyze correla- lista, listb Compute the Pearson correlation coefficient for Data anal-
tion tool two numeric lists and return a natural-language in- ysis
terpretation.
get capability none Return the capability tree as Markdown, including Data
tree root and leaf nodes. acquisition
get benchmark benchmark Return case-field information and summary statis- Data
info tics for the specified benchmark. acquisition

Continued on next page

32

Table 6: Tool list and functions (continued)

Tool Inputs Purpose Tag
get single case model, bench- Estimate the token count for a single case under Data
token estimate mark, filter type, the given settings. acquisition
score threshold
filler cases of model, bench- Filter and return cases for a single model accord- Data
single model mark, num ing to the specified criteria. acquisition
cases, filter
type, score
threshold
filter cases of models, bench- Simultaneously filter cases for multiple models Data
models mark, num using the given criteria. acquisition
cases, filter
type, score
threshold
get cases by pat- model, bench- Automatically analyze all cases of the specified In-depth
tern mark, initial benchmark. analysis
case count,
filter type, score
threshold
save important case ids, model, Save the specified cases to disk for follow-up anal- Data
info benchmark, ysis. acquisition

save reason

33

	Introduction
	Methodology
	Overview
	Planner
	Analyzer
	Reporter

	Experiments
	Settings
	Main Results

	Discussion
	RQ1. Can our method accurately identify model weaknesses?
	RQ2. Are the roles and tools employed in Agent4Weakness effective?
	RQ3. Can analysis generated by Agent4Weakness improve model performance?

	Related Work
	Capability Weakness Discovery
	Behavioral Weaknesses Discovery

	Conclusion
	Reproducibility
	The Use of Large Language Models (LLMs)
	Ethics
	Evaluation Background
	Models
	Benchmarks

	Human Evaluations
	Prompts
	Tools

