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ABSTRACT

Extracting a small subset of crucial rationales from the full input is a key prob-
lem in explainability research. The most widely used fundamental criterion for
rationale extraction is the maximum mutual information (MMI) criterion. In this
paper, we first demonstrate that MMI suffers from diminishing marginal returns.
Once part of the rationale has been identified, finding the remaining portions con-
tributes only marginally to increasing the mutual information, making it difficult
to use MMI to locate the rest. In contrast to MMI that aims to reproduce the
prediction, we seek to identify the parts of the input that the network can actu-
ally utilize. This is achieved by comparing how different rationale candidates
match the capability space of the weight matrix. The weight matrix of a neural
network is typically low-rank, meaning that the linear combinations of its col-
umn vectors can only cover part of the directions in a high-dimensional space
(high-dimension: the dimensions of an input vector). If an input is fully utilized
by the network, it generally matches these directions (e.g., a portion of a hyper-
sphere), resulting in a representation with a high norm. Conversely, if an input
primarily falls outside (orthogonal to) these directions, its representation norm
will approach zero, behaving like noise that the network cannot effectively uti-
lize. Building on this, we propose using the norms of rationale candidates as
an alternative objective to MMI. Through experiments on four text classifica-
tion datasets and one graph classification dataset using three network architec-
tures (GRUs, BERT, and GCN), we show that our method outperforms MMI
and its improved variants in identifying better rationales. We also compare our
method with a representative LLM (llama-3.1-8b-instruct) and find that our simple
method gets comparable results to it and can sometimes even outperform it. Code:
https://github.com/jugechengzi/Rationalization-N2R.

1 INTRODUCTION

With the success of deep learning, there are growing concerns over the model interpretability. Ex-
ploring the theory and technique of interpretable machine learning frameworks is of immense im-
portance in addressing a myriad of issues. For instance, XAI techniques can aid in detecting model
discrimination (fairness) (Pradhan et al., 2022), identifying backdoor attacks (security) (Li et al.,
2022), and revealing potential failure cases (robustness) (Chen et al., 2022; Zhang et al., 2024),
among others. Post-hoc explanations, which are trained separately from the prediction process, may
not faithfully represent an agent’s decision, despite appearing plausible (Lipton, 2018). In contrast
to post-hoc methods, ante-hoc (or self-explaining) techniques typically offer increased transparency
(Lipton, 2018) and faithfulness (Yu et al., 2021), as the prediction is made based on the explanation
itself. There is a stream of research that has exposed the unreliability of post-hoc explanations and
called for self-explanatory methods (Rudin, 2019; Ghassemi et al., 2021; Ren et al., 2024).
∗Corresponding authors.
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Figure 1: The standard rationalization framework RNP. The task is binary sentiment classification
about the hotel’s location. X,Z, Ŷ , Y represent the input, the extracted rationale candidate, the
prediction and the ground truth label, respectively. M is a sequence of binary masks. Enc(Z) is the
encoder’s final layer representation (like the term “embedding” in (Lee et al., 2024; Bolukbasi et al.,
2021)). θE , θP represent the parameters of the extractor and the predictor. Hc denotes cross-entropy.

In this study, our primary focus is on investigating a general model-agnostic self-explaining frame-
work called Rationalizing Neural Predictions (RNP, also known as rationalization) (Lei et al., 2016),
which with its variants has become one of the mainstream methods to facilitate the interpretability
of NLP models (Sha et al., 2021; Yu et al., 2021; Antognini et al., 2021; Liu et al., 2022; 2023a;c;b;
2024b;a; Storek et al., 2023; Liu et al., 2024c; Zhao et al., 2024), and also holds the potential to
be applied to image classification (Yuan et al., 2022) and graph neural networks (Luo et al., 2020).
RNP utilizes a cooperative game involving an extractor and a predictor. This game is designed with
a focus on “data-centric” (i.e., it is to explain the connection between a text and the model-agnostic
task label, rather than explaining the output of a specific model) feature importance. The extractor
first identifies the most informative part of the input, termed the rationale. Subsequently, the ratio-
nale is transmitted to the predictor to make predictions, as illustrated in Figure 1. Apart from its
use for interpretability, some recent studies find that rationalization can also serve as a method for
data cleaning. The extracted (Z,Y ) pairs can act as a new dataset, and trained with such a cleaned
dataset, a predictor may be more robust (Chen et al., 2022) and generalizable (Wu et al., 2022; Gui
et al., 2023), thanks to the removal of task-irrelevant, harmful information.

The commonly used objective for finding rationales is maximizing the mutual information between
the rationale candidates and the task labels (e.g., by minimizing cross-entropy), which is called
the maximum mutual information (MMI) criterion. In practice, however, MMI faces the problem
of diminishing marginal utility. For example, if the rationale candidate consists of 80% the real
rationales and 20% random noise, it might be informative enough to help a predictor make the
correct prediction (see a specific toy example in §4.1, and empirical verification in Figure 3(a)(b)).
In this case, replacing the left 20% noise with real rationales can only trivially improve the mutual
information (or intuitively, the prediction accuracy. See §4.1 for the theoretical perspective). As a
result, the gradient provided by MMI cannot guide to find the left 20% real rationales well.

To avoid the shortcomings of MMI, instead of following the traditional approaches of fixing MMI’s
flaws through various regularization terms, this paper aims to find an alternative objective to the
MMI criterion. Since the MMI criterion has been the fundamental objective in the XAI literature
for a long time, our finding is important as it opens a new avenue for extractive interpretability
without the fundamental MMI. The overall idea can be summarized as follows: (1) The rationales
are those the predictor can learn and utilize. (2) Neural networks usually have low-rank weight
matrices (Kang et al., 2024), meaning that the linear combinations of its column vectors can only
cover part of the directions in a high-dimensional space (high-dimension: the dimensions of an input
vector). (3) For features that the network does not learn, their directions are usually orthogonal to the
learned directions (see Appendix A.14), and the representation norms through the weight matrix will
approach zero. On the contrary, well-learned features usually interact with the learned directions of
the weight matrix, resulting in representations with higher norms (Appendix A.15 provides a toy
example for intuitive understanding). This property is borrowed from recent advances (Kang et al.,
2024) in the out-of-distribution (OOD) detection field. Based on the above properties, we attempt
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to find rationales by maximizing the norm (i.e., ∣∣Enc(Z)∣∣2 in Figure 1) of the rationale candidate’s
representation, whose motivation is further empirically supported by the results in Figure 3(c).

The key difference between our method and the mainstream MMI approaches can be summarized
at a high level: MMI aims to find rationales that can reproduce the prediction, while our study
seeks to identify the parts of the input that the network can actually utilize (i.e., match the non-zero
rank subspaces of the weight matrix), whose idea is more in line with the philosophy of ante-hoc
explanation. Our work opens new eyes in the XAI literature, as almost all current mainstream XAI
methods follow the MMI criterion or its variants. The idea to observe which parts of the input can be
utilized by the network from the perspective of forward propagation is also novel, as this is the first
time that an extractive XAI method has been freed from relying on the model’s final output (e.g.,
may be used in the future to probe task-irrelevant (i.e., not fine-tuned) pretrained encoders. But this
is beyond the scope of this paper and is left for future work.).

The contributions can be summarized as follows: (1) We empirically find the diminishing marginal
utility problem of identifying rationales with the MMI criterion (Figure 3). Considering that MMI
is a widely used criterion for finding explanations, this empirical observation may somewhat remind
the XAI community to rethink this fundamental criterion. (2) We formally analyze the reasons why
the diminishing marginal utility can occur with the MMI criterion, providing insights for further
researchers to better address this issue. (3) Based on a theoretical property borrowed from the OOD
research, we propose an alternative objective to the MMI criterion. Empirical results on both text
and graph data with three different encoders (GRUs, BERT, and GCN) show that our method not
only outperforms the vanilla MMI, but also beats its several recently improved variants.

2 RELATED WORK

Extractive Rationalization. The self-explaining framework of rationalization named RNP (Lei
et al., 2016) is flexible and offers a unique advantage: certification of exclusion, which means any
unselected input is guaranteed to have no contribution to prediction, making it important to the NLP
community (Yu et al., 2021). Based on it, many methods have been proposed to improve RNP from
different aspects. Bao et al. (2018) used Gumbel-softmax to do the reparameterization for binarized
selection. Bastings et al. (2019) replaced the Bernoulli sampling distributions with rectified Ku-
maraswamy distributions. Jain et al. (2020) disconnected the training regimes of the generator and
predictor networks using a saliency threshold. Paranjape et al. (2020) imposed a discrete bottleneck
objective to balance the task performance and the rationale length. DeYoung et al. (2020) proposed
a benchmark that can be used for supervised rationale extraction. 3PLAYER (Yu et al., 2019) tries to
squeeze the informative texts from the unselected parts to produce comprehensive rationales. DMR
(Huang et al., 2021) tries to align the distributions of rationale with the full input text in both the
output space and feature space. A2R (Yu et al., 2021) endows the predictor with the information of
full text by introducing a soft rationale. FR (Liu et al., 2022) folds the two players to regularize the
predictor with the extractor (as the extractor can view the raw input) by sharing a unified encoder.
Inter RAT (Yue et al., 2023) tried to use backdoor adjustment to alleviate the spurious correlations
in the raw dataset. Fernandes et al. (2022) leveraged meta-learning techniques to improve the qual-
ity of the explanations. Havrylov et al. (2019) cooperatively trained the models with continuous
and discrete optimisation schemes. (Hase et al., 2020) explored better metrics for evaluation. (Ra-
jagopal et al., 2021) used phrase-based concepts to conduct a self-explaining model. Other methods
like data augmentation with pretrained models (Plyler et al., 2021), training with human-annotated
rationales (Chan et al., 2022), injecting noise to the selected rationales (Storek et al., 2023), using
attack techniques to inspect spurious correlations (Liu et al., 2024c), have also been tried.

All of these previous studies take MMI as the fundamental criterion of finding rationales, and the
diminishing marginal utility problem has been overlooked. The purpose of this paper is to analyze
the diminishing marginal utility problem and to alleviate it, which is orthogonal to previous research.

The properties of the network’s learned inputs. Some previous research has found that complex
neural networks typically have low-rank weight matrices (Aghajanyan et al., 2021). Kang et al.
(2024) shows both theoretically and empirically that the weight matrices and network representa-
tions associated with the learned inputs often occupy low-dimensional subspaces with high overlap.
However, when the network encounters unlearned OOD inputs, their associated representations tend
to have less overlap with the weight matrices compared to those the network has learned. As a re-
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sult, the feature representations corresponding to the unlearned OOD inputs tend to have smaller
norms than those of the learned inputs, resulting in less signal being propagated from the input. Our
method is inspired by this theoretical property.

Generative explanation with LLMs. Generative explanation is a research line that is close but
orthogonal to our research on extractive explanation. With the great success of LLMs, a new re-
search line for explanation is chain-of-thought. By generating (in contrast to selecting) intermediate
reasoning steps before inferring the answer, the reasoning steps can be seen as a kind of explanation.
The intriguing technique is called chain-of-thought (CoT) reasoning (Wei et al., 2022). However,
LLMs sometimes exhibit unpredictable failure modes (Kıcıman et al., 2023) or hallucination rea-
soning (Ji et al., 2023), making this kind of generative explanation not trustworthy enough in some
high-stakes scenarios. Also, some recent research finds that LLMs are not good at extractive tasks
(Qin et al., 2023; Li et al., 2023; Ye et al., 2023).

The potential impact of rationalization in the era of LLMs. Compared to traditional “model-
centric” XAI methods which solely focus on the model’s learned information, “data-centric” ap-
proaches primarily aim to extract model-agnostic patterns inherent in the data. So, apart from im-
proving interpretability, rationalization can serve as a method of data cleaning Seiler (2023).

Domain-specific large models often require supervised fine-tuning using domain-specific data. Un-
cleaned data may contain harmful information such as biases and stereotypes (Sun et al., 2024).
Recent research suggests that training predictors with extracted rationales can remove irrelevant
harmful information, enhancing robustness (Chen et al., 2022) and generalization (Wu et al., 2022;
Gui et al., 2023). Considering that small models are sufficient for simple supervised tasks and are
more flexible and cost-effective for training on single datasets (e.g., searching hyperparameters and
adding auxiliary regularizers), using small models for rationalization on a single dataset and then
using the extracted rationales for supervised fine-tuning might prevent large models from learning
harmful information from new data. Additionally, shortening input texts can also reduce the memory
required for fine-tuning (Guan et al., 2022). A recent study also finds that training a small model for
data selection (although not the same as rationale selection) and producing a small subset is useful
for fine-tuning LLMs (Xia et al., 2024).

We compare our method against a representative LLM (llama-3.1-8b-instruct), in Appendix A.7,
and demonstrate that our approach achieves comparable results, sometimes even surpassing it.

3 PRELIMINARIES

3.1 THE RATIONALE EXTRACTION TASK

We consider the text classification task, where the input is a text sequence X=[x1, x2,⋯, xl] with
xi being the i-th token and l being the number of tokens. Y represents the classes in a dataset D.
The standard rationalization framework RNP (Lei et al., 2016) consists of an extractor fE(⋅) and
a predictor fP (⋅), with θe and θp representing the parameters of the extractor and predictor. For
(X,Y ) ∼ D, the extractor first outputs a sequence of binary mask M = fE(X) = [m1,⋯,ml] ∈

{0,1}l (in practice, the extractor first outputs a Bernoulli distribution for each token and the mask for
each token is independently sampled using gumbel-softmax). Then, it forms the rationale candidate
Z by the element-wise product of X and M :

Z =M ⊙X = [m1x1,⋯,mlxl]. (1)

To simplify the notation, we denote fE(X) as Z in the following sections, i.e., fE(X) = Z. With the
extractor’s selection, we get a set of (Z,Y ) samples, which are generally considered to represent the
distribution P (Y ∣Z). The rationale Z is searched by maximizing the mutual information I(Y ;Z):

Z∗ = argmax
Z

I(Y ;Z) = argmax
Z

(H(Y ) −H(Y ∣Z)) = argmin
Z

H(Y ∣Z), s.t., Z = fE(X).

(2)

In practice, the entropy H(Y ∣Z) is commonly approximated by the minimum cross-entropy
minθp Hc(Y, Ŷ ∣Z), with Ŷ = fP (Z) representing the output of the predictor. It is essential to
note that the minimum cross-entropy is equal to the entropy (please refer to Appendix A.5).

4



Published as a conference paper at ICLR 2025

As a result, the predictor uses the cross-entropy objective to do the classification, and the extractor
also uses the cross-entropy objective to find good rationales:

Extractor: min
θe

Hc(Y, fP (Z)∣Z)

Predictor: min
θp

Hc(Y, fP (Z)∣Z)

s.t., Z = fE(X), (X,Y ) ∼ D.

(3)

Replacing Z with fE(X), the extractor and the predictor are trained cooperatively to minimize the
cross-entropy. Here we rewrite Equation (3) for better conciseness and clarity:

min
θe,θp

Hc(Y, fP (fE(X))∣fE(X)), s.t., (X,Y ) ∼ D. (4)

To make the selected rationale human-intelligible, rationalization methods usually constrain the
rationales by compact and coherent regularization terms. In this paper, we use the most widely
used constraints proposed by Chang et al. (2020):

Ω(M) = λ1∣
∣∣M ∣∣1

l
− s∣ + λ2

l

∑
t=2
∣mt −mt−1∣. (5)

The first term encourages that the percentage of the tokens being selected as rationales is close to a
pre-defined level s. The second term encourages the rationales to be coherent.

3.2 THE PROPERTIES OF THE NETWORK’S UTILIZATION ON DIFFERENT INPUTS

It has been found that neural networks usually have low-rank weight matrices (Kang et al., 2024).
For these low-rank weight matrices, they correspond to low-dimensional subspaces. And the loca-
tion and magnitude of these subspaces are determined by the information they learn (Kang et al.,
2024). If a network just learns (or is trained on) some uninformative noise, the rank will be low and
the corresponding subspace will be narrow. On the contrary, if the network learns from informative
knowledge, the subspace will be wider. From a localization perspective, the learned inputs often
occupy these low-dimensional subspaces with high overlap. And the unlearned inputs tend to have
little overlap. As a result, if an input is informative and the knowledge is learned by the network,
the representation of it through the network will have a high l2 norm. If an input does not contain
the knowledge learned by the network, the norm will approach 0 (Kang et al., 2024).

Simply put, the rank of the weight matrix is determined by the knowledge learned by the network
and is reflected in the directions on the hypersphere that can be occupied by the combination of the
column vectors (including position and size). These areas occupy a subspace in the high-dimensional
space, which we refer to as the capability subspace of the weight matrix. If an input contains features
that the network has learned, it is highly likely to fall within the capability subspace and match the
learned directions, leading to a representation with a higher norm. On the other hand, if an input
does not contain the learned information, it is likely to fall outside the capability subspace and be
orthogonal to the column vectors (see Appendix A.14), thus its representation norm will be very low,
behaving like noise. At the same time, if the network does not learn any informative knowledge, the
capability subspace of the weight matrix itself will be very low and all inputs will have low norms.

This property was first used by Kang et al. (2024) to remove out-of-distribution inputs in reinforce-
ment learning. But we think it can also be used for interpretability. By observing the norms of the
representations of different rationale candidates, we can determine how well they match the network,
and thus identify which parts of the full input the network is actually utilizing.

4 THE LIMITATIONS OF MINIMIZING CROSS-ENTROPY AND OUR METHOD

4.1 THE DIMINISHING MARGINAL RETURNS

Although using MMI to identify rationales has almost become the default choice, we find that it faces
the problem of diminishing marginal returns. Once the majority of the rationale components have
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Figure 3: The (a) prediction accuracy, (b) cross-entropy loss, and (c) the norm of the representation
(i.e., ∣∣Enc(Z)∣∣2) through the neural network vary with the proportion of true rationale components
in the rationale candidate input within a trained standard RNP predictor. The dataset is Beer-Aroma.
The results of more datasets are shown in Appendix A.8.

been identified, discovering the left rationale components has a minimal effect on further reducing
cross-entropy.

In this section, we first provide an intuitive toy example to help readers understand the diminishing
marginal returns from a high-level intuition. Then, we show the origin of the diminishing marginal
returns problem. Finally, we provide empirical evidence from real-world datasets to verify the exis-
tence of this problem in practice.

An intuitive toy example. Consider a comment about food “⋯⋯ The food is very delicious, and
I like it very much. ⋯⋯” and we need to predict its sentiment label. Both R1 =“The food is very
delicious” and R2 =“and I like it very much” can indicate a positive enough sentiment tendency.
However, if either R1 or R2 is given, finding another component will not contribute much to the
sentiment polarity . This creates an obstacle to finding the complete rationale by MMI (minimizing
the cross-entropy in practice). A more visual example is provided in Figure 2. The distance between
R1 and R1&R2 is non-trivial, so the extractor needs to pay considerable effort to move from the
state of selecting R1 to the state of selecting both R1 and R2. However, the payoff for this effort is
minimal, resulting in small gradients provided by the gradient descent algorithm for this move.

The reasons of this problem can lie in two aspects. One is the gradient saturation problem of the
sigmoid function before the predictor’s output Ŷ , which is quite intuitive and can be illustrated by
the example in Figure 2 (softmax is similar). Aside from the sigmoid function, the problem can also
be introduced by the diminishing marginal returns of mutual information itself.

R1
R1&R2noise

1.0

0.8

0.6

0.4

0.2

0.0

Y fp(noise)

fp(R1) fp(R1&R2)

Figure 2: The diminishing marginal re-
turns in Sigmoid function.

The theoretical perspective. The high-level understand-
ing of mutual information I(Y ;Z) is that, how much the
uncertainty of Y decreases when given Z.

We consider a perfect rationale R composed of R1 and
R2. The problem is that MMI does not satisfy additiv-
ity, which means that we cannot promise I(Y ;R1,R2) =

I(Y ;R1) + I(Y ;R2). The combined effect of R1 and
R2 on reducing the uncertainty of Y may be less than the
sum of the individual effects of R1 and R2 on reducing
the uncertainty of Y . Formally, we consider the situations
where

I(Y ;R1,R2) ≤ I(Y ;R1) + I(Y ;R2). (6)

Please refer to Appendix A.6 for more detailed discus-
sions about Equation (6).

From Equation (6), we can further get

I(Y ;R2∣R1) = I(Y ;R2,R1) − I(Y ;R1)

≤ [I(Y ;R1) + I(Y ;R2)] − I(Y ;R1)

= I(Y ;R2).

(7)
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It means that, although R2 is informative and can reduce the uncertainty of Y , it can be less effective
if conditioned on another informative part R1.

Empirical verification of the diminishing marginal returns. Figure 3 shows how the prediction
accuracy, cross-entropy loss, and the norm of the representation (i.e., ∣∣Enc(Z)∣∣2 in Figure 1) vary
with the proportion of true rationale components in the rationale candidate input within a trained
standard RNP predictor. The dataset is a text classification dataset Beer-Aroma. The results of more
datasets are shown in Appendix A.8.

The test set contains human-annotated ground-truth rationales. We base our inputs on the manually
annotated ground-truth gold rationales in the original full text. A certain proportion of tokens in
the gold rationales are replaced with tokens randomly selected from the non-rationale part of the
same full text. The x-axis represents the proportion of tokens that have not been replaced, where
0 indicates all tokens are random, and 1 indicates the complete ground-truth rationale. It can be
observed that when the rationale candidate used as input contains more than 60% true rationale
components, the decrease in cross-entropy loss (Figure 3(b)) and the increase in accuracy (Figure
3(a)) slow down. Subsequent addition of new rationale components has a diminished effect on loss
reduction, making it difficult to identify the left rationale components.

This raises a question: is there an objective function that can indicate rationale, and does not involve
either the mutual information or the sigmoid function of the neural network’s output layer, thereby
allowing for the possibility of avoiding diminishing marginal returns?

Empirical observation on the norm of intermediate representation. From the theoretical prop-
erty mentioned in §3.2, we know that the representation’s norm is an indicator for the degree of the
network’s utilization on an input. Besides, it does not involve either mutual information or the sig-
moid function. We then empirically observe whether it faces the problem of diminishing marginal
returns. Figure 3(c) shows how the norm varies with the proportion of true rationale components in
the rationale candidate input within a trained standard RNP predictor. We see that it indeed does not
face the problem of diminishing marginal returns. Instead, it grows even faster as the proportion of
rationale components grows.

4.2 THE PRACTICAL METHOD

Unlike existing mainstream rationalization methods that add extra auxiliary modules, we do not
change the model architecture of the vanilla RNP, thus preserving its conciseness and flexibility.
The only needed modification is to replace the extractor’s cross-entropy loss with the norm loss.

Compared to MMI-based methods (Equation 3), we remove the cross-entropy loss from the extrac-
tor’s parameters θe and replace it with the norm:

Extractor: min
θe
−log(∣∣Enc(Z)∣∣2) (8)

Predictor: min
θp

Hc(Y, fP (Z)∣Z) (9)

s.t., Z = fE(X), (X,Y ) ∼ D. (10)

The predictor is trained to do the classification, and the extractor is trained to identify the rationales.
During training, (9) and (8) are alternated. The practical implementation with Pytorch is in Appendix
A.3. We call this method N2R (norm to rationale). Note that when we say MMI (see Equation (2)),
it refers only to the objective of the extractor , and does not include the predictor. No matter how the
extractor’s objective changes, the predictor is always trained with the cross-entropy as it needs to do
the classification.

To further show the potential and scalability of our N2R, we also verify the possibility of combining
MMI and N2R (corresponding to the supplementary experiments in Figure 4). This combination is
inspired by the empirical results of Figure 3. In the initial stage of training, the extractor has not
yet identified enough true rationale components, leading to small gradients provided by the norm
objective (Figure 3(c)), which is not efficient enough to guide the extractor in finding the rationale.
However, at this stage, the MMI objective provides larger gradients (Figure 3(b)). In the later stages
of training, the situation is reversed. Overall, the MMI and norm objectives complement each other,
resulting in improved performance. We maintain the objective of the vanilla RNP (Equation 3) and
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Table 1: Results on datasets from the BeerAdvocate Benchmark. We report the average results of
five random seeds. Values in “()” are the standard deviations. Inter RAT: Yue et al. (2023). NIR:
Storek et al. (2023). A2I: Liu et al. (2024c).

Methods
Datasets Beer-Appearance Beer-Aroma

S Acc P R F1 S Acc P R F1
RNP 14.7 (0.7) 78.2 (3.3) 75.0 (0.5) 59.7 (3.1) 66.5 (2.1) 15.2 (1.0) 81.7 (2.4) 67.0 (12.1) 64.7 (8.8) 65.8 (10.4)

Inter RAT 15.2 (1.1) N/A 57.0 (5.3) 46.9 (2.3) 51.4 (3.2) 16.1 (0.7) N/A 57.9 (2.4) 60.3 (2.5) 59.0 (2.1)
NIR 14.8 (0.4) 78.2 (2.2) 74.0 (1.3) 59.0 (2.4) 65.6 (2.0) 15.4 (0.4) 82.2 (3.2) 65.4 (7.1) 64.7 (6.2) 65.1 (6.6)
A2I 14.9 (0.3) 81.0 (1.2) 75.2 (0.9) 60.6 (1.7) 67.1 (1.3) 14.8 (0.1) 82.7 (2.3) 69.4 (2.5) 65.9 (2.6) 67.6 (2.5)

N2R (ours) 14.8 (0.5) 82.3 (1.8) 81.9 (2.7) 65.3 (2.2) 72.7 (2.1) 14.9 (0.4) 86.9 (4.5) 70.2 (1.5) 67.2 (1.3) 68.7 (1.1)

add the norm to the extractor’s objective:

Extractor: min
θe
[Hc(Y, fP (Z)∣Z) − log(∣∣Enc(Z)∣∣2)] (11)

Predictor: min
θp

Hc(Y, fP (Z)∣Z) (12)

s.t., Z = fE(X), (X,Y ) ∼ D. (13)

We call this method MMI+N2R. The practical implementation with Pytorch is in Appendix A.4.

5 EXPERIMENTS

5.1 SETTINGS

Baselines. The main baseline for direct comparison is the vanilla MMI-based rationalization frame-
work RNP (Lei et al., 2016), as RNP and our N2R match in selection granularity, optimization
algorithm, and model architecture, which helps us to focus on our claims rather than some poten-
tially unknown mechanisms. To show the competitiveness of our method, we also include several
recently published methods that improve MMI with various regularizers: Inter RAT (Yue et al.,
2023), NIR (Storek et al., 2023), CR (Zhang et al., 2023), and A2I (Liu et al., 2024c), all of which
have been discussed in §2.

Datasets. Although the rationale extraction process is unsupervised, the rationalization task requires
comparing the rationale quality extracted by different models. This necessitates that the test set
includes ground-truth rationales, which imposes special requirements on the datasets. Following the
conventional setup in the field of rationalization, we employ four text classification datasets from two
widely used benchmarks. Apart from the text data, we also include a graph classification dataset.

The text classification datasets are Beer-Appearance, Beer-Aroma (collected from the BeerAd-
vocate benchmark (McAuley et al., 2012)), Hotel-Service, Hotel-Cleanliness (collected from the
HotelReviews benchmark (Wang et al., 2010)). We also use a graph classification dataset, called
BA2Motifs (Ying et al., 2019), to verify generalizability. All of these datasets contain human-
annotated ground-truth rationales on the test set, making it convenient to compare different methods’
performance fairly. More details are in Appendix A.1.

Implementation details. Both the extractor and the predictor are composed of an encoder
(RNN/Transformer/GCN) and a linear layer. We use three types of encoders: GRUs (following
Inter RAT and A2I, table 1 and 2), bert-base-uncased (following CR, table 3), and GCN (for the
BA2Motifs dataset). For NIR and our N2R, considering they are both variants of the standard RNP,
we first manually tune the hyperparameters for RNP, and then apply the hyperparameters to both
NIR and N2R. For Inter RAT, since it has originally been implemented on the beer-related datasets,
we apply its original hyperparameters but only adjust the sparsity regularizer in Equation (5). For
CR, we just keep the major settings (“bert-base-uncased”, the Beer-Appearance dataset, and the spr-
asity of 10%) the same as it and copy its results from its original paper. We report the average results
of five random seeds. More details are in Appendix A.2.

Metrics. Following the previous research of Inter RAT and A2I, we mainly focus on the rationale
quality, which is measured by the overlap between the human-annotated rationales and the model-
selected tokens. The terms P,R,F1 denote precision, recall, and F1 score respectively. These
metrics are the most frequently used in rationalization. The term S represents the average sparsity of
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Table 2: Results on datasets from the HotelReviews Benchmark.

Methods
Datasets Hotel-Service Hotel-Cleanliness

S Acc P R F1 S Acc P R F1
RNP 15.3 (0.3) 96.5 (1.5) 41.0 (1.5) 54.6 (1.1) 46.8 (1.4) 15.3 (0.2) 97.2 (1.6) 28.1 (0.7) 48.7 (1.1) 35.6 (0.8)

Inter RAT 15.0 (0.8) N/A 28.9 (1.1) 38.1 (1.9) 32.8 (1.1) 14.4 (1.1) N/A 27.2 (2.1) 44.1 (2.4) 33.6 (2.1)
NIR 15.0 (0.3) 96.9 (0.4) 40.9 (1.5) 53.5 (1.2) 46.3 (1.4) 15.5 (0.4) 96.7 (0.9) 28.0 (0.6) 49.2 (1.0) 35.7 (0.6)
A2I 15.1 (0.4) 96.7 (0.6) 41.4 (1.7) 54.6 (1.3) 47.1 (1.5) 15.3 (0.3) 96.8 (1.0) 28.8 (0.6) 49.7 (1.1) 36.5 (0.7)

N2R (ours) 15.1 (0.2) 97.4 (0.5) 42.8 (0.5) 56.3 (1.0) 48.6 (0.6) 14.8 (0.2) 97.4 (0.4) 31.8 (0.5) 53.4 (0.8) 39.8 (0.6)

Table 3: Results with BERT encoder. “ ∗ ”: the results of baselines are obtained from the paper of
CR (Zhang et al., 2023).

Methods
Datasets Beer-Appearance Beer-Aroma

S Acc P R F1 S Acc P R F1
RNP* 10.0 (n/a) 91.5 (1.7) 40.0 (1.4) 20.3 (1.9) 25.2 (1.7) 10.0 (n/a) 84.0 (2.1) 49.1 (3.2) 28.7 (2.2) 32.0 (2.5)
A2R* 10.0 (n/a) 91.5 (2.2) 55.0 (0.8) 25.8 (1.6) 34.3 (1.4) 10.0 (n/a) 85.5 (1.9) 61.3 (2.8) 34.8 (3.1) 41.2 (3.3)

INVRAT* 10.0 (n/a) 91.0 (3.1) 56.4 (2.5) 27.3 (1.2) 36.7 (2.1) 10.0 (n/a) 90.0 (3.0) 49.6 (3.1) 27.5 (1.9) 33.2 (2.6)
CR* 10.0 (n/a) 92.4 (1.7) 59.7 (1.9) 31.6 (1.6) 39.0 (1.5) 10.0 (n/a) 86.5 (2.1) 68.0 (2.9) 42.0 (3.0) 49.1 (2.8)

N2R (ours) 10.8 (0.3) 93.5 (1.8) 79.7 (4.1) 36.3 (1.8) 49.9 (2.5) 10.0 (0.1) 91.0 (3.6) 74.3 (5.8) 47.0 (3.7) 57.6 (4.5)

the selected rationales, that is, the percentage of selected tokens in relation to the full text. Since the
sparsity of ground-truth rationales on these datasets is around 10% ∼ 20%, we adjust s in Equation
(5) to make S be about 15% (since Equation (5) is only a soft constraint, it cannot strictly limit S to
be exactly 15%.). Acc stands for the predictive accuracy.

5.2 RESULTS

Results on standard benchmarks. Tables 1 and 2 show the results on the four text classification
datasets. In terms of the rationale quality (F1 score), our N2R significantly outperforms the standard
MMI-based method (i.e., RNP) and also beats its improved variants. Compared to the second-
best results of previous methods, the relevant improvements of our N2R on these four datasets are
8.3% (= 72.7−67.1

67.1
), 1.6% (= 68.7−67.6

68.8
), 5.1% (= 49.5−47.1

47.1
), and 9.0% (= 39.8−36.5

36.5
), showing the

competitiveness of replacing the MMI-based objective with our norm objective.

We also compare with a representative LLM, llama-3.1-8b-instruct, in Table 6 of Appendix A.7, and
find that our simple N2R gets comparable results to it and can sometimes even outperform it.

Results with BERT encoder. We also follow CR to conduct experiments with pretrained bert-
base-uncased as a supplement. Since some methods become highly sensitive to hyperparameters
after switching to an over-parameterized BERT model (also supported by Remark 6.1 in (Zhang
et al., 2023)), and our computational resources are insufficient for extensive hyperparameter tun-
ing for these methods, we primarily compare our approach with methods that have already been
implemented using BERT. The results are shown in Table 3. Our N2R still outperforms previous
MMI-based methods significantly.

Results with GCN encoder. To show generalizability of our method, we expand the RNP frame-
work to graph neural networks to conduct a supplement experiment. Since Inter RAT, NIR, and
CR are methods specifically designed for text data and are not suitable for graph tasks, we only
compare our N2R with the standard RNP on the BA2Motifs dataset to show its effectiveness rather
than competitiveness. For this dataset, we select a set of nodes for each graph as the rationale. The
results are shown in Table 4. We see that our method is still effective when applied to graph neural
networks. Note that our method is very simple and has the potential to be combined with more
advanced methods in the future. However, since the interpretability of graph neural networks is not
the focus of this paper, we leave it for future work.

N2R can be further improved when combined with MMI. To further verify the scalability of
our N2R, we implement a variant of it by combining N2R and MMI criterion together, which is
introduced at the end of §4. The comparison between vanilla MMI, N2R, and N2R+MMI on the
datasets from the BeerAdvocate benchmark and HotelReviews benchmark are shown in Figure 4(a)
and Figure 4(b), respectively.
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Table 4: Results with GCN encoder on BA2Motifs.

Methods S Acc P R F1
RNP 20.3 (2.5) 95.2 (1.9) 36.5 (5.5) 36.5 (2.2) 36.4 (3.8)
N2R 20.1 (1.2) 96.0 (1.9) 40.1 (2.1) 40.4 (4.4) 40.2 (3.2)

Beer-Appearance Beer-Aroma55

60

65

70

75

80

85

F1 66.5

65.875.2
71.3

72.7

68.7

MMI (RNP)
MMI+N2R
N2R

(a)
Hotel-Service Hotel-Cleanliness30

35

40

45

50

F1

46.8

35.6

49.5

40.4

48.6

39.8

MMI (RNP)
MMI+N2R
N2R

(b)

Figure 4: The comparison between vanilla MMI, N2R, and N2R+MMI on the datasets from (a)
BeerAdvocate benchmark and (b) HotelReviews benchmark.

We can observe that, N2R on its own already significantly outperforms MMI, yet when combined
with MMI, its performance improves even further. As compared to the vanilla MMI, the the relevant
improvements of MMI+N2R on these four datasets are 13.1%(= 75.2−66.5

66.5
), 8.4%(= 71.3−65.8

65.8
),

5.8%(= 49.5−46.8
46.8

), and 13.5%(= 40.4−35.6
35.6

), respectively. This improvement of MMI+N2R aligns
with the empirical results shown in Figure 3. In the initial stage of training, the extractor has not
yet identified enough true rationale components, leading to small gradients provided by the OOD
objective (Figure 3(c)), which is insufficient to effectively guide the extractor in finding the rationale.
However, at this stage, the MMI objective provides larger gradients (Figure 3(b)). In the later stages
of training, the situation is reversed. Overall, the MMI and OOD objectives complement each other,
resulting in enhanced performance.

6 CONCLUSION AND FUTURE WORK

In this paper, we first analyze the diminishing marginal return limitation of the fundamental MMI-
based objective in the XAI literature. Then, we propose to use the norm of the intermediate repre-
sentation of rationale candidates to replace the MMI objective, which is inspired by OOD detection
techniques. Our OOD-inspired objective not only outperforms the vanilla MMI, but also beats sev-
eral recent variants. What’s more, it can be easily combined with MMI, further validating its scala-
bility and potential. Our work represents a pioneering attempt to bridge the fields of OOD detection
and interpretability. This could potentially inspire researchers in the OOD field to adapt more OOD
detection techniques to the XAI domain, thereby further advancing the development of XAI.

Most existing methods find explanations by reconstructing the model’s final output, whereas we
focus on identifying which parts of the input are utilized by the network during forward propagation.
This is a new direction that can free explanation algorithms from relying on the model’s final output.
This property could have broader implications, such as potentially being used in the future to explain
task-agnostic (i.e., not fine-tuned) pretrained encoders.
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Table 5: Statistics of datasets used in this paper

Datasets Train Dev Annotation
Pos Neg Pos Neg Pos Neg S

Beer Appearance 16891 16891 6628 2103 923 13 18.5
Aroma 15169 15169 6579 2218 848 29 15.6

Hotel Service 50742 50742 6344 6344 101 99 11.5
Cleanliness 75049 75049 9382 9382 99 101 8.9

A MORE DETAILS

A.1 DATASETS

The statistics of the datasets are in Table 5. Pos and Neg denote the number of positive and negative
examples in each set. S denotes the average percentage of tokens in human-annotated rationales to
the whole texts.

A.2 EXPERIMENTAL DETAILS

The code and detailed running instructions will be made publicly available on GitHub after the paper
is accepted. The code is now in an anonymous repository: https://anonymous.4open.
science/r/N2R-0E5E. The anonymous repository will be closed in Nov 13, as we do not want
people other than the reviewers to get the code.

The maximum sequence length is set to 256. We use the Adam optimizer Kingma & Ba (2015) with
its default parameters, except for the learning rate (the learning rate is 0.0001). The temperature for
gumbel-softmax is the default value 1. We implement the code with Pytorch on a RTX4090 GPU.
We report the average results of five random seeds, and the seeds are [1,2,3,4,5].

For NIR and our N2R, considering they are both variants of the standard RNP, we first manually
tune the hyperparameters for RNP, and then apply the hyperparameters to both NIR and N2R. For
all datasets, we use a learning rate of 0.0001. The batchsize is 128 for the beer-related datasets and
256 for the hotel-related datasets. These hyperparameters are found by manually tune the standard
RNP and are applied to both NIR and our N2R.

The core idea of NIR is to inject noise into the selected rationales. We use RNP as its backbone. A
unique hyperparameter of NIR is the proportion of noise. Following the method in its original paper,
we searched within [0.1,0.2,0.3] and found that 0.1 yielded the best results on most datasets, hence
we adopted 0.1 for it.

We found that the training of Inter RAT is very unstable. To avoid potential unfair factors, our main
settings are determined with reference to it. Except for the part about sparsity, we used its original
hyperparameters for it.

For A2I, we contact its authors and get the code and hyperparameters of it.

For CR, we just keep the major settings (“bert-base-uncased”, the Beer-Appearance dataset, and the
sprasity of 10%) the same as it and copy its results from its original paper.

A.3 IMPLEMENTATION DETAILS OF N2R

For a batch of (X,Y ), we first send X to the extractor and get the rationale Z:
Z = fE(X). (14)

Then, we get a copy of Z with the pytorch function “torch.detach()”:
Z ′ = torch.detach(Z), (15)

such that the following computation does not involve the extractor’s gradients. Then, we send the
rationale Z ′ to the predictor and get the prediction Ŷ :

Ŷ = fP (Z
′
). (16)
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Table 6: The quality of rationales extracted by llama-3.1-8b-instruct.

Methods
Datasets Beer-Appearance Beer-Aroma

S P R F1 S P R F1
N2R (ours) 14.8 (0.5) 81.9 (2.7) 65.3 (2.2) 72.7 (2.1) 14.9 (0.4) 70.2 (1.5) 67.2 (1.3) 68.7 (1.1)

llama-3.1-8b (finetune) n/a 86.3 (n/a) 46.2 (n/a) 60.2(n/a) n/a 73.2 (n/a) 50.6 (n/a) 59.8 (n/a)
llama-3.1-8b (2 shot) n/a 15.4 (n/a) 16.0 (n/a) 15.7 (n/a) n/a 17.9 (n/a) 24.2 (n/a) 20.6 (n/a)

Methods
Datasets Hotel-Service Hotel-Cleanliness

S P R F1 S P R F1
N2R (ours) 15.1 (0.2) 42.8 (0.5) 56.3 (1.0) 48.6 (0.6) 14.8 (0.2) 31.8 (0.5) 53.4 (0.8) 39.8 (0.6)

llama-3.1-8b (finetune) n/a 77.3 (n/a) 40.6 (n/a) 53.3 (n/a) n/a 54.9 (n/a) 31.3 (n/a) 39.9 (n/a)
llama-3.1-8b (2 shot) n/a 45.3 (n/a) 51.7 (n/a) 48.3 (n/a) n/a 39.3 (n/a) 43.0 (n/a) 41.1 (n/a)

Then, we update the predictor with the cross-entropy loss.

min
θp

Hc(Y, Ŷ ) (17)

Note that this updating process with cross-entropy will not influence the extractor, since we have
used “torch.detach()” for Z.

Then, we fix the parameters of the predictor, and only update the extractor. We first get the rationale
candidate Z with

Z = fE(X). (18)
And we then send it to the predictor’s encoder to get ∣∣Enc(Z)∣∣2. Then, we update the extractor
with

min
θe
−log(∣∣Enc(Z)∣∣2). (19)

Then, we get into the next round to update the extractor and the predictor again.

A.4 IMPLEMENTATION DETAILS OF N2R+MMI

The implementation details are similar to those of Appendix A.3. The only difference is that we no
more use “torch.detach”.

A.5 THE MINIMUM CROSS-ENTROPY IS EQUAL TO THE ENTROPY

The cross-entropy consists of two parts:

Hc(Y, Ŷ ∣Z) =H(Y ∣Z) +DKL(P (Y ∣Z)∣∣P (Ŷ ∣Z)). (20)

When we minimizing the cross-entropy Hc(Y, Ŷ ∣Z) by adjusting the predictor’s parameters, we are
in fact minimizing DKL(P (Y ∣Z)∣∣P (Ŷ ∣Z)). And we know that if the predictor is trained ideally,
we have minDKL(P (Y ∣Z)∣∣P (Ŷ ∣Z)) = 0. Then, we have

min
θp

Hc(Y, Ŷ ∣Z) =H(Y ∣Z). (21)

A.6 THE DETAILED DISCUSSION ABOUT EQUATION (6)

In any cases, we have
I(Y ;R1,R2) = I(Y ;R1) + I(Y ;R2∣R1). (22)

I(Y ;R1,R2) − I(Y ;R1) − I(Y ;R2) = I(Y ;R2∣R1) − I(Y ;R2). (23)
The magnitude relationship between I(Y ;R2∣R1) and I(Y ;R2) is arbitrary. In other words, there
exists some scenarios where I(Y ;R2∣R1) < I(Y ;R2). In such cases, we have

I(Y ;R1,R2) < I(Y ;R1) + I(Y ;R2). (24)

In these cases, the mutual information faces the diminishing marginal returns problem.

A.7 THE RATIONALES EXTRACTED BY LLAMA-3.1-8B-INSTRUCT
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Task: Sentiment classification about Beer’s appearance

Input: Pours a rather crisp yellow almost orange with a thin 

head. The aroma is dominated by sweet malts with just a 

slight hoppiness dancing in the background. The taste does 

have a surprising amount of hoppiness for a Pilsner. There is a 

good maltiness to it as well, but citrus hops just slightly 

overpower. The beer is very light and refreshing. This makes 

for an excellent summer session beer. 

Expected output: 1|pours a rather crisp yellow almost orange 

with a thin head .

llama-3.1 output: 1|pours a rather crisp yellow almost orange

Figure 5: An example of llama’s output. Here “1”
means that the class label Y is positive. And the
words after “∣” represent the rationale.

To further show the potential impact of rational-
ization in the era of LLMs, here we present the
results of the experiments conducted with the
llama-3.1-8b-instruct model. We perform both
2-shot prompting and supervised fine-tuning.

For 2-shot prompting, we provide the
model with a negative text with its cor-
responding rationale, and a positive
text with its corresponding rationale.
For supervised fine-tuning, the super-
vison label is the classification label,
since we perform unsupervised ratio-
nale extraction. We use 4*RTX 4090
24GB GPUs and LoRA to fine tune the
models. We provide a detailed docu-
ment in our anonymous code repository
(https://anonymous.4open.science/r/N2R-0E5E/details_of_llms.pdf) to
include all the details (including the prompt templates, LoRA fine-tuning parameter settings, and
more).

Task: Sentiment classification about Beer’s appearance

Input: 22oz bottle pouted into a Goblet: Opaque orange 

with a light, white, creamy head that was not all that well 

retained but full of carbonation, but did settle into a small 

thin cap. The aroma was more Belgian triple than IPA, 

Sweet and malty.  The taste is a very nice balance of the 

two styles. A little more hops, but balanced very nice with 

the sweetness of the malt and fruit. The beer had a medium 

to full body, perhaps a little too thick for my taste, but still 

good. The beer had a nice bitter dry aftertaste and was well 

carbonated. The beer was fairly easy to drink give the ABV, 

but after the 22oz, I was pretty well done. Overall, a good 

beer and probably the first one of the side projects that I 

think the brewery should consider brewing on a regular 

basis.

Expected output: 1|opaque orange with a light , white , 

creamy head that was not all that well retained but full of 

carbonation , but did settle into a small thin cap .

llama-3.1 output: positive|The overall tone of the review 

is positive, with phrases such as "a very nice balance of the 

two styles", "nice bitter dry aftertaste", "well carbonated", 

and "overall, a good beer" indicating a favorable opinion of 

the beer.

GPT-3.5-restructured output: 1|a very nice balance of the 

two styles nice bitter dry aftertaste well carbonated overall, 

a good beer

Figure 6: An example of llama fails to output the
rationale in the right format.

In most cases, the model can output the ratio-
nale in the correct format. Figure 5 shows an
example. But in 2-shot prompting, the model
sometimes outputs additional parts along with
the rationale (through manual observation, this
situation does not occur frequently.). Figure 6 is
another example. In such cases, we use gpt-3.5-
turbo to extract the content within the quotation
marks.

The results are shown in Table 6. LLMs are not
good at counting, so we did not constrain the
percentage length (i.e., sparsity) of the rationale
extracted by the model. Compared to our N2R,
llama-3.1 does not have a crushing advantage.
On two out of four datasets, our N2R outper-
forms llama-3.1. And on the left two datasets,
N2R achieves comparable results to llama-3.1.
Besides, our N2R can be applied to graph data,
while it is not easy to do so for LLMs.

A.8 MORE RESULTS
OF DIMINISHING MARGINAL RETURNS

Figure 7 shows the results on more datasets.

A.9 A VISUALIZED EXAMPLE OF EXTRACTED RATIONALES

Figure 8 shows a visualized example of rationales extracted by different methods on the Beer-Aroma
dataset.

Figrue 9 shows a visualized example of rationales extracted by different methods on the CUB (see
Appendix A.10) dataset.

A.10 THE RESULTS ON CUB DATASET

TL;DR. The results are in Table 7.

The CUB dataset (Wah et al., 2011) contains photographs of birds annotated by species, totaling
around 11.7k samples. In our experiment, we follow Sagawa et al. (2019) to categorize them into

19

https://anonymous.4open.science/r/N2R-0E5E/details_of_llms.pdf


Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
The ratio of real rationale

0.70

0.72

0.74

0.76

0.78

0.80
acc

(a)

0.0 0.2 0.4 0.6 0.8 1.0
The ratio of real rationale

0.45

0.50

0.55

0.60

0.65

0.70 cross-entropy

(b)

0.0 0.2 0.4 0.6 0.8 1.0
The ratio of real rationale

4.45
4.50
4.55
4.60
4.65
4.70
4.75
4.80 norm

(c)

0.0 0.2 0.4 0.6 0.8 1.0
The ratio of real rationale

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90 acc

(d)

0.0 0.2 0.4 0.6 0.8 1.0
The ratio of real rationale

0.2

0.4

0.6

0.8

1.0 cross-entropy

(e)

0.0 0.2 0.4 0.6 0.8 1.0
The ratio of real rationale

2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4 norm

(f)

0.0 0.2 0.4 0.6 0.8 1.0
The ratio of real rationale

0.55

0.60

0.65

0.70

0.75

0.80

0.85 acc

(g)

0.0 0.2 0.4 0.6 0.8 1.0
The ratio of real rationale

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

cross-entropy

(h)

0.0 0.2 0.4 0.6 0.8 1.0
The ratio of real rationale

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2 norm

(i)

Figure 7: The prediction accuracy, cross-entropy loss, and the norm of the representation through
the neural network vary with the proportion of true rationale components in the rationale candidate
input within a trained standard RNP predictor. (a)(b)(c): the Beer-Appearance dataset. (d)(e)(f): the
Hotel-Service dataset. (g)(h)(i): the Hotel-Cleanliness dataset.

two categories: waterbird (albatross, auklet, cormorant, frigatebird, fulmar, gull, jaeger, kittiwake,
pelican, puffin, tern, gadwall, grebe, mallard, merganser, guillemot, or Pacific loon) and landbird
(ani, blackbird, bobolink, bunting, cardinal, catbird, Yellow Breasted Chat, Eastern Towhee, Chuck
Will Widow, cowbird, Brown Creeper, crow, cuckoo, finch, Northern Flicker, flycatcher, goldfinch,
grackle, grosbeak, hummingbird). Sagawa et al. (2019) annotated each image with the bird’s silhou-
ette in order to study the overfitting problem, which can serve as the ground-truth rationale.

The classification task on this dataset is challenging due to severe overfitting problems. Since other
baseline rationalization methods are specifically designed for text data and are not suitable for image
data, we only compare with vanilla MMI (i.e., RNP) to validate our method’s effectiveness rather
than competitiveness. We also compare with a vanilla classifier (ResNet18) to verify the effective-
ness of our method in improving classification accuracy.

Details and metrics. For this image classification dataset, the extractor and predictor in Figure 1
are different from those used in performing text tasks. The goal of the extractor is to select a portion
of the pixels from an image as the rationale, which can be seen as performing a binary classification
on each pixel, similar to image segmentation. So, we use an U-Net to be the extractor. And for the
predictor, we use a ResNet18. The meaning of F1 is the same as the one used in Table 1 (the overlap
between the extractor-selected pixels and ground truth pixels). We add an additional metric, IoU (a
common metric for image segmentation), to further measure the rationale quality.
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Figure 8: A Visualized example of rationales on the Beer-Appearance dataset. The underlined
words are human-annotated ground-truth rationales. Model-selected rationales are highlighted with
different colors.
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image

ground truth

mask        rationale        

selected

mask        rationale        

Figure 9: A Visualized example of rationales on the CUB dataset.

Results. The results are shown in Table 7. On this challenging image classification dataset, our N2R
still outperforms the MMI-based method RNP. As for the improvement in classification accuracy
compared to the vanilla classifier ResNet18, one possible reason is that our N2R retains informa-
tion relevant to classification while removing irrelevant noise (however, the poor performance of
RNP may be due to its failure to find comprehensive useful information). This phenomenon is con-
sistent with the findings of Wu et al. (2022), which suggest that extracting rationales can enhance
generalizability to some extent.

We also provide a visualized example for this dataset in Figure 9. We find that RNP selects only a
small part of the bird but a large part of the water (shortcut) to classify this image as ”waterbird”.
While the N2R-selected rationale includes the whole bird.

Table 7: The results on the CUB dataset.

Methods S Acc P R F1 IoU
RNP 15.5 (1.1) 81.3 (0.7) 33.3 (2.1) 37.0 (4.7) 35.0 (3.2) 21.3 (2.4)

N2R (ours) 15.8 (1.1) 86.5 (0.6) 46.1 (5.4) 52.5 (4.8) 49.1 (4.9) 32.6 (4.2)
Classifier (ResNet18) n/a 85.0 (0.8) n/a n/a n/a n/a
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Table 8: The results on the MovieReview dataset. “*”: The results of the baselines are copied from
Inter RAT(Yue et al., 2023) (they did not report the classification accuracy).

Methods S Acc P R F1
RNP* 20.0 - 35.6 21.1 24.1
A2R* 20.0 - 48.7 31.9 34.9

INVRAT* 20.0 - 33.9 24.3 28.3
Inter-RAT* 20.0 - 35.7 35.8 35.7

N2R 20.3 (2.2) 88.4 (2.1) 45.6 (2.1) 31.7 (1.6) 37.4 (1.9)
Classifier n/a 86.4 (2.3) n/a n/a n/a

Table 9: Results with BERT encoder. The dataset is the most widely used Beer-Appearance. “ ∗ ”:
results obtained from the paper of CR (Zhang et al., 2023).

Methods
Datasets Beer-Appearance Beer-Aroma

S Acc P R F1 S Acc P R F1
RNP* 10.0 (n/a) 91.5 (1.7) 40.0 (1.4) 20.3 (1.9) 25.2 (1.7) 10.0 (n/a) 84.0 (2.1) 49.1 (3.2) 28.7 (2.2) 32.0 (2.5)
A2R* 10.0 (n/a) 91.5 (2.2) 55.0 (0.8) 25.8 (1.6) 34.3 (1.4) 10.0 (n/a) 85.5 (1.9) 61.3 (2.8) 34.8 (3.1) 41.2 (3.3)

INVRAT* 10.0 (n/a) 91.0 (3.1) 56.4 (2.5) 27.3 (1.2) 36.7 (2.1) 10.0 (n/a) 90.0 (3.0) 49.6 (3.1) 27.5 (1.9) 33.2 (2.6)
CR* 10.0 (n/a) 92.4 (1.7) 59.7 (1.9) 31.6 (1.6) 39.0 (1.5) 10.0 (n/a) 86.5 (2.1) 68.0 (2.9) 42.0 (3.0) 49.1 (2.8)

N2R (ours) 10.8 (0.3) 93.5 (1.8) 79.7 (4.1) 36.3 (1.8) 49.9 (2.5) 10.0 (0.1) 91.0 (3.6) 74.3 (5.8) 47.0 (3.7) 57.6 (4.5)
Classifier n/a 93.0 (2.6) n/a n/a n/a n/a 91.6 (3.1) n/a n/a n/a

A.11 RESULTS ON MOVIEREVIEW DATASET

TL;DR. The results are in Table 8.

MovieReview (Pang & Lee, 2004) is a text classification dataset with much longer texts (the average
length is 774 words) as compared to the datasets used in Table 1 and 2. Recently, DeYoung et al.
(2020) annotated rationales for this dataset so that it can be used for the rationalization task.

We follow the settings of Inter RAT (Yue et al., 2023) to conduct experiments on this dataset. The
encoders for extractor and the predictor are both GRUs. And the word embedding is GloVe-100d.
The maximum sentence length is set to be 1024.

We compare with the baselines already implemented by Inter RAT and copy the results from it. We
also compare with a vanilla classifier (GloVe+GRU) to see the classification performance.

The results are shown in Table 8. We see that our N2R still outperforms MMI-based methods on
this long-text challenging dataset.

A.12 COMPARISON WITH BERT CLASSIFIER.

We compare the classification accuracy with a vanilla classifier implemented with BERT on the
Beer-Appearance and Beer-Aroma datasets. The results are shown in Table 9. Our N2R gets even
better accuracy than the BERT classifier. One possible reason is that our N2R retains information
relevant to classification while removing irrelevant noise. This phenomenon is consistent with the
findings of Wu et al. (2022), which suggest that extracting rationales can enhance generalizability to
some extent.

A.13 THE CONVERGENCE SPEED

Figure 10 shows a comparison of convergence speed between RNP and N2R. The batchsize is 128
and the learning rate is 0.0001. We see that N2R converges much faster than RNP, which means that
we can train N2R with fewer steps and thus saving the computational costs.
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Figure 10: The comparison of convergence speed between RNP and N2R. (a) The Beer-Appearance
dataset. (b) The Beer-Aroma dataset.

A.14 THEORETICAL SUPPORT FOR USING NORMS TO DISTINGUISH BETWEEN RATIONALES

Lemma 1 ((Cai et al., 2013)) Let U and V be two random points on a p-dimensional unit hyper-
sphere Rp, and O is the origin. Let Θ be the angle between vector

Ð→
OU and vector

Ð→
OV , then

Pr(∣Θ −
π

2
∣ ≥ ϵ) ≤K

√
p(cos ϵ)p−2, (25)

for all p ≥ 2 and ϵ ∈ (0, π/2), where K is a universal constant.

Lemma 1 is the Proposition 5 of (Cai et al., 2013). And it tells us that “all high-dimensional random
vectors are almost always nearly orthogonal to each other” (Cai et al., 2013). As the dimension p
increases, Θ gradually converges to π/2.

If two vectors are orthogonal to each other, then their dot product will be zero.

We consider a simple case. Consider a FFN layer without the bias term. And its weight matrix is
W ∈ Rm×n, and the input is X ∈ Rm. The output of the FFN layer is XW ∈ Rn. Each dimension
in XW is the dot product of X and a column vector of W .The column vectors of W represent
some directions the model can handle. For a well-trained FFN, the directions are determined by its
training data and represent the information of it learns.

We use the lower case x to denote a specific input.

Consider an input x1 does not contain any information that has been learned by W . For example,
W is part of a classifier trained to distinguish between cell phones and water cups, and x1 is a photo
of a grassy. Although x1 is not truly random noise, since W has never been trained to recognize
grassland, x1 acts like random noise to W . So it is likely that x1 is orthogonal to those column
vectors in W . So, every dimension of x1W will approach zero and thus ∣∣x1W ∣∣2 will also approach
zero.

If an input x2 is full of the information learned by W , then it probably matches the directions of W .
And thus ∣∣x2W ∣∣2 will be high.

Then, what would be the intermediate state of x1 and x2? We use V ∈ Rm to denote an arbitrary
column vector in W . We assume an input x3. The first k dimensions of x3 (denoted as x1∶k

3 ) contain
useful information, and the last n − k dimensions represent uninformative noise. We have that

x3 ⋅ V = x
1∶k
3 ⋅ V

1∶k
+ xk+1∶n

3 ⋅ V k+1∶n (26)

xk+1∶n
3 consists of uninformative noise, so we have xk+1∶n

3 ⋅ V k+1∶n ≈ 0. Thus x3 ⋅ V = x
1∶k
3 ⋅ V

1∶k.

We assume that the useful information is uniformly distributed in each dimension of X and V . For
an input x, we denote xi as the i-th dimension of it. Formally:
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Assumption 1 If an input x contains k-dimensional useful information (for simplicity, we always
assume that the useful information is in the first k dimensions), we assume that the informativeness
between different dimensions is the same:

xi
⋅ V i
= xj
⋅ V j , ∀i ≤ k, j ≤ k. (27)

With this assumption in place, we can quantitatively analyze why our method is not affected by the
problem of diminishing marginal returns.

Consider that the proportion of the gold rationale components in an extractor-selected rationale
candidate xa is ka

n
(i.e., there are ka of n dimensions in xa represent useful information). When

we add more gold rationale components to it to make the proportion be k′a and the new rationale
candidate be x′a. We will have that

∣∣xaW ∣∣2
∣∣x′aW ∣∣2

=
ka
k′a

. (28)

Proof.
xaW = [xa ⋅ V1,⋯, xa ⋅ Vn]

= [x1∶ka
a ⋅ V 1∶ka

1 ,⋯, x1∶ka
a ⋅ V 1∶ka

n ]

= ka[x
1
a ⋅ V

1
1 ,⋯, x

1
a ⋅ V

1
n ],

(29)

where the third equation is from Assumption 1.

Similarly, we have
x′aW = k

′
a[x

′1
a ⋅ V

1
1 ,⋯, x

′1
a ⋅ V

1
n ], (30)

x′a is got from replacing the uninformative part of xa (i.e., the last a few dimensions) with useful
information, so we have x′1a = x

1
a. Thus we have xaW

x′aW
= ka

k′a
and ∣∣xaW ∣∣2

∣∣x′aW ∣∣2 =
ka

k′a
.

Conclusion. Ideally, the norm metric we designed should increase approximately linearly as the
proportion of gold rationale in the rationale candidates grows, thus avoiding the problem of dimin-
ishing marginal returns like MMI-based methods.

Although we made an assumption that may not hold in reality, it was made to facilitate a better
quantitative analysis, and the conclusions drawn at least have a qualitative trend. The trends in
Figure 7(c)(f)(i) also verify this trend.

A.15 A TOY EXAMPLE FOR BETTER INTUITIVE UNDERSTANDING OF OUR METHOD

Consider a network consists of only a linear layer (without bias) and has a low-rank weight matrix
M that, after elementary row transformations, takes the following form:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1
0 1 1
0 0 1
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A and B represent inputs with and without the model’s learned information respectively. After
undergoing corresponding transformations (existing research indicates that after performing certain
elementary transformations on the weight matrix, a corresponding transformation can be found for
the inputs, resulting in identical outputs (Ainsworth et al., 2023)), they are likely to take the forms
like: A = [1,0,0,0], B = [0,0,0,1]. The informative input A usually matches more with the non-
zero parts of M . And ∣∣AM ∣∣2 =

√
3 > ∣∣BM ∣∣2 = 0. (The column vectors of the weight matrix

represent certain directions in high-dimensional space (determined by the learned information), but
random noise B generally does not fall along these directions as it does not contain the correspond-
ing information.)
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