
Improved Off-policy Reinforcement Learning in
Biological Sequence Design

Hyeonah Kim, Minsu Kim, Taeyoung Yun, Sanghyeok Choi
Korea Advanced Institute of Science and Technology (KAIST)

{hyeonah kim, min-su, 99yty, sanghyeok.choi}@kaist.ac.kr

Emmanuel Bengio
Recursion

{emmanuel.bengio}@recursionpharma.com

Alex Hernández-Garcı́a
Université de Montréal, Mila - Quebec AI Institute

{hernanga}@mila.quebec

Jinkyoo Park
KAIST

{jinkyoo.park}@kaist.ac.kr

Abstract

Designing biological sequences with desired properties is a significant challenge
due to the combinatorially vast search space and the high cost of evaluating each
candidate sequence. To address these challenges, reinforcement learning (RL)
methods, such as GFlowNets, utilize proxy models for rapid reward evaluation
and annotated data for policy training. Although these approaches have shown
promise in generating diverse and novel sequences, the limited training data rela-
tive to the vast search space often leads to the misspecification of proxy for out-of-
distribution inputs. We introduce δ-Conservative Search, a novel off-policy search
method for training GFlowNets designed to improve robustness against proxy mis-
specification. The key idea is to incorporate conservativeness, controlled by pa-
rameter δ, to constrain the search to reliable regions. Specifically, we inject noise
into high-score offline sequences by randomly masking tokens with a Bernoulli
distribution of parameter δ and then denoise masked tokens using the GFlowNet
policy. Additionally, δ is adaptively adjusted based on the uncertainty of the proxy
model for each data point. This enables the reflection of proxy uncertainty to de-
termine the level of conservativeness. Experimental results demonstrate that our
method consistently outperforms existing machine learning methods in discov-
ering high-score sequences across diverse tasks—including DNA, RNA, protein,
and peptide design—especially in large-scale scenarios. The code is available at
https://github.com/hyeonahkimm/delta cs.

1 Introduction

Designing biological sequences with desired properties is crucial in therapeutics and biotechnology
(Zimmer, 2002; Lorenz et al., 2011; Barrera et al., 2016; Sample et al., 2019; Ogden et al., 2019).
However, this task is challenging due to the combinatorially large search space and the expensive
and black-box nature of objective functions. Recent advances in deep learning methods for biolog-
ical sequence design have shown significant promise at overcoming these challenges (Brookes &
Listgarten, 2018; Brookes et al., 2019; Angermueller et al., 2020; Jain et al., 2022).

AI for New Drug Modalities at NeurIPS 2024.

https://github.com/hyeonahkimm/delta_cs

Among various approaches, reinforcement learning (RL), which leverages a proxy model as a reward
function, has emerged as one of the successful paradigms for automatic biological sequence design
(Angermueller et al., 2020). RL methods have the benefit of exploring diverse sequence spaces by
generating sequences token-by-token from scratch, enabling the discovery of novel sequences. They
employ deep neural networks as inexpensive proxy models to approximate costly oracle objective
functions. The proxy model serves as a reward function for training deep RL algorithms, enabling
the policy network to generate high-reward biological sequences. The model can be trained in an
active learning manner (Gal et al., 2017), iteratively annotating new data by querying the oracle with
points generated using the policy; these iterations are called query rounds. There are two approaches
for training the policy in this context: on-policy and off-policy.

DyNA PPO (Angermueller et al., 2020), a representative on-policy RL method for biological se-
quence design, employs Proximal Policy Optimization (PPO; Schulman et al., 2017) within a proxy-
based active training loop. While DyNA PPO has demonstrated effectiveness in various biological
sequence design tasks, its major limitation is the limited search flexibility inherent to on-policy
methods. It cannot effectively leverage off-policy data points, such as data collected from previous
rounds.

Conversely, Generative Flow Networks (GFlowNets; Bengio et al., 2021), off-policy RL methods
akin to maximum entropy policies (Tiapkin et al., 2024; Deleu et al., 2024), offer diversity-seeking
capabilities and flexible exploration strategies. Jain et al. (2022) applied GFlowNets to biological
sequence design with additional Bayesian active learning schemes. They leveraged the off-policy
nature of GFlowNets by mixing offline datasets with on-policy data during training. This approach
provided more stable training compared to DyNA PPO and resulted in better performance.

However, recent studies have consistently reported that GFlowNets perform poorly on long-
sequence tasks such as green fluorescent protein (GFP) design (Kim et al., 2023; Surana et al.,
2024). We hypothesize that this poor performance stems from the insufficient quality of the proxy
model in the early rounds. For example, in the typical benchmark, the proxy is trained with 5,000
sequences, while GFPs have a combinatorial search space of 20238 > 10309. GFlowNets are capable
of generating sequences from scratch and producing novel sequences beyond the data points. How-
ever, when the quality of the proxy model is unreliable, novel sequences that are out-of-distribution
to the proxy model yield unreliable results (Trabucco et al., 2021; Yu et al., 2021). This motivates
us to introduce a conservative search strategy to restrict the trajectories to the neighborhood of the
existing data point.

Contribution. In this paper, we propose a novel off-policy search method called δ-Conservative
Search (δ-CS), which enables a trade-off between sequence novelty and robustness to proxy mis-
specification by using a conservativeness parameter δ. Specifically, we iteratively train a GFlowNet
using δ-CS as follows: (1) we inject noise by independently masking tokens in high-score offline
sequences with Bernoulli distribution with parameter δ; (2) the GFlowNet policy sequentially de-
noises the masked tokens; (3) we use these denoised sequences to train the policy. When δ = 1
(full on-policy), this becomes equivalent to sampling full trajectories, and when δ = 0 (fully conser-
vative), this reduces to only showing offline sequences in off-policy training. We adaptively adjust
δ(x;σ) using the proxy model’s uncertainty estimates σ(x) for each data point x. This approach
allows the level of conservativeness to be adaptively adjusted based on the prediction uncertainty of
each data point. Figure 1 illustrates the overall procedure of the δ-CS algorithm.

Our extensive experiments demonstrate that δ-CS significantly improves GFlowNets, successfully
discovering higher-score sequences compared to existing model-based optimization methods on di-
verse tasks, including DNA, RNA, protein, and peptide design. This result offers a robust and
scalable framework for advancing research and applications in biotechnology and synthetic biology.

2 Problem Formulation

We aim to discover sequences x ∈ VL that exhibit desired properties, where V denotes the vocab-
ulary, such as amino acids or nucleotides, and L represents the sequence length, which is usually
fixed. The desired properties are evaluated by a black-box oracle function f : VL → R, which
evaluates the desired property of a given sequence, such as binding affinity or enzymatic activity.
Evaluating f is often both expensive and time-consuming since it typically involves wet-lab experi-
ments or high-fidelity simulations.

2

Trained Proxy 𝑓𝜙∗

Noise injection Denoising with 𝑷𝑭

with prob. 𝛿

Proxy 𝑓𝜙
𝒟𝑡−1

Proxy training Policy training with 𝜹-Conservative Search

𝒟𝑡

Evaluation & update
𝑥 ∼ 𝑃𝒟𝑡−1

Oracle 𝑓

Policy 𝑃𝐹

Figure 1: The active learning process for biological sequence design with δ-Conservative Search
(δ-CS). Starting with high reward sequences from the offline dataset, we inject token-level noise
with probability δ, which determines the conservativeness of the search. Then, the GFlowNet policy
denoises the masked sequences. Lastly, the GFlowNet policy is trained with new sequences. After
policy training, we query a new batch of sequences and update the dataset for the next round.

Advancements in experimental techniques have enabled the parallel synthesis and evaluation of
sequences in batches. Therefore, lab-in-the-loop processes are emerging as practical settings that
enable active learning. Following this paradigm, we perform T rounds of batch optimization, where
in each round, we have the opportunity to query B batched sequences to the (assumed) oracle
objective function f . Due to the labor-intensive nature of these experiments, T is typically very
small. Following Angermueller et al. (2020) and Jain et al. (2022), we assume the availability of an
initial offline dataset D0 = {(x(n), y(n))}N0

n=1, where y = f(x). The initial number of data points
N0 is typically many orders of magnitude smaller than the size of the search space, as mentioned in
the introduction. The goal is to discover, after T rounds, a set of sequences that are novel, diverse,
and have high oracle function values.

3 Active Learning for Biological Sequence Design

Following Jain et al. (2022), we formulate an active learning process constrained by a budget of T
rounds with query size B, is executed through an iterative procedure consisting of three stages with
a novel component of δ-Conservative Search (δ-CS) which will be detailed described in Section 4:

Step A (Proxy Training): We train a proxy model fϕ(x) using the offline dataset Dt−1 at round t.

Step B (Policy Training with δ-CS): We train a generative policy p(x; θ) using the proxy model
fϕ(x) and the dataset Dt−1 with δ-CS.

Step C (Offline Dataset Augmentation with δ-CS): We apply δ-CS to query batched data {xi}Bi=1

to the oracle yi = f(xi). Then the offline dataset is augmented as: Dt ← Dt−1 ∪ {(xi, yi)}Bi=1.

The overall algorithm is described in Algorithm 1. In the following subsections, we describe the
details of Step A and Step B.

3.1 Step A: Proxy Training

Following Jain et al. (2022), we train the proxy model fϕ using the dataset Dt−1 by minimizing the
mean squared error loss:

L(ϕ) = Ex∼PDt−1
(x)

[
(f(x)− fϕ(x))

2
]
, (1)

whereDt is the dataset at active round t, augmented with oracle queries. In the initial round (t = 1),
we use the given initial dataset D0. See Appendix A.1 for detailed implementation.

3.2 Step B: Policy training with δ-CS

For policy training, we employ GFlowNets, which aim to produce samples from a generative policy
where the probability of generating a sequence x is proportional to its reward, i.e.,

p(x; θ) ∝ R(x;ϕ) = fϕ(x) + κσ(x). (2)

Following Jain et al. (2022), the reward R(x;ϕ) is defined as fϕ(x) + κσ(x), which combines
the proxy value fϕ(x) and the uncertainty σ(x) in the form of the upper confidence bound (UCB;

3

Srinivas et al., 2010) acquisition function. This approach prioritizes regions with higher uncertainty,
enabling us to query them in the next active round. Here, κ is a mixing hyperparameter.

Policy parameterization. The forward policy PF generates state transitions sequentially through
trajectories τ = (s0 → . . . → sL = x), where s0 = () represents the empty sequence, and each
state transition involves adding a sequence token. The full sequence sL = x is obtained after L
steps, where L is the length of the sequences. The forward policy PF (τ ; θ) is a compositional
policy defined as:

PF (τ ; θ) =

L∏
i=1

PF (si|si−1; θ). (3)

GFlowNets have a backward policy PB(τ |x) that models the probability of backtracking from the
terminal state x. The sequence x = (e1, . . . , eL) can be uniquely converted into a state transition
trajectory τ , where each intermediate state represents a subsequence. In the case of sequences, there
is only a single way to backtrack, so PB(τ |x) = 1. This makes these types of GFlowNets equivalent
to soft off-policy RL algorithms. For example, the trajectory balance (TB) objective of GFlowNets
(Malkin et al., 2022) becomes equivalent to path consistency learning (PCL) (Nachum et al., 2017),
an entropy-maximizing value-based RL method according to Deleu et al. (2024).

Learning objective and training trajectories. The policy is trained to minimize TB loss:
LTB(τ ; θ):

LTB(τ ; θ) =

(
log

ZθPF (τ ; θ)

R(x;ϕ)

)2

(4)

Usually, GFlowNets training is employed to minimize TB loss with training trajectories τ on full
supports, asymptotically guaranteeing optimality for the distribution:

p(x; θ) ∝ R(x;ϕ).

A key challenge in prior works Jain et al. (2022) is that the proxy model fϕ(x) often produces
highly unreliable rewards R(x;ϕ) for out-of-distribution inputs. In our approach, we mitigate this
by providing off-policy trajectories within more reliable regions by injecting conservativeness into
off-policy search. Therefore, we minimize TB loss with δ-CS, which offers controllable conserva-
tiveness.

4 δ-CS: controllable conservativeness in off-policy search

This section introduces δ-Conservative Search (δ-CS), an off-policy search method that enables
controllable exploration through a conservative parameter δ. The parameter δ defines the Bernoulli
distribution governing the masking of tokens in a sequence. Our algorithm is iterations of the fol-
lowing:

• Sample high-score offline sequences x ∼ PDt−1
(x) from the rank-based reweighted prior.

• Inject noise by masking tokens into x using the noise injection policy Pnoise(x̃ | x, δ).
• Denoise the masked tokens using the denoising policy Pdenoise(x̂ | x̃; θ).

These trajectories are used to update the GFlowNet parameters θ by minimizing the loss function
LTB(τ ; θ). For more details on the algorithmic components of δ-CS and its integration with active
learning GFlowNets, see Algorithm 1.

Rank-based reweighted prior. First, we sample a reference sequence x from the prior distribution
PDt−1 . To exploit high-scoring sequences, we employ rank-based prioritization (Tripp et al., 2020).

w(x;Dt−1, k) ∝
1

kN + rankf,Dt−1
(x)

.

Here, rankf,Dt−1(x) is a relative rank of the value of f(x) in the datasetDt−1 with a weight-shifting
factor k; we fix k = 0.01. This assigns greater weight to sequences with higher ranks. Note that this
reweighted prior can also be used during proxy training.

4

Noise injection policy. Let x = (e1, e2, . . . , eL) denote the original sequence of length L. We
define a noise injection policy where each position i ∈ {1, 2, . . . , L} is independently masked ac-
cording to a Bernoulli distribution with parameter δ ∈ [0, 1], resulting in the masked sequence
x̃ = (ẽ1, ẽ2, . . . , ẽL). The noise injection policy Pnoise(x̃ | x, δ) is defined as:

Pnoise(x̃ | x, δ) =
L∏

i=1

[δ · I{ẽi = [MASK]}+ (1− δ) · I{ẽi = ei}] ,

where I{·} is the indicator function.

Denoising policy. We employ the GFlowNet forward policy PF to sequentially reconstruct the
masked sequence x̃ = (ẽ1, ẽ2, . . . , ẽL) by predicting tokens from left to right. The probability of
denoising next token ẽt from previously denoised subsquence ŝt−1 is:

Pdenoise(êt | ŝt−1, x̃; θ) =

{
I{êt = ẽt}, if ẽt ̸= [MASK],
PF (ŝt = (ŝt−1, êt) | ŝt−1; θ), if ẽt = [MASK].

The fully reconstructed sequence x̂ = ŝL is obtained by sampling from:

Pdenoise(x̂ | x̃; θ) =
L∏

t=1

Pdenoise(êt | ŝt−1, x̃; θ).

By denoising the masked tokens with the GFlowNet policy, which infers each token sequentially
from left to right, we generate new sequences x̂ that balance novelty and conservativeness through
the parameter δ.

4.1 Adjusting conservativeness parameter δ

Determining the conservative parameter δ is a crucial aspect of the algorithm. We propose and study
two variants, constant and adaptive δ.

Constant. As a simple approach, we set δ as a constant, selecting it to have the noise policy mask
4–15 tokens per sequence. Despite its simplicity, this choice effectively enhances policy training and
leads to the discovery of high-scoring sequences during active rounds; we provide further studies on
δ-CS with a constant δ in Appendix B.

Adaptive. Another intuitive approach is to adjust δ based on the uncertainty of the proxy σ on
each sequence x, that is δ(x;σ). Specifically, we define a function that assigns lower δ values for
highly uncertain samples and vice versa: δ(x;σ) = δconst − λσ(x). We estimate σ(x), the standard
deviation of the proxy model fϕ(x), via MC dropout (Gal & Ghahramani, 2016) or an ensemble
method (Lakshminarayanan et al., 2017). λ is a scaling factor and related to the influence of the
proxy uncertainty on δ; we set it to satisfy λσ ≈ 1

L based on the observations from the initial round.

In our main experiments, we use adaptive δ(x, σ) as the default setup.

5 Related work

Designing biological sequences using machine learning methods is widely studied. Bayesian
optimization methods (Mockus, 2005; Belanger et al., 2019; Zhang et al., 2022) exploit posterior
inference over newly acquired data points to update a Bayesian proxy model that can measure useful
uncertainty. However, these methods usually suffer from scalability issues due to the complexity
of the Gaussian process (GP) kernel (Belanger et al., 2019) or the difficulty of sampling from an
intractable posterior (Zhang et al., 2022).

Offline model-based optimization (MBO) (Kumar & Levine, 2020; Trabucco et al., 2021; Yu et al.,
2021; Chen et al., 2022; Kim et al., 2023; Chen et al., 2023a; Yun et al., 2024) also addresses the
design of biological sequences using offline datasets only, which can be highly efficient because
they do not require oracle queries. These approaches have reported meaningful findings, such as the
conservative requirements on proxy models since proxy models tend to give high rewards on unseen
samples (Trabucco et al., 2021; Yu et al., 2021; Yuan et al., 2023; Chen et al., 2023b). This supports

5

our approach of adaptive conservatism in the search process. Surana et al. (2024) recently noted that
offline design and existing benchmarks are insufficient to reflect biological reliability, indicating that
settings without additional Oracle queries might be too idealistic.

Reinforcement learning methods, such as DyNA PPO (Angermueller et al., 2020) and GFlowNets
(Bengio et al., 2021; Jain et al., 2022, 2023; Hernández-Garcı́a et al., 2024), and sampling with
generative models (Brookes & Listgarten, 2018; Brookes et al., 2019; Das et al., 2021; Song & Li,
2023) aim to search the biological sequence space using a sequential decision-making process with
a policy, starting from scratch. Similarly, sampling with generative models (Brookes & Listgarten,
2018; Brookes et al., 2019; Song & Li, 2023) searches the sequence space using generative mod-
els like VAE (Kingma & Welling, 2014). While these approaches allow for the creation of novel
sequences, as sequences are generated from scratch, they are relatively prone to incomplete proxy
models, particularly in regions where the proxy is misclassified due to being out-of-distribution.

An alternative line of research is evolutionary search (Arnold, 1998; Bloom & Arnold, 2009;
Schreiber et al., 2020; Sinai et al., 2020; Ren et al., 2022; Ghari et al., 2023; Kirjner et al., 2024), a
popular method in biological sequence design. Especially Ghari et al. (2023) proposed GFNSeqEd-
itor, which utilizes GFlowNets as prior distribution to edit biological sequences as an evolutionary
search. Evolutionary search methods iteratively edit given sequences and constrain the new se-
quences so as not to deviate too far from the seed sequence; they usually start from the wild-type,
which occurs in nature. This can be viewed as constrained optimization, where out-of-distribution
for the proxy model can lead to unrealistic and low-score biological sequences. Consequently, they
do not aim to produce highly novel sequences. Our method can be seen as a hybrid of off-policy RL
and evolutionary search, capitalizing on both the high novelty offered by GFlowNets and the high
rewards with out-of-distribution robustness provided by constrained search where they are properly
balanced by δ. Our experimental comparison with GFNSeqEditor (Ghari et al., 2023) demonstrates
this hybridization balanced by δ enables us to discover sequences with greater novelty and higher
rewards rather than merely using the GFlowNet policy as editing priors.

6 Experiments

Following the FLEXS benchmark (Sinai et al., 2020),1 we evaluate our proposed method on various
biological sequence design tasks. Furthermore, we analyze the effect of δ-CS by directly comparing
with GFN-AL on TF-Bind-8 and an anti-microbial peptide design in Section 6.6. For each experi-
ment, we conduct five independent runs.

Implementation details. For proxy models, we employ a convolutional neural network (CNN) with
one-dimensional convolutions (Sinai et al., 2020) with a UCB acquisition function and an ensemble
of three network instances to measure the uncertainty. Note that we use the same architecture to
implement proxy models for all baselines. For the GFlowNet policy, we use a simple two-layer
long short-term memory (LSTM) network (Hochreiter & Schmidhuber, 1997) and train the policy
with 1,000 inner-loop updates using a learning rate of 5× 10−4 with a batch size of 256. However,
in TF-Bind-8 and AMP, where we analyze the effectiveness of δ-CS compared to GFN-AL, we
directly implement δ-CS on top of the GFN-AL implementation. Lastly, we set δ and λ according
to the description in Section 4; specifically, δ = 0.5 for tasks with L ≤ 50 and δ = 0.05 for
long-sequences. More details are provided in Appendix A.2.

Baselines. As our baseline methods, we employ representative exploration algorithms. Further
details are provided in Appendix A.3.
• AdaLead (Sinai et al., 2020) is a well-implemented model-guided evaluation method with a hill-

climbing algorithm.
• Bayesian optimization (BO; Snoek et al., 2012) is a classical algorithm for black-box optimiza-

tion. We employ the BO algorithm with a sparse sampling of the mutation space implemented by
Sinai et al. (2020).

• CMA-ES (Hansen, 2006) is another well-known evolutionary algorithm that optimizes a contin-
uous relaxation of one-hot vectors encoding sequence with the covariance matrix.

• CbAS (Brookes et al., 2019) and DbAS (Brookes & Listgarten, 2018) are probabilistic frame-
works that use model-based adaptive sampling with a variational autoencoder (VAE; Kingma &

1FLEXS (Fitness Landscape EXploration Sandbox) is a widely-used open-source simulation environment
for biological sequence design, which is available at https://github.com/samsinai/FLEXS.

6

https://github.com/samsinai/FLEXS

Table 1: Maximum rewards achieved by each baseline method across six tasks, with the sequence
length (L) for each task specified. The mean and standard deviation from five runs are reported.
The highest values for each task are highlighted in bold.

RNA-A
(L = 14)

RNA-B
(L = 14)

RNA-C
(L = 14)

TF-Bind-8
(L = 8)

GFP
(L = 238)

AAV
(L = 90)

AdaLead 0.968 ± 0.070 0.965 ± 0.033 0.723 ± 0.057 0.995 ± 0.004 3.581 ± 0.004 0.565 ± 0.027
BO 0.722 ± 0.025 0.720 ± 0.032 0.506 ± 0.003 0.977 ± 0.008 3.572 ± 0.000 0.500 ± 0.000
CMA-ES 0.816 ± 0.030 0.850 ± 0.063 0.496 ± 0.041 0.986 ± 0.008 3.572 ± 0.000 0.500 ± 0.000
CbAS 0.678 ± 0.020 0.668 ± 0.021 0.492 ± 0.018 0.988 ± 0.004 3.572 ± 0.000 0.500 ± 0.000
DbAS 0.670 ± 0.041 0.652 ± 0.021 0.495 ± 0.010 0.987 ± 0.004 3.572 ± 0.000 0.500 ± 0.000
DyNA PPO 0.737 ± 0.022 0.730 ± 0.088 0.478 ± 0.015 0.977 ± 0.013 3.572 ± 0.000 0.500 ± 0.000
GFN-AL 1.030 ± 0.024 1.001 ± 0.016 0.774 ± 0.004 0.976 ± 0.002 3.578 ± 0.003 0.560 ± 0.008

GFN-AL + δ-CS 1.055 ± 0.000 1.014 ± 0.001 0.972 ± 0.043 0.981 ± 0.002 3.592 ± 0.003 0.708 ± 0.010

0 2 4 6 8 10

0.2

0.4

0.6

0.8

Sc
or

e

RNA-A

0 2 4 6 8 10

0.2

0.4

0.6

0.8

RNA-B

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1.0
RNA-C

0 2 4 6 8 10
Rounds

0.6

0.8

1.0

Sc
or

e

TF-Bind-8

0 2 4 6 8 10
Rounds

3.40

3.45

3.50

3.55

GFP

0 2 4 6 8 10
Rounds

0.50

0.55

0.60

0.65

AAV

Ours GFN-AL AdaLead CbAS DbAS DynaPPO CMAES BO

Figure 2: Median scores of Top-128 over active rounds. Ours (GFN-AL + δ-CS) consistently out-
performs baseline in RNA, DNA (TF-Bind-8), and protein (GFP and AAV) design tasks.

Welling, 2014). Notably, CbAS restricts the search space with a trust-region search similar to the
proposed method.

• DyNA PPO (Angermueller et al., 2020) uses proximal policy optimization (PPO; Schulman et al.,
2017), an on-policy training method.

• GFN-AL (Jain et al., 2022) is our main baseline that uses GFN with Bayesian active learning.

For each task, we conduct 10 active learning rounds starting from the initial dataset D0. The query
batch size is all set as 128 except for the AMP design, whose query size is 1,000. Further details of
each task are provided in the following subsections. To evaluate the performance, we measure the
maximum, median, and mean scores of Top-K sequences.

6.1 RNA sequence design

Task setup. The goal is to design an RNA sequence that binds to the target with the lowest binding
energy, which is measured by ViennaRNA (Lorenz et al., 2011). The length (L) of RNA is set to
14, with 4 tokens. In this paper, we have three RNA binding tasks, RNA-A, RNA-B, and RNA-C,
whose initial datasets consist of 5,000 randomly generated sequences with certain thresholds; we
adopt the offline dataset provided in Kim et al. (2023). We use δ = 0.5 and λ = 5, according to the
guidelines in Section 4.

Results. As shown in Figure 2 and Table 1, our method outperforms all baseline approaches. The
curve in Figure 2 increases significantly faster than the other methods, indicating that δ-CS effec-
tively trains the policy and generates appropriate queries in each active round. More results are
provided in Appendix C.1.

7

Table 2: Results on AMP with different acquisition functions (UCB, EI). The mean and standard
deviation from five runs are reported. Improved results with δ-CS over GFN-AL are marked in bold.

Max Mean Diversity Novelty

COMs 0.930 ± 0.001 0.920 ± 0.000 0.000 ± 0.000 11.869 ± 0.298
DyNA PPO 0.953 ± 0.005 0.941 ± 0.012 15.186 ± 5.109 16.556 ± 3.653

GFN-AL (UCB) 0.936 ± 0.004 0.919 ± 0.005 28.504 ± 2.691 19.220 ± 1.369
GFN-AL + δ-CS (UCB) 0.948 ± 0.015 0.938 ± 0.016 25.379 ± 3.735 23.551 ± 1.290

GFN-AL (EI) 0.950 ± 0.002 0.940 ± 0.003 15.576 ± 7.896 21.810 ± 4.165
GFN-AL + δ-CS (EI) 0.962 ± 0.003 0.958 ± 0.004 16.631 ± 2.135 24.946 ± 4.246

6.2 DNA sequence design

Task setup. In this task, we aim to generate diverse and novel DNA sequences that maximize the
binding affinity to the target transcription factor. The length (L) of the sequence is fixed with 8.
The initial dataset D0 is the bottom 50% in terms of the reward, which results in 32, 898 samples,
with the maximum score of 0.439. Though this has been widely used in many studies (Sinai et al.,
2020; Jain et al., 2022; Trabucco et al., 2022; Kim et al., 2023), the TF-Bind-8 is easy to optimize,
especially due to its size (Sinai et al., 2020). Similar to RNA, we use δ = 0.5 and λ = 5.

Results. As shown in Table 1, Adalead achieves the highest maximum performance, while δ-CS still
outperforms GFN-AL. We believe that Adalead’s greedy evolutionary search capability was crucial
in the small search space of TF-bind-8. However, in Figure 2, δ-CS demonstrates the best median
performance compared to the other baselines; see the mean, diversity, and novelty in Appendix C.2.

6.3 Protein sequence design

We consider two protein sequence design tasks: the green fluorescent protein (GFP; Sarkisyan et al.,
2016) and additive adeno-associated virus (AAV; Ogden et al., 2019).

GFP. The objective is to identify protein sequences with high log-fluorescence intensity values.2
The vocabulary is defined as 20 standard amino acids, i.e., |V| = 20, and the sequence length L is
238; thus, we set δ as 0.05 and λ as 0.1, according to our guideline. The initial datasets are generated
by randomly mutating the provided wild-type sequence for each task while filtering out sequences
that have higher scores than the wild-type; we obtain the initial dataset with |D0| = 10 200 with a
maximum score value of 3.572.

AAV. The aim is to discover sequences that lead to higher gene therapeutic efficiency. The sequences
are composed of the 20 standard amino acids with a length of 90, resulting in the search space of
2090. In the same way as in GFP, we collect an initial dataset of 15,307 sequences with a maximum
score of 0.500. We use δ = 0.05 and λ = 1.

Results. Table 1 shows the results of all methods in protein sequence design tasks. Given the
combinatorially vast design space with sequence lengths L = 238 and 90, most baselines fail to
discover new sequences whose score is higher than the maximum of the dataset. In contrast, as
depicted in Figure 2, our method finds high-score sequences beyond the dataset, even with a single
active round. This underscores the superiority of our search strategy in practical biological sequence
design tasks. Full results are provided in Appendix C.3.

6.4 Anti-microbial peptide design

Task setup. The goal is to generate protein sequences with anti-microbial properties (AMP). The
vocabulary size |V| = 20, and the sequence length (L) varies across sequences, and we consider
sequences of length 50 or lower. For the AMP task, we consider a much larger query batch size for
each active round because they can be efficiently synthesized and evaluated (Jain et al., 2022). We
set δ as 0.5 with λ = 1.

Results. The results in Table 3 illustrate that ours consistently gives improved performance over
GFN-AL regardless of acquisition function. According to the work from Jain et al. (2022), we

2The score is evaluated by ML oracle models. FLEXS uses TAPE (Rao et al., 2019) for evaluation, while
Design Bench Transformer (Trabucco et al., 2022) is employed in GFN-AL.

8

5 6 7
Diversity

0.80

0.85

0.90

0.95

Av
g.

 S
co

re

RNA-A (L = 14)

Ours GFN-AL GFNSeqEditor

30 40 50 60
Diversity

3.50

3.52

3.54

3.56

Av
g.

 S
co

re

GFP (L = 238)

5.0 7.5 10.0 12.5
Diversity

0.48

0.54

0.60

0.66

Av
g.

 S
co

re

AAV (L = 90)

7.2 7.4 7.6
Novelty

0.80

0.85

0.90

0.95

Av
g.

 S
co

re

0 5 10 15 20
Novelty

3.50

3.52

3.54

3.56

Av
g.

 S
co

re
0.0 2.5 5.0 7.5 10.0

Novelty

0.48

0.54

0.60

0.66

Av
g.

 S
co

re

Figure 3: Average score and diversity/novelty with five independent runs. Our method (GFN-AL
+ δ-CS) consistently approaches Pareto frontier performance. We set δ = 0.5 for short sequences
(L ≤ 50) and set δ = 0.05 for long length sequences (L > 50).

also adopt conservative model-based optimization method, (COMs; Trabucco et al., 2021) and on-
policy reinforcement learning, DyNA PPO (Angermueller et al., 2020) as baselines. Our method
demonstrated significantly higher performance in terms of mean, diversity, and novelty compared to
the baselines.

6.5 Achieving Pareto frontier with balancing capability of δ-CS

In this analysis, we demonstrate that δ-CS achieves a balanced search using δ, producing Pareto fron-
tiers or comparable results to the baseline methods: GFN-AL (Jain et al., 2022) and GFNSeqEditor
(Ghari et al., 2023). Notably, GFN-AL can be seen as a variant of our method with δ = 1, which
fully utilizes the entire trajectory search. This approach is expected to yield high novelty and diver-
sity, but it is also prone to generating high rewards due to the increased risk of out-of-distribution
samples affecting the proxy model. GFNSeqEditor, on the other hand, leverages GFlowNets as
a prior, editing from a wild-type sequence. It is designed to deliver reliable performance and be
more robust to out-of-distribution issues by constraining the search to sequences similar to the wild
type. However, unlike δ-CS, GFNSeqEditor does not utilize such obtained samples for training
GFlowNets in full trajectory level; GFNSeqEditor is expected to have lower diversity and novelty
compared to GFN-AL and δ-CS.

As shown in Fig. 3, GFN-AL generally produces higher diversity and novelty in the RNA and GFP
tasks compared to GFNSeqEditor. However, GFNSeqEditor performs better in terms of reward on
the large-scale GFP task, whereas GFN-AL struggles due to the lack of a constrained search pro-
cedure in such a large combinatorial space. In contrast, δ-CS achieves Pareto-optimal performance
compared to both methods, clearly outperforming GFNSeqEditor across six tasks, with higher re-
wards, diversity, and novelty. For the RNA and GFP tasks, we achieve higher scores than GFN-AL
while maintaining similar novelty but slightly lower diversity. In the AAV task, δ-CS shows a distinct
Pareto improvement. These results demonstrate that δ-CS provides a beneficial balance by combin-
ing conservative search with amortized inference on full trajectories using off-policy GFlowNets
training, effectively capturing the strengths of both GFN-AL and GFNSeqEditor.

6.6 Study on proxy failure and conservativeness effect

Task: Hard TF-Bind-8. By modifying the initial dataset distribution and the landscape, we can
make a harder version of TF-Bind-8. Specifically, we collect the initial dataset near a certain se-
quence (considered as a wild-type) while ensuring that the initial sequences have lower scores than
the given sequence, which is 0.431. The size of D0 is 1,024. Furthermore, we modify the landscape
to give 0 rewards for sequences with scores lower than 0.3. These features are often observed in pro-

9

0.0 0.2 0.4 0.6 0.8 1.0
True Score

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 S
co

re

y = xx D0

(a) Proxy vs. true scores at t = 1

0 1 2 8
Edit distances

0.0

0.2

0.4

0.6

0.8

C
or

re
la

tio
n

(b) ρ(f, fϕ)
Figure 4: Proxy failure on Hard TF-Bind-8. (a) shows the proxy values (i.e., reward) and true score
on the whole data point at the initial round. In (b), the correlation between f and fϕ is much higher
when the data points are close to the initial dataset (‘≤ 0’ and ‘≤ 8’ correspond to the initial dataset
and the whole sequence space, respectively).

tein design tasks, where the search space is extremely large, e.g., 20238 previously–with a limited
real-world dataset, and the score often falls to 0.

Proxy failure. As shown in Figure 2, δ-CS gives slightly better performance than GFN-AL, but
only marginally. This is because the TF-Bind-8 task is relatively easy to optimize, leading to similar
results across methods. To more clearly assess the effectiveness of δ-CS, we conduct several studies
on the harder TF-Bind-8 task, which is more difficult to optimize. Figure 4a illustrates the proxy
values and true scores for all x ∈ X in the first round. While the proxy provides accurate predictions
for the initial data points x ∈ D0 (represented by the red dots), it produces unreliable predictions
for points outside D0. This supports our hypothesis that the proxy model performs poorly on out-
of-distribution data.

Effect of δ conservativeness. Figure 4b illustrates that the correlation between the oracle f and the
proxy fϕ significantly decreases as data points move farther from the observed dataset. This strongly
motivates the use of δ-CS, which constrains the search bounds using δ. By limiting the search to
within these constrained edit distances, δ-CS enhances the correlation with the oracle.

Studies on δ. We study on the choice of δ and effectiveness of adaptive δ(x, σ), in Appendix B.2.

7 Conclusions

In this paper, we introduced a novel off-policy sampling method for GFlowNets, called δ-CS, which
provides controllable conservativeness through the use of a δ parameter. Additionally, we proposed
an adaptive conservativeness approach by adjusting δ for each data point based on prediction uncer-
tainty. We demonstrated the effectiveness of δ-CS in active learning GFlowNets, achieving strong
performance across various biological sequence design tasks, consistently outperforming existing
baselines.

References
Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy

Colwell. Model-based reinforcement learning for biological sequence design. In International
Conference on Learning Representations (ICLR), 2020.

Frances H Arnold. Design by directed evolution. Accounts of chemical research, 31(3):125–131,
1998.

Luis A Barrera, Anastasia Vedenko, Jesse V Kurland, Julia M Rogers, Stephen S Gisselbrecht,
Elizabeth J Rossin, Jaie Woodard, Luca Mariani, Kian Hong Kock, Sachi Inukai, et al. Survey
of variation in human transcription factors reveals prevalent DNA binding changes. Science, 351
(6280):1450–1454, 2016.

David Belanger, Suhani Vora, Zelda Mariet, Ramya Deshpande, David Dohan, Christof Anger-
mueller, Kevin Murphy, Olivier Chapelle, and Lucy Colwell. Biological sequence design using

10

batched Bayesian optimization. In NeurIPS 2019 Workshop on Machine Learning and the Physi-
cal Sciences, 2019.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Jesse D Bloom and Frances H Arnold. In the light of directed evolution: pathways of adaptive
protein evolution. Proceedings of the National Academy of Sciences, 106:9995–10000, 2009.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In Proceedings of the 36th International Conference on Machine Learning (ICML),
2019.

David H Brookes and Jennifer Listgarten. Design by adaptive sampling. arXiv preprint
arXiv:1810.03714, 2018.

Can Chen, Yingxueff Zhang, Jie Fu, Xue (Steve) Liu, and Mark Coates. Bidirectional learning for
offline infinite-width model-based optimization. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Can Chen, Yingxue Zhang, Xue Liu, and Mark Coates. Bidirectional learning for offline model-
based biological sequence design. In International Conference on Machine Learning (ICML),
2023a.

Can (Sam) Chen, Christopher Beckham, Zixuan Liu, Xue (Steve) Liu, and Chris Pal. Parallel-
mentoring for offline model-based optimization. In Advances in Neural Information Processing
Systems (NeurIPS), volume 36, pp. 76619–76636, 2023b.

Payel Das, Tom Sercu, Kahini Wadhawan, Inkit Padhi, Sebastian Gehrmann, Flaviu Cipcigan, Vijil
Chenthamarakshan, Hendrik Strobelt, Cicero Dos Santos, Pin-Yu Chen, et al. Accelerated an-
timicrobial discovery via deep generative models and molecular dynamics simulations. Nature
Biomedical Engineering, 5(6):613–623, 2021.

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete prob-
abilistic inference as control in multi-path environments. In Uncertainty in Artificial Intelligence
(UAI), 2024.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of The 33rd International Conference on Machine
Learning (ICML), 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data.
In Proceedings of the 34th International Conference on Machine Learning (ICML), 2017.

Pouya M. Ghari, Alex Tseng, Gökcen Eraslan, Romain Lopez, Tommaso Biancalani, Gabriele
Scalia, and Ehsan Hajiramezanali. Generative flow networks assisted biological sequence edit-
ing. In NeurIPS 2023 Generative AI and Biology (GenBio) Workshop, 2023. URL https:
//openreview.net/forum?id=9BQ3l8OVru.

Nikolaus Hansen. The CMA evolution strategy: a comparing review. Towards a New Evolutionary
Computation: Advances in the Estimation of Distribution Algorithms, pp. 75–102, 2006.

Alex Hernández-Garcı́a, Nikita Saxena, Moksh Jain, Cheng-Hao Liu, and Yoshua Bengio. Multi-
fidelity active learning with GFlowNets. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=dLaazW9zuF. Expert Certifica-
tion.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with GFlowNets. In International Conference on Machine Learning
(ICML), 2022.

11

https://openreview.net/forum?id=9BQ3l8OVru
https://openreview.net/forum?id=9BQ3l8OVru
https://openreview.net/forum?id=dLaazW9zuF

Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcıa, Jarrid Rector-Brooks, Yoshua Ben-
gio, Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. In International Confer-
ence on Machine Learning (ICML), 2023.

Minsu Kim, Federico Berto, Sungsoo Ahn, and Jinkyoo Park. Bootstrapped training of score-
conditioned generator for offline design of biological sequences. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. International Conference on
Learning Representations (ICLR), 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014.

Andrew Kirjner, Jason Yim, Raman Samusevich, Shahar Bracha, Tommi S. Jaakkola, Regina Barzi-
lay, and Ila R Fiete. Improving protein optimization with smoothed fitness landscapes. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. Ad-
vances in neural information processing systems (NeurIPS), 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems (NIPS), 2017.

Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph
Flamm, Peter F Stadler, and Ivo L Hofacker. ViennaRNA package 2.0. Algorithms for molecular
biology, 6:1–14, 2011.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory bal-
ance: Improved credit assignment in GFlowNets. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Jonas Mockus. The bayesian approach to global optimization. In System Modeling and Optimiza-
tion: Proceedings of the 10th IFIP Conference New York City, USA, August 31–September 4,
1981, pp. 473–481. Springer, 2005.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. In Advances in Neural Information Processing
Systems (NIPS), 2017.

Pierce J Ogden, Eric D Kelsic, Sam Sinai, and George M Church. Comprehensive AAV capsid
fitness landscape reveals a viral gene and enables machine-guided design. Science, 366(6469):
1139–1143, 2019.

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter
Abbeel, and Yun Song. Evaluating protein transfer learning with TAPE. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2019.

Zhizhou Ren, Jiahan Li, Fan Ding, Yuan Zhou, Jianzhu Ma, and Jian Peng. Proximal exploration
for model-guided protein sequence design. In Proceedings of the 39th International Conference
on Machine Learning (ICML), 2022.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
Thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and
Georg Seelig. Human 5 UTR design and variant effect prediction from a massively parallel
translation assay. Nature Biotechnology, 37(7):803–809, 2019.

Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin,
George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soyle-
mez, et al. Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397–401,
2016.

12

Jacob Schreiber, Yang Young Lu, and William Stafford Noble. Ledidi: Designing genomic edits
that induce functional activity. BioRxiv, pp. 2020–05, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D Kelsic.
AdaLead: A simple and robust adaptive greedy search algorithm for sequence design. arXiv
preprint arXiv:2010.02141, 2020.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems (NIPS), 2012.

Zhenqiao Song and Lei Li. Importance weighted expectation-maximization for protein sequence
design. In Proceedings of the 40th International Conference on Machine Learning, 2023.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: no regret and experimental design. In International Conference on
Machine Learning (ICML), 2010.

Shikha Surana, Nathan Grinsztajn, Timothy Atkinson, Paul Duckworth, and Thomas D Barrett.
Overconfident oracles: Limitations of in silico sequence design benchmarking. In ICML 2024 AI
for Science Workshop, 2024. URL https://openreview.net/forum?id=fPBCnJKXUb.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry Vetrov. Generative flow networks as
entropy-regularized RL. Artificial Intelligence and Statistics (AISTATS), 2024.

Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective mod-
els for effective offline model-based optimization. In International Conference on Machine Learn-
ing (ICML), 2021.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-Bench: Benchmarks
for data-driven offline model-based optimization. In International Conference on Machine Learn-
ing (ICML), 2022.

Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization
in the latent space of deep generative models via weighted retraining. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Sihyun Yu, Sungsoo Ahn, Le Song, and Jinwoo Shin. RoMA: Robust model adaptation for offline
model-based optimization. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Ye Yuan, Can (Sam) Chen, Zixuan Liu, Willie Neiswanger, and Xue (Steve) Liu. Importance-aware
co-teaching for offline model-based optimization. In Advances in Neural Information Processing
Systems (NeurIPS), volume 36, pp. 55718–55733, 2023.

Taeyoung Yun, Sujin Yun, Jaewoo Lee, and Jinkyoo Park. Guided trajectory generation with dif-
fusion models for offline model-based optimization. Advances in Neural Information Processing
Systems (NeurIPS), 2024.

Dinghuai Zhang, Jie Fu, Yoshua Bengio, and Aaron Courville. Unifying likelihood-free inference
with black-box sequence design and beyond. In International Conference on Learning Represen-
tations (ICLR), 2022.

Marc Zimmer. Green fluorescent protein (GFP): applications, structure, and related photophysical
behavior. Chemical reviews, 102(3):759–782, 2002.

13

https://openreview.net/forum?id=fPBCnJKXUb

Algorithm 1 Active Learning GFlowNets with δ-CS
1: Input: Oracle f , initial dataset D0, active rounds T , query size B, training batch size 2×M .
2: procedure δ-CS (Dt−1,M, δ) ▷ δ-CS subroutine
3: sample high reward data x1, . . . , xM with rank-based reweighed prior PDt−1(·).
4: obtain masked data x̃1, . . . , x̃M with noise injection policy Pnoise(̃·|·, δ) from x1, . . . , xM .
5: obtain denoised x̂1, . . . , x̂M with denoising policy Pdenoise(̂· | ·̃; θ) from x̃1, . . . , x̃M .
6: return x̂1, . . . , x̂M .
7: end procedure
8: for t = 1 to T do ▷ Active learning with T rounds
9: while proxy training iterations do ▷ Step A: Proxy training

10: train proxy fϕ(x) with current round dataset Dt−1:

L(ϕ) = Ex∼PDt−1
(x)

[
(f(x)− fϕ(x))

2] .
11: end while
12: while policy training iterations do ▷ Step B: Policy training
13: obtain off-policy trajectories τ̂1, . . . , τ̂M from x̂1, . . . , x̂M given by δ-CS (Dt−1,M, δ).
14: obtain offline trajectory τ1, . . . , τM from x1, . . . , xM ∼ PDt−1(τ).
15: train θ with TB loss over τ̂1, . . . , τ̂M and τ1, . . . , τM

1

2M

M∑
i=1

(
log

ZθPF (τi; θ)

R(xi;ϕ)

)2

+
1

2M

M∑
i=1

(
log

ZθPF (τ̂i; θ)

R(x̂i;ϕ)

)2

.

16: end while
17: obtain query samples x̂1, . . . , x̂B from δ-CS (Dt−1, B, δ).
18: Dt ← Dt−1 ∪ {(x̂i, f(x̂i))}Bi=1. ▷ Step C: Dataset augmentation with oracle f query
19: end for

A Implementation detail

A.1 Proxy training

For training proxy models, we follow the procedure of (Jain et al., 2022). We use Adam (Kingma,
2015) optimizer with learning rate 1 × 10−5 and batch size of 256. To prevent over-fitting, we use
early stopping using the 10% of the dataset as a validation set and terminate the training procedure
if validation loss does not improve for five consecutive iterations.

A.2 Policy training

As described in Section 6, we employ a two-layer long short-term memory (LSTM; Hochreiter
& Schmidhuber, 1997) with 512 hidden dimensions. The policy is trained with a learning rate of
5 × 10−4 with a batch size of 256. The learning rate of Z is set as 10−3. The coefficient κ in
Equation (2) is set as 0.1 for TF-Bind-8 and AMP with MC dropout, according to Jain et al. (2022),
and 1.0 for RNA and protein design with Ensemble following Ren et al. (2022).

A.3 Implementation details of baselines

We adopt open-source code from FLEXS benchmark (Sinai et al., 2020).

• AdaLead (Sinai et al., 2020): We use a default settings of hyperparmeters for AdaLead. Specif-
ically, we use a recombination rate of 0.2, mutation rate of 1/L, where L is sequence length, and
threshold τ = 0.05.

• DbAS (Brookes & Listgarten, 2018): We implement DbAS with variational autoencoder (VAE;
Kingma & Welling, 2014) as the generator. The input is a one-hot encoding vector, and the
output latent dimension is 2. In each cycle, DbAS starts by training the VAE with the top 20%
sequences in terms of the score.

• CbAS (Brookes et al., 2019): Similar to DbAS, we implement CbAS with VAE. The main differ-
ence from DbAS is that we select top 20% sequences with the weights p(x|z, θ(0))/q(x|z, ϕ(t)),

14

where p(·; θ(0)) is trained with the ground-truth samples and q(·;ϕ(t)) is trained on the generated
sequences over t training rounds.

• DyNA PPO (Angermueller et al., 2020): We closely follow the algorithm presented in (Anger-
mueller et al., 2020). For a fair comparison, we use CNN ensembles to parameterize the proxy
model instead of suggested architectures.

• CMA-ES (Hansen, 2006): We implement a covariance matrix adaptation evolution strategy
(CMA-ES) for sequence generation. As the generated samples from CMA-ES are continuous,
we convert the continuous vectors into one-hot representation by computing the argmax at each
sequence position.

• BO (Snoek et al., 2012): We use classical GP-BO algorithm for all tasks. For Gaussian Process
Regressor (GPR), we use a default setting from the sklearn library. For the acquisition function,
they use Thompson sampling (Russo et al., 2018).

Furthermore, we employ GFN-AL and GFNSeqEditor. We adopt the original implementation and
setup for TF-Bind-8 and AMP. For newly added tasks, we report better results among the original
MLP policy and the LSTM policy. Note that GFP in FLEXS is different from the one employed in
GFA-AL; we treat this as a new task based on the observation in the work from Surana et al. (2024).

• GFN-AL (Jain et al., 2022): We strictly follow hyperparameters of the original code in they
conduct experiments on TF-Bind-8 and AMP. The proxy is parameterized using an MLP with
two layers of 2,048 hidden. For the policy, a 2-layer MLP with 2,048 hidden dimensions is used,
but we also test it with a 2-layer LSTM policy.

• GFNSeqEditor (Ghari et al., 2023): We implemented the editing procedure on top of the GFN-
AL. Note that GFNSeqEditor does not utilize the proxy model, so the GFlowNets policy is
trained using offline data only with the same policy training procedure of GFN-AL. GFNSe-
qEditor can also implicitly control the edit percentage with its hyperparameters, which are set
δ = 0.01, σ = 0.0001, λ = 0.1 in this study. Note that δ is not the conservativeness parameter.

15

Table 3: Results on AMP with different acquisition functions (UCB, EI). The mean and standard
deviation from five runs are reported. Improved results with δ-CS over GFN-AL are marked in bold.

Max Mean Diversity Novelty

COMs 0.930 ± 0.001 0.920 ± 0.000 0.000 ± 0.000 11.869 ± 0.298
DyNA PPO 0.953 ± 0.005 0.941 ± 0.012 15.186 ± 5.109 16.556 ± 3.653

GFN-AL (UCB) 0.936 ± 0.004 0.919 ± 0.005 28.504 ± 2.691 19.220 ± 1.369
GFN-AL + δ-CS (UCB) 0.948 ± 0.015 0.938 ± 0.016 25.379 ± 3.735 23.551 ± 1.290

GFN-AL (EI) 0.950 ± 0.002 0.940 ± 0.003 15.576 ± 7.896 21.810 ± 4.165
GFN-AL + δ-CS (EI) 0.962 ± 0.003 0.958 ± 0.004 16.631 ± 2.135 24.946 ± 4.246

B Further studies

B.1 Anti-microbial peptide design

Task setup. The goal is to generate protein sequences with anti-microbial properties (AMP). The
vocabulary size |V| = 20, and the sequence length (L) varies across sequences, and we consider
sequences of length 50 or lower. For the AMP task, we consider a much larger query batch size for
each active round because they can be efficiently synthesized and evaluated (Jain et al., 2022). We
set δ as 0.5 with λ = 1.

B.2 Studies on effect of δ on Hard TF-Bind-8

2 4 6 8 10
Rounds

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ed

ia
n

Sc
or

e

GFN-AL
= 1
= 0.75
= 0.5
= 0.25

(a) Median scores with various fixed δ

2 4 6 8 10
Rounds

0.5

0.6

0.7

0.8

0.9

1.0

M
ed

ia
n

Sc
or

e

= 0.75
= 0.5
= 0.25
= 0.75
= 0.5
= 0.25

(b) Effect of adaptive control

Figure 5: Median score over rounds on Hard TF-Bind-8.

To verify its effectiveness and give intuition about how to set δ, we conduct experiments with various
δ in Hard TF-Bind-8. The results show that δ-CS with δ < 1 can significantly outperform GFN-AL
by searching for data points that correlate better with the oracle. In the Hard TF-Bind-8 task, a more
conservative search with δ = 0.25 is beneficial since the proxy is unreliable in the early rounds. In
particular, ours with δ = 1 means the full on-policy search (no conservativenss). The performance
differences between δ = 1 and GFN-AL came from ϵ-noisy behavior policy, which selects random
actions with a probability of 0.001, in GFN-AL. Furthermore, using adaptive δ(x, σ) mostly gives
the improved scores as depicted in Figure 5b.

We further examine the effect of adaptive δ adjustment on RNA in the following section.

B.3 Studies on the effect of adaptive δ on RNA-A

We examine the effects of proxy uncertainty-based δ. In RNA, the average proxy standard deviation
σ̄ at the initial round is observed as 0.005 to 0.012. Therefore, we set λ = 5 to roughly make
λσ̄ ≈ 1/L, where L = 14. As illustrated in Figure 6, δ(x;σ) consistently gives the higher score.
However, the constant δ = 5 still outperforms all baselines, exhibiting the robustness of δ-CS.

16

2 4 6 8 10
Rounds

0.4

0.6

0.8

M
ed

ia
n

Sc
or

e

RNA-A

= 0.5
= 0.5

2 4 6 8 10
Rounds

0.4

0.5

0.6

0.7

0.8

0.9

M
ed

ia
n

Sc
or

e

RNA-B

= 0.5
= 0.5

2 4 6 8 10
Rounds

0.4

0.6

0.8

1.0

M
ed

ia
n

Sc
or

e

RNA-C

= 0.5
= 0.5

Figure 6: Effect of adaptive control on RNA

17

B.4 Balancing capability of δ on RNA

Similar to Section 6.5, we also verify the balancing capability of δ-CS on RNA-B and RNA-C. The
δ is set as 0.5.

5 6 7
Diversity

0.80

0.85

0.90

0.95

Av
g.

 S
co

re

RNA-A
Ours GFN-AL GFNSeqEditor

5.0 5.5 6.0 6.5 7.0
Diversity

0.84

0.88

0.92

Av
g.

 S
co

re

RNA-B

4 6 8
Diversity

0.80

0.88

0.96

Av
g.

 S
co

re

RNA-C

7.2 7.4 7.6
Novelty

0.80

0.85

0.90

0.95

Av
g.

 S
co

re

RNA-A

7.6 7.8 8.0
Novelty

0.84

0.88

0.92
Av

g.
 S

co
re

RNA-B

5.75 6.00 6.25 6.50 6.75
Novelty

0.80

0.88

0.96

Av
g.

 S
co

re

RNA-C

Figure 7: Average score and diversity/novelty with five independent runs on RNA design tasks.

B.5 Studies on rank-based reweighted sampling in proxy training

The rank-based reweighing also can be used in proxy training, i.e., x ∼ PDt−1
(x; k), where k is

a reweighting factor and fixed as 0.01 in this work. The results show that rank-based reweighted
proxy training improves performance mostly. However, the gap is small, and δ-CS still works well
even without reweighting.

Table 4: Ablation studies of rank-based reweighted proxy training
Max Median Mean Diversity Novelty

RNA-A with rank-based 1.055 ± 0.000 0.939 ± 0.008 0.947 ± 0.009 6.442 ± 0.525 7.406 ± 0.066
without rank-based 1.049 ± 0.010 0.936 ± 0.016 0.944 ± 0.015 5.782 ± 0.697 7.397 ± 0.098

RNA-B with rank-based 1.014 ± 0.001 0.929 ± 0.004 0.934 ± 0.003 5.644 ± 0.307 7.661 ± 0.064
without rank-based 1.009 ± 0.008 0.932 ± 0.012 0.938 ± 0.012 6.252 ± 0.291 7.673 ± 0.033

RNA-C with rank-based 1.094 ± 0.045 0.972 ± 0.043 0.983 ± 0.043 6.493 ± 1.751 6.494 ± 0.084
without rank-based 1.097 ± 0.022 0.958 ± 0.029 0.965 ± 0.031 5.472 ± 1.921 6.464 ± 0.192

18

C Full results of main results

C.1 Full results of RNA sequence design

0 2 4 6 8 10
Rounds

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Max Scores

0 2 4 6 8 10
Rounds

0.2

0.4

0.6

0.8

Median Scores

0 2 4 6 8 10
Rounds

0.2

0.4

0.6

0.8

Mean Scores

Ours
GFN-AL
AdaLead
CbAS
DbAS
DyNA PPO
CMA-ES
BO

Figure 8: The max, median, and mean curve over rounds in RNA-A

Table 5: The results of RNA-A after ten rounds.
Max Median Mean Diversity Novelty

AdaLead 0.968 ± 0.070 0.808 ± 0.049 0.817 ± 0.048 3.518 ± 0.446 6.888 ± 0.426
BO 0.722 ± 0.025 0.510 ± 0.008 0.528 ± 0.004 9.531 ± 0.062 5.842 ± 0.083
CMA-ES 0.816 ± 0.030 0.585 ± 0.016 0.599 ± 0.020 5.747 ± 0.110 6.373 ± 0.159
CbAS 0.678 ± 0.020 0.467 ± 0.009 0.481 ± 0.008 9.457 ± 0.189 5.428 ± 0.078
DbAS 0.670 ± 0.041 0.472 ± 0.016 0.485 ± 0.015 9.483 ± 0.100 5.450 ± 0.132
DyNA PPO 0.737 ± 0.022 0.507 ± 0.007 0.521 ± 0.009 8.889 ± 0.034 5.828 ± 0.095
GFN-AL 1.030 ± 0.024 0.838 ± 0.013 0.849 ± 0.013 6.983 ± 0.159 7.398 ± 0.024

GFN-AL + δ-CS 1.055 ± 0.000 0.939 ± 0.008 0.947 ± 0.009 6.442 ± 0.525 7.406 ± 0.066

0 2 4 6 8 10
Rounds

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Max Scores

0 2 4 6 8 10
Rounds

0.2

0.4

0.6

0.8

Median Scores

0 2 4 6 8 10
Rounds

0.2

0.4

0.6

0.8

Mean Scores

Ours
GFN-AL
AdaLead
CbAS
DbAS
DyNA PPO
CMA-ES
BO

Figure 9: The max, median, and mean curve over rounds in RNA-B

Table 6: The results of RNA-B after ten rounds.
Max Median Mean Diversity Novelty

AdaLead 0.965 ± 0.033 0.817 ± 0.036 0.828 ± 0.032 3.334 ± 0.423 7.441 ± 0.135
BO 0.720 ± 0.032 0.502 ± 0.013 0.517 ± 0.014 9.495 ± 0.103 5.903 ± 0.116
CMA-ES 0.850 ± 0.063 0.581 ± 0.028 0.602 ± 0.032 5.568 ± 0.365 6.480 ± 0.200
CbAS 0.668 ± 0.021 0.465 ± 0.005 0.477 ± 0.004 9.234 ± 0.356 5.523 ± 0.083
DbAS 0.652 ± 0.021 0.463 ± 0.019 0.475 ± 0.019 9.019 ± 0.648 5.537 ± 0.150
DyNA PPO 0.730 ± 0.088 0.481 ± 0.028 0.499 ± 0.029 8.978 ± 0.196 5.839 ± 0.198
GFN-AL 1.001 ± 0.016 0.858 ± 0.004 0.870 ± 0.006 6.599 ± 0.384 7.673 ± 0.043
GFN-AL + δ-CS 1.014 ± 0.001 0.929 ± 0.004 0.934 ± 0.003 5.644 ± 0.307 7.661 ± 0.064

C.2 Full results of TF-Bind-8

19

0 2 4 6 8 10
Rounds

0.2

0.4

0.6

0.8

1.0
Sc

or
e

Max Scores

0 2 4 6 8 10
Rounds

0.2

0.4

0.6

0.8

1.0
Median Scores

0 2 4 6 8 10
Rounds

0.2

0.4

0.6

0.8

1.0
Mean Scores

Ours
GFN-AL
AdaLead
CbAS
DbAS
DyNA PPO
CMA-ES
BO

Figure 10: The max, median, and mean curve over rounds in RNA-C

Table 7: The results of RNA-C after ten rounds.
Max Median Mean Diversity Novelty

AdaLead 0.867 ± 0.081 0.723 ± 0.057 0.735 ± 0.057 3.893 ± 0.444 5.856 ± 0.515
BO 0.694 ± 0.034 0.506 ± 0.003 0.519 ± 0.003 9.714 ± 0.054 5.430 ± 0.043
CMA-ES 0.753 ± 0.062 0.496 ± 0.041 0.521 ± 0.037 5.581 ± 0.399 5.019 ± 0.294
CbAS 0.696 ± 0.041 0.492 ± 0.018 0.507 ± 0.017 9.518 ± 0.310 5.033 ± 0.086
DbAS 0.678 ± 0.025 0.495 ± 0.010 0.508 ± 0.011 9.249 ± 0.414 5.128 ± 0.153
DyNA PPO 0.728 ± 0.060 0.478 ± 0.015 0.489 ± 0.015 9.246 ± 0.086 5.306 ± 0.124
GNF-AL 0.951 ± 0.034 0.774 ± 0.004 0.786 ± 0.004 7.072 ± 0.163 6.661 ± 0.071
GFN-AL + δ-CS 1.094 ± 0.045 0.972 ± 0.043 0.983 ± 0.043 6.493 ± 1.751 6.494 ± 0.084

0 2 4 6 8 10
Rounds

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Max Scores

0 2 4 6 8 10
Rounds

0.5

0.6

0.7

0.8

0.9

1.0
Median Scores

0 2 4 6 8 10
Rounds

0.5

0.6

0.7

0.8

0.9

1.0
Mean Scores

Ours
GFN-AL
AdaLead
CbAS
DbAS
DyNA PPO
CMA-ES
BO

Figure 11: The max, median, and mean curve over rounds in TF-Bind-8

Table 8: The results of TF-Bind-8 after ten rounds.
Max Median Mean Diversity Novelty

AdaLead 0.995 ± 0.004 0.937 ± 0.008 0.939 ± 0.007 3.506 ± 0.267 1.194 ± 0.035
BO 0.977 ± 0.008 0.806 ± 0.007 0.815 ± 0.005 4.824 ± 0.074 1.144 ± 0.029
CMA-ES 0.986 ± 0.008 0.843 ± 0.032 0.843 ± 0.030 3.617 ± 0.321 1.130 ± 0.083
CbAS 0.988 ± 0.004 0.835 ± 0.011 0.845 ± 0.009 4.662 ± 0.079 1.134 ± 0.021
DbAS 0.987 ± 0.004 0.831 ± 0.005 0.845 ± 0.005 4.694 ± 0.056 1.141 ± 0.047
DyNA PPO 0.977 ± 0.013 0.746 ± 0.010 0.761 ± 0.006 4.430 ± 0.030 1.120 ± 0.021
GFN-AL 0.976 ± 0.002 0.947 ± 0.004 0.947 ± 0.009 3.158 ± 0.166 2.409 ± 0.071
GFN-AL + δ-CS 0.981 ± 0.002 0.971 ± 0.006 0.972 ± 0.005 1.277 ± 0.182 2.237 ± 0.356

20

C.3 Full results of Protein design

0 2 4 6 8 10
Rounds

3.570

3.575

3.580

3.585

3.590

3.595
Sc

or
e

Max Scores

0 2 4 6 8 10
Rounds

3.40

3.45

3.50

3.55

Median Scores

0 2 4 6 8 10
Rounds

3.35

3.40

3.45

3.50

3.55

Mean Scores

Ours
GFN-AL
AdaLead
CbAS
DbAS
DyNA PPO
CMA-ES
BO

Figure 12: The max, median, and mean curve over rounds in GFP

Table 9: The results of GFP after ten rounds.
Max Median Mean Diversity Novelty

AdaLead 3.581 ± 0.004 3.549 ± 0.002 3.552 ± 0.002 47.237 ± 1.213 1.467 ± 0.094
BO 3.572 ± 0.000 3.378 ± 0.000 3.331 ± 0.000 62.955 ± 0.000 0.000 ± 0.000
CMA-ES 3.572 ± 0.000 3.410 ± 0.000 3.384 ± 0.000 58.299 ± 0.000 0.000 ± 0.000
CbAS 3.572 ± 0.000 3.378 ± 0.000 3.334 ± 0.002 62.926 ± 0.139 0.009 ± 0.012
DbAS 3.572 ± 0.000 3.378 ± 0.000 3.334 ± 0.002 62.926 ± 0.139 0.009 ± 0.012
DyNA PPO 3.572 ± 0.000 3.378 ± 0.000 3.331 ± 0.000 62.955 ± 0.000 0.000 ± 0.000
GFN-AL 3.578 ± 0.003 3.511 ± 0.006 3.508 ± 0.004 60.278 ± 0.819 20.837 ± 0.916
GFN-AL + δ-CS 3.592 ± 0.003 3.567 ± 0.003 3.569 ± 0.003 46.255 ± 10.534 17.459 ± 5.538

0 2 4 6 8 10
Rounds

0.50

0.55

0.60

0.65

0.70

Sc
or

e

Max Scores

0 2 4 6 8 10
Rounds

0.50

0.55

0.60

0.65

Median Scores

0 2 4 6 8 10
Rounds

0.50

0.55

0.60

0.65

Mean Scores

Ours
GFN-AL
AdaLead
CbAS
DbAS
DyNA PPO
CMA-ES
BO

Figure 13: The max, median, and mean curve over rounds in AAV

Table 10: The results of AAV after ten rounds.
Max Median Mean Diversity Novelty

AdaLead 0.565 ± 0.027 0.505 ± 0.016 0.509 ± 0.017 5.693 ± 0.946 2.133 ± 1.266
BO 0.500 ± 0.000 0.478 ± 0.000 0.480 ± 0.000 4.536 ± 0.000 0.000 ± 0.000
CMA-ES 0.500 ± 0.000 0.481 ± 0.000 0.482 ± 0.000 4.148 ± 0.000 0.000 ± 0.000
CbAS 0.500 ± 0.000 0.478 ± 0.000 0.480 ± 0.000 4.545 ± 0.018 0.002 ± 0.003
DbAS 0.500 ± 0.000 0.478 ± 0.000 0.480 ± 0.000 4.545 ± 0.018 0.002 ± 0.003
DyNA PPO 0.500 ± 0.000 0.478 ± 0.000 0.480 ± 0.000 4.536 ± 0.000 0.000 ± 0.000
GFN-AL 0.560 ± 0.008 0.509 ± 0.002 0.513 ± 0.002 4.044 ± 0.303 1.966 ± 0.157

GFN-AL + δ-CS 0.708 ± 0.010 0.663 ± 0.007 0.665 ± 0.006 11.296 ± 0.865 10.233 ± 0.822

21

	Introduction
	Problem Formulation
	Active Learning for Biological Sequence Design
	Step A: Proxy Training
	Step B: Policy training with -CS

	-CS: controllable conservativeness in off-policy search
	Adjusting conservativeness parameter

	Related work
	Experiments
	RNA sequence design
	DNA sequence design
	Protein sequence design
	Anti-microbial peptide design
	Achieving Pareto frontier with balancing capability of -CS
	Study on proxy failure and conservativeness effect

	Conclusions
	Implementation detail
	Proxy training
	Policy training
	Implementation details of baselines

	Further studies
	Anti-microbial peptide design
	Studies on effect of on Hard TF-Bind-8
	Studies on the effect of adaptive on RNA-A
	Balancing capability of on RNA
	Studies on rank-based reweighted sampling in proxy training

	Full results of main results
	Full results of RNA sequence design
	Full results of TF-Bind-8
	Full results of Protein design

