
Under review as a conference paper at ICLR 2023

CONTEXTUAL SYMBOLIC POLICY FOR META-
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Context-based Meta-Reinforcement Learning (Meta-RL), which conditions the
RL agent on the context variables, is a powerful method for learning a general-
izable agent. Current context-based Meta-RL methods often construct their con-
textual policy with a neural network (NN) and directly take the context variables
as a part of the input. However, the NN-based policy contains tremendous param-
eters which possibly result in overfitting, the difficulty of deployment and poor
interpretability. To improve the generation ability, efficiency and interpretability,
we propose a novel Contextual Symbolic Policy (CSP) framework, which gen-
erates contextual policy with a symbolic form based on the context variables for
unseen tasks in meta-RL. Our key insight is that the symbolic expression is ca-
pable of capturing complex relationships by composing various operators and has
a compact form that helps strip out irrelevant information. Thus, the CSP learns
to produce symbolic policy for meta-RL tasks and extract the essential common
knowledge to achieve higher generalization ability. Besides, the symbolic poli-
cies with a compact form are efficient to be deployed and easier to understand. In
the implementation, we construct CSP as a gradient-based framework to learn the
symbolic policy from scratch in an end-to-end and differentiable way. The sym-
bolic policy is represented by a symbolic network composed of various symbolic
operators. We also employ a path selector to decide the proper symbolic form of
the policy and a parameter generator to produce the coefficients of the symbolic
policy. Empirically, we evaluate the proposed CSP method on several Meta-RL
tasks and demonstrate that the contextual symbolic policy achieves higher perfor-
mance and efficiency and shows the potential to be interpretable.

1 INTRODUCTION

Meta-Reinforcement Learning (Meta-RL) is a promising strategy to improve the generalization abil-
ity on unseen tasks of reinforcement learning. Meta-RL methods learn the shared internal structure
of tasks from the experiences collected across a distribution of training tasks and then quickly adapt
to a new task with a small amount of experiences. On this basis, context-based Meta-RL meth-
ods (Duan et al., 2016; Rakelly et al., 2019; Fakoor et al., 2019; Huang et al., 2021) are proposed
with the motivation that only a part of the model parameters need to be updated in a new environ-
ment. They force their model to be conditional on a set of task-specific parameters named context
variables which are formed by aggregating experiences. Context-based Meta-RL methods are attrac-
tive because of their empirically higher performance and higher efficiency compared with previous
methods which update the whole model.

However, how to incorporate the context variables into the policy is still an open problem. Most
of the current methods construct their contextual policy with a neural network (NN) and directly
take the context variables as a part of the input. This kind of NN-based policy usually involves
thousands of parameters, which may bring training difficulties, possibly result in overfitting and hurt
the generalization performance. In addition, deploying the complex NN-based policy is inefficient
and even impossible on limited computational resources. What is worse, we have to treat the NN-
based policy as a black box that is hard to comprehend and interpret, e.g., we cannot understand
what the difference between the policies of different tasks is.

1

Under review as a conference paper at ICLR 2023

To address the above issues, in this work, we propose a novel Contextual Symbolic Policy (CSP)
framework to learn a contextual policy with a compact symbolic form for unseen tasks in meta-RL.
We are inspired by the symbolic expression, which has a compact form but is capable of capturing
complex relationships by composing variables, constants and various mathematical operators. In
general, compact and effective representations can strip out irrelevant information and find the es-
sential relationship of variables, which can benefit the generalization. Therefore, for meta-RL tasks
with similar internal structures, CSP produces symbolic policies to model the relationship of the
proper action and state and extract essential common knowledge across the tasks. With the com-
mon knowledge of a series of tasks, CSP is able to achieve higher generalization ability and quickly
adapt to unseen tasks. Moreover, the compact symbolic policies learned by CSP are efficient to
be deployed and easier to understand. In conclusion, contextual policies produced by CSP achieve
higher generalization performance, efficiency, and show the potential to be interpretable when con-
strained in a compact symbolic form.

However, finding the proper forms and constant values of the symbolic policies for a distribution of
tasks is challenging. In this paper, we propose an efficient gradient-based learning method for the
CSP framework to learn the contextual symbolic policy from scratch in an end-to-end differentiable
way. To express the policy in a symbolic form, the proposed CSP consists of a symbolic network,
a path selector and a parameter generator. The symbolic network can be considered as a full set of
the candidate symbolic policies. In the symbolic network, the activation functions are composed of
various symbolic operators and the parameters can be regarded as the coefficients in the symbolic
expression. For a new task, the path selector chooses the proper compact symbolic form from the
symbolic network by adaptively masking out most irrelevant connections. Meanwhile, the param-
eters of the chosen symbolic form are generated by the parameter generator. We design all these
modules to be differentiable. Thus, we can update the whole framework with gradient efficiently.

We evaluate the proposed CSP on several Meta-RL tasks. The results show that our CSP achieves
higher generalization performance than previous methods while reducing the floating point oper-
ations (FLOPs) by 2-45000×. Besides, the produced symbolic policies show the potential to be
interpretable.

2 RELATED WORKS

2.1 META-REINFORCEMENT LEARNING

Meta-RL extends the notion of meta-learning (Schmidhuber, 1987; Bengio et al., 1991; Thrun &
Pratt, 1998) to the context of reinforcement learning. Some works (Li et al., 2017; Young et al.,
2018; Kirsch et al., 2019; Zheng et al., 2018; Sung et al., 2017; Houthooft et al., 2018) aim to meta-
learn the update rule for reinforcement learning. We here consider another research line of works
that meta-train a policy that can be adapted efficiently to a new task. Several works (Finn et al., 2017;
Rothfuss et al., 2018; Stadie et al., 2018; Gupta et al., 2018; Liu et al., 2019) learn an initialization
and adapt the parameters with policy gradient methods. However, these methods are inefficient be-
cause of the on-policy learning process and the gradient-based updating during adaptation. Recently,
context-based Meta-RL achieve higher efficiency and performance. PEARL (Rakelly et al., 2019)
proposes an off-policy Meta-RL method that infers probabilistic context variables with experiences
from new environments. ADARL (Huang et al., 2021) characterizes a compact representation about
changes of environments with a structural environment model, which enables efficient adaptation.
Hyper (Sarafian et al., 2021) proposes a hypernetwork where the primary network determines the
weights of a conditional network and achieves higher performance. Fu et al. (2020) introduce a
contrastive learning method to train a compact context encoder. They also train an exploration pol-
icy to maximize the information gain. Most of the existing context-based Meta-RL methods(Fu
et al., 2020; Zhang et al., 2021; Zintgraf et al., 2020) attempt to achieve higher performance by im-
proving the context encoder or the exploration strategy. However, in this paper, we aim to improve
the efficiency, interpretability and performance by replacing the pure neural network policy with a
contextual symbolic policy.

2

Under review as a conference paper at ICLR 2023

2.2 SYMBOLIC REGRESSION

Symbolic regression aims to find symbolic expressions to best fit the dataset from an unknown fixed
function. Although this problem is likely NP-hard in principle, several works attempt to solve it
with heuristic algorithms. Koza (1993) introduce genetic programming (GP) to evolve the symbolic
expressions and a series of following works (Schmidt & Lipson, 2010; Cava et al., 2019; Virgolin
et al., 2019; de França & Aldeia, 2021) expand the basic genetic programming method to improve the
performance. Recently, some methods involve deep learning for symbolic regression. AI Feynman
(Udrescu & Tegmark, 2019) utilizes neural networks to discover hidden simplicity in the dataset
and break harder problems into simpler ones. DSR (Petersen et al., 2021) train a recurrent neural
network (RNN) with reinforcement learning to produce the symbolic expression. Differentiable
symbolic regression methods (Martius & Lampert, 2016; Sahoo et al., 2018) use a neural network
whose activation functions are symbolic operators as a symbolic expression and decrease the length
of symbolic expressions with L1 regularization. However, the plain structure and L1 regularization
may fail with complex problems. We also employ a symbolic network for the differentiability. The
difference is that we propose a densely connected symbolic network and probabilistic path selector,
which enable symbolic meta-policy learning. Besides, these methods are designed for regression of
a fixed function while we aim to learn a meta-policy which is conditional on the context variables.

Recently, some works employ symbolic regression methods to obtain symbolic policies for effi-
ciency and interpretability. Kubalı́k et al. (2017) and Hein et al. (2018) aim to approximate a sym-
bolic policy with genetic programming but require a given dynamics equations or a learned world
model. DSP (Larma et al., 2021) employ a recurrent neural network to generate the symbolic pol-
icy. They use the average returns of the symbolic policies as the reward signal and train the neural
network with risk-seeking policy gradients. However, for environments with multidimensional ac-
tion spaces, they need a pre-trained neural network policy as the anchor model. Besides, in this
framework, a single reward for reinforcement learning involves many environmental interactions,
which is inefficient and makes it hard to combine the symbolic policy with Meta-RL. Recently,
some works (Bastani et al., 2018; Verma et al., 2018) attempt to distill an interpretable policy from
a pre-trained neural network policy but have a problem of objective mismatch (Larma et al., 2021).
Different from the methods talked above, we propose an efficient gradient-based framework to ob-
tain the symbolic policy without any pre-trained model. As far as we know, we are the first to learn
a symbolic policy from scratch and use the symbolic policy for Meta-RL. There exist other works
introduce the symbolic to reinforcement learning. Garnelo et al. (2016); d’Avila Garcez et al. (2018)
learn the symbolic representation for better interpretability. Lyu et al. (2019) introduces symbolic
planning for efficiency and interpretability. In this paper, we focus on learning the symbolic policy
for Meta-RL.

3 PRELIMINARIES

In the field of meta-reinforcement learning (Meta-RL), we consider a distribution of tasks p(κ)
with each task κ ∼ p(κ) modeled as a Markov Decision Process(MDP). In common Meta-RL
settings, tasks share similar structures but differ in the transition and/or reward function. Thus, we
can describe a task κ with the 6-tuple (S,A,Pκ, ρ0, rκ, γ). In this setting, S ⊆ Rn is a set of
n-dimensional states, A ⊆ Rm is a set of m-dimensional actions, Pκ : S × A × S → [0, 1] is
the state transition probability distribution, ρ0 : S → [0, 1] is the distribution over initial states,
rκ : S×A → R is the reward function, and γ ∈ (0, 1) is the per timestep discount factor. Following
the setting of prior works (Rakelly et al., 2019; Fakoor et al., 2019), we assume there are M meta-
training tasks {κm}m=1,··· ,M sampled from the training tasks distribution ptrain(κ). For meta-
testing, the tasks are sampled from the test tasks distribution ptest(κ). The two distributions are
usually same in most settings but can be different in out-of-distribution(OOD) settings. We denote
context cT = {(s1, a1, s′1, r1), · · · , (sT , at, s′T , rT)} as the collected experiences. For context-
based Meta-RL, agent encodes the context into a latent context variable z with a context encoder
q(z|cT) and the policy π is conditioned on the current state and the context variable z. During
adaptation, agent first collect experiences for a few episodes and then update the context variables
and maximize the return with the contextual policy. The Meta-RL objective can be formulated
as max

π
Eκ∼p(κ)[EcT∼π[R(κ, π, q(z|cT))]], where R(κ, π, q(z|cT)) denotes the expected episode

return.

3

Under review as a conference paper at ICLR 2023

context

 encoder

Mask

Symbolic

Network

z

F

Y

Parameter Generator

Path Selector

Score

Parameter

Gumbel

Sigmoid

𝑸(𝒔,𝒂, 𝒛)

replay
buffer

𝒄𝑻 = (𝒔𝒊,𝒂𝒊, 𝒔𝒊
′ , 𝒓) 𝒊=𝟏

𝒊=𝑵

State

training inference

Critic Loss

Context Symbolic Policy

forward flow

gradient flow

forward flow

gradient flow

𝒒(𝒛|𝒄) 𝒒(𝒛|𝒄)

sinsin idid

××

s1s1 s2s2 s3s3

a1a1

sin id

×

s1 s2 s3

a1

Action

Actor Loss

Action

Actor Loss

𝒂𝟏 = 𝐬𝐢𝐧 𝒔𝟏 + 𝒔𝟑 ∗ 𝒔𝟐

Mask

Symbolic

Network

z

F

Y

Parameter Generator

Path Selector

Score

Parameter

Gumbel

Sigmoid

𝑸(𝒔,𝒂, 𝒛)

replay
buffer

𝒄𝑻 = (𝒔𝒊,𝒂𝒊, 𝒔𝒊
′ , 𝒓) 𝒊=𝟏

𝒊=𝑵

State

training inference

Critic Loss

Context Symbolic Policy

forward flow

gradient flow

𝒒(𝒛|𝒄)

sin id

×

s1 s2 s3

a1

Action

Actor Loss

𝒂𝟏 = 𝐬𝐢𝐧 𝒔𝟏 + 𝒔𝟑 ∗ 𝒔𝟐

Figure 1: Illustrations of our framework. The Contextual Symbolic Policy (CSP) produces different symbolic
policies based on the context variables across tasks. CSP construct the symbolic policy with the symbolic
network, selects the proper symbolic form with the Path Selector and generate the parameters of symbolic
policy with the Parameter generator. The whole framework is differentiable and can be learned end-to-end.

4 GRADIENT-BASED CONTEXTUAL SYMBOLIC POLICY

This section introduces the structure of our contextual symbolic policy, an end-to-end differentiable
system that can be directly updated with gradient. As Figure 1 shows, the contextual symbolic
policy consists of three main components: 1) the Symbolic Network, which expresses the policy in
a symbolic form, 2) the Parameter Generator, which outputs the parameters for the symbolic network
according to the context variables, and 3) the Path Selector, which select paths from the symbolic
network to form compact symbolic expressions.

4.1 DENSELY CONNECTED SYMBOLIC NETWORK

To construct a symbolic policy in an end-to-end differentiable form, we propose the densely con-
nected symbolic network. Inspired by previous differentiable symbolic regression methods (Martius
& Lampert, 2016; Sahoo et al., 2018), we employ a neural network with specifically designed units,
which is named symbolic network. We now introduce the basic symbolic network named plain
structure which is illustrated in Figure 2. The symbolic network is a feed-forward network with L
layers. Different from traditional neural networks, the activation functions of the symbolic network
is replaced by symbolic operators, e.g. trigonometric functions and exponential functions. For the
lth layer of the symbolic network, we denote the input as xl−1 and the parameters as wl, bl. These
parameters serve as the constant in a symbolic expression. We assume that the lth contains m unary
functions {g11 , · · · , g1m} and n binary functions {g21 , · · · , g2n}. Firstly, the input of the lth layer will
be linearly transformed by a fully-connected layer:

y = Fl(x) = wlx+ bl. (1)

The fully-connected layer realizes the addition and subtraction in symbolic expressions and produces
m + 2n outputs. Then the outputs will go through the symbolic operators and be concatenated to
form the layer output:

Gl(y) = [g11(y1), · · · , g1m(ym), g21(ym+1, ym+2), · · · , g2n(ym+2n−1, ym+2n)] (2)

Then the lth layer of the symbolic network can be formulated as Sl : xl = Gl(Fl(xl−1)). Following
the last layer, there will be a fully-connected layer to produce a single output. For multiple action
dimensions, we construct a symbolic network for each dimension of action.

Symbolic operator. The symbolic operators are selected from a library L, e.g.
{sin, cos, exp, log,×,÷} for continuous control tasks. For the plain structure, we include
an identical operator which retains the output of the previous layer to the next layer in the library.
We also provide an optional conditional operator c(a, b, c) = sigmoid(a)∗b+(1−sigmoid(a))∗c
to approximate if A then B else C. We find it is useful in some tasks. Note that we aim to find
the symbolic policy with gradient. Thus, it is critical to ensure the numerical stability of the

4

Under review as a conference paper at ICLR 2023

sin cos log idexpexp

Fully Connected Layer

mul div

sin cos log idexpexp

Fully Connected Layer

mul divsin cos log idexp

Fully Connected Layer

mul div

sin cos log idexpexp

Fully Connected Layer

mul divsin cos log idexp

Fully Connected Layer

mul div

Fully Connected Layer

Fully Connected Layer

mulmul mul

Fully Connected Layer

divdiv div

cos

Fully Connected Layer

sinsin sinsin cos expexp expexp log log

Fully Connected Layer

div mul expexp log

Fully Connected Layer

. . .

...
...

...

Plain Densely connected Arranged Densely connected

sin cos log expexp

Fully Connected Layer

mul div

sin cos log expexp

Fully Connected Layer

mul divsin cos log exp

Fully Connected Layer

mul div

sin cos log expexp

Fully Connected Layer

mul divsin cos log exp

Fully Connected Layer

mul div

Fully Connected Layer

. . .

sin cos log exp

Fully Connected Layer

mul div

sin cos log exp

Fully Connected Layer

mul div

sin cos log exp

Fully Connected Layer

mul div

Fully Connected Layer

. . .

Figure 2: Example network structures for the symbolic network. Left: the plain structure. Middle: a symbolic
work with dense connections. Right: a symbolic network with dense connections and arranged operators.

system. However, this is not natural in a symbolic network. For example, the division operator
and the logarithmic operator will create a pole when the input goes to zero and the exponential
function may produce a large output. Thus, we regularize the operators and employ a penalty
term to keep the input from ”forbidden” area. For example, the logarithmic operator y = log(x)
returns log(x) for x > boundlog and log(boundlog) otherwise and the penalty term is defined as
Llog = max(boundlog − x, 0). The division operator c = a/b returns a/b for b > bounddiv and
0 otherwise. The penalty term is defined as Ldiv = max(bounddiv − b, 0). The details of all
regularized operators can be found in the Appendix.

Dense connectivity. We introduce dense connections (Huang et al., 2017) in the symbolic net-
work, where inputs of each layer are connected to all subsequent layers. Consequently, the lth layer
of the symbolic network will receive the environment state s and the output of all preceding layers
x1, · · · , xl−1: xl = Gl(Fl([s, x1, · · · , xl−1])). On the one hand, the dense connections improve the
information flow between layers and benefit the training procedure. On the other hand, the dense
skip connections across layers enable us to control the complexity of the symbolic expressions with
the parameters more flexibly. In practice, each layer in the symbolic network may contain different
operators. With the dense connectivity, we can flexibly arrange the position of operators. For ex-
ample, if we only arrange the sin operator in the last layer but the oracle expression contains terms
like sin(s0), the input of the sin operator can still be from the original state because of the dense
connections. We give an example of arranged operators in Figure 2 which we use for all tasks in
the experiments. In this symbolic network, we assume that multiplication and division operations
are more likely to occur at shallow layers, while more complex operations such as sines and cosines
are more likely to occur at deep layers. In addition, we avoid the form sin(· · · exp(· · ·) · · ·) which
rarely occurs in physics formulas with the arrangement.

4.2 INCORPORATING THE CONTEXT VARIABLES

To produce different symbolic policies with the symbolic network for different tasks κ sampled
from the task distribution p(κ), we need to incorporate the context variables z ∼ q(z|cT) to the
symbolic network. To condition the parameters of the symbolic expression on the context variable,
we propose a parameter generator: wg = Φ(z) which is a neural network to produce the parameters
of symbolic networks for all action dimensions based on the context variables.

However, the symbolic network serves as a full set of the search space of symbolic expressions. To
select the proper paths from the symbolic network to produce a compact symbolic policy, we reduce
the number of paths involved in the final symbolic policy then proper paths remain and redundant
paths are removed. This can be naturally realized by minimizing the L0 norm of the symbolic
network parameters. As the L0 norm is not differentiable, some methods (Martius & Lampert, 2016;
Sahoo et al., 2018) employ L1 norm instead of L0 norm. However, L1 will penalize the magnitude
of the parameters. In our framework, the parameters of the symbolic network is the output of a
neural network rather than independent variables. The penalty of magnitude may severely affect
the training of the parameter generator. Inspired by the probability-based sparsification method
(Srinivas et al., 2017; Louizos et al., 2017; Zhou et al., 2021), we propose a probabilistic path
selector which selects path from the network by multiplying a binary mask on the parameters of
the symbolic network. The path selector first produce scores with the context variables: s = Ψ(z),

5

Under review as a conference paper at ICLR 2023

where si ∈ (0, 1). The score si serves as the probability of the Bernoulli distribution and the
binary mask mi is sampled from the distribution: mi ∼ Bern(si). Then the final parameters
of the symbolic network are w = wg

⊗
m, where

⊗
is the element-wise multiply operation.

Consequently, to get a compact symbolic expression, we only need to minimize the expectation of
the L0 norm of the binary mask Em∼p(m|s) ∥m∥0 =

∑
si, without penalizing the magnitude of the

parameters.

During the process of collecting data or testing, we can directly sample the binary mask from the
Bernoulli distribution. However, the sampling process does not have a well-defined gradient. Thus,
for the training process we build up our sampling function with the gumbel-softmax trick (Jang et al.,
2016). As the mask m is binary categorical variables, we replace the softmax with sigmoid and
named the sampling function as gumbel sigmoid. The gumbel sigmoid function can be formulated
as:

mgs = sigmoid(
log(s

1−s) + g1 − g0

τ
), (3)

where g1 and g0 are i.i.d samples drawn from Gumble(0, 1). τ is the temperature annealing pa-
rameter. Note that mgs is still not a binary mask. To obtain a binary mask but maintain the
gradient, we employ the Straight-Through (ST) trick: m = 1≥0.5(mgs) + mgs − mgs, where
1≥0.5(x) ∈ {0, 1}n is the indicator function and the overline means stopping the gradient. With
the path selector, the framework is able to produce very short symbolic policies for relatively simple
tasks while produce complex but compact symbolic policies to handle hard tasks like Walker2d and
Hopper in Mujoco Simulator(Todorov et al., 2012).

5 META-LEARNING THE SYMBOLIC POLICY

In this section, we introduce the meta-learning process of our symbolic policy. Following PEARL
(Rakelly et al., 2019), we build up our off-policy learning framework on top of the soft actor-critic al-
gorithm (SAC) (Haarnoja et al., 2018). The main differences are the additional loss for the symbolic
policy and the schedule for collecting data and simplifying symbolic expressions.

5.1 LOSS FUNCTION

We now illustrate our additional loss function for the symbolic policy. As described in Section 4.1,
to ensure the numerical stability, we regularize the symbolic operators and employ a penalty term
for regularized operators. During training, we involve a penalty loss function Lpenalty which is the
sum of the penalty terms of regularized operators in symbolic networks:

Lpenalty(θΦ, θΨ) =

i=M∑
i=1

j=L∑
j=1

k=Nj∑
k=1

Lgi,j,k(xi,j,k), (4)

where θΦ, θΨ is the parameters of the parameter generator and the path selector, M is the dimension
of action, L is the number of layers in a symbolic network, Nj is the number of regularized operators
in layer j, xi,j,k is the input of operator gi,j,k and Lgi,j,k is the penalty term for this operator. We
also involve a loss function Lselect to regularize the sum of score s which is the expectation of the
L0 norm of the binary mask m as described in Section 4.2. To limit the minimum complexity of
symbolic policies, we involve the target L0 norm defined as ltarget. Then the loss function can be
defined as:

Lselect(θΨ) = max(
∑

si − ltarget, 0) (5)

5.2 TRAINING SCHEDULE

In practice, we train our symbolic policy in an off-policy manner. For meta-training epoch t, the
agent first collects experiences into the corresponding buffer Bκi

for several iterations. At the
beginning of each iteration, we sample context cT from buffer Bκi

and sample context variables
z ∼ q(z|cT) as PEARL does. The difference is that we also sample the symbolic policy with Φ(z)
and Ψ(z) and use the sampled policy for the following steps of the iteration. Then we sample RL
batch and context from the buffer and optimize the context encoder q(z|cT) to recover the state-
action value function. For each training step, we sample a new symbolic policy. We employ the

6

Under review as a conference paper at ICLR 2023

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

100

150

200

250

300

350

400

450

re
tu

rn

Hopper-params

PEARL
Hyper
CSP

0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

env steps

100

200

300

400

500

600

700

800

re
tu

rn

Walker2d-params

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
−600

−500

−400

−300

−200

−100

0

re
tu

rn

Cheetah-vel-ood

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
−300

−200

−100

0

100

200

300

re
tu

rn

Lunarlander-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

250

500

750

1000

1250

1500

1750

2000

re
tu

rn

InvDoublePend-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

50

100

150

200

re
tu

rn

Cartpole-fl-ood

Figure 3: Comparison for different kinds of contextual policies on Meta-RL tasks. We show the
mean and standard deviation of returns on test tasks averaged over five runs.

soft actor-critic to optimize the state-action value function. For the parameter generator and the path
selector, we employ Lselect and Lpenalty in addition to the SAC loss. During training, we decrease
the temperature parameter τ of gumbel sigmoid linearly and decrease the ltarget from the length of
the origin parameters wg to a target value with a parabolic function. We illustrate the gradient flow
in Figure 1. More details and the pseudo-code can be found in the Appendix.

6 EXPERIMENT

In this section, we present the experimental results of our contextual symbolic policy (CSP). We first
compare CSP to prior meta policies on several Meta-RL problems to evaluate the performance and
the inference efficiency in Section 6.1. Then we analyze the symbolic policy generated for different
tasks in Section 6.2. Finally, we carry out ablation experiments for CSP and show the results in 6.3.

6.1 COMPARISON OF CONTEXTUAL POLICIES

Experimental Settings. We first evaluate CSP on several continuous control environments. We
modify the environments of OpenAI Gym (Brockman et al., 2016), including kinds of classic con-
trol, Box2D, and MuJoCo (Todorov et al., 2012) to be Meta-RL tasks similar to Rakelly et al.
(2019); Huang et al. (2021); Fu et al. (2020). These environments require the agent to adapt across
dynamics (random system parameters for Hopper-params, Walker2d-params, Lunarlander-params,
InvDoublePend-params, different force magnitude and pole length for Cartpole-fl-ood) or reward
functions (target velocity for Cheetah-vel-ood). For the symbolic network, we use the arranged
densely connected structure in Figure 2. We run all environments based on the off-policy meta-
learning framework proposed by PEARL and use the same evaluation settings. We compare CSP
with PEARL which concatenates the observation and context variables as the input of policy and
Hyper (Sarafian et al., 2021) which generate the parameters of policy with a ResNet model based
on the context variables. Note that the original Hyper also modifies the critic, but we build all
the critics with the same network structure for consistency. More details of the environments and
hyper-parameters can be found in the Appendix.

Performance comparisons. In Figure 3, we report the learning curves of undiscounted returns
on the test tasks. We find that in all the environments, CSP achieves better or comparable perfor-
mance than previous methods. In Hopper-params, Walker2d-params and InvDoublePend-params,
CSP outperforms PEARL and Hyper during the whole training process. In Lunarlander-params,
CSP achieves better final results. In Cartpole-fl-ood, CSP adapts to the optimal more quickly. In the
out-of-distribution task Cheetah-vel-ood, we find the performance of PEARL and Hyper decrease
during training because of over-fitting. But our CSP is less affected. In conclusion, expressing the
policy in the symbolic form helps improve the generalization performance.

7

Under review as a conference paper at ICLR 2023

Table 1: FLOPs and inference time of different contextual policies.

Environment FLOPs/k Times/ms

CSP PEARL Hyper CSP PEARL Hyper

Walker2d-params 3.11 189.31 5.64 20.89 27.00 22.64
Hopper-params 0.51 186.90 4.10 4.13 26.58 17.23
InvDoublePend-params 0.039 186.00 3.59 0.37 25.05 12.32
Cartpole-fl-ood 0.004 183.90 1.79 0.042 23.90 9.08
Lunarlander-g 0.015 185.4 3.08 0.l4 23.43 12.34
Cheetah-vel-ood 0.53 190.21 7.18 4.90 28.44 24.16

Table 2: Average count of all selected paths and paths selected by at least ninety percent policies.

Environment Selected paths Mostly selected paths

Walker2d-params 76.42 70.3
Hopper-params 21.5 20.33
InvDoublePend-params 23.2 21.0
Cartpole-fl-ood 3.06 3.0
Lunarlander-g 5.2 5.0
Cheetah-vel-ood 27.04 18.5

Efficiency comparisons. We also evaluate the deploying efficiency of contextual policies. We
first calculate the flops of each kind of policy per inference step. Then we consider an application
scenario that the algorithm control five thousand simulated robots with the Intel(R) Xeon(R) Gold
5218R @ 2.10GHz CPU and record the elapsed time per inference step 1. We report the results in
Table 1. Compared to PEARL, CSP reduces the FLOPs by 60-45000x and reduces the inference
time by up to 600x. Compared to Hyper, CSP reduces the flops by 2-450x and reduces the inference
time by up to 200x. Thus, compared with pure neural network policies, the contextual symbolic
policy has a significant advantage in computational efficiency.

6.2 ANALYSIS OF SYMBOLIC POLICIES

We then analyze the symbolic policies for different tasks produced by CSP. For each environment,
we sample 10 tasks from the environment task distribution and obtain the corresponding symbolic
policies with CSP. Then we analyze the selected paths of these policies which determine the forms
of the symbolic expressions. Table 2 shows the results. We calculate the average count of selected
paths per action dimension among the policies2. We find that this number varies across different en-
vironments. The symbolic expression can be extremely short for simple environments like Cartpole
or relatively long for complex environments like Walker2D. We also calculate the average count of
paths which are selected by more than ninety percent of the symbolic policies. In almost all environ-
ments, the mostly selected paths account for a high percentage of the selected paths, which indicates
that the expressions of symbolic policies for different tasks of the same environment share similar
forms.

The proposed CSP can also improve interpretability. We take the Cartpole-fl-ood environment as an
example and illustrate the Cartpole system in Figure 4. The form of the symbolic policies produced
by CSP is action = c1 ∗ θ+ c2 ∗ θ̇+ b, where θ is the the angle of the pole and θ̇ is the rotation rate
of the pole. c1 and c2 are the positive coefficients and b is a small constant which can be ignored.
The action is the force scale to push the cart. Then the policy can be interpreted as pushing the cart
in the direction that the pole is deflected or will be deflected. To analyze the difference between
policies for different tasks, we uniformly set the force magnitude and the length of the pole. Then
we generate the symbolic policy with CSP and record the coefficients. As Figure 5 shows, c1 and c2
tend to increase when the force magnitude decrease and the length increase, which is in accord with
our intuition. We will give examples of symbolic policy for other environments in the Appendix.

1Note that we accelerate Hyper by only updating the parameters of policy when we update the context
variables. Thus, Hyper only uses the policy model without the ResNet model to infer an action.

2We only consider paths that contribute to the final expression.

8

Under review as a conference paper at ICLR 2023

𝒍

𝜽， ሶ𝜽

𝑭 = 𝒇 ∗ 𝒂𝒄𝒕𝒊𝒐𝒏

Figure 4: The Cartpole system to be
controlled.

f

8 9
10

11
12

l

0.3
0.4

0.5
0.6

0.7

c1

20

22

24

26

f

8 9
10

11
12

l

0.3
0.4

0.5
0.6

0.7

c2

1.4
1.5
1.6
1.7
1.8

Figure 5: The coefficients of symbolic policies for Cartpole environ-
ments with different force magnitude and pole length.

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

100

150

200

250

300

350

400

450

re
tu

rn

CSP_P
CSP_D
CSP

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

100

150

200

250

300

350

400

450

re
tu

rn

CSP_L1
CSP

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

100

150

200

250

300

350

400

450

re
tu

rn

CSP_RELU
CSP_TANH
CSP

Figure 6: Ablation results of the symbolic network structure (left), the path selector(middle) and the
symbolic operator(right). CSP P means the plain structure and CSP D means the densely connected
structure. CSP L1 means replacing the path selector with the L1 norm minimization. CSP TANH
means replace all the symbolic operators with tanh. CSP RELU means replace all the symbolic
operators with relu.

6.3 ABLATION

Finally, we carry out experiments by ablating the features of CSP. We first examine our choice of the
symbolic structure. We replace the symbolic network with a plain structure and a densely connected
structure and compare the test task performance on Hopper-params environments. As Figure 6
shows, the dense connections effectively improve the performance and we can facilitate the search
for the proper symbolic form by arranging the operators to further improve the performance. We also
replace our path selector with the L1 norm minimization. For the stability of training, we linearly
increase the scale of the L1 loss. To get a compact symbolic expression, we set the parameters with
the absolute value less than 0.01 as zero near the end of training. We carry out experiments on
the Hopper-params and show the learning curves of return in Figure 6. Besides, we calculate the
average L0 norm of the mask for our path selector and the count of non-zero parameters for L1 norm
minimization which is 30.38 and 34.59, respectively. Compared with the L1 norm minimization, our
path selector achieves higher performance when producing slightly more compact symbolic policies.
We also replace the symbolic operators with commonly used activation functions tanh and relu. We
use the same framework to select the proper paths and set the same final L1 norm. The results in
Figure 6 show that by combine different operators to form the symbolic policy, CSP are able to
handle complex relationship between action and state and achieve higher performance compared
with single kind of operators.

7 CONCLUSION

In this paper, we propose to learn a contextual symbolic policy for Meta-RL. In our gradient-based
learning framework, we train the contextual symbolic policy efficiently without any pre-trained
model. The contextual symbolic policy achieves higher generalization performance than previous
methods. Besides, it is more efficient when deployed and has better interpretability. Our approach
may inspire future works of symbolic policy for reinforcement learning or meta-reinforcement learn-
ing.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. Advances in neural information processing systems, 31, 2018.

Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule. In IJCNN-91-Seattle
International Joint Conference on Neural Networks, volume ii, pp. 969 vol.2–, 1991. doi: 10.
1109/IJCNN.1991.155621.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

William G. La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason H. Moore. Learn-
ing concise representations for regression by evolving networks of trees. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Hke-JhA9Y7.

Artur S. d’Avila Garcez, Aimore Resende Riquetti Dutra, and Eduardo Alonso. Towards symbolic
reinforcement learning with common sense. CoRR, abs/1804.08597, 2018. URL http://
arxiv.org/abs/1804.08597.

Fabrı́cio Olivetti de França and Guilherme Seidyo Imai Aldeia. Interaction-transformation evo-
lutionary algorithm for symbolic regression. Evol. Comput., 29(3):367–390, 2021. doi:
10.1162/evco\ a\ 00285. URL https://doi.org/10.1162/evco_a_00285.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, and Alexander J Smola. Meta-q-learning. arXiv
preprint arXiv:1910.00125, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Haotian Fu, Hongyao Tang, Jianye Hao, Chen Chen, Xidong Feng, Dong Li, and Wulong Liu.
Towards effective context for meta-reinforcement learning: an approach based on contrastive
learning. arXiv preprint arXiv:2009.13891, 2020.

Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. Towards deep symbolic reinforcement
learning. CoRR, abs/1609.05518, 2016. URL http://arxiv.org/abs/1609.05518.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. Advances in neural information pro-
cessing systems, 31, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Daniel Hein, Steffen Udluft, and Thomas A. Runkler. Interpretable policies for reinforcement learn-
ing by genetic programming. Eng. Appl. Artif. Intell., 76:158–169, 2018. doi: 10.1016/j.engappai.
2018.09.007. URL https://doi.org/10.1016/j.engappai.2018.09.007.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAI Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. Advances in Neural Information Processing Systems,
31, 2018.

Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang. Adarl: What, where, and
how to adapt in transfer reinforcement learning. arXiv preprint arXiv:2107.02729, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

10

https://openreview.net/forum?id=Hke-JhA9Y7
http://arxiv.org/abs/1804.08597
http://arxiv.org/abs/1804.08597
https://doi.org/10.1162/evco_a_00285
http://arxiv.org/abs/1609.05518
https://doi.org/10.1016/j.engappai.2018.09.007

Under review as a conference paper at ICLR 2023

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving generalization in meta
reinforcement learning using learned objectives. arXiv preprint arXiv:1910.04098, 2019.

John R. Koza. Genetic programming - on the programming of computers by means of natural
selection. Complex adaptive systems. MIT Press, 1993. ISBN 978-0-262-11170-6.

Jiřı́ Kubalı́k, Eduard Alibekov, and Robert Babuška. Optimal control via reinforcement learning with
symbolic policy approximation. IFAC-PapersOnLine, 50(1):4162–4167, 2017. ISSN 2405-8963.
doi: https://doi.org/10.1016/j.ifacol.2017.08.805. URL https://www.sciencedirect.
com/science/article/pii/S2405896317312594. 20th IFAC World Congress.

Mikel Landajuela Larma, Brenden K. Petersen, Sookyung Kim, Cláudio P. Santiago, Ruben Glatt,
T. Nathan Mundhenk, Jacob F. Pettit, and Daniel Faissol. Discovering symbolic policies with
deep reinforcement learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 5979–5989. PMLR, 2021. URL
http://proceedings.mlr.press/v139/landajuela21a.html.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-
shot learning. arXiv preprint arXiv:1707.09835, 2017.

Hao Liu, Richard Socher, and Caiming Xiong. Taming maml: Efficient unbiased meta-
reinforcement learning. In International conference on machine learning, pp. 4061–4071. PMLR,
2019.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312, 2017.

Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. SDRL: interpretable and data-
efficient deep reinforcement learning leveraging symbolic planning. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - Febru-
ary 1, 2019, pp. 2970–2977. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33012970. URL
https://doi.org/10.1609/aaai.v33i01.33012970.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Cláudio Prata Santiago,
Sookyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathematical ex-
pressions from data via risk-seeking policy gradients. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
URL https://openreview.net/forum?id=m5Qsh0kBQG.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

Subham S. Sahoo, Christoph H. Lampert, and Georg Martius. Learning equations for extrapolation
and control. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 4439–4447. PMLR,
2018. URL http://proceedings.mlr.press/v80/sahoo18a.html.

Elad Sarafian, Shai Keynan, and Sarit Kraus. Recomposing the reinforcement learning building
blocks with hypernetworks. In International Conference on Machine Learning, pp. 9301–9312.
PMLR, 2021.

11

https://www.sciencedirect.com/science/article/pii/S2405896317312594
https://www.sciencedirect.com/science/article/pii/S2405896317312594
http://proceedings.mlr.press/v139/landajuela21a.html
https://doi.org/10.1609/aaai.v33i01.33012970
https://openreview.net/forum?id=m5Qsh0kBQG
http://proceedings.mlr.press/v80/sahoo18a.html

Under review as a conference paper at ICLR 2023

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to learn:
The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 14
May 1987. URL http://www.idsia.ch/˜juergen/diploma.html.

Michael D. Schmidt and Hod Lipson. Age-fitness pareto optimization. In Martin Pelikan and Jürgen
Branke (eds.), Genetic and Evolutionary Computation Conference, GECCO 2010, Proceedings,
Portland, Oregon, USA, July 7-11, 2010, pp. 543–544. ACM, 2010. doi: 10.1145/1830483.
1830584. URL https://doi.org/10.1145/1830483.1830584.

Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition workshops,
pp. 138–145, 2017.

Bradly Stadie, Ge Yang, Rein Houthooft, Peter Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and
Ilya Sutskever. The importance of sampling inmeta-reinforcement learning. Advances in Neural
Information Processing Systems, 31, 2018.

Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn:
Meta-critic networks for sample efficient learning. arXiv preprint arXiv:1706.09529, 2017.

Sebastian Thrun and Lorien Pratt. Learning to learn. 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Silviu-Marian Udrescu and Max Tegmark. AI feynman: a physics-inspired method for symbolic
regression. CoRR, abs/1905.11481, 2019. URL http://arxiv.org/abs/1905.11481.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pp. 5045–5054. PMLR, 2018.

Marco Virgolin, Tanja Alderliesten, and Peter A. N. Bosman. Linear scaling with and within se-
mantic backpropagation-based genetic programming for symbolic regression. In Anne Auger and
Thomas Stützle (eds.), Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2019, Prague, Czech Republic, July 13-17, 2019, pp. 1084–1092. ACM, 2019. doi:
10.1145/3321707.3321758. URL https://doi.org/10.1145/3321707.3321758.

Kenny Young, Baoxiang Wang, and Matthew E Taylor. Metatrace actor-critic: Online step-
size tuning by meta-gradient descent for reinforcement learning control. arXiv preprint
arXiv:1805.04514, 2018.

Jin Zhang, Jianhao Wang, Hao Hu, Tong Chen, Yingfeng Chen, Changjie Fan, and Chongjie Zhang.
Metacure: Meta reinforcement learning with empowerment-driven exploration. In International
Conference on Machine Learning, pp. 12600–12610. PMLR, 2021.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. Advances in Neural Information Processing Systems, 31, 2018.

Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification of neural networks
with global sparsity constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3599–3608, 2021.

Luisa M. Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep RL via meta-
learning. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/
forum?id=Hkl9JlBYvr.

12

http://www.idsia.ch/~juergen/diploma.html
https://doi.org/10.1145/1830483.1830584
http://arxiv.org/abs/1905.11481
https://doi.org/10.1145/3321707.3321758
https://openreview.net/forum?id=Hkl9JlBYvr
https://openreview.net/forum?id=Hkl9JlBYvr

	Introduction
	Related Works
	Meta-Reinforcement Learning
	Symbolic Regression

	Preliminaries
	Gradient-based Contextual Symbolic Policy
	Densely Connected Symbolic Network
	Incorporating the Context Variables

	Meta-learning the Symbolic Policy
	Loss Function
	Training Schedule

	Experiment
	Comparison of Contextual Policies
	Analysis of symbolic policies
	Ablation

	Conclusion

