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ABSTRACT

Vision-language models (VLMs) are impactful in part because they can be ap-
plied to a variety of visual understanding tasks in a zero-shot fashion, without
any fine-tuning. We study currently popular generative VLMs that are trained for
next-word generation given the image. We explore their zero-shot performance on
the illustrative task of image-text retrieval across 8 popular vision-language bench-
marks. Our first observation is that they can be repurposed for discriminative tasks
(such as image-text retrieval) by simply computing the match score of generating
a particular text string given an image. We call this probabilistic score the Visual
Generative Pre-Training Score (VisualGPTScore). While the VisualGPTScore
produces near-perfect accuracy on some retrieval benchmarks, it produces poor
accuracy on others. We analyze this behavior through a probabilistic lens, pointing
out that some benchmarks inadvertently capture unnatural language distributions
by creating adversarial but unlikely text captions. In fact, we demonstrate that
even a “blind” language model that ignores any image evidence can sometimes
outperform all prior art, reminiscent of similar challenges faced by the visual-
question answering (VQA) community many years ago. We derive a probabilistic
post-processing scheme that controls for the amount of linguistic bias in generative
VLMs at test time without having to retrain or fine-tune the model. We show that
the VisualGPTScore, when appropriately debiased, is a strong zero-shot baseline
for vision-language understanding, oftentimes producing state-of-the-art accuracy.

1 INTRODUCTION

Vision-language models (VLMs) trained on web-scale datasets will likely serve as the foundation
for next-generation visual understanding systems. One reason for their widespread adoption is their
ability to be used in an “off-the-shelf” (OTS) or zero-shot manner, without fine-tuning on any target
application of interest. We study their OTS use on the task of image-text retrieval (e.g., given an
image, predict which of K possible captions is true) across a suite of 8 popular benchmarks.

Challenges. While the performance of foundational VLMs is impressive, many open challenges
remain. Recent analysis (Kamath et al., 2023; Yuksekgonul et al., 2022) points out that leading
VLMs such as CLIP (Radford et al., 2021) may often degrade to “bag-of-words” that confuse
captions such as "the horse is eating the grass" and "the grass is eating
the horse". This makes it difficult to use VLMs to capture compositions of objects, attributes,
and their relations. But somewhat interestingly, large-scale language models (LLMs) trained for
autoregressive next-token prediction (Brown et al., 2020) seem to be able to capture such distinctions,
which we investigate below. A related but under-appreciated difficulty is that of benchmarking the
performance of visio-linguistic reasoning. Perhaps the most well-known example in the community
is that of the influential VQA benchmarks (Antol et al., 2015), which could be largely solved by
exploiting linguistic biases in the dataset – concretely, questions about images could often be answered
by “blind” language-only models that did not look at the image (Goyal et al., 2017). Notably, we find
that such blind algorithms can still produce strong performance on many contemporary image-text
retrieval benchmarks where VLMs may struggle.

Generative models for discriminative tasks. We tackle the above challenges by revisiting the role
of language priors through a probabilistic lens. To allow for a probabilistic treatment, we focus
on generative VLMs that take an image as input and stochastically generate text via next-token

1



Under review as a conference paper at ICLR 2024

Scenario 1 Scenario 2

Figure 1: Two train-test shifts encountered in image-to-text retrieval tasks. Scenario 1 constructs negative
text captions by shuffling words in the true caption (as in ARO-Flickr), but this produces implausible text such as
white a duck spreads its wings in while the water. Here, exploiting the language bias
of the training set will help since it will downweight the match score for negative captions. In fact, a blind
language-only model can easily identify the correct caption. Scenario 2 constructs alternative text captions that
are curated to be plausible (as in SugarCrepe). Here, the language bias of the training set may hurt, since it will
prefer to match common captions (that score well under the language prior) as shown on the right.

prediction (Li et al., 2022; 2023). We first demonstrate that such models can be easily repurposed
for discriminative tasks (such as retrieval) by setting the match score for an image-text pair to be the
probability that the VLM would generate that text from the given image. We call this probability
score the Visual Generative Pre-Training Score, or VisualGPTScore. Computing the VisualGPTScore
is even more efficient than next-token generation since given an image, all tokens from a candidate
text string can be evaluated in parallel. Though conceptually straightforward, such an approach (to
our knowledge) has not been proposed in the literature. In fact, the generative VLMs that we analyze
train separate discriminative heads for matching/classifying image-text pairs (Li et al., 2022), but we
find that their language generation head itself produces better scores for matching (since it appears to
better capture compositions). Indeed, OTS VisualGPTScore by itself performs surprisingly well on
many benchmarks, even producing near-perfect accuracy on ARO (Yuksekgonul et al., 2022). But it
still struggles on other benchmarks such as Winoground (Thrush et al., 2022). We analyze this below.

The role of language priors. We analyze the discrepancy in performance across benchmarks from a
probabilistic perspective. Our key insight is that many benchmark biases can be formalized as mis-
matching distributions over text between train and test data - Ptrain(text) versus Ptest(text). We use
a first-principles analysis to account for distribution shift by simply reweighting the VisualGPTScore
with the Bayes factor Ptest(text)/Ptrain(text), a process we call debiasing. To compute the Bayes
reweighting factor, we need access to both the train and test language prior. We compute Ptrain(text)
from an OTS VLM with Monte-Carlo samples of Ptrain(text|image) computed on trainset or Guas-
sian noise images. Because Ptest(text) may require access to the test set, we explore simplifying
assumptions that assume it is (a) identical to Ptrain(text), (b) uninformative/uniform, or (c) tunable
from a held-out val set. Our analysis helps explain the strong performance of the VisualGPTScore
on certain benchmarks and its poor performance on others. Furthermore, this analysis provides
simple strategies for improving performance with debiasing. We finally show a theoretical connection
between debiasing and mutual information, which can be seen as a method for removing the effect of
marginal priors when computing joint probability scores.

Empirical Analysis. We present an exhaustive empirical analysis of the OTS VisualGPTScore
(and its debiased variants) for open-sourced image-conditioned language models (Li et al., 2022;
2023) across 8 popular vision-language benchmarks. We first point out that VisualGPTScore by
itself produces SOTA accuracy on certain benchmarks like ARO (Yuksekgonul et al., 2022) where
its inherent language bias helps remove incorrect text caption candidates that are also unnatural
(such as ‘‘a white duck the its wings while in water" as shown in Fig. 1). In
fact, we show that blind baselines also do quite well on such benchmarks, since language-only
models can easily identify such poor captions. However, such language biases do not work well
on benchmarks where incorrect caption candidates are also realistic. Here, VisualGPTScore should
be debiased so as not to naively prefer more common captions that score well under its language
prior. When given access to a val set that reveals the amount of language bias in the benchmark,
debiasing consistently improves performance on benchmarks such as Flickr30K (Young et al., 2014)
and Winoground (Thrush et al., 2022). Interestingly, we find that debiasing can also improve accuracy
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on the train set used to learn the generative VLM, indicating that such models learn biased estimates
of the true conditional distribution Ptrain(text|image). We describe this further in our appendix.

2 RELATED WORKS

Vision-language modelling. State-of-the-art VLMs like CLIP (Radford et al., 2021) are pre-trained
on web-scale image-text datasets (Schuhmann et al., 2021; 2022) using discriminative objectives
including image-text contrastive (ITC) (Radford et al., 2021; Jia et al., 2021) and image-text matching
(ITM) (Li et al., 2021; 2022) loss, typically formulated as P (match|image, text). These pre-trained
models exhibit robust zero-shot and few-shot (Lin et al., 2023; Wortsman et al., 2022) performance on
traditional discriminative tasks (Deng et al., 2009; Lin et al., 2014), often on par with fully-supervised
models. More recently, image-conditioned language models like Flamingo (Alayrac et al., 2022)
and BLIP (Li et al., 2022; 2023) incorporate generative objectives (Bengio et al., 2003) primarily for
downstream tasks such as captioning (Agrawal et al., 2019) and VQA (Goyal et al., 2017).

Visio-linguistic compositionality. Benchmarks like ARO (Yuksekgonul et al., 2022), Crepe (Ma
et al., 2022), Winoground (Thrush et al., 2022), EqBen (Wang et al., 2023), VL-CheckList (Zhao
et al., 2022), and SugarCrepe (Hsieh et al., 2023) show that discriminative scores of VLMs, such as
ITCScore and ITMScore, fail on their image-text retrieval tasks that assess compositional reasoning.
Concurrently, advances on these tasks often involve fine-tuning discriminative VLMs with more data.
One of the most popular approaches, NegCLIP (Yuksekgonul et al., 2022), augments CLIP using
programmatically generated negatives from original texts. Extending this, subsequent studies propose
more expensive and heavily-engineered solutions. SyViC (Cascante-Bonilla et al., 2023) fine-tunes
VLMs on million-scale synthetic images to augment spatial, attributive, and relation understanding.
SGVL (Herzig et al., 2023) and Structure-CLIP (Huang et al., 2023) sample negatives using costly
scene graph annotations. MosaiCLIP (Singh et al., 2023) and SVLC (Doveh et al., 2022) use linguistic
tools such as scene graph parsers and LLMs to design better negative captions. The most recent
DAC (Doveh et al., 2023) leverages a combination of foundation models including BLIP2, ChatGPT,
and SAM to rewrite and augment image captions.

Generative pre-training and scoring. Vision models trained with discriminative objectives
often lack incentives to learn structure information (Brendel & Bethge, 2019; Tejankar et al., 2021).
Similarly, early LLMs trained with discriminative approaches, such as BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019), have also been criticized as bag-of-words models insensitive to
word order (Bertolini et al., 2022; Hessel & Schofield, 2021; Papadimitriou et al., 2022; Sinha et al.,
2021). Conversely, generative pre-trained LLMs (Radford et al., 2019) demonstrate exceptional
compositional understanding while pre-trained solely with a next-token prediction (Bengio et al.,
2003) loss. Furthermore, generative scores of LLMs (OpenAI, 2023; Chung et al., 2022; Zhang et al.,
2022) have flexible usage in downstream tasks, such as text evaluation (Yuan et al., 2021; Fu et al.,
2023) and reranking (Keskar et al., 2019).

3 THE ROLE OF LANGUAGE PRIORS

In this section, we present a simple probabilistic treatment for analyzing the role of language priors in
image-conditioned language models (or generative VLMs). Motivated by their strong but inconsistent
performance across a variety of image-text retrieval benchmarks, we analyze their behavior when
there exists a mismatch between training and test distributions, deriving simple schemes for addressing
the mismatch with reweighting. We conclude by exposing a connection to related work on mutual
information.

Computing P (t|i). To begin our probabilistic treatment, we first show that image-conditioned
language models (that probabilistically generate text based on an image) can be repurposed for
computing a score between a given image i and text caption t. The likelihood of a text sequence t =
{t1, t2, · · · , tm} conditioned on image i is naturally factorized as an autoregressive product (Bengio
et al., 2003):

P (t|i) =
m∏

k=1

P (tk|t<k, i) (1)
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Image-conditioned language models return back m softmax distributions corresponding to the m
terms in the above expression. Text generation requires sequential token-by-token prediction, since
token tk must be generated before it can be used as an input to generate the softmax distribution
over token tk+1. Interestingly, given an image i and text sequence t, the above probability can be
computed in parallel because the entire sequence of tokens {tk} are already available as input. We
provide a visual illustration in Figure 2-a.

Train-test shifts. Given the image-conditioned model of P (t|i) above, we now analyze its behavior
when applied to test data distributions that differs from the trainset, denoted as Ptest versus Ptrain.
Recall that any joint distribution over images and text can be factored into a product over a language
prior and an image likelihood P (t, i) = P (t)P (i|t). Our analysis makes the strong assumption that
the image likelihood P (i|t) is identical across the train and test data, but the language prior P (t) may
differ. Intuitively, this assumes that the visual appearance of entities (such as a "white duck")
remains consistent across the training and test data, but the frequency of those entities (as manifested
in the set of captions P (t)) may vary. We can now derive Ptest(t|i) via Bayes rule:

Ptest(t|i) ∝ P (i|t)Ptest(t) (2)

= P (i|t)Ptrain(t)

Ptrain(t)
Ptest(t) (3)

∝ Ptrain(t|i)
Ptest(t)

Ptrain(t)
(4)

The above shows that the generative pre-training score Ptrain(t|i) need simply be weighted by the
ratio of the language priors in the testset versus trainset. Intuitively, if a particular text caption
appears more often in the testset than the trainset, one should increase the score reported by the
generative model. However, one often does not have access to the text distribution on the testset. For
example, real-world deployments and benchmark protocols may not reveal this. In such cases, one
can make two practical assumptions; either the language distribution on test is identical to train, or it
is uninformative/uniform (see Figure 1):

Scenario 1: Ptest(t) = Ptrain(t) ⇒ Optimal score is Ptrain(t|i). (5)

Scenario 2: Ptest(t) is uniform. ⇒ Optimal score is
Ptrain(t|i)
Ptrain(t)

. (6)

Tunable α. In reality, a testset might be a mix of both scenarios. To model this, we consider a
soft combination where the language prior on the testset is assumed to be a flattened version of the
language prior on the trainset, for some temperature parameter α ∈ [0, 1]:

Ptest(t) ∝ Ptrain(t)
1−α ⇒ Optimal score is

Ptrain(t|i)
Ptrain(t)α

(7)

By setting α to 0 or 1, one can obtain the two scenarios described above. Some deployments (or
benchmarks) may benefit from tuning α on a val set.

Implications for retrieval benchmarks. We speculate some benchmarks like ARO-Flickr (Yuksek-
gonul et al., 2022) are close to scenario 1 because they include negative captions that are implausible,
such as “a white duck the its wings while in water spreads”. Such captions
will have a low score under the language prior Ptrain(t) and so reporting the raw generative score
Ptrain(t|i) (that keeps its language prior or bias) will improve accuracy. In fact, we show that
applying a blind language model (that ignores all image evidence) can itself often identify the correct
caption. On the other hand, for test datasets with more realistic negative captions (scenario 2), it
may be useful to remove the language bias of the trainset, since that will prefer to match to common
captions (even if they do not necessarily agree with the input image). This appears to be the case for
SugarCrepe (Hsieh et al., 2023), which uses LLMs like ChatGPT to ensure that the negative captions
are realistic.

Relationship to prior approaches. Our approach to debiasing is reminiscent of mutual information,
which can also be seen as a method for removing the effect of marginal priors when computing
joint probability scores. In fact, our Appendix A derives that α-debiasing is equivalent to a form of
pointwise mutual information (PMI) known as PMIk for k = 1

α .
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(a) Ptrain(t|i) through generative VLMs (b) Ptrain(t) via Monte Carlo sampling

Figure 2: Estimating Ptrain(t|i) and Ptrain(t) from generative VLMs. Figure (a) shows how image-
conditioned language models such as Li et al. (2022) that generate text based on an image can be repurposed for
computing Ptrain(t|i), which is factorized as a product of

∏m
k=1 P (tk|t<k, i) for a sequence of m tokens. These

terms can be efficiently computed in parallel, unlike sequential token-by-token prediction for text generation.
Figure (b) shows two approaches for Monte Carlo sampling of Ptrain(t). While the straightforward approach is
to sample trainset images, we find that using as few as three “null” (Gaussian noise) images can achieve more
robust estimates.

4 EXPERIMENTAL RESULTS ON I-TO-T RETRIEVAL

In this section, we verify our hypothesis on I-to-T retrieval benchmarks using state-of-the-art mul-
timodal generative VLMs. In particular, we adopt image-conditioned language models such as
BLIP (Li et al., 2022) as the learned estimator of Ptrain(t|i). Then, we discuss how we perform
Monte Carlo estimation of Ptrain(t), including a novel efficient sampling method based on “content-
free” Gaussian noise images. Finally, we show the state-of-the-art results of our generative approach
on existing I-to-T retrieval tasks.

Preliminaries. We leverage OTS image-conditioned language models (Yu et al., 2022; Alayrac et al.,
2022; Li et al., 2023) to estimate Ptrain(t). For ablation, we use the open-sourced BLIP models (Li
et al., 2022), trained on public image-text corpora using discriminative (ITC and ITM) and generative
(captioning) objectives. Discriminative objectives typically model P (match|t, i). For example,
ITCScore calculates cosine similarity scores between image and text features using a dual-encoder;
ITMScore jointly embeds image-text pairs via a fusion-encoder and returns softmax scores from
a binary classifier. Lastly, we term the generative score as Visual Generative Pre-Training Score
(VisualGPTScore). While BLIP is pre-trained using all three objectives, this generative score has
not been applied to discriminative tasks before our work.

Implementing VisualGPTScore. Our method calculates an average of the log-likelihoods of tk at
each token position k and applies an exponent to cancel the log:

VisualGPTScore(t, i) := e
1
m

∑m
k=1 log(P (tk|t<k,i)) (8)

To condition on an input image, BLIP uses a multimodal casual self-attention mask (Li et al., 2022) in
its image-grounded text decoder, i.e., each text token attends to all its preceding vision and text tokens.
We emphasize that VisualGPTScore has the same computational cost as ITMScore, which uses the
same underlying transformer but with a bi-directional self-attention mask to encode an image-text
pair. We address potential biases of this estimator in Appendix C.

Estimating Ptrain(t) using Monte Carlo sampling (oracle approach). Given Ptrain(t|i), we can
estimate Ptrain(t) via classic Monte Carlo sampling (Shapiro, 2003), by drawing n images from the
train distribution, such as LAION114M (Schuhmann et al., 2021) for BLIP:

Ptrain(t) ≈
1

n

n∑
k=1

Ptrain(t|ik) (9)

Reducing sampling cost with content-free images (our approach). The above Equation 9 requires
many trainset samples to achieve robust estimates. To address this, we draw inspiration from (Zhao
et al., 2021), which uses a content-free text prompt “N/A” to calibrate the probability of a text from
LLMs, i.e., P (t|“N/A”). To apply this to our generative VLMs, we choose to sample “null” inputs
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Score Method ARO
Rel Attr COCO Flickr

Random - 50.0 50.0 20.0 20.0

Text-Only Vera 61.7 82.6 59.8 63.5
Grammar 59.6 58.4 74.3 76.3

PLLM (t)
BART 81.1 73.6 95.0 95.2
Flan-T5 84.4 76.5 98.0 98.2
OPT 84.7 79.8 97.9 98.6

Ptrain(t) BLIP 87.6 80.7 98.6 99.1

P (match|t, i)

CLIP 59.0 62.0 59.0 46.0
LAION2B-CLIP 51.6 61.9 25.2 30.2
LAION5B-CLIP 46.1 57.8 26.1 31.0
NegCLIP 81.0 71.0 91.0 86.0
Structure-CLIP 83.5 85.1 - -
SyViC 80.8 72.4 92.4 87.2
SGVL - - 87.2 91.0
MosaiCLIP 82.6 78.0 87.9 86.3
DAC-LLM 81.3 73.9 94.5 95.7
DAC-SAM 77.2 70.5 91.2 93.9
BLIP-ITC 63.1 81.6 34.3 41.7
BLIP-ITM 58.7 90.3 45.1 51.3

Ptrain(t|i)
Ptrain(t)α

Ours (α = 0) 89.1 95.3 99.4 99.5
Ours (α = 1) 68.1 87.9 32.4 44.5
Ours (α = α∗) 89.1 95.4 99.4 99.5

Score Method VL-CheckList
Object Attribute Relation

Random - 50.0 50.0 50.0

Text-Only Vera 82.5 74.0 85.7
Grammar 58.0 52.4 68.5

PLLM (t)
BART 52.0 51.0 45.1
Flan-T5 60.3 55.0 49.3
OPT 59.3 48.8 60.0

Ptrain(t) BLIP 68.2 58.7 75.9

P (match|t, i)

CLIP 81.6 67.6 63.1
LAION2B-CLIP 84.7 67.8 66.5
LAION5B-CLIP 87.9 70.3 63.9
NegCLIP 81.4 72.2 63.5
SyViC - 70.4 69.4
SGVL 85.2 78.2 80.4
SLVC 85.0 72.0 69.0
DAC-LLM 87.3 77.3 86.4
DAC-SAM 88.5 75.8 89.8
BLIP-ITC 90.6 80.3 73.5
BLIP-ITM 89.9 80.7 67.7

Ptrain(t|i)
Ptrain(t)α

Ours (α = 0) 92.6 78.7 90.8
Ours (α = 1) 90.4 77.6 77.8
Ours (α = α∗) 94.4 82.1 92.8

(a) Accuracy on ARO (b) Accuracy on VL-CheckList

Score Method SugarCrepe
Replace Swap Add

Random - 50.0 50.0 50.0

Text-Only Vera 49.5 49.3 49.5
Grammar 50.0 50.0 50.0

PLLM (t)
BART 48.4 51.9 61.2

Flan-T5 51.4 57.6 40.9
OPT 58.5 66.6 45.8

Ptrain(t) BLIP 75.9 77.1 70.9

P (match|t, i)

CLIP 80.8 63.3 75.1
LAION2B-CLIP 86.5 68.6 88.4
LAION5B-CLIP 85.0 68.0 89.6

NegCLIP 88.3 76.2 90.2
BLIP-ITC 85.8 73.8 85.7
BLIP-ITM 88.7 81.3 87.6

Ptrain(t|i)
Ptrain(t)α

Ours (α = 0) 93.3 91.0 91.0
Ours (α = 1) 83.2 85.5 85.9

Ours (α = α∗) 95.1 92.4 97.4

Score Method Crepe
Atom Swap Negate

Random - 16.7 16.7 16.7

Text-Only Vera 43.7 70.8 66.2
Grammar 18.2 50.9 9.8

PLLM (t)
BART 38.8 53.3 44.4

Flan-T5 43.0 69.5 13.6
OPT 53.3 72.7 5.0

Ptrain(t) BLIP 55.4 69.7 60.8

P (match|t, i)

CLIP 22.3 26.6 28.8
LAION2B-CLIP 23.6 24.8 18.0
LAION5B-CLIP 24.2 23.9 20.1

BLIP-ITC 24.8 17.7 26.5
BLIP-ITM 29.5 20.7 25.5

Ptrain(t|i)
Ptrain(t)α

Ours (α = 0) 73.2 78.1 79.6
Ours (α = 1) 20.6 28.3 35.6

Ours (α = α∗) 73.3 78.1 79.6

(c) Accuracy on SugarCrepe (d) Accuracy on Crepe

Table 1: OTS generative VLMs are SOTA on image-to-text retrieval benchmarks. We begin by evaluating
blind language models (in red) . Surprisingly, this already produces SOTA accuracy on certain benchmarks such

as ARO-Flickr, compared to the best discriminative approaches (in gray) . We also find that blind inference of
generative VLMs, Ptrain(t) via sampling Gaussian noise images (in blue) , often performs better and achieve
above-chance performance even on the most recent SugarCrepe. Next, we show that simply repurposing a
generative VLM’s language generation head for computing image-text scores (VisualGPTScore in yellow) ,
which corresponds to α = 0, consistently produces SOTA accuracy across all benchmarks. Finally, debiasing
this score by tuning α on val set (in green) further improves performance, establishing the new SOTA.

as Gaussian noise images. As a result, our approach requires as few as three images to compute Eq. 9
by sampling from Gaussian noise images with a mean of 0.4 and a standard deviation of 0.25. We
find this method to be less computationally demanding and just as effective as sampling thousands
of images from trainset. We provide a visual illustration of this method in Figure 2-b. We include
sampling details in Appendix B.

Benchmarks and evaluation protocols. We comprehensively report on four popular I-to-T retrieval
benchmarks, including ARO (Yuksekgonul et al., 2022), Crepe (Ma et al., 2022), SugarCrepe Hsieh
et al. (2023), and VL-CheckList (Zhao et al., 2022). In these datasets, each image has a single positive
caption and multiple negative captions. ARO (Yuksekgonul et al., 2022) has four datasets: VG-
Relation, VG-Attribution, COCO-Order, and Flickr30k-Order. SugarCrepe (Hsieh et al., 2023) has
three datasets: Replace, Swap, and Add. For Crepe (Ma et al., 2022), we use the entire productivity
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set and report on three datasets: Atom, Negate, and Swap. VL-CheckList (Zhao et al., 2022) has
three datasets: Object, Attribute, and Relation. We visualize all datasets in Appendix Table 13.

SOTA performance on all four benchmarks. In Table 1, we show that our OTS generative
approaches, based on the BLIP model pre-trained on LAION-114M with ViT-L image encoder,
achieves state-of-the-art results on all benchmarks. We outperform the best discriminative VLMs,
including LAION5B-CLIP, and consistently surpass other heavily-engineered solutions, including
NegCLIP, SyViC, MosaiCLIP, DAC, SVLC, SGVL, Structure-CLIP, all of which fine-tune CLIP on
much more data. Details on how we report the baseline results can be found in Appendix E. For
reference, we also include results of text-only Vera and Grammar from Hsieh et al. (2023). To show
that even the most recent SugarCrepe is not exempt from language biases, we run two more text-only
methods:

1. PLLM (t): passing captions into a pure LLM, such as BART-base (Yuan et al., 2021), FLAN-
T5-XL (Chung et al., 2022), and OPT-2.7B (Zhang et al., 2022), to compute a text-only
GPTScore (Fu et al., 2023).

2. Ptrain(t): passing both captions and Gaussian noise images to BLIP as shown in Figure 2.

Visualization of α-tuning. Finally, we observe that α-tuning can consistently improve the per-
formance. For visualization, we attach the results of α-tuning in Table 2. We show side-by-side
frequency charts of Ptrain(t) for positive and negative captions.

5 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we apply our OTS generative approaches to more benchmarks, including two com-
positionality benchmarks Winoground (Thrush et al., 2022) and EqBen (Wang et al., 2023), and
two classic large-scale retrieval benchmarks COCO (Lin et al., 2014) and Flickr30K (Young et al.,
2014). While naively applying VisualGPTScore leads to bad performance on these benchmarks, our
training-free debiasing solution can consistently improve its performance with a held-out validation
set. Furthermore, we derive the optimal text-to-image (T-to-I) retrieval objective and show that OTS
generative scores can achieve robust T-to-I performance without debiasing.

Evaluation protocols of Thrush et al. (2022). While prior analysis (Diwan et al., 2022; Yuksekgonul
et al., 2022) suggests that Winoground is too out-of-distribution to evaluate compositionality, we argue
that evaluation protocols of Winoground and EqBen are more robust for future evaluations of VLMs.
In these two benchmarks, each sample consists of two image-text pairs, ensuring uniform image and
text priors. For simplicity, we consider a single Winoground sample: (i0, t0) and (i1, t1). The joint
probabilities are Ptest(i0, t0) = Ptest(i1, t1) = 0.5. Meanwhile, Ptest(i0, t1) = Ptest(i1, t0) = 0.
Applying the law of total probability gives Ptest(t0) = Ptest(t1) = 0.5. A similar derivation can
show that image priors are uniform too. In addition, Winoground’s evaluation metrics (text score and
image score) penalize unimodal shortcut solutions. For example, in I-to-T retrieval, the text score
gets 1 point only if both images are matched to the correct caption. Therefore, “blind” solutions that
choose the same text regardless of images will get 0 text score. Similarly, for T-to-I retrieval, the
image score gets 1 point only if both captions are matched to the correct image.

Tuning α through cross validation. In Table 3-a, we first show that OTS generative scores with-
out debiasing (α=0) lead to inferior performance on these I-to-T benchmarks. This confirms the
importance of α-tuning; even a simple α = 1 can consistently and often significantly improve their
I-to-T results. Furthermore, we try to use a held-out validation set to tune for optimal α ∈ [0, 1]. We
sample half of the data as validation set to search for α∗

val (using a step size of 0.001) and report the
performance on the other half. We repeat this process 10 times to and report the mean and std. We
observe that the optimal alpha is usually stable under the same dataset, regardless of the sampled val
set. For COCO and Flickr30K, we perform α-tuning using Recall@1 (R@1) on the official validation
split. Because sampling additional Gaussian noise images can be too costly on these large-scale
benchmarks, we directly approximate Ptrain(t) by averaging the scores of testset images, without
incurring any computational cost. More ablation studies such as α-tuning using testset can be found
in Appendix B. We also include the results of the ITMScore of BLIP for reference. While our
debiasing solution can always boost performance, we observe that generative approaches still lag
behind the ITMScore. This motivates us to study biases of generative scores towards more “common”
texts in Appendix C.
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Alpha-Tuning Prior Frequency Alpha-Tuning Prior Frequency

ARO (VG-Relation) Crepe (Atom-Foils)

ARO (VG-Attribution) Crepe (Negate)

ARO (Flickr30K-Order) Crepe (Swap)

SugarCrepe (Add) VL-CheckList (Relation)

SugarCrepe (Replace) SugarCrepe (Swap)

Table 2: α-tuning on I-to-T benchmarks and Ptrain(t) frequency charts of both positive and negative
captions. Increasing α from 0 to 1 hurts performance on benchmarks with non-sensical negative captions such
as ARO and Crepe. Such negative captions are easier to identify because of their low score under the language
prior Ptrain(t), implying such benchmarks may even be solved with blind algorithms that avoid looking at
images. On the other hand, for benchmarks like SugarCrepe with more balanced Ptrain(t) between positives
and negatives, tuning α may lead to performance gain.

Extending to T-to-I retrieval. Though not the focus of our work, we also show that image-
conditioned language models can be applied to T-to-I retrieval. Given a text caption t, we can rewrite
the Bayes optimal T-to-I retrieval objective as:

Ptest(i|t) ∝ Ptrain(t|i) ∗ Ptrain(i) (10)

Equation 10 is hard to implement because we do not have access to Ptrain(i). However, when
Ptrain(i) is approximately uniform, one can directly apply Ptrain(t|i) for optimal performance. We
report T-to-I performance on all four benchmarks in Table 3-b, where our generative approach obtain
competitive results compared against ITMScore, presumably because T-to-I retrieval is less affected
by language biases.
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Metric Benchmark ITMScore
Ptrain(t|i)
Ptrain(t)α

α=0 α=1 α=α∗
val α∗

val

Text Score Winoground 35.5(2.4) 27.5(2.3) 33.7(2.4) 36.6(2.6) 0.855(0.023)

EqBen 26.1(0.3) 9.6(0.2) 19.8(0.3) 19.8(0.3) 0.992(0.007)

R@1 / R@5
COCO 71.9 / 90.6 19.7 / 40.6 46.2 / 73.1 48.0 / 74.2 0.819
Flickr30k 88.8 / 98.2 34.6 / 59.0 58.7 / 88.0 63.6 / 89.2 0.719

Metric Benchmark ITMScore Ptrain(t|i)

Image Score Winoground 15.8 21.5
EqBen 20.3 26.1

R@1 / R@5
COCO 54.8 / 79.0 55.6 / 79.2
Flickr30k 77.8 / 93.9 76.8 / 93.4

(a) α-tuning on val sets for I-to-T retrieval (b) T-to-I retrieval

Table 3: Additional results on Winoground/EqBen/COCO/Flickr30K retrieval benchmarks. Ta-
ble (a) shows that tuning α can be essential for these compositionality and large-scale retrieval bench-
marks. While OTS generative scores do not work well, debiasing with a larger α can consistently
and often significantly improve I-to-T results on these tasks. To highlight the performance improve-
ment, we mark results without debiasing (α = 0) (in yellow) , debiasing with a fixed α = 1 (in pink) , and

cross-validation using held-out val sets (α = α∗
val) (in green) . Table (b) shows that OTS generative scores can

obtain favorable results on classic T-to-I retrieval tasks, competitive with the ITMScore.

6 DISCUSSION AND LIMITATIONS

Summary. Our study shows the efficacy of generative pre-training scores in solving discriminative
tasks. With the rise of generative pre-training in recent models like GPT-4 (OpenAI, 2023), we see
our work as a reliable starting point for future tasks. We present a first-principles analysis to account
for mismatching distributions over text between train and test data. Based on this, we introduce a
robust training-free (zero-shot) solution to debias linguistic priors in generative scores, achieving
consistent and often significant improvement on all I-to-T retrieval tasks. Our thorough analysis also
explains the performance discrepancy of generative scores on different benchmarks, and we hope it
can encourage future work to revisit the issue of language biases in vision-language benchmarks.

Limitations and future work. Our approach depends on generative VLMs pre-trained on noisy
web datasets, which may result in inherited biases (Mehrabi et al., 2021). We do not explore
fine-tuning techniques due to computational constraints, but it is possible to improve the I-to-T
retrieval performance using hard negative samples, such as with controllable generation (Keskar
et al., 2019). Furthermore, our analysis is based on simplified assumptions. For instance, the image-
conditioned language model might not accurately represent Ptrain(t|i), a phenomenon we examine
in Appendix C. Estimating Ptrain(t) by sampling Gaussian noise images can be suboptimal; future
VLMs could directly model Ptrain(t), or use techniques like coreset selection (Guo et al., 2022)
or dataset distillation (Wu et al., 2023) to sample more representative images. Finally, we leave
debiasing on the T-to-I retrieval task for future work.
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APPENDIX

A COMPARISON TO PMIk

By assuming Ptest(t) to be a “flatten” version of Ptrain(t), our Equation 7 can interpolate between
scenario 1 (same train and test priors) and 2 (balanced test priors):

Ptest(t) ∝ Ptrain(t)
1−α ⇒ Optimal score is

Ptrain(t|i)
Ptrain(t)α

(11)

In fact, the above equation can be rewritten using the language of PMIk (Role & Nadif, 2011; Daille,
1994), a well-known variant of PMI that controls the amount of debiasing (Li et al., 2016; Li &
Jurafsky, 2016; Wang et al., 2020) in information retrieval:

Ptrain(t|i)
Ptrain(t)α

=
Ptrain(t, i)

Ptrain(i)Ptrain(t)α
(12)

∝ Ptrain(t, i)
1
α

Ptrain(i)Ptrain(t)
, as Ptrain(i) is constant in I-to-T (13)

= pmikPtrain
(t, i), where k =

1

α
≥ 1 (14)

where

pmiP (t, i) =
P (t, i)

P (t)P (i)
=

P (t|i)
P (t)

=
P (i|t)
P (i)

(15)

PMI is an information-theoretic measure that quantifies the association between two variables (Yao
et al., 2010; Henning & Ewerth, 2017; Shrivastava et al., 2021). In the context of image-text retrieval,
it measures how much more (or less) likely the image-text pair co-occurs than if the two were
independent. Eq. 15 has found applications in diverse sequence-to-sequence modelling tasks (Wang
et al., 2020; Li & Jurafsky, 2016; Li et al., 2016) as a retrieval (reranking) objective. Compared to the
conditional likelihood P (t|i), PMI reduces the learned bias for preferring ”common” texts with high
marginal probabilities P (t) (Li et al., 2016; Li & Jurafsky, 2016; Wang et al., 2020). This can be an
alternative explanation for the effectiveness of our debiasing solutions.

B ABLATION STUDIES ON α-TUNING

Estimating Ptrain(t) via null (Gaussian noise) images is more sample-efficient. We use
Winoground to show that sampling Gaussian noise images to calculate Ptrain(t) can be more
efficient than sampling trainset images. As demonstrated in Table 4, a limited number of Gaussian
noise images (e.g., 3 or 10) can surpass the results obtained with 1000 LAION images. Moreover,
using null images produces less variance in the results.

Sample Size Guassian Noise Images Trainset Images

α=α∗
test α∗

test α=α∗
test α∗

test

3 35.95(0.5) 0.821(0.012) 32.20(1.6) 0.706(0.150)

10 36.25(0.4) 0.827(0.016) 33.60(0.9) 0.910(0.104)

100 36.35(0.1) 0.840(0.010) 34.70(0.6) 0.910(0.039)

1000 36.25(0.0) 0.850(0.000) 35.15(0.3) 0.960(0.033)

Table 4: Comparing sampling of Gaussian noise images and trainset images for estimating Ptrain(t). We
report text scores of α-tuning on Winoground I-to-T retrieval task. We ablate 3/10/100/1000 Gaussian noise and
LAION samples and report both mean and std using 5 sampling seeds. The optimal α∗ ∈ [0, 1] is searched on
testset via a step size of 0.001. The Gaussian noise images are sampled with a mean calculated from the LAION
subset and a fixed std of 0.25.

Details of Gaussian noise samples. Unless otherwise specified, the Gaussian noise images are
sampled with a mean of 1.0 and a standard deviation of 0.25. By default, we use 100 images for
Winoground, 30 images for EqBen, and 3 images for the rest of the benchmarks. We also fix the
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sampling seed in our code to ensure reproducibility. We leave more advanced techniques of generating
null images to future works.

Alternative approach on COCO/Flickr30k: estimating Ptrain(t) using testset images. For
large-scale retrieval benchmarks like COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014),
we can directly average scores of all candidate images (in the order of thousands) to efficiently
approximate Ptrain(t) without the need to sample additional images. This approach incurs zero
computation cost as we have already pre-computed scores between each candidate image and text.
We show in Table 5 that using testset images indeed results in better performance than sampling 3
Gaussian noise images.

Metric Benchmark Ptrain(t|i) Sampling Method
Ptrain(t|i)
Ptrain(t)α

α=1 α=α∗
val α∗

val

R@1 / R@5
COCO 19.7 / 40.6 Testset Images 46.2 / 73.1 48.0 / 74.2 0.819

Null Images 24.4 / 52.6 40.4 / 66.6 0.600

Flickr30k 34.6 / 59.0 Testset Images 58.7 / 88.0 63.6 / 89.2 0.719
Null Images 27.8 / 62.2 48.5 / 79.0 0.427

Table 5: I-to-T retrieval on COCO/Flickr30k using different sampling methods. Estimating Ptrain(t)
by averaging the scores of testset images (with zero computational cost) demonstrates superior performance
compared to sampling additional Gaussian noise images.

Tuning α with a validation set. In Table 6, similar performance trends are observed across validation
and test splits of COCO and Flickr30k I-to-T retrieval benchmarks using the same α ∈ [0, 1].
Furthermore, α∗

test and α∗
val are empirically close. As such, our method can function as a reliable

training-free debiasing method. Future studies may explore fine-tuning methods to further improve
the debiasing performance.

(b) Alpha-tuning on COCO Retrieval (c) Alpha-tuning on Flickr Retrieval

Table 6: α-tuning results on both val set and test set for COCO/Flickr30k I-to-T retrieval. We observe that
validation and test performance are strongly correlated while we interpolate α ∈ [0, 1].

C IS VISUALGPTSCORE A BIASED ESTIMATOR OF Ptrain(t|i)?

Retrieval performance on trainset (LAION). This paper is built on the assumption that Visual-
GPTScore is a reliable estimator of Ptrain(t|i). However, this simplifying assumption does not
completely hold for the BLIP model we examine. We speculate that such OTS generative scores are
biased towards more common texts. We witness this same phenomenon in Table 7, where we perform
image-text retrieval on random subsets from training distribution LAION-114M (Li et al., 2022).

Modelling the language bias in VisualGPTScore. As evidenced in Table 7, we believe Visual-
GPTScore is biased towards more common texts due to modelling error. To consider this error in our
analysis, we rewrite the VisualGPTScore as:

VisualGPTScore(t, i) := P̂train(t|i) = Ptrain(t|i) · Ptrain(t)
β , (16)

where P̂ represents the (biased) model estimate and P represents the true distribution. The model
bias towards common texts is encoded by an unknown parameter β.

Monte Carlo estimation using P̂ . Because our Monte Carlo sampling method relies on P̂train(t|i),
it is also a biased estimator of Ptrain(t):

15



Under review as a conference paper at ICLR 2024

Dataset Size
I-to-T Retrieval T-to-I Retrieval

ITM
Ptrain(t|i)
Ptrain(t)α ITM Ptrain(t|i)

α=0 α=1 α=α∗ α∗

100 96.0 59.0 94.0 95.0 0.535 95.0 97.0
1000 90.9 37.1 71.7 85.7 0.733 92.0 93.1
2000 87.2 32.8 62.3 64.3 0.840 87.8 89.8
5000 79.8 25.1 50.9 54.1 0.727 81.9 84.4

(a) Performance on LAION trainset retrieval (b) Alpha-tuning on LAION

Table 7: Retrieval performance on randomly sampled LAION114M subsets with varied sizes. Table
(a) shows that while OTS generative scores are robust for T-to-I retrieval, its performance degrades on I-to-T
retrieval tasks when the number of candidate texts increases. This implies that OTS generative scores suffer from
language biases towards certain texts even in the training set. Nonetheless, we show that our debiasing solution
using either α = 1 or optimal α∗ ∈ [0, 1] with a step size of 0.001, can consistently boost the performance.
Figure (b) visualizes α-tuning results on LAION subsets, where each curve represents a different sample size.

P̂train(t) :=
1

n

n∑
k=1

P̂train(t|ik) = Ptrain(t)
1+β . (17)

Rewriting optimal I-to-T objective with P̂ . We can rewrite Equation 4 as:

Ptest(t|i) ∝ Ptrain(t|i)
Ptest(t)

Ptrain(t)
(18)

= P̂train(t|i)
Ptest(t)

Ptrain(t)1+β
(19)

= P̂train(t|i)
Ptest(t)

P̂train(t)
(20)

α-tuning with P̂ . Using Equation 20, we can reformulate α-tuning (Equation 7) as follows:

Ptest(t) ∝ Ptrain(t)
1−α̂ ⇒ Optimal score is

P̂train(t|i)
P̂train(t)α

(21)

where α = α̂+β
1+β . Notably, the above equation has the same structure as before (Equation 7). This

implies that even if Ptrain(t) = Ptest(t), we still anticipate α = β
1+β ̸= 0. This accounts for why

the optimal α is not 0 when we perform I-to-T retrieval on trainset in Table 7.

Implication for vision-language modelling. Our analysis indicates that similar to generative
LLMs (Li et al., 2016; Li & Jurafsky, 2016), contemporary image-conditioned language models
also experience issues related to imbalanced learning (Kang et al., 2019). Potential solutions could
be: (a) refined sampling techniques for Monte Carlo estimation of P (t) such as through dataset
distillation (Wu et al., 2023), and (b) less biased modelling of P (t|i) such as through controllable
generation (Keskar et al., 2019).

D EXPERIMENTS WITH BLIP-2

We provide BLIP-2 results for completeness.

BLIP-2 (Li et al., 2023) overview. BLIP-2 leverages frozen pre-trained image encoders (Fang
et al., 2022) and large language models (Chung et al., 2022; Zhang et al., 2022) to bootstrap vision-
language pre-training. It proposes a lightweight Querying Transformer (Q-Former) that is trained
in two stages. Similar to BLIP (Li et al., 2022), Q-Former is a mixture-of-expert model that can
calculate ITC, ITM, and captioning loss given an image-text pair. Additionally, it introduces a set of
trainable query tokens, whose outputs serve as visual soft prompts prepended as inputs to LLMs. In
its first training stage, Q-Former is fine-tuned on the same LAION dataset using the same objectives
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(ITC+ITM+captioning) as BLIP. In the second stage, the output query tokens from Q-Former are
fed into a frozen language model, such as FLAN-T5 (Chung et al., 2022) or OPT (Chung et al.,
2022), after a linear projection trained only with captioning loss. BLIP-2 achieves state-of-the-art
performance on various vision-language tasks with significantly fewer trainable parameters.

BLIP-2 results. We present retrieval performance of the BLIP-2 model that uses ViT-L as the frozen
image encoder. We report results for both the first-stage model (denoted as Q-Former) and the
second-stage model which employs FLAN-T5 (Chung et al., 2022) as the frozen LLM.

Benchmark Dataset Random w. Q-Former w. Flan-T5

ITC ITM Ptrain(t|i) Ptrain(t|i)

ARO

VG-Relation 50.0 46.4 67.2 90.7 89.1
VG-Attribution 50.0 76.0 88.1 94.3 90.9
COCO-Order 20.0 28.5 25.2 96.8 99.3
Flickr30K-Order 20.0 25.3 28.6 97.5 99.7

Crepe
Atom-Foils 16.7 20.8 20.9 74.7 69.7
Negate 16.7 13.4 14.2 79.1 90.0
Swap 16.7 13.4 18.0 79.5 79.1

VL-CheckList Object 50.0 89.7 89.2 90.1 84.1
VL-CheckList Attribute 50.0 76.6 79.3 73.9 70.6
VL-CheckList Relation 50.0 70.5 72.3 89.9 56.7

SugarCrepe Replace 50.0 86.7 88.5 93.0 82.4
SugarCrepe Swap 50.0 69.8 80.9 91.2 80.8
SugarCrepe Add 50.0 86.5 88.0 92.7 76.2

Table 8: BLIP-2 on ARO/Crepe/VL-CheckList/SugarCrepe.

Benchmark Model
I-To-T (Text Score) T-To-I (Image Score)

ITC ITM
Ptrain(t|i)
Ptrain(t)α ITC ITM Ptrain(t|i)

α=0 α=1 α=α∗ α∗

Winoground
BLIP 28.0 35.8 27.0 33.0 36.5 0.836 9.0 15.8 21.5
BLIP2-QFormer 30.0 42.5 24.3 29.3 33.0 0.882 10.5 19.0 20.0
BLIP2-FlanT5 - - 25.3 31.5 34.3 0.764 - - 19.5

EqBen (Val)
BLIP 20.9 26.0 9.6 19.8 19.8 0.982 20.3 20.3 26.1
BLIP2-QFormer 32.1 36.2 12.2 21.9 22.2 0.969 23.4 28.4 26.6
BLIP2-FlanT5 - - 8.5 22.0 22.0 1.000 - - 20.9

Table 9: BLIP-2 on Winoground/EqBen.

E ADDITIONAL REPORTS

Computational resources. All experiments use a single NVIDIA GeForce 3090s GPU.

Details of Table 1. For CLIP, LAION2B-CLIP, and LAION5B-CLIP, we report the results from Hsieh
et al. (2023) using the ViT-B-32, ViT-bigG-14, and xlm-roberta-large-ViT-H-14 models respectively.
The results of NegCLIP, Structure-CLIP, SVLC, SGVL, DAC-LLM, and DAC-SAM are directly
copied from their original papers. We run BLIP-ITC and BLIP-ITM using our own codebase, which
will be released to the public.

Group scores on Winoground/EqBen using BLIP (Table 10).

Method Winoground EqBen

Text Score Image Score Group Score Text Score Image Score Group Score

ITCScore 28.0 9.0 6.5 20.9 20.3 10.6
ITMScore 35.8 15.8 13.3 26.0 20.3 12.6
VisualGPTScoreα

∗
36.5 21.5 16.8 20.4 26.1 11.7

Table 10: Performance comparison of BLIP’s ITCScore, ITMScore, and α-tuned VisualGPTScoreα
∗

on
Winoground (all) and EqBen (val).

Fine-grained tags on Winoground (Table 11).

Performance on SugarCrepe (Table 12).
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Dataset Size Method Text Score Image Score Group Score

NoTag 171
ITCScore 32.6 11.6 8.1
ITMScore 41.9 21.5 19.2
VisualGPTScoreα

∗
43.0 28.5 23.8

NonCompositional 30
ITCScore 43.3 16.7 16.7
ITMScore 50.0 23.3 16.7
VisualGPTScoreα

∗
43.3 33.3 26.7

AmbiguouslyCorrect 46
ITCScore 32.6 8.7 6.5
ITMScore 28.3 6.5 2.2
VisualGPTScoreα

∗
26.1 19.6 8.7

VisuallyDifficult 38
ITCScore 29.0 7.9 7.9
ITMScore 26.3 10.5 7.9
VisualGPTScoreα

∗
31.6 13.2 7.9

UnusualImage 56
ITCScore 32.5 8.9 8.9
ITMScore 21.4 10.7 7.1
VisualGPTScoreα

∗
30.4 10.7 8.9

UnusualText 50
ITCScore 20.0 8.0 6.0
ITMScore 38.0 12.0 12.0
VisualGPTScoreα

∗
30.0 18.0 12.0

ComplexReasoning 78
ITCScore 16.7 2.6 1.3
ITMScore 21.8 5.1 2.6
VisualGPTScoreα

∗
21.8 10.3 6.4

Table 11: BLIP performance on Winoground subtags (Diwan et al., 2022). We report the number of test
instances for each subtag and their respective text score, image score, group score.

Method Model SugarCrepe

Replace Swap Add AVG
Human Performance - 98.67 99.50 99.00 99.06
Random Chance - 50.00 50.00 50.00 50.00

Text-Only Baseline Vera 49.46 49.30 49.50 49.42
Grammar 50.00 50.00 50.00 50.00

PLLM (t)
Bart 48.41 51.93 61.16 53.83
Flan-T5 51.41 57.59 40.94 49.98
OPT 58.53 66.58 45.78 56.96

Ptrain(t) BLIP 75.90 77.14 70.89 74.64

ITCScore

CLIP-LAION2B 86.50 68.56 88.37 81.14
CLIP-LAION5B 84.98 67.95 89.62 80.85
BLIP 85.76 73.79 85.66 81.74
BLIP-2 86.66 69.77 86.50 80.98
NegCLIP-SugarCrepe 88.27 74.89 90.16 84.44

ITMScore BLIP 88.68 81.29 87.57 85.85
BLIP2-Qformer 88.45 80.87 87.96 85.76

Ptrain(t|i)
BLIP 93.33 91.00 90.98 91.77
BLIP2-Qformer 93.00 91.24 92.69 92.31
BLIP2-FlanT5 82.44 76.57 76.24 78.42

Ptrain(t|i)
Ptrain(t)α

∗

BLIP 95.09 92.39 97.36 94.95
BLIP2-Qformer 94.62 92.27 97.58 94.82
BLIP2-FlanT5 85.69 78.80 91.76 85.42

Table 12: Performance on SugarCrepe (Hsieh et al., 2023). SugarCrepe is the most recent visio-linguistic
compositionality benchmark which improves upon previous Crepe (Ma et al., 2022) by using state-of-the-art
large language models (including ChatGPT), instead of rule-based templates, to generate more natural negative
text captions. We show that text-only baselines and LLM-based methods indeed fail to succeed on SugarCrepe.
However, our OTS generative approaches still achieve competitive results compared against SOTA discriminative
approaches. The results of human performance, text-only baseline, and SOTA CLIP and NegCLIP-SugarCrepe
are directly taken from the Hsieh et al. (2023). For other approaches, we evaluate their performance following
the same procedure as described in main texts.
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F BENCHMARK VISUALIZATION

We include random samples from each benchmark in Table 13.

Dataset Image Positive Caption Negative Caption(s)

VG-Relation the bus is to the right of the trees the trees is to the right of the bus

VG-Attribution the striped zebra and the large tree the large zebra and the striped tree

COCO-Order two dogs sharing a frisby in their mouth in the snow
two frisby sharing a mouth in their snow in the dogs
in dogs the in frisby sharing two mouth their a snow
two dogs sharing in a frisby their mouth in snow the
a frisby in the snow two dogs sharing their mouth in

Flickr30K-Order a white duck spreads its wings while in the water
a white wings spreads its water while in the duck
a white duck the its wings while in water spreads
white a duck spreads its wings in while the water
while in the spreads its wings water a white duck

SugarCrepe
Add-Attribute

They are going to serve pizza for lunch today. They are going to serve pizza topped with pineapple for lunch today.

SugarCrepe
Add-Object A man kisses the top of a woman’s head. A man kisses the top of a woman’s head with a flower in his hand.

SugarCrepe
Replace-Attribute A kid standing with a small suitcase on a street. A kid standing with a big suitcase on a street.

SugarCrepe
Replace-Object A duck floating in the water near a bunch of grass and rocks A swan floating in the water near a bunch of grass and rocks.

SugarCrepe
Replace-Relation A clock tower stands in front of a large mirrored sky scraper. A clock tower stands behind a large mirrored sky scraper.

SugarCrepe
Swap-Attribute A tennis player is taking a swing on a red court. A red player is taking a swing on a tennis court.

SugarCrepe
Swap-Object A woman holding a game controller with a man looking on. A man holding a game controller with a woman looking on.

Crepe-AtomFoils microwave in a kitchen, and sink in a kitchen.

microwave in a cupboard, and sink in a kitchen
microwave in a bar, and sink in a kitchen
line in a kitchen, and sink in a kitchen
microwave in a kitchen, and shower in a kitchen
microwave in a kitchen, and tap in a kitchen

Crepe-Negate a chair next to a table, with the back of the chair visible.

A chair is not next to a table, with the back of the chair visible
A chair next to a table, with the back not of the chair visible
A chair next to a table, with the back of the chair visible
A chair next to a table, with something of the chair visible. There is no back.
There is no chair next to a table, with the back of the chair visible

Crepe-Swap a car driving on a road with a line next to a tree.

a car driving on a bright green leaves with a line next to a tree
a bright green leaves driving on a road with a line next to a tree
a car driving on a tree with a line next to a road
a car driving on a road with a line next to a white car
a car driving on a road with a line next to a street

VL-CheckList
Relation (spatial) person read book person carry book

VL-CheckList
Relation (action) sign near boy sign far from book

Winoground a person on top of the world the world on top of a person

the world on top of a person a person on top of the world

EqBen The person is touching the dish which is in front of him/her. The person is holding the dish which is in front of him/her.

The person is holding the dish which is in front of him/her. The person is touching the dish which is in front of him/her.

Table 13: Visualization of benchmarks. ARO (VG-Relation/VG-Attribution/COCO-Order/Flickr30K-Order),
Crepe (AtomFoils/Negate/Swap), VL-CheckList (Object/Attribute/Relation), SugarCrepe (Replace/Swap/Add)
are constructed by generating hard negative captions for an image-text pair. On the other hand, each sample of
Winoground and EqBen has two image-text pairs.
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