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VIDEOMOLMO: SPATIO-TEMPORAL GROUNDING
MEETS POINTING
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Figure 1: Given complex referring expressions, VIDEOMOLMO improves spatio-temporal reasoning
in visual grounding by decomposing the task into sequential steps—pointing (star) followed by mask
generation (red)—yielding more accurate and coherent segmentations than prior approaches.

ABSTRACT

Spatio-temporal localization—the ability to identify both the position and tem-
poral evolution of objects—is essential for applications from cell tracking to au-
tonomous navigation. Recent Video Large Multimodal Models (Video-LMMs)
show promise but remain limited by coarse predictions, heavy reliance on dense
mask optimization, and limited interpretability. We introduce VIDEOMOLMO,
a two-stage framework that grounds objects through point-based localization.
Rather than directly predicting dense masks, VIDEOMOLMO first produces pre-
cise points as lightweight, interpretable anchors, which are then used for down-
stream tasks including referring segmentation, video object segmentation, and
counting. By decoupling localization from task execution, our approach provides
more robust and transparent reasoning. Built on Molmo, our framework incorpo-
rates a temporal attention module for cross-frame reasoning and introduces a novel
bidirectional temporal mask fusion strategy, enabling coherent point propagation
and accurate segmentation. To facilitate training and evaluation, we release a
large-scale spatio-temporal pointing dataset of 72k video–caption pairs with 100k
annotated points and curate VPoS-Bench, a challenging benchmark spanning five
real-world domains. Experiments show that VIDEOMOLMO outperforms exist-
ing approaches, with gains of 5.4 percentage points (pp) on VPoS-Bench and 9.5
pp on MeViS. This highlights the effectiveness of point-based representations as
a foundation for interpretable, fine-grained reasoning in dynamic visual environ-
ments.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Understanding dynamic visual scenes requires not only recognizing what objects are present, but
also tracking where they are and how they move over time. This ability, known as spatio-temporal
localization, is essential for many applications: biologists follow cell trajectories in microscopy
videos, autonomous vehicles monitor pedestrians and traffic, and robots interact with moving objects
in cluttered environments.

Recent progress in Video Large Multimodal Models (Video-LMMs) (Maaz et al., 2024; Li et al.,
2023; Lin et al., 2023; Munasinghe et al., 2024; Bai et al., 2024) has opened the door to solving such
tasks from natural language queries. These models can, e.g., answer questions like “Which player
in the red jersey passed the ball?” by linking language with the video content. While impressive,
current approaches still struggle in the very settings where precise reasoning matters most.

Consider Fig. 1, where the query is to find “the white pigeon that has moved slightly from left to
right” among several pigeons. Solving this requires two things: (i) temporal reasoning to notice
subtle movement across frames, and (ii) fine-grained localization to pinpoint the correct individual
bird. Current Video-LMMs (Munasinghe et al., 2024; Bai et al., 2024) often fail on such tasks: they
either predict multiple objects when only one is correct, or they highlight regions too coarsely to
be useful. These errors stem from how existing models are trained i.e., directly predicting dense
segmentation masks from video and text.

This design creates fundamental problems. First, dense masks make it difficult to interpret what
the model “reasoned” before producing an output, since there is no explicit intermediate signal.
Second, the optimization is unnecessarily complex: predicting every pixel’s label is heavy-handed
when many real-world tasks only need precise object localization. Third, the outputs are often noisy
or coarse, since refining boundaries at pixel-level precision is especially hard in dynamic videos.

We argue that points, rather than dense masks, provide a better foundation for video grounding. A
single point can precisely indicate an object of interest, even under occlusion, without the overhead
of pixel-by-pixel predictions. Points are also interpretable (it is clear what the model meant) and
versatile, since they can serve as prompts for downstream tasks like segmentation, tracking, and
counting.

Building on this insight, we introduce VIDEOMOLMO, a novel two-stage framework for language-
guided video grounding. In the first stage, the model predicts points that represent object identity
and location across time. In the second stage, these points guide task-specific modules—such as
referring segmentation, video object segmentation, and counting. By separating reasoning (where is
the object?) from execution (how to use this location for a downstream task), our approach is both
more interpretable and more robust than end-to-end dense prediction.

VIDEOMOLMO builds on Molmo (Deitke et al., 2024) by incorporating a temporal attention module
designed to explicitly capture cross-frame dependencies. For segmentation, we propose a temporal
mask fusion pipeline, which efficiently propagates point predictions bidirectionally across frames to
produce temporally consistent masks. To support training, we release the first large-scale dataset for
spatio-temporal pointing, consisting of 72k video–caption pairs and 100k annotated object points.
We further establish VPoS-Bench, a challenging benchmark spanning five diverse scenarios: cell
tracking, egocentric vision, autonomous driving, video-GUI interaction, and robotics.

Extensive experiments demonstrate that VIDEOMOLMO consistently outperforms existing ap-
proaches. On VPoS-Bench, it improves by 5.4 percentage points (pp) over the strongest baseline,
and on the MeViS referring segmentation benchmark (Ding et al., 2023), it outperforms prior mod-
els by 9.5 pp, despite never being trained on dense masks. These results highlight that point-based
reasoning provides a powerful and generalizable foundation for fine-grained video understanding.

2 RELATED WORK

Video-LMMs. LMMs such as (Liu et al., 2023; Zhu et al., 2023a) have demonstrated notable
advancements due to their strong zero-shot abilities, made possible because of their training on mil-
lions of image–text pairs. Typically, such models project visual information into the latent space
of an LLM via an encoder and a connector, thereby aligning the information from vision and text

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

modalities. Work on LMMs paved the way for the development of Video-LMMs (Li et al., 2023;
Zhang et al., 2023b; Lin et al., 2023; Maaz et al., 2024; Wang et al., 2024; Zhu et al., 2025; Bai et al.,
2025; Zhang et al., 2025), which, unlike image-based LMMs, can reason about dynamic video con-
tent. While effective for overall video input comprehension, these methods fall short of fine-grained
visual grounding in videos.
Visual grounding. Recent works in Grounded LMMs (Rasheed et al., 2023) have sparked tremen-
dous interest among the research community. Visual grounding (Liu et al., 2021) seeks to identify the
location of nouns or short phrases (such as a man with a blue shirt) within an image. These models
are trained on large datasets of image–caption pairs along with dense segmentation masks associated
with the objects in the caption. (Bai et al., 2024; Munasinghe et al., 2024) extended grounding to
video data by releasing a large dataset of grounded video-QA pairs along with the masks associated
with the objects. Training on such large video-grounded datasets allowed for video grounding. In
contrast, our VIDEOMOLMO model and dataset focus on predicting precise object-level points, a
lightweight representation essential for tasks such as autonomous driving, counting, and robotics.
Language-assisted object tracking. Most text-based tracking methods are limited to tracking a sin-
gle object only (Yang et al., 2020; Zhao et al., 2023a; Wang et al., 2021; Li et al., 2022). However,
real-world applications can feature multiple object trajectories, making it challenging for single-
object tracking methods. (Nguyen et al., 2023) propose Type-toTrack along with a tracking dataset
‘GroOT’ for multi-object tracking. However, they track objects via bounding boxes and not pre-
cise points, which limits their applicability. Another work, SAM-PT (Rajič et al., 2025), proposes
using the SAM (Ravi et al., 2024) model along with a long-term point tracking mechanism for
point-centric interactive video segmentation. However, since their method adapts a 2D model to
handle video data, it faces challenges in temporal consistency, especially in cases of occlusion and
fast-moving objects. In contrast, our proposed VIDEOMOLMO is trained end-to-end on our training
dataset and maintains temporal consistency via a dedicated memory module.

3 VIDEOMOLMO

Task Definition. Given an input video V ∈ R|T |×H×W×C , where H , W , and C denote the height,
width, and number of channels of each frame, and |T | is the number of frames, together with a
textual query X , the goal is to predict a set of points P = {Pt}|T |t=1 for every object referred to by
X in each frame of the video. Each Pt = {(xt

i, y
t
i)}
Ot
i=1 represents a set of Ot two-dimensional

coordinates in frame t that localize the objects described in X . These predicted points provide
a lightweight and interpretable representation that can be directly leveraged for downstream tasks
such as grounding, segmentation, and counting.

4 ARCHITECTURE

VIDEOMOLMO extends Molmo (Deitke et al., 2024) from static image understanding to spatio-
temporal video grounding. The framework consists of four end-to-end trainable components: (1) a
visual encoder, (2) a temporal module, (3) a visual projector, (4) a decoder-only LLM. Additionally,
we incorporate a frozen bidirectional temporal mask fusion module to convert point predictions into
consistent masks (Fig. 2).

For each video frame Ti ∈ V , we generate N overlapping spatial crops to capture both global
context and fine-grained details. Each crop is independently encoded by a visual backbone F .
Following (Deitke et al., 2024), we build patch features by concatenating representations from the
third-to-last and tenth-to-last ViT layers. The resulting feature for crop j of frame Ti is f j

Ti ∈ RP×D,
where P is the number of patches and D is the feature dimension. Since the visual backbone
processes 2D frames independently, we introduce a dedicated temporal module M to model cross-
frame dynamics. For frame Ti, we aggregate features from the past l frames {Ti−l, . . . , Ti−1}
and compute their mean fT ∗

i−
. The temporal module then refines the current frame features by

incorporating this historical context:

f̂Ti = fTi +M(fTi , fT ∗
i−
). (1)

To enable joint spatio-temporal reasoning, we reshape the frame features fTi ∈ RN×P×D into local
patch windows of shape RN ·(P/4)×4×D. This allows M to exchange information across neighboring

3
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Figure 2: VIDEOMOLMO Architecture. The visual encoder extracts multi-crop features from the
current frame and the past l frames. These are processed by the Temporal Module M via multi-head
cross-attention, where the query comes from the current frame, and key and value from the mean
of previous frames. The output is fused with the original features to enrich temporal cues while
preserving the spatial details of the current frame. The combined visual-textual representations are
then passed to the LLM to predict grounded points. These points are converted into masks using our
Bidirectional Temporal Mask Fusion module, ensuring temporally consistent pixel-level grounding.

patches while propagating temporal context. The temporally-enriched features f̂Ti are pooled using
attention into a frame-level representation, then projected into the language embedding space via
projector P . This visual representation is concatenated with the tokenized query q and fed to the
decoder-only LLM, which autoregressively generates grounded point coordinates (x, y)O, where O
is the number of localized objects:

p = LLM
(
[P(f̂Ti); q]

)
(2)

The model is trained end-to-end using a cross-entropy loss between predicted text p and ground-
truth one-hot labels p∗ in an autoregressive manner:

LCE = −p∗ · log(p) (3)

4.1 TEMPORAL MODULE

The original Molmo architecture (Deitke et al., 2024) was developed for static images and cannot
model the temporal dynamics inherent in video data. To address this, we introduce a novel dedicated
temporal module M that infuses each frame with temporal context from the preceding l frames,
inspired by prior approaches (Nguyen et al., 2023; Lai et al., 2020). For each crop j of frame Ti,
patch features f j

Ti ∈ RP×D are extracted. These features are then flattened across all N crops
to obtain vectors fTi and fT ∗

i−
∈ R(N ·P )×D, where the latter represents context features aggregated

from the preceding frames . To capture fine-grained temporal correspondences, we apply multi-head
cross-attention (MHCA) over the patch features, where the query comes from the current frame fTi ,
and the key and value come from the context features fT ∗

i−
. Formally, MHCA

(
fTi , fT ∗

i−
, fT ∗

i−

)
denotes the final temporally attended features. By restricting cross-attention to local neighborhoods
rather than global interactions, the module preserves spatial locality while amplifying subtle motion
cues that would otherwise be lost in coarse global pooling.
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Figure 3: VIDEOMOLMO annotation pipeline: We construct point-level supervision from frame-
level masks using a semi-automatic process. For each frame, k points are sampled on the mask and
passed to SAM2 (Ravi et al., 2024) to generate candidate masks. The point with the highest-IoU
candidate mask (with respect to the ground truth) is selected as the optimal annotation.

4.2 BIDIRECTIONAL TEMPORAL MASK FUSION

While VIDEOMOLMO predicts grounded point coordinates corresponding to objects mentioned in
the textual query, most existing evaluation protocols are designed to operate on segmentation masks.
Therefore, for compatibility and consistent evaluation, we introduce Bidirectional Temporal Mask
Fusion, a novel post-processing technique that leverages SAM2 (Ravi et al., 2024) to convert points
to dense masks.
Sparse Point-to-Mask Conversion. Instead of running dense inference across all frames, we
sparsely sample frames at a rate k. For two consecutive sampled frames Ti and Ti+k, the pre-
dicted points are converted into masks mi and mi+k using SAM2 (Ravi et al., 2024).
Bidirectional Propagation. For intermediate frames Ti+n (0 < n < k), we propagate masks from
both directions:

m̂→i+n = Prop→({Ti,mi}, Ti+n),

m̂←i+n = Prop←({Ti+k,mi+k}, Ti+n)
(4)

where m̂→i+n and m̂←i+n are masks propagated from past and future, respectively.
Fusion Strategy. To reconcile the two estimates, we compute their IoU:

mi+n =

{
m̂→i+n ∩ m̂←i+n, if IoU ≥ τ,

m̂→i+n ∪ m̂←i+n, otherwise.
(5)

If SAM2 (Ravi et al., 2024) fails to propagate a mask from one side, we fall back to the valid
direction:

mi+n =

{
m̂←i+n, if m̂→i+n = ∅,

m̂→i+n, otherwise.
(6)

Our bidirectional fusion produces temporally consistent masks and only adds a minimal runtime
overhead(Appendix A.9). By leveraging both past and future context to reconcile forward- and
backward-propagated masks, the fusion step not only improves robustness in dynamic scenes
but also helps to correct occasional pointing errors from Stage 1—recovering from mislocalized
points—and thereby yields higher-quality segmentation masks. The proposed bidirectional fusion
pipeline generalizes effectively to other segmentation architectures. Comprehensive results across
different segmentation backbones are provided in Appendix A.5.

5 VIDEOMOLMO DATASET

Training Data: Our dataset is designed to train the model’s spatio-temporal pointing capabili-
ties. It contains 72k video–caption pairs with annotated object points, sourced from diverse bench-
marks spanning video object segmentation, tracking, and referring expression tasks, including Refer-
YouTube-VOS (Seo et al., 2020b), Refer-DAVIS (Perazzi et al., 2016), MeViS (Ding et al., 2023),
GroOT (Nguyen et al., 2023), LaSOT (Fan et al., 2019), ViCaS-LGVIS (Athar et al., 2024), and
Reason-VOS (Yan et al., 2024). To create fine-grained data grounded in point coordinates, we
develop a semi-automated annotation pipeline (see Fig. 3) that ensures both high-quality and scal-
able annotations. Each of the above-mentioned datasets features video-mask-expression triplets
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Figure 4: VIDEOMOLMO demonstrates robust generalization and fine-grained spatio-temporal
grounding across diverse out-of-distribution scenarios from our proposed benchmark, for instance,
correctly pointing to traffic lights (2nd row) in challenging driving scenes despite never encountering
such scenarios during training. (Please refer to Appendix A.11 for additional qualitative results.)

(V,M,E) such that V ∈ R|T |×H×W×C ,M ∈ {0, 1}|T |×|O|×H×W with |O| denoting the number
of unique annotated objects in the frame Ti. For each object Oj ∈ O in frame Ti ∈ RH×W×C ,
with a binary mask mj ∈ {0, 1}H×W , the goal is to extract a single highly representative point co-
ordinate for the object. We sample k candidate points within the mask, assigning each point (x, y)
a sampling probability proportional to its Euclidean distance to the nearest boundary pixel of the
mask mj , i.e.,

P (x, y) ∝ min
(x′,y′)∈∂mj

∥(x, y)− (x′, y′)∥2 (7)

where ∂mj denotes the set of boundary pixels of the mask. For each sampled point, we use
SAM2 (Ravi et al., 2024) to predict a segmentation mask. We then compute the Intersection-over-
Union (IoU) between each predicted mask and the corresponding ground truth mask mj . The point
coordinate whose predicted mask achieves the highest IoU is selected as the representative ground
truth point for the object:

p∗ = argmax
(x,y)

IOU (SAM2(x, y), mj) (8)

where SAM2(x, y) denotes the predicted mask obtained using point (x, y) as a prompt to
SAM2 (Ravi et al., 2024).

VPoS-Bench: To evaluate the generalization capabilities of VIDEOMOLMO, we introduce Video
Pointing and Segmentation (VPoS-Bench) benchmark, a curated benchmark test set comprising
100 video–caption pairs and 1k manually annotated object points. For mask-based evaluations,
we employ SAM2 (Ravi et al., 2024) to convert point annotations into segmentation masks. The
benchmark covers diverse real-world scenarios drawn from both open datasets (Caesar et al., 2020;
Lin et al., 2024; Grauman et al., 2022; Singh et al., 2024; Maška et al., 2023) and internal collections,
spanning five categories: Cell Tracking, Egocentric Videos, Autonomous Driving, Video-GUI, and
Robotics. In addition, VPoS-Bench includes a dedicated counting task derived from the (Kay et al.,
2017) dataset. Further details about the benchmark are provided in Appendix A.3.

6 EXPERIMENTS

Implementation details. VIDEOMOLMO follows the architecture of Molmo (Deitke et al., 2024).
For the image encoder, we use a pretrained CLIP ViT-L/14 (336 × 336) (Radford et al., 2021) model.

6
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Table 1: Performance of various models on five subtasks of VPoS-Bench (Ego4D, Robotics, Au-
tonomous, Cells, VideoGUI)

Model Ego4D Robotics Autonomous Cells VideoGUI
J F J&F J F J&F J F J&F J F J&F J F J&F

VideoLISA (Bai et al., 2024) 47.1 41.1 44.2 3.9 2.0 2.9 34.7 22.0 28.4 18.9 3.3 11.1 65.3 39.4 52.4
VideoGLaMM (Munasinghe et al., 2024) 47.2 40.4 43.8 15.3 10.3 12.8 31.4 17.7 24.8 11.8 7.8 9.8 58.7 32.5 45.6
Molmo (Deitke et al., 2024) +SAM2 (Ravi et al., 2024) 50.6 50.1 50.4 27.8 25.6 26.7 49.5 47.5 48.5 20.8 7.6 14.2 60.2 55.9 58.0
VIDEOMOLMO 55.5 54.3 54.9 29.1 26.2 27.6 57.1 57.7 57.4 25.4 13.1 19.2 68.9 62.4 65.7

Table 2: Performance comparison on Refer-DAVIS-17, Refer-YouTube-VOS, and MeViS bench-
marks. VideoMolmo consistently improves referring video object segmentation across datasets.
(“ - ” indicates missing results in prior literature)

Model Refer-DAVIS-17 Refer-YouTube-VOS MeViS
J F J&F J F J&F J F J&F

LISA-7B (Lai et al., 2023) 61.9 54.9 58.4 50.6 49.7 50.2 – – –
LISA-13B (Lai et al., 2023) 64.6 56.8 60.7 53.0 52.1 52.6 – – –
TrackGPT-7B (Zhu et al., 2023b) 67.0 59.4 63.2 57.4 55.3 56.4 – – –
TrackGPT-13B (Zhu et al., 2023b) 70.4 62.7 66.5 60.8 58.1 59.5 – – –
VideoLISA (Bai et al., 2024) 72.7 64.9 68.8 65.7 61.7 63.7 41.3 47.6 44.4
VideoGLaMM (Munasinghe et al., 2024) 73.3 65.6 69.5 65.4 68.2 66.8 42.1 48.2 45.2
Molmo (Deitke et al., 2024)+SAM2 (Ravi et al., 2024) 65.3 72.2 68.8 61.0 66.2 63.6 44.4 49.4 46.9

VIDEOMOLMO 71.3 73.6 72.5 65.6 69.1 67.3 51.2 56.6 53.9

Our proposed Temporal Module is initialized from scratch. Our choice of LLM is the pretrained
Qwen2-7B (Yang et al., 2024). We train the model on 8 NVIDIA A100 80GB GPUs. Learning
rate of 1e−5 is used for the LLM, and 5e−6 for the vision encoder, visual projector and tempo-
ral module. We adopt a batch size of 1 with 256 gradient accumulation steps, and use AdamW
optimizer (Loshchilov & Hutter, 2019) following the fine-tuning recipe from (Deitke et al., 2024).
During inference, we use sampling rate of 5 for segmentation tasks and 10 for point grounding and
counting tasks. Please refer Appendix A.1.1 and A.1.2 for more training and inference details.
Tasks. We evaluate VIDEOMOLMO on four challenging tasks: (1) point grounding, (2) counting,
(3) referring segmentation, and (4) reasoning video object segmentation. For point grounding, we
report performance on our proposed VPoS-Bench. For the counting task, we utilize videos from
the Kinetics dataset (Kay et al., 2017), where object counts range from 2 − 13. For referring video
segmentation, we use MeViS validation set (Ding et al., 2023), Refer-DAVIS-17 (Khoreva et al.,
2019) and Refer-YouTube-VOS (Seo et al., 2020a) datasets. Finally, for reasoning segmentation, we
evaluate our model on the ReasonVOS dataset (Bai et al., 2024).
Evaluation metrics. For the point grounding task, we follow the evaluation protocol of
Molmo (Deitke et al., 2024) and report Precision: the fraction of predicted points that fall inside the
corresponding ground-truth mask, Recall: the fraction of ground-truth objects that are successfully
localized by at least one predicted point, and F1 score: the harmonic mean of Precision and Recall,
balancing both metrics. For mask-based evaluations, we use Region Jaccard (J ): intersection-
over-union (IoU) between predicted and ground-truth masks, Boundary F-measure (F ): F1 score
computed on the precision and recall of boundary pixels between predicted and ground-truth masks,
and and their average J&F , widely used as a comprehensive mask similarity measure. For the
counting task, we report Exact Matching Accuracy (EMA): the percentage of predictions where the
predicted count exactly matches the ground-truth count, and Mean Absolute Error (MAE): the aver-
age absolute difference between predicted and ground-truth counts.
Baselines. For point grounding, we compare VIDEOMOLMO with three strong baselines: Vide-
oLISA(Bai et al., 2024), VideoGLaMM (Munasinghe et al., 2024), and Molmo+SAM2. To adapt
Molmo for videos, we augment it with SAM2. For referring segmentation, we evaluate against
VideoLISA, VideoGLaMM, and prior baselines. For counting, we compare VIDEOMOLMO with
both closed-source (GPT-5 (OpenAI, 2025)) and open-source models (Deitke et al., 2024; Bai et al.,
2025; Team et al., 2024)). For further experimentation details, please refer to Appendix A.2.

6.1 MAIN EXPERIMENTATION RESULTS

Point Grounding. The point grounding task focuses on accurately identifying the spatial coordi-
nates of a queried object within video frames. As depicted in Fig. 5, VIDEOMOLMO demonstrates
superior performance in localizing target points, as evidenced by its significantly higher Precision,
Recall, and F1 scores compared to Molmo. This performance gap can be attributed to Molmo’s train-
ing on static frames, which limits its ability to handle temporal variations. In dynamic video inputs,
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Table 3: Performance comparison of Video-
Molmo on the ReasonVOS benchmark.

Model J F J&F
LISA (Lai et al., 2023) 33.1 29.1 31.1
VideoLISA (Bai et al., 2024) 49.9 45.1 47.5
VideoGLaMM (Munasinghe et al., 2024) 40.5 27.2 33.9
Molmo (Deitke et al., 2024) + SAM2 (Ravi et al., 2024) 43.5 47.8 45.7
VIDEOMOLMO 48.7 53.4 51.1

Table 4: Performance comparison of Video-
Molmo on the counting benchmark. ((↓
lower is better, ↑ higher is better.)

Model MAE ↓ EMA ↑

GPT-5 (OpenAI, 2025) 0.76 60.0
Gemma3-12B (Team et al., 2024) 0.96 43.3
Qwen2.5-VL-7B (Bai et al., 2025) 0.83 50.0
Molmo (Deitke et al., 2024) 1.21 49.3
VIDEOMOLMO 0.72 73.3

where object presence and position may vary across frames, Molmo struggles, whereas VIDEO-
MOLMO effectively addresses this challenge by leveraging temporal context. Furthermore, VIDEO-
MOLMO outperforms all baseline models across each subtask from VPoS-Bench, as evident from
higher J , F , and the combined J&F metric (Table 1). Qualitative results in Fig.4 further validate
the robustness of VIDEOMOLMO, showcasing its ability to accurately localize objects across diverse
and out-of-distribution scenarios.
Object Counting. VPoS-Bench introduces a dedicated object counting task, essential for many
real-world video understanding applications. Object counts range from 2 − 13, requiring enhanced
temporal and spatial reasoning. We compare VIDEOMOLMO against both open-source and propri-
etary models (Table 4). VIDEOMOLMO achieves state-of-the-art performance, outperforming all
baselines in MAE and EMA, and even surpasses advanced proprietary models like GPT-5 (OpenAI,
2025), highlighting its strength as a specialized counting model. This success stems from training
VideoMolmo on our large-scale comprehensive dataset with multiple objects per video, enabling
fine-grained multi-object understanding. We also evaluate VIDEOMOLMO on videos with a large
number of objects (> 30), with results in Appendix A.10.
Referring Segmentation. For referring video segmentation, the goal is to localize specific ob-
ject instances in a video based on a given phrase. Table 2 presents results across three standard
datasets. On the MeViS benchmark, which involves motion-guided segmentation with multiple ob-
jects, VIDEOMOLMO outperforms all baselines by a notable margin, demonstrating its effectiveness
in grounding complex, multi-object scenes. This advantage stems in part from the simplicity and
efficiency of VIDEOMOLMO’s point-based supervision as reflected in its superior J , F , and J&F
scores, which contrasts with recent methods like VideoGLaMM (Munasinghe et al., 2024) and Vide-
oLISA (Bai et al., 2024) that rely on dense, pixel-level mask prediction where precise delineation
between objects becomes challenging (Fig. 1). VIDEOMOLMO also achieves superior performance
on Refer-DAVIS-17 and Refer-YouTube-VOS. Notably, VideoGLaMM performs competitively on
Refer-YouTube-VOS which features fast-moving objects, benefiting from its dual encoder architec-
ture that integrates spatial and temporal features. Despite relying on a single encoder with point-
based supervision, VIDEOMOLMO surpasses strong baselines, aided by its temporal module, novel
post-processing, and point-grounding paradigm.
Reasoning Video Object Segmentation. Table 3 presents a comparative analysis of VIDEO-
MOLMO against existing approaches on the ReasonVOS benchmark, which emphasizes complex
reasoning, temporal comprehension, and consistency across frames, making it particularly challeng-
ing. Prior methods perform noticeably worse, largely due to their limited temporal and fine-grained
reasoning capabilities. While VideoLISA incorporates spatio-temporal cues, it still falls short of
VIDEOMOLMO. This performance gap highlights VIDEOMOLMO’s architectural strengths, specifi-
cally its dedicated temporal module providing rich spatio-temporal contextual understanding.

6.2 ABLATIONS AND ANALYSIS

Effect of Temporal Module. We conduct an ablation study to evaluate the effectiveness of different
temporal module variants on the Refer-DAVIS benchmark (Table 6). Using a single frame or simple
feature fusion methods such as addition or token-space concatenation yields relatively lower perfor-
mance compared to our proposed cross-attention-based temporal module as it enables dynamic and
selective integration of relevant features across frames, allowing the model to focus on temporally
coherent and semantically meaningful cues critical for accurate grounding.
Ablation on Temporal Mask Fusion: To enable efficient and temporally consistent segmentation,
we evaluate various strategies for combining masks propagated from the sampled frames. As shown
in Table 5, naive strategies like preferring left/right predictions or computing mask intersections
result in suboptimal performance, either due to loss of temporal context or overly conservative fu-
sion. Our proposed bidirectional fusion strategy outperforms all baselines by adaptively reconciling
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Table 5: Effect of different temporal mask
fusion strategies on Refer-DAVIS dataset.

Strategy J F J&F
Prefer left 67.31 73.38 70.34
Prefer right 67.05 71.69 69.37
Intersection 60.20 63.58 61.89
Larger mask 70.40 72.91 71.65
Smaller mask 64.10 67.18 65.64
VIDEOMOLMO 71.27 73.63 72.45

Table 6: Ablation on different variants of the
temporal module on the Refer-DAVIS dataset.

Variant J F J&F

Single frame 66.04 72.60 69.32
Addition 66.13 72.97 69.55
Concatenation 65.34 72.06 68.71
VIDEOMOLMO 71.27 73.63 72.45

forward and backward propagated masks based on their agreement (IoU). Our fallback mechanism
ensures robustness against failure cases where one of the propagated masks is missing. This ap-
proach achieves a significant improvement in J&F score of 72.45, demonstrating its effectiveness.
Effect of context-length in temporal module: To analyze the effect of context length in the tempo-
ral module, we evaluate VIDEOMOLMO on the Refer-DAVIS benchmark (Fig. 6). We observe that
there is a consistent increase in J&F as the context length increases from 1 → 4, indicating that
incorporating more temporal information enhances the model’s spatio-temporal reasoning. How-
ever, there is a slight drop in accuracy at l = 5, suggesting that adding more frames may introduce
redundancy or noise rather than useful context.
Effect of multiple points. We evaluate the impact of increasing the number of predicted points,
since SAM2 (Ravi et al., 2024) naturally supports multi-point prompting. As shown in Table 13,
additional points provide only marginal gains in J&F , suggesting that the single point predicted by
VIDEOMOLMO already offers a strong representation for our bidirectional temporal mask fusion.
However, in specific cases such as thin and elongated objects, multiple points can be beneficial (see
Tables 12 and 11). We further explore prompting SAM2 with negative points (Table 14). Detailed
ablations are provided in Appendix A.4, with additional results in Appendix A.1. Finally, we analyze
our choice of point→mask strategy over mask→point approach in Appendix A.8.

7 CONCLUSION

We present VIDEOMOLMO, a Video-LMM for fine-grained spatio-temporal pointing conditioned
on textual queries. It leverages a temporal module that incorporates temporal cues from preceding
frames and a novel bidirectional post-processing strategy for robust mask prediction. To enable
training, we curate a large-scale spatio-temporal pointing dataset using a semi-automatic annotation
pipeline. VIDEOMOLMO shows strong generalization and consistently outperforms state-of-the-art
models across diverse and out-of-distribution tasks, including point grounding, object counting, re-
ferring segmentation, and reasoning segmentation.
Limitations and Future Work. VIDEOMOLMO demonstrates strong spatio-temporal ground-
ing performance, excelling in fine-grained localization without requiring explicit pixel-level mask
supervision. However, its performance might degrade on videos with fast-moving objects, due to
single-frame processing during training—an efficiency-driven design choice constrained by both
architectural and computational limits. In addition, the quality of final mask predictions remains
bounded by the performance of SAM2 (Ravi et al., 2024). Finally, although our VPoS-Bench cov-
ers diverse domains, its relatively modest scale may limit the assessment of generalization to more
complex real-world scenarios. Future work may explore joint multi-frame training with improved
sampling strategies, and expansion of benchmarks to broader, large-scale settings.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ali Athar, Xueqing Deng, and Liang-Chieh Chen. Vicas: A dataset for combining holistic and
pixel-level video understanding using captions with grounded segmentation. arXiv preprint
arXiv:2412.09754, 2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Zechen Bai, Tong He, Haiyang Mei, Pichao Wang, Ziteng Gao, Joya Chen, Zheng Zhang, and
Mike Zheng Shou. One token to seg them all: Language instructed reasoning segmentation in
videos. Advances in Neural Information Processing Systems, 37:6833–6859, 2024.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
weights and open data for state-of-the-art multimodal models. arXiv preprint arXiv:2409.17146,
2024.

Henghui Ding, Chang Liu, Shuting He, Xudong Jiang, and Chen Change Loy. MeViS: A large-scale
benchmark for video segmentation with motion expressions. In ICCV, 2023.

Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan
Liao, and Haibin Ling. Lasot: A high-quality benchmark for large-scale single object tracking.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
5374–5383, 2019.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 18995–19012, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017.

Anna Khoreva, Anna Rohrbach, and Bernt Schiele. Video object segmentation with language re-
ferring expressions. In Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vi-
sion, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part IV 14, pp. 123–141.
Springer, 2019.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything, 2023.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Rea-
soning segmentation via large language model. arXiv preprint arXiv:2308.00692, 2023.

Zihang Lai, Erika Lu, and Weidi Xie. Mast: A memory-augmented self-supervised tracker. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6479–
6488, 2020.

Kunchang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang,
and Yu Qiao. Videochat: Chat-centric video understanding. arXiv:2305.06355, 2023.

10

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yihao Li, Jun Yu, Zhongpeng Cai, and Yuwen Pan. Cross-modal target retrieval for tracking by
natural language. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 4927–4936, 2022. doi: 10.1109/CVPRW56347.2022.00540.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united
visual representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Qinchen Wu, Mingyi Yan, Zhengyuan Yang, Lijuan
Wang, and Mike Zheng Shou. Videogui: A benchmark for gui automation from instructional
videos. arXiv preprint arXiv:2406.10227, 2024.

Fenglin Liu, Xian Wu, Shen Ge, Xuancheng Ren, Wei Fan, Xu Sun, and Yuexian Zou. Dim-
bert: Learning vision-language grounded representations with disentangled multimodal-attention.
ACM Transactions on Knowledge Discovery from Data (TKDD), 16(1):1–19, 2021.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Con-
ference on Learning Representations (ICLR), 2019. URL https://openreview.net/
forum?id=Bkg6RiCqY7.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Khan. Videogpt+: Integrating
image and video encoders for enhanced video understanding. arXiv preprint arXiv:2406.09418,
2024.
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A APPENDIX

A.1 ADDITIONAL ABLATIONS

A.1.1 TRAINING ABLATIONS

In addition to the ablation studies presented in the main paper, we conduct further investigations
into the impact of language backbone choice, parameter tuning, and numerical precision on the
Ref-DAVIS dataset, as summarized in Table 7.

In the first row, we assess the effect of replacing the Qwen2-7B language model with Olmo-7B.
The resulting drop in J&F score highlights Qwen2-7B’s superior grounding capabilities which is
consistent with the observational findings reported in (Deitke et al., 2024). This emphasizes the
importance of selecting an Qwen2-7B LLM with strong multimodal alignment for visual grounding
tasks.

Table 7: Performance comparison of different VIDEOMOLMO variants on Refer-DAVIS benchmark.

Variant J F J&F
VIDEOMOLMO-O-7B 66.25 72.93 69.59
VIDEOMOLMO (LoRA) 67.82 74.72 71.27
VIDEOMOLMO (16bit) 67.74 74.72 71.25
VIDEOMOLMO 71.27 73.63 72.45

Next, we investigate the impact of end-to-end training. In the second row, we freeze the video en-
coder and train only the LLM’s projection layers by integrating LoRA (Hu et al., 2022) adapters.
This lightweight training strategy significantly underperforms compared to the fully fine-tuned
model (last row), validating our hypothesis that joint optimization of all components is essential
for capturing the temporal nuances required for precise point grounding.

Finally, we examine the effect of training precision. In the third row, we use 16-bit floating point
precision which is commonly adopted to save memory and accelerate training. However, we find
that this leads to a notable degradation in performance. In contrast, training with full 32-bit precision
(last row) enhances the model’s capacity to learn fine-grained spatial and temporal cues, consistent
with prior observations in (Deitke et al., 2024).

Together, these ablations underline the significance of careful backbone selection, full end-to-end
optimization, and high-precision training for achieving robust and fine-grained visual grounding in
VIDEOMOLMO.

A.1.2 INFERENCE ABLATIONS

Sampling rate k: As described in the main paper, we adopt a frame sampling rate of k = |T | for
the Molmo+SAM2 baseline during inference, which means that we take the first frame prediction
and use SAM2 to propagate the mask across all the frames. This choice is motivated by perfor-
mance on the Refer-DAVIS-17 dataset, where Molmo+SAM2 achieves its highest J&F score of
67.69 at this value. However, our analysis in Table 8 reveals that the optimal sampling rate is not
universal, it varies across datasets. To ensure a fair and competitive comparison with our proposed
VIDEOMOLMO, we conduct additional ablations on the sampling rate k for Molmo+SAM2 across
the Refer-YouTube-VOS and MeViS datasets. We find that a lower sampling rate of k = 3 yields
the best performance on Refer-YouTube-VOS, while k = 1 proves optimal on MeViS. Despite this
tuning, VIDEOMOLMO consistently outperforms Molmo+SAM2 under each dataset’s optimal con-
figuration. Interestingly, across all three datasets, we observe a consistent decline in performance as
the sampling rate increases. This is particularly evident at k = 30, where the baseline performance
starts dropping. These findings further highlight the robustness of VIDEOMOLMO in leveraging
temporal context, even when competing baselines are tuned to their best-performing configurations.

We further ablate the effect of sampling rate on our proposed VIDEOMOLMO. While our main
results on the Refer-YouTube-VOS benchmark in the main paper are reported using a sampling rate
of k = 5, we acknowledge that this choice, although consistent with the baseline configuration, may
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Table 8: Effect of sampling rate k on Refer-DAVIS-17, Refer-Youtube-VOS, and MeViS bench-
marks using Molmo + SAM2

k Refer-DAVIS-17 Refer-Youtube-VOS MeViS
J F J&F J F J&F J F J&F

1 58.32 64.60 61.46 60.08 64.69 62.38 45.53 51.06 48.30
3 58.77 63.85 61.31 60.11 65.04 62.58 45.58 50.97 48.27
10 59.61 64.77 62.19 60.24 64.88 62.56 45.63 50.93 48.28
30 63.31 69.31 66.31 59.48 64.02 61.75 45.51 50.65 48.08
|T | 65.29 70.09 67.69 59.48 64.07 61.78 44.37 49.37 46.87

Table 9: Effect of varying threshold τ on
the performance of VIDEOMOLMO eval-
uated on the Refer-DAVIS benchmark.

τ J F J&F
0 67.31 73.38 70.34
0.3 69.05 75.51 72.28
0.5 68.90 75.26 72.08
0.9 68.85 75.24 72.05
VIDEOMOLMO (τ = 0.7) 71.27 73.63 72.45

Table 10: Effect of sampling rate k on the per-
formance of VIDEOMOLMO evaluated on the
Refer-YouTube-VOS benchmark.

k J F J&F

3 64.39 67.68 66.03
10 65.69 69.39 67.54
15 66.26 69.95 68.11
20 66.34 69.93 68.14
30 65.80 69.32 67.56
VIDEOMOLMO (k = 5) 65.55 69.11 67.33

not be optimal for our method. As seen from the Table 10, VIDEOMOLMO benefits from careful
selection of sampling rate as we observe that a sampling rate k = 20 yields the highest J&F score
of 68.14, compared to 67.33 with k = 5.

Threshold τ : Our proposed post-processing strategy, Bidirectional Temporal Mask Fusion, en-
hances model performance by combining masks propagated from both right and left directions to
achieve a robust temporal consensus. As described in Section 4.2 of the main paper, the fusion pro-
cess is governed by a threshold hyperparameter τ , which determines how agreement between the
two masks is evaluated. Specifically, when the Intersection-over-Union (IoU) between the forward
and backward masks exceeds τ , their intersection is used as the final mask, enforcing stricter agree-
ment. Conversely, if the IoU falls below τ , their union is taken, promoting flexibility in ambiguous
regions. This mechanism balances precision and recall based on temporal consistency. We ablate
different values of τ in Table 9 to identify the most effective setting. The results indicate that τ = 0.7
yields the best overall performance. However, the differences across values are relatively minor, un-
derscoring the high quality and stability of the point predictions generated by VIDEOMOLMO. This
consistency highlights the robustness of our model in temporal point grounding, even under varying
post-processing thresholds.

Effect of Post-processing on baselines: To assess the generalizability and effectiveness of our
proposed Bidirectional Temporal Mask Fusion, we integrate it with the Molmo+SAM2 baseline,
resulting in an enhanced variant denoted as Molmo†+SAM2. As illustrated in Fig. 7, this integration
consistently improves performance across all three datasets in terms of J&F score. These results
demonstrate that our post-processing strategy not only strengthens our own model but also benefits
existing methods. The modular, plug-and-play nature makes it a valuable addition to any video
grounding pipeline, improving temporal consistency and overall segmentation quality with minimal
integration effort.

A.2 ADDITIONAL EXPERIMENTATION DETAILS

VIDEOMOLMO follows the architecture of Molmo (Deitke et al., 2024). For the image encoder,
we use a pretrained CLIP ViT-L/14 (336 × 336) (Radford et al., 2021) model. We initialize the
temporal module with Xavier Normalized weights for stable training. Our choice of LLM is the
pretrained Qwen2 7B (Yang et al., 2024). We train the model on 8 NVIDIA A100 80GB GPUs.
Learning rate of 1e−5 is used for the LLM, and 5e−6 for the vision encoder, visual projector and
temporal module. We adopt a batch size of 1 with 256 gradient accumulation steps, and use AdamW
optimizer with β = (0.9, 0.95) and ϵ = 1e−6, . We train VIDEOMOLMO for 4 epochs on 8 NVIDIA
A100 GPUs (80 GB each), consuming roughly 1,000 GPU-hours in total. Training runs in full 32-bit
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Figure 7: Effect of Bidirectional temporal mask fusion on Molmo+SAM2 baseline.

precision with a 10-step linear warmup, after which we follow a cosine learning-rate schedule; we
also clip gradients to a maximum norm of 1.0 to guard against unstable updates. For all inference
and reported results, we use 4-bit precision.

A.3 VPOS BENCH

As mentioned in the main paper, we introduce Video Pointing and Segmentation (VPoS-Bench), a
curated benchmark test set comprising of 100 video-caption pairs and 1k manually annotated object
points. To obtain mask annotations for evaluation, we use SAM2 to convert these point annota-
tions into segmentation masks. For mask-based evaluations, we employ the SAM2 model to convert
these point annotations into segmentation masks. The test benchmark encompasses diverse real-
world scenarios, sourced from both open datasets (Caesar et al., 2020; Lin et al., 2024; Grauman
et al., 2022) and internal collections, spanning five categories: Cell Tracking, Egocentric Videos,
Autonomous Driving, Video-GUI, and Robotics. Our benchmark also consists of a dedicated count-
ing task sourced from (Kay et al., 2017) dataset. Below, we present details about each subset in
VPoS-Bench.

1) Cell Tracking: Features internally sourced 12 microscopic videos with dynamic cellular struc-
tures, where precise localization of individual cells is essential for tasks like tracking cell division
or counting. These videos are partially sourced from (Maška et al., 2023) and the remaining are
requested internally.

2) Egocentric Videos: Comprises 18 first-person videos capturing daily human-object interactions,
enabling the assessment of grounded pointing in scenarios such as object manipulation and activity
recognition. The egocentric videos in our test benchmark are derived from (Grauman et al., 2022)
dataset.

3) Autonomous Driving: Includes 13 urban driving scenes from nuScenes’s dataset (Caesar et al.,
2020), with complex environments, requiring accurate identification of specific road elements (e.g.,
traffic signals) to support navigation and safety systems.

4) Video-GUI: Consists of 13 screen recordings from software applications, focusing on tasks like
identifying and interacting with user interface elements based on textual instructions. The VideoGUI
videos are sampled from VideoGUI dataset (Lin et al., 2024).

5) Robotics: Encompasses 14 videos of robotic operations, emphasizing the need for precise object
localization to execute commands such as ”pick up the red block” or ”press the top button.” Few of
the robotic videos in our benchmark are sourced from (Singh et al., 2024), and the remaining are
sourced internally.
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A.4 LIMITATIONS OF SINGLE-POINT PREDICTION

VIDEOMOLMO can be run once to produce a single point or repeatedly to generate N points per
object, and it can also predict multiple points in one forward pass when conditioned on the prompt.
To quantify the benefit of multiple points, we performed detailed ablations on the referring segmen-
tation task.

While we observed no significant change in overall J&F on Refer-DAVIS2017 likely because most
objects in this dataset are not highly elongated, there are clear failure cases where relying on a single
point leads SAM2 astray.

Analysis of failure cases. We present qualitative failure cases in Fig. 12 . Below, we illustrate
two examples where providing multiple points significantly improves the mask quality generated by
SAM2.
Bag vs. Person: When asked to segment a bag, SAM2 with a single point often includes part of the
person or misses sections of the bag. Providing multiple points on the bag helps SAM2 focus and
recover a more complete mask (Table 11

Table 11: Effect of single vs. multiple points on segmenting a bag.

Method J F J&F
Single Point 28.5 36.3 32.4
Multiple Points 38.6 43.4 41.0

Paraglider Lines: Elongated, thin structures such as paraglider lines are challenging to segment
with a single point, whereas distributing multiple points along the lines enables a more complete
reconstruction of the object (Table 12).

Table 12: Effect of single vs. multiple points on segmenting paraglider lines.

Method J F J&F
Single Point 2.5 5.1 3.8
Multiple Points 47.8 67.2 57.5

Ablation on number of points. We further vary the number of points per object on Refer-
DAVIS2017. As shown in Table 13, the J&F score quickly plateaus, suggesting that most objects
do not require more than one point for SAM2 to succeed.

Table 13: Ablation of number of points per object on Refer-DAVIS2017.

# Points J&F
1 72.5
2 72.7
3 72.8
4 72.8

We observe that general performance on standard benchmarks remains high with a single point.
However, edge cases involving elongated or intricate boundaries benefit greatly from adaptively
selecting multiple points, as shown above. Incorporating an N -point strategy provides a simple and
effective remedy for such extreme examples, without hurting overall accuracy, though at the cost of
increased complexity.

We also evaluate prompting SAM2 (Ravi et al., 2024) with negative points, where VIDEOMOLMO
is asked to indicate background regions instead of the target object. This yields only a marginal gain
of 0.2 pp in accuracy on the Ref-DAVIS benchmark (Perazzi et al., 2016)(Table 14), suggesting that
mask quality is primarily bounded by the underlying performance of SAM2. We expect these results
to improve with stronger segmentation backbones.
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Table 14: Ablation of negative points as prompts to SAM2 in Refer-DAVIS2017.

Method J&F
Single Positive 72.5
Positive and Negative 72.6
Multiple Points 72.8

A.5 GENERALIZABILITY AND BIASNESS OF USING SAM2

To assess the generalizability of using SAM2 (Ravi et al., 2024) for identifying the most represen-
tative point during annotation, we conducted additional experiments by integrating VIDEOMOLMO
with two alternative segmentation models: (Zhao et al., 2023b): A YOLO-based model with a
fundamentally different architecture from SAM2 (Ravi et al., 2024) and MobileSAM (Zhang et al.,
2023a): A lightweight, distilled variant of SAM (Kirillov et al., 2023) that uses a ViT-based encoder.

Our choice of SAM2 (Ravi et al., 2024) is strategic. As the current state-of-the-art open-vocabulary
segmentation model, SAM2 (Ravi et al., 2024) provides a robust foundation for selecting high-
quality candidate points across diverse object categories and challenging scenarios. Its strong han-
dling of edge cases and domain variability ensures the creation of reliable annotations that general-
ize well. In contrast, weaker segmentation models may introduce systematic biases and degrade the
quality of learned representations.

Table 15: Performance comparison of VIDEOMOLMO when integrated with different segmentation
models.

Segmentation Model J&F
FastSAM 59.7
MobileSAM 62.3
SAM2 (VIDEOMOLMO) 72.5

Despite lacking temporal modeling and differing in architecture, both FastSAM (Zhao et al., 2023b)
and MobileSAM (Zhang et al., 2023a) achieve reasonably strong results (59.7 and 62.3), retaining
82–86% of SAM2’s performance (Table 15). This indicates that our point annotations encode fun-
damental spatial localization cues that generalize across segmentation paradigms. We attribute the
performance gap of 10 − 13 points primarily to the absence of temporal consistency, rather than
poor point quality. Importantly, SAM2 (Ravi et al., 2024) remains the only video-native founda-
tion model that supports point-based prompts, making it the most practical and capable option for
building training data with temporal consistency. Its memory mechanisms and temporal propagation
provide capabilities that FastSAM (Zhao et al., 2023b)and MobileSAM (Zhang et al., 2023a) lack.

Finally, our comprehensive evaluation on VPoS-Bench confirms that this design yields strong
cross-domain generalization and robustness. Across five diverse out-of-distribution domains—
Cell Tracking, Egocentric Vision, Autonomous Driving, Video-GUI Interaction, and Robotics—
VIDEOMOLMO consistently outperforms baselines with an average improvement of 5.4 percent-
age points. This result underscores that our learned pointing representations capture core object
localization principles that generalize beyond the characteristics or potential biases of any single
segmentation backbone.

A.6 INFERENCE TIME ANALYSIS OF VIDEOMOLMO VS. MOLMO+SAM2

To assess the computational cost of our temporal modeling approach, we compare the inference
time of VIDEOMOLMO with a baseline Molmo+SAM2 combination using a sampling rate of 4
and normalize the results per frame. VIDEOMOLMO incurs only a minimal additional overhead
of 0.06 seconds per frame (0.81s vs. 0.75s), while achieving substantial performance gains of 9.0
percentage points on the MeViS (Ding et al., 2023) segmentation benchmark and 24 percentage
points on counting tasks (VPoS-Bench). See Table 16
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Table 16: Inference time comparison per frame (in seconds).

Model Inference time (s)
Molmo + SAM2 0.75
VIDEOMOLMO 0.81

A.7 MODEL SIZE COMPARISON

We further compare the number of parameters, total GPU hours, and training efficiency of VIDEO-
MOLMO against VideoLISA (Bai et al., 2024) and VideoGLAMM (Munasinghe et al., 2024). While
VIDEOMOLMO requires 1000 GPU hours, it is 1.3× faster than VideoLISA (Bai et al., 2024) (1280
GPU hrs) but 2.1× slower than VideoGLAMM (480 GPU hrs). Despite having almost double the
parameters compared to VideoGLAMM (Munasinghe et al., 2024) and VideoLISA (Bai et al., 2024),
VIDEOMOLMO requires nearly the same total training time as VideoGLAMM (Munasinghe et al.,
2024) (Table 17.

Table 17: Model size and training efficiency comparison.

Model Params (B) GPU hrs HW Train Time (hrs)
VideoLISA 4.4B 1280 64×A10 (24GB) 20
VideoGLAMM 4.4B 480 4×A100 (40GB) 120
VIDEOMOLMO 8.0B 1000 8×A100 (80GB) 125

Table 18: Comparison of mask→point vs. direct point prediction on the counting benchmark.

Model MAE ↓ EMA ↑
VideoGLaMM 2.05 12.9
VideoLISA 2.43 20.0
VIDEOMOLMO 0.72 73.3

A.8 GENERATING POINTS FROM SEGMENTATION MASKS

We analyze the effect of choosing a point→mask formulation over a mask→point formulation.
While it is true that existing Video-LMMs can produce segmentation masks, converting these masks
into points introduces several key limitations that motivate our direct pointing strategy.

To directly evaluate this alternative, we converted segmentation masks generated by state-of-the-
art Video-LMMs like VideoLISA and VideoGLaMM into points using a standard centroid-based
technique, as suggested by the reviewer. As shown in Table 18, our method significantly outperforms
these baselines on the counting benchmark.

The mask-to-point approach breaks down particularly in challenging scenarios. When objects are in
close proximity, segmentation models often yield merged or overlapping masks, making it difficult
to localize individual instances. Additionally, for elongated or irregularly shaped objects, centroids
may lie in background areas rather than on semantically meaningful parts of the object.

In contrast, our direct pointing strategy explicitly predicts fine-grained and semantically grounded
spatial locations, allowing for more accurate and interpretable outputs. These results suggest that
direct pointing not only simplifies the reasoning burden for the LMM but also constitutes a funda-
mentally different and more effective paradigm for fine-grained spatial understanding in videos.

A.9 EFFECT OF BIDIRECTION TEMPORAL MASK FUSION MODULE AND SAMPLING RATE
ON EFFICIENCY

We conducted an analysis to evaluate how the Bidirectional Temporal Mask Fusion module and the
sampling rate affect the efficiency of VIDEOMOLMO.
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Table 19: Per-frame processing time of VIDEOMOLMO at sampling rate k = 4.

Pointing (s) Post-processing (s) Total (s)
0.74 0.07 0.81

Table 20: Per-frame processing time of VIDEOMOLMO for different sampling rates k.

Sampling Rate (k) Time (s)
4 0.81
8 0.48
10 0.35
15 0.31

Bidirection Temporal Mask Fusion module overhead. Table 19 reports the time taken by
VIDEOMOLMO to process a video at a sampling rate of k = 4, normalized per frame. The pointing
module requires approximately 0.74 seconds per frame, while the post-processing module—which
applies bidirectional mask fusion—adds a consistent 0.07 seconds. Thus, the total processing time
per frame is 0.81 seconds, confirming that post-processing introduces only a small and stable over-
head.

Effect of sampling rate. We further investigate how varying the sampling rate k impacts efficiency.
As shown in Table 20, increasing k (i.e., processing fewer frames densely) reduces the overall per-
frame computation time substantially. For example, raising k from 4 to 15 decreases processing
time from 0.81s to 0.31s per frame.

The post-processing time remains unaffected by the sampling rate because SAM2 must still segment
all video frames, regardless of the sampling rate used for pointing.

A.10 PERFORMANCE ON LARGE NUMBER OF OBJECTS

To evaluate VIDEOMOLMO performance on complex scenes, we tested on videos containing more
than 30 objects. Table 21 shows that VIDEOMOLMO significantly outperforms both proprietary and
open-source models on this challenging subset.

VIDEOMOLMO achieves the best results with an MAE of 0.86 and EMA of 58.6%, substantially
outperforming GPT-5 (0.91 MAE, 48.0% EMA) and other baselines. Open-source models struggle
considerably more, with Molmo showing the poorest performance (1.45 MAE, 39.5% EMA). These
results demonstrate that VIDEOMOLMO maintains strong counting and localization accuracy even
in dense object scenarios where existing models fail.

A.11 ADDITIONAL QUALITATIVE RESULTS

General qualitative results. We also present some qualitative results in Figures 8,??,9, 10, and 11
on our proposed VPoS-Bench, MeViS, YT-VOS, Ref-DAVIS, and ReasonVOS, respectively. We
observe that in each case, VIDEOMOLMO generates fine-grained points and corresponding masks
pertaining to the query objects. In fact, VIDEOMOLMO performs well even in the cases of multi-
object queries (¿2 objects) such as in VPoS-Bench counting task of Fig. 8 (1st row) and Fig. ?? (3rd

row). Further, VIDEOMOLMO also excels at grounding small and fine-grained objects. Fig. 8 (3rd

row) shows VIDEOMOLMO accurately points and grounds the far-away car on the road, although the
car is too small to point at in some frames. Similarly, VIDEOMOLMO is able to ground the helmet
in Fig. 10 (2nd row) while avoiding to ground the entire biker.

Failure cases. While VIDEOMOLMO demonstrates strong fine-grained pointing capabilities, it is
not without limitations. As illustrated in Fig. 12, certain failure cases highlight areas for improve-
ment. In the first row, the model is expected to point to the black harness but instead grounds a
part of the adjacent bag. This misalignment stems from the limitations of SAM2, which struggles
to accurately convert the predicted point coordinate into a meaningful mask. In the second row,
the model points to only one of several visible paraglider lines, missing multiple lines. Such cases
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Table 21: Performance of VIDEOMOLMO on videos with a large number of objects. (↓ lower is
better, ↑ higher is better)

Model MAE ↓ EMA ↑

GPT-5 0.91 48.0
Gemma3-12B 1.15 34.6
Qwen2.5-VL-7B 1.02 40.0
Molmo 1.45 39.5
VIDEOMOLMO 0.86 58.6

suggest a need for enhanced expressiveness, such as enabling the model to predict multiple points
for a single query. Addressing these limitations opens new avenues for future work in improving the
robustness and granularity of point grounding in complex scenes.

Point to everyone wearing a green shirt.

Point to the boat in front.

Point to the car in the front.

Point to the moving car.

Figure 8: VPoS-Bench qualitative examples.
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Point to a yellow umbrella.

Point to a ball

Point to a child walking to the bus with an adult

Figure 9: Refer-YouTube-VOS qualitative examples.

Point to person at the back of the go-cart without a helmet.

Point to the helmet worn by the biker.

Point to a rope which the guy is hanging on.

Figure 10: Refer-DAVIS qualitative examples.
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Point to who disturbs the dog from moving forward
smoothly?

Point to the vehicle that can accommodate more 
passengers.

Point to the musician playing drums.

Figure 11: ReasonVOS qualitative examples.

Point to a black harness with an airbag.

Point to the paraglider lines.

Figure 12: Qualitative failure cases of VIDEOMOLMO.
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