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When is Agnostic Reinforcement Learning
Statistically Tractable?

Anonymous Authors1

Abstract
We study the problem of agnostic PAC reinforce-
ment learning (RL): given a policy class Π, how
many rounds of interaction with an unknown
MDP (with a potentially large state and action
space) are required to learn an ε-suboptimal pol-
icy with respect to Π? Towards that end, we in-
troduce a new complexity measure, called the
spanning capacity, that depends solely on the set
Π and is independent of the MDP dynamics. With
a generative model, we show that the spanning
capacity characterizes PAC learnability for every
policy class Π. However, for online RL, the sit-
uation is more subtle. We show there exists a
policy class Π with a bounded spanning capac-
ity that requires a superpolynomial number of
samples to learn. This reveals a surprising sep-
aration for agnostic learnability between gener-
ative access and online access models (as well
as between deterministic/stochastic MDPs under
online access). On the positive side, we identify
an additional sunflower structure which in con-
junction with bounded spanning capacity enables
statistically efficient online RL via a new algo-
rithm called POPLER, which takes inspiration
from classical importance sampling methods as
well as recent developments for reachable-state
identification and policy evaluation in reward-free
exploration.

1. Introduction
Reinforcement Learning (RL) has emerged as a powerful
paradigm for solving complex decision-making problems,
demonstrating impressive empirical successes in a wide
array of challenging tasks, from achieving superhuman per-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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formance in the game of Go (Silver et al., 2017) to solving
intricate robotic manipulation tasks (Lillicrap et al., 2016;
Akkaya et al., 2019; Ji et al., 2023). Many practical do-
mains in RL often involve rich observations such as images,
text, or audio (Mnih et al., 2015; Li et al., 2016; Ouyang
et al., 2022). Since these state spaces can be vast and com-
plex, traditional tabular RL approaches (Kearns and Singh,
2002; Brafman and Tennenholtz, 2002; Azar et al., 2017; Jin
et al., 2018) cannot scale. This has led to a need to develop
provable and efficient approaches for RL that utilize func-
tion approximation to extrapolate rich, high-dimensional
observations to unknown states/actions.

The goal of this paper is to study the sample complexity
of policy-based RL, which is arguably the simplest setting
for RL with function approximation (Kearns et al., 1999;
Kakade, 2003). In policy-based RL, an abstract function
class Π of policies (mappings from states to actions) is
given to the learner. For example, Π can be the set of all
the policies represented by a certain deep neural network
architecture. The objective of the learner is to interact with
an unknown MDP to find a policy π̂ that competes with the
best policy in the class, i.e., for some small ε, the policy π̂
satisfies

V
π̂
≥ max

π∈Π
V

π
− ε, (1)

where V
π denotes the value of policy π on the underly-

ing MDP. We henceforth call Eq. (1) the “agnostic PAC
reinforcement learning” objective. Our paper addresses the
following research question:

What structural assumptions on Π enable statistically
efficient agnostic PAC RL?

Characterizing (agnostic) learnability for various problem
settings is perhaps the most fundamental question in statis-
tical learning theory. For the simpler setting of supervised
learning (which is RL with binary actions, horizon 1, and
binary rewards), the story is complete: a hypothesis class
Π is agnostically learnable iff its VC dimension is bounded
(Vapnik and Chervonenkis, 1971; 1974; Blumer et al., 1989;
Ehrenfeucht et al., 1989), and the ERM algorithm—which
returns the hypothesis with the smallest training loss—is
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statistically optimal. However, RL (with H > 1) is signifi-
cantly more challenging, and we are still far from a rigorous
understanding of when agnostic RL is tractable, or what
algorithms to use in large-scale RL problems.

While significant effort has been invested over the past
decade in both theory and practice to develop algorithms
that utilize function approximation, existing theoretical guar-
antees require additional assumptions on the MDP. The most
commonly adopted assumption is realizability: the learner
can precisely model the value function or the dynamics of
the underlying MDP (see, e.g., Russo and Van Roy, 2013;
Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020a; Du
et al., 2021; Jin et al., 2021a; Foster et al., 2021a). Un-
fortunately, realizability is a fragile assumption that rarely
holds in practice. Moreover, even mild misspecification can
cause catastrophic breakdown of theoretical guarantees (Du
et al., 2019a; Lattimore et al., 2020). Furthermore, in vari-
ous applications, the optimal policy π

⋆
≔ argmaxπ∈Π V

π

may have a succinct representation, but the optimal value
function V

⋆ can be highly complex, rendering accurate ap-
proximation of dynamics/value functions infeasible without
substantial domain knowledge (Dong et al., 2020). Thus,
we desire algorithms for agnostic RL that can work with
no modeling assumptions on the underlying MDP. On the
other hand, it is also well known without any assumptions
on Π, when Π is large and the MDP has a large state and
action space, agnostic RL may be intractable with sample
complexity scaling exponentially in the horizon (Agarwal
et al., 2019). Thus, some structural assumption on Π is
needed, and towards that end, the goal of our paper is to
understand what assumptions are sufficient or necessary for
statistically efficient agnostic RL, and to develop provable
algorithms for learning. Our main contributions are:

• We introduce a new complexity measure called the span-
ning capacity, which solely depends on the policy class
Π and is independent of the underlying MDP. We illus-
trate the spanning capacity with examples, and show
why it is a natural complexity measure for agnostic PAC
RL (Section 3).

• We show that the spanning capacity is both necessary
and sufficient for agnostic PAC RL with a generative
model, with upper and lower bounds matching up to
log∣Π∣ and poly(H) factors (Section 4).

• Moving to the online setting, we first show that the
spanning capacity by itself is insufficient for agnostic
PAC RL by proving a superpolynomial lower bound on
the sample complexity required to learn a specific Π,
thus demonstrating a separation between generative and
online interaction models for PAC RL (Section 5).

• Given the above lower bound, we propose an additional
property of the policy class called sunflower structure,
that allows for efficient exploration, and is satisfied by

many policy classes of interest. We provide an agnostic
PAC RL algorithm called POPLER that is statistically ef-
ficient whenever the given policy class has bounded span-
ning capacity and has the sunflower structure. POPLER
unifies the existing approaches of importance sampling
and reward-free exploration in tabular RL algorithms,
particularly the approach of identifying highly-reachable
states (Section 6).

2. Setup and Motivation
2.1. Reinforcement Learning Preliminaries

We formally introduce the setup for reinforcement learning
in a finite horizon Markov decision process (MDP). Denote
the MDP as M = (S,A, H, P,R, µ), which consists of
a state space S, action space A, horizon H , probability
transition kernel P ∶ S × A → ∆(S), reward function
R ∶ S ×A → ∆([0, 1]), and initial distribution µ ∈ ∆(S).
For ease of exposition, we assume that S and A are finite
(but possibly large) with cardinality S and A respectively.
We assume a layered state space, i.e., S = S1∪S2∪⋅ ⋅ ⋅∪SH

where Si∩Sj = ∅ for all i ≠ j. Thus, given a state s ∈ S , it
can be inferred which Sh, or time step in the MDP, it belongs
to. We denote a trajectory τ = (s1, a1, r1, . . . , sH , aH , rH)
, where at each step h ∈ [H], an action ah ∈ A is played,
a reward rh is drawn independently from the distribution
R(sh, ah), and each subsequent state sh+1 is drawn from
P (⋅∣sh, ah). Lastly, we assume that the cumulative reward
of any trajectory is bounded by 1.

Policy-based reinforcement learning. In our setting, the
learner is given a policy class Π ⊆ AS . For any pol-
icy π ∈ AS , we denote π(s) as the action that π takes
when presented state s. We use Eπ[⋅] and Pr

π[⋅] to de-
note the expectation and probability under the process of
a trajectory drawn from the MDP M by policy π. Also,
for any h, h

′
≤ H , we say that a partial trajectory τ =

(sh, ah, sh+1, ah+1, . . . , sh′ , ah′) is consistent with π if for
all h ≤ i ≤ h

′, we have π(si) = ai. We use the notation
π ↝ τ to denote that τ is consistent with π.

We also define the value function and Q-function such that
for any π, and s, a,

V
π
h (s) = Eπ[

H

∑
h′=h

R(sh′ , ah′) ∣ sh′ = s],

Q
π
h(s, a) = Eπ[

H

∑
h′=h

R(sh′ , ah′) ∣ sh′ = s, ah′ = a].

We often denote V
π
≔ Es1∼µV

π
1 (s1). For any policy π ∈

AS , we also define the occupancy measure as dπh(s, a) ≔
Pπ[sh = s, ah = a] and d

π
h(s) ≔ Pπ[sh = s].



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

When is Agnostic RL Statistically Tractable?

Models of interaction. We consider two standard models
of interaction in RL.

• Generative model. The learner can make a query to
a simulator at any (s, a), and observe a sample (s′, r)
drawn as s′ ∼ P (⋅∣s, a) and r ∼ R(s, a).

• Online interaction model. The learner can submit a
(potentially non-Markovian) policy π̃ and receive back
a trajectory sampled by running π̃ on the MDP. Since
online saccess can be simulated via generative access,
learning under online access is only more challenging
than learning under generative access (up to a factor of
H). We colloquially refer to this as “online RL”.

We define Msto as the set of all MDPs of horizon H . Sim-
ilarly, we define MdetP

⊂ Msto, and Mdet
⊂ MdetP to

denote the set of all MDPs with deterministic transitions but
stochastic rewards, and of all MDPs with both deterministic
transitions and deterministic rewards, respectively.

2.2. Agnostic PAC RL

Our goal is to understand the sample complexity of agnostic
PAC RL. An algorithm A is an (ε, δ)-PAC RL algorithm
for an MDP M , if after interacting with M (either in the
generative model or online RL), A returns a policy π̂ that
satisfies the guarantee1

V
π̂
≥ max

π∈Π
V

π
− ε,

with probability at least 1 − δ. We say that A has sample
complexity n

A
on(Π; ε, δ) (resp. nA

gen(Π; ε, δ)) if for every
MDP M , A is an (ε, δ)-PAC RL algorithm and collects
at most non(A,Π; ε, δ) many trajectories in the online in-
teraction model (resp. generative model) in order to return
π̂.

We define the minimax sample complexity for agnostically
learning Π as the minimum sample complexity for any (ε, δ)
PAC algorithm:

non(Π; ε, δ) ≔ inf
A

n
A
on(Π; ε, δ), and

ngen(Π; ε, δ) ≔ inf
A

n
A
gen(Π; ε, δ).

Known results in agnostic RL. We first note that follow-
ing classical result which shows that agnostic PAC RL is
statistically intractable, in the worst case.

1Our results are agnostic in the sense that we do not make the
assumption that the optimal policy for the underlying MDP is in
Π, but instead, only wish to complete with the best policy in Π.
Additionally, recall that we do not assume that the learner has a
value function class or a model class that captures the optimal
value functions or dynamics.

Proposition 1 (No Free Lunch for RL (Kakade, 2003;
Krishnamurthy et al., 2016)). There exists a policy
class Π for which the minimax sample complexity un-
der a generative model is at least ngen(Π; ε, δ) =

Ω(min{AH
log∣Π∣, ∣Π∣, SA}/ε2).

Since online RL is only harder than learning with a gener-
ative model, the lower bound in Proposition 1 extends to
the online RL. Proposition 1 is the analogue of the classical
No Free Lunch results in statistical learning theory (Shalev-
Shwartz and Ben-David, 2014); it indicates that without
placing further assumptions on the MDP or the policy class
Π (e.g., by constraining the state/action space sizes, policy
class size, or the horizon), sample efficient agnostic PAC
RL is impossible.

Indeed, an almost matching upper bound of non(Π; ε, δ) =
Õ(min{AH

, ∣Π∣, HSA}/ε2) is quite easy to obtain. The
∣Π∣/ε2 guarantee can simply be obtained by iterating over
π ∈ Π, collecting Õ(1/ε2) trajectories per policy, and then
picking the one with highest empirical value. The HSA/ε2
guarantee can be obtained by running known algorithms
for tabular RL (Zhang et al., 2021a). Finally, the A

H/ε2
guarantee is achieved by the classical importance sampling
(IS) algorithm (Kearns et al., 1999; Agarwal et al., 2019).
Since Importance Sampling will be an important technique
that we repeatedly use and build upon in this paper, we give
a formal description of the algorithm below:

• Collect n = O(AH ⋅ log∣Π∣/ε2) trajectories by execut-
ing actions (a1, . . . , aH) ∼ Unif(AH).

• Return π̂ = argmaxπ∈Π v̂
π
IS, where v̂

π
IS ≔

A
H

n
∑n

i=1 1{π ↝ τ
(i)}(∑H

h=1 r
(i)
h ).

For every π ∈ Π, the quantity v̂
π
IS is an unbiased estimate of

V
π with variance AH ; the sample complexity result follows

by standard concentration guarantees (see, e.g., Agarwal
et al., 2019).

Towards structural assumptions for statistically efficient
agnostic PAC RL. Of course, No Free Lunch results
do not necessarily spell doom—for example in supervised
learning, various structural assumptions have been stud-
ied that enable statistically efficient learning. Furthermore,
there has been a substantial effort in developing complex-
ity measures like VC dimension, fat-shattering dimension,
covering numbers, etc. that characterize agnostic PAC learn-
ability under different scenarios (Shalev-Shwartz and Ben-
David, 2014). In this paper, we initiate a similar study for
Agnostic learning in RL. The key question that we are inter-
ested in understanding is whether there exists a complexity
measure C(Π) which characterizes learnability for every
policy class Π. Formally, can we establish that the minimax
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sample complexity of learning any Π is2

non(Π; ε, δ) = Θ̃(poly(C(Π), H, log∣Π∣, ε−1, log δ−1))?

Do we even need a new complexity measure? In
light of Proposition 1, one obvious candidate is C̃(Π) =

min{AH
, ∣Π∣, SA}. While C̃(Π) is definitely sufficient to

upper bound the minimax sample complexity for any policy
class Π, it is not clear if it is also necessary. In fact, our next
proposition suggests that C̃(Π) is indeed not the right mea-
sure of complexity by giving example of a policy class for
which C(Π) ≔ min{AH

, ∣Π∣, SA} can be exponentially
larger than the minimax sample complexity for agnostic
learning w.r.t. that policy class, even when ε is constant.

Proposition 2. Let H ∈ N, S = [2H] × [H], and
A = {0, 1}. Consider the singleton policy class:
Πsing ≔ {πi ∣ πi(s) = 1{s = i}}, where πi takes the
action i on state i, and 0 everywhere else. Then
min{AH

, ∣Πsing∣, SA} = 2
H but non(Πsing; ε, δ) ≤

Õ(H3 ⋅ log(1/δ)/ε2).

The upper bound on minimax sample complexity can be
obtained as a corollary of our more general upper bound in
Section 6. The key intuition for why Πsing can be learned
in poly(H) samples is that even though the policy class
and state space are large, the set of possible trajectories
obtained by running any π ∈ Πsing has “low complexity”.
In particular, every trajectory τ has at most one ah = 1.
This observation enables us to employ the straightforward
modification of the classical IS algorithm: draw poly(H) ⋅
log(1/δ)/ε2 samples from the uniform distribution over
Πcore = {πh ∣ h ∈ [H]} where the policy πh takes the
action 1 on every state at layer h and 0 everywhere else.
The variance of the resulting estimator v̂πIS is 1/H , so the
sample complexity of this modified variant of IS has only
poly(H) dependence by standard concentration bounds.

In the sequel, we present a new complexity measure that
formalizes this intuition.

3. Spanning Capacity
The spanning capacity precisely captures the intuition that
trajectories obtained by running any π ∈ Π have “low com-
plexity.” We first define a notion of reachability: in de-
terministic MDP M ∈ Mdet, we say (s, a) is reachable
by π ∈ Π if (s, a) lies on the trajectory obtained by run-
ning π on M . Roughly speaking, the spanning capacity

2Throughout the paper, we restrict ourselves to finite (but large)
policy classes and assume that the log∣Π∣ factors in our upper
bounds are mild. Standard techniques from empirical process
theory, e.g. VC dimension and covering numbers, could be im-
ported in our proofs to improve the log∣Π∣ dependence in our
upper bounds when Π is continuous, but structured.

measures “complexity” of Π as the maximum number of
state-action pairs which are reachable by some π ∈ Π in
any deterministic MDP.

Definition 1 (spanning capacity). Fix a deterministic MDP
M ∈ Mdet. We define the cumulative reachability at layer
h ∈ [H] as denoted C

reach
h (Π;M) ∶=

∣{(s, a) ∣ (s, a) is reachable by Π at layer h}∣.

We define the spanning capacity of Π to be

C(Π) ≔ max
h∈[H]

max
M∈Mdet

C
reach
h (Π;M).

To build intuition, we first loogmk at some simple examples
for which spanning capacity is well-behaved:

• Contextual bandits: Consider the standard formulation
of contextual bandits (i.e., RL with H = 1). For any
policy class Πcb, since H = 1, the largest deterministic
MDP we can construct has a single state s1 and at most
A actions available on s1, so C(Πcb) ≤ A.

• Tabular MDPs: Consider tabular RL with the policy
class Πtab = AS . Depending on the relationship be-
tween S,A and H , we have two possible bounds on
C(Πtab) ≤ min{AH

, SA}. If the state space is expo-
nentially large in H , then it is possible to construct a
full A-ary “tree” such that every (s, a) pair at layer H
is visited, giving us the AH bound. However, if the state
space is small, then the number of (s, a) pairs available
at any layer H is trivally bounded by the total SA.

• Small policy classes: If the policy class Πsmall itself is
small in cardinality then we get the bound C(Πsmall) ≤
∣Πsmall∣, since in any deterministic MDP, in any layer
each π ∈ Πsmall can visit at most one (s, a) pair.

• Singletons: For the singleton class we have C(Πsing) =
H + 1, since once we fix a deterministic MDP, there are
at most H states where we can split from the trajectory
taken by the policy which always plays a = 0, so the
maximum number of (s, a) pairs reachable at layer h ∈

[H] is h + 1. Observe that in light of Proposition 2, the
spanning capacity is “on the right order” for Πsing.

Before proceeding, we note that for any policy class Π, the
spanning capacity is always bounded.

Proposition 3. For any policy class Π, we have C(Π) ≤

min{AH
, ∣Π∣, SA}.

Proposition 3 recovers the worst-case upper and lower
bound from Section 2.2. However, for many policy classes,
spanning capacity is substantially smaller than upper bound
of Proposition 3. In addition to the examples we provided
above, the following lists other policy classes with small
spanning capacity. All proofs are deferred to Appendix B.
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Below we provide more examples of policy classes where
spanning capacity is substantially smaller than upper bound
of Proposition 3. For these policy classes we take S =

[S] × [H] and A = {0, 1}.

• ℓ-tons: is a natural generalization of singletons. We
define Πℓ−ton ≔ {πJ ∣ J ⊂ S, ∣J∣ ≤ ℓ}, where the
policy πJ is defined s.t. πJ(s) = 1{s ∈ J} for any
s ∈ S. Here, C(Πℓ−ton) = Θ(Hℓ).

• 1-active policies: We define Π1−act to be the class of
policies which have two possible actions on a single state
in each layer, i.e., Π1−act ≔ {π ∣ π(s, h) = 0 if s ≠ 1}.
Here, C(Π1−act) = Θ(H).

• All-active policies: We define Πact ≔ ⋃j≥1 Πj−act.
Here, C(Πact) = Θ(H2).

A natural interpretation of the spanning capacity is that it
represents the largest “needle in a haystack” that can be
embedded in a deterministic MDP using the policy class
Π. To see this, let (M⋆

, h
⋆) be the MDP and layer which

witnesses C(Π), and let {(si, ai)}
C(Π)
i=1 be the set of state-

action pairs reachable by Π in M
⋆ at layer h⋆. Then one

can hide a reward of 1 on one of these state-action pairs;
since every trajectory visits a single (si, ai) at layer h⋆, we
need at least C(Π) samples in order to discover which state-
action pair has the hidden reward. Note that in this agnostic
learning setup, we only need to care about the states that are
reachable using Π, even though the h⋆ layer may have other
non-reachable states and actions.

3.1. Connection to Coverability

The spanning capacity has another interpretation as the
worst-case coverability, a structural parameter defined by
(Xie et al., 2022).

Definition 2 (Coverability, Xie et al. (2022)). For any MDP
M and policy class Π, the coverability coefficient Ccov is
denoted

C
cov(Π;M) ≔ inf

µ1,...µH∈∆(S×A)
sup

π∈Π,h∈[H]

ÂÂÂÂÂÂÂÂ
d
π
h

µh

ÂÂÂÂÂÂÂÂ∞
= max

h∈[H]
∑
s,a

sup
π∈Π

d
π
h(s, a).

Coverage conditions date back to the analysis of the classic
Fitted Q-Iteration (FQI) algorithm (Munos, 2007; Munos
and Szepesvári, 2008), and have extensively been studied in
offline RL. Various models like tabular MDPs, linear MDPs,
low-rank MDPs, and exogenous MDPs satisfy the above
coverage condition (Antos et al., 2008; Chen and Jiang,
2019; Jin et al., 2021b; Rashidinejad et al., 2021; Zhan et al.,
2022; Xie et al., 2022), and recently, Xie et al. showed
that coverability can be used to prove regret guarantees for

online RL, albeit under the additional assumption of value
function realizability.

Our notion of spanning capacity is exactly worst-case cov-
erability, even taken worst case over any stochastic MDP.
Thus, there always exists a deterministic MDP that witnesses
worst-case coverability.

Lemma 1. For any policy class Π, we have
supM∈Msto C

cov(Π;M) = C(Π).

While spanning capacity is related to the worst-case-
coverability, we note that there are important differences.
Firstly, coverability was used to characterize when sample
efficient learning is possible in value function-based RL,
where the learner has access to a realizable value function
class. On the other hand, we introduce spanning capacity
to characterize sample complexity in the much weaker ag-
nostic RL setting, where learner only has access to a policy
class. Note that a realizable value function class can be used
to construct a policy class that contains the optimal policy,
but the converse is not true. Secondly, the above equivalence
holds only in a worst-case sense (over MDPs). In fact, as
we show in Appendix C, coverability alone is not enough
for sample efficient agnostic PAC RL.

4. Generative Model: Spanning Capacity is
Necessary and Sufficient

In this section, we show that spanning capacity characterizes
the minimax sample complexity of learning in the generative
model.

Theorem 1 (Upper bound for generative model). For any
Π, the minimax sample complexity (ε, δ)-PAC learning Π

is at most ngen(Π; ε, δ) ≤ O(H⋅C(Π)
ε2

⋅ log ∣Π∣
δ
).

The proof can be found in Appendix D.1, and is a straight-
forward modification of the classic trajectory tree method
from (Kearns et al., 1999): using generative access, sample
O(log∣Π∣/ε2) deterministic trajectory trees from the MDP
to get unbiased evaluations for every π ∈ Π; since the size
of each deterministic tree is at most H ⋅ C(Π), we have a
bound on the number of queries used.

Theorem 2 (Lower bound for generative model). For any
Π, the minimax sample complexity (ε, δ)-PAC learning Π

is at least ngen(Π; ε, δ) ≥ Ω(C(Π)
ε2

⋅ log 1
δ
).

The proof can be found in Appendix D.2. Intuitively, given
an MDP M

⋆ which witnesses C(Π), one can embed a bandit
instance on the relevant (s, a) pairs spanned by Π in M

⋆.
The lower bound follows by a reduction to the lower bound
for (ε, δ)-PAC learning multi-armed bandits.

Together, Theorem 1 and Theorem 2 paint a relatively com-
plete picture for the minimax sample complexity of learn-
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ing any policy class Π, in the generative model, up to a
H ⋅ log∣Π∣ factor.

Deterministic MDPs. A similar guarantee holds for on-
line RL over deterministic MDPs.

Corollary 1. Over the class MdetP of MDPs with determin-
istic transitions, the minimax sample complexity of (ε, δ)-
PAC learning any Π is

Ω(C(Π)
ε2

⋅ log 1
δ
) ≤ non(Π; ε, δ) ≤ O(H⋅C(Π)

ε2
⋅ log ∣Π∣

δ
).

The upper bound follows because the trajectory tree algo-
rithm for deterministic just samples the same tree over and
over again (with different stochastic rewards). The lower
bound trivially extends because the lower bound of Theo-
rem 2 actually uses an M ∈ MdetP whose transitions are
known to the learner.

5. Online RL: Spanning Capacity is Not
Sufficient

Given that fact that spanning capacity characterizes the
minimax sample complexity of Agnostic PAC RL in the
generative model, one might be tempted to conjecture that
spanning capacity is also the right characterization in online
RL. The lower bound is clear since online RL is at least as
hard as learning with a generative model, Theorem 2 already
shows that spanning capacity is necessary.

In this section, we prove a surprising negative result showing
that spanning capacity is not sufficient to characterize the
minimax sample complexity in online RL. In particular, we
provide an example for which we have a superpolynomial
(in H) lower bound on the numbers of samples needed for
learning, that is not captured by any polynomial function of
spanning capacity.3

Theorem 3 (Lower bound for online RL). Fix any H ≥ 10
5.

Let ε ∈ (1/H100
, 1/(100H)) and ℓ ∈ {2, . . . , ⌊logH⌋}.4

There exists a policy class Π of size 1/(6εℓ) with C(Π) ≤
O(H4ℓ+2) and a family of MDPs M with state space S
of size H ⋅ 22H+1, binary action space, and horizon H
such that: for any (ε/16, 1/8)-PAC algorithm, there exists
an M ∈ M in which the algorithm must collect at least
Ω(min{ 1

εℓ
, 2

H/3}) online trajectories in expectation.

Informally speaking, the above lower bound suggests that
there exists a policy class Π for which non(Π; ε, δ) =

3In the lower bound construction, the optimal policy π
⋆ for the

underlying MDP belongs to the set Π. This shows that realizability
of the optimal policy in the policy class also does not help.

4We have made no attempt to optimize range of ε as well as
other constants in the statement. In particular, this lower bound
can be extended to work for any ε = Θ(1/poly(H)).

Ω(1/εlogH C(Π)). In conjunction with the results of Sec-
tion 4, Theorem 3 shows that (1) online RL is strictly
harder than RL with generative access, and (2) online RL
for stochastic MDPs is strictly harder than online RL for
MDPs with deterministic transitions. We defer the proof of
Theorem 3 to Appendix E. Our lower bound introduces sev-
eral technical novelties: the family M utilizes a contextual
variant of the combination lock, and the policy class Π is
constructed via a careful probabilistic argument such that it
is hard to explore despite having small spanning capacity.

6. Efficient Agnostic RL under Online Model
The lower bound in Theorem 3 suggests that further struc-
tural assumptions on Π are needed for statistically efficient
agnostic RL under the online model. Essentially, the lower
bound construction in Theorem 3 is hard to learn because
any two distinct policies π, π′ ∈ Π can differ substantially
on a large subset of states (of size at least ε ⋅ 22H ). Thus,
we cannot hope to learn “in parallel” via a low variance IS
strategy that utilizes extrapolation to evaluate all π ∈ Π, as
we did for the singleton class.

In this sequel, we consider the following sunflower prop-
erty to rule out such worst-case scenarios, and show how
bounded spanning capacity and the sunflower property en-
able sample-efficient agnostic RL in the online model. The
sunflower property only depends on the state space, action
space, and policy class, and is independent of the transition
dynamics and rewards of the underlying MDP.
Definition 3 (Petals and Sunflowers). For a policy π, policy
set Π̄, and states S̄ ⊆ S, π is said to be a S̄-petal on
Π̄ if for all h ≤ h

′
≤ H , and partial trajectories τ =

(sh, ah,⋯, sh′ , ah′) that are consistent with π: either τ is
also consistent with some π′ ∈ Π̄, or there exists i ∈ (h, h′]
s.t. si ∈ S̄.

A policy class Π is said to be a (K,D)-sunflower if there
exists a set Πcore of Markovian policies with ∣Πcore∣ ≤ K
such that for every policy π ∈ Π there exists a set Sπ ⊆ S,
of size at most D, so that π is Sπ-petal on Πcore.

Note that a class Π may be a (K,D)-sunflower for many
different choices of K and D. Since our sample complexity
upper bounds in this section scale with any valid choice of
(K,D), we are free to choose K and D to minimize the
corresponding sample complexity bound.
Theorem 4. Let ε, δ > 0. Suppose the policy class Π sat-
isfies Definition 1 with spanning capacity C(Π), and is a
(K,D)-sunflower. Then, for any MDP M , with probability
at least 1 − δ, POPLER (Algorithm 1) succeeds in return-
ing a policy π̂ that satisfies V

π̂
≥ maxπ∈Π V

π − ε, after
collecting

Õ(( 1
ε2
+ HD

6
C(Π)

ε4
) ⋅K2

log
∣Π∣
δ
) online trajectories in M .
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The proof of Theorem 4, and the hyperparameters needed
to obtain the above bound, can be found in Appendix F.
In order to get a polynomial sample complexity in The-
orem 4, both C(Π), and (K,D), are required to be
poly(H, log∣Π∣). All of the policy classes considered
in Section 3 are (K,D)-sunflowers, with both K,D =

poly(H), and thus our sample complexity bounds extends
for all these classes; moreover for many examples we have
K = poly(H) and D = 0, so we also obtain the optimal
Õ(1/ε2) dependence on ε. See Appendix B for details.

In Theorem 3, we already showed that just bounded C(Π)
alone is not sufficient for polynomial sample complexity.
Likewise, bounded (K,D) alone is also not sufficient for
polynomial sample complexity (see Appendix F for details),
and hence both assumptions are individually necessary.

Why the sunflower structure enables sample-efficient
learning. Intuitively, the sunflower condition captures the
intuition of simultaneous estimation of all policies π ∈ Π
via IS, and allows control of both the bias and the variance.
Let π is a Sπ-petal on Πcore. Any trajectory τ ↝ π that
avoids Sπ will be covered by the data collected using π

′
∼

Unif(Πcore). Thus, using IS with variance scaling with
K, one can create a biased estimator for V

π, where the
bias is only due to trajectories that pass through Sπ. If the
reachability d

π(s) ≪ ε for all s ∈ Sπ , the IS estimate will
have low bias (linear in ∣Sπ∣). So the only issue arises if
d
π(s) is large for some s ∈ Sπ—since there are at most

D of them, it is possible to explicitly control the bias that
arises from trajectories passing through them.

6.1. Algorithm and Proof Ideas

POPLER takes as input a policy class Π as well as sets
Πcore and {Sπ}π∈Π which can be computed beforehand by
enumeration. The algorithm uses three subroutines, whose
pseudocode are deferred to Appendix F: DataCollector,
DP Solver, and Evaluate. POPLER has two phases: a
state identification phase, where it finds “petal” states
s ∈ ∪π∈ΠSπ that are reachable with decent probability;
and an evaluation phase where it computes estimates V̂ π

for every π ∈ Π by constructing a Markov Reward Process
(MRP) and using dynamic programming. The structure of
the algorithm is reminiscent of reward-free exploration al-
gorithms in tabular RL (e.g., Jin et al., 2020), which first
identify states that are highly reachable and build a policy
cover for these states, and then uses planning to estimate
the values. However, our setting necessitates new technical
innovations. We cannot simply enumerate over all petal
states and check if they are highly-reachable by some policy
π ∈ Π. Instead, we discover the petal states in a sample-
efficient, sequential manner that interleaves IS estimates and
the construction of specific tabular Markov reward processes
(MRPs) to compute reachability (as well as value estimates).

Algorithm 1 Policy OPtimization by Learning ε-Reachable
States (POPLER)
Require: Policy class Π, Sets Πcore and {Sπ}π∈Π, Param-

eters K,D, n1, n2, ε, δ.
1: Define start state s⊤ (at h = 0) and end state s⊥ (at

h = H + 1).
2: Initialize I = {s⊤}, T ← {(s⊤,Null)}, and for every

π ∈ Π, define S+π ∶= Sπ ∪ {s⊤, s⊥}.
3: D⊤ ← DataCollector(s⊤,Null,Πcore, n1)

/* Identification of Reachable States */
4: while Terminate = False do
5: Set Terminate = True.
6: for π ∈ Π do
7: Compute reachable states Srch

π = S+π ∩ I, and
remaining states Srem

π = Sπ \ Srch
π .

8: Estimate transition probability P̂
π
= {P̂π

s→s′ ∣ s ∈
Srch
π , s

′
∈ S+π } using (2).

9: for s̄ ∈ Srem
π do

10: Estimate probability of reaching s̄ under π as
d̂
π(s̄) ← DP Solver(S+π , P̂π

, s̄).
11: if d̂π(s̄) ≥ ε/6D then
12: Update I ← I∪{s̄}, T ← T ∪{(s̄, π)}, and

set Terminate = False.
13: Collect dataset

Ds̄ ← DataCollector(s̄, π,Πcore, n2).
14: end if
15: end for
16: end for
17: end while

/* Policy Evaluation and Optimization */
18: for π ∈ Π do
19: V̂

π
← Evaluate(Πcore, I, {Ds}, π).

20: end for
21: Return π̂ ∈ argmaxπ V̂

π .

The key challenge is doing all of this “in parallel” for every
π ∈ Π through extensive sample reuse to avoid a blowup of
∣Π∣ or S in sample complexity.

State identification phase. In the state identification
phase, the algorithm proceeds in a loop. The algorithm
maintains a set T , which contains tuples of the form (s, πs),
where s ∈ ⋃π∈Π Sπ and πs denotes a policy that reaches
s with probability at least Ω(ε/D). Initially T only con-
tains a dummy start state s⊤ and a null policy. In every
loop, the algorithm first collects a fresh dataset using the
DataCollector: for every (s, πs) ∈ T , first run πs to reach
state s, and then afterwards restart exploration using the ran-
dom policy Unif(Πexp). Then, it tries to find a new “petal”
state s̄ for some π ∈ Π that is guaranteed to be Ω(ε/D)-
reachability under π. This is accomplished by constructing
an (imaginary) MRP on the state space Sπ whose transitions
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Ps,s′ are estimated by using IS from the collected datatset.
Specifically, for every π ∈ Π, POPLER estimates the tran-
sition probabilities between states in Sπ using the following
estimator:

P̂
π
s→s′ =

∣Πcore∣
∣Ds∣

∑
τ∈Ds

( 1{π ↝ τh∶h′}
∑π′∈Πcore

1{π′ ↝ τh∶h′}

× 1{ τh∶h′ goes from s to s
′

without going through any other Sπ
}). (2)

Evaluation phase. The state identification phase cannot
go on forever— each (s, πs) ∈ T contributes at least
Ω(ε/D) to cumulative reachability, but since cumulative
reachability is bounded by C(Π) (Lemma 1), we know that
∣T ∣ ≤ O(DC(Π)/ε). At this point, POPLER moves to the
evaluation phase. Using the collected data, it executes the
Evaluate subroutine for every π ∈ Π to estimate V̂

π (via
a similar tabular MRP construction and using DP Solver).
The quantity V̂

π is a biased estimate, but the bias is negligi-
ble since it is now only due to the states in Sπ that are not
Ω(ε/D)-reachable. Thus we can guarantee that V̂ π is an
accurate estimate for every π ∈ Π, and therefore POPLER
returns a near-optimal policy.

7. Conclusion
In this paper, we investigate when agnostic RL is statistically
tractable in large state and action spaces, and introduce
spanning capacity as a natural measure of complexity that
only depends on the policy class and is independent of the
MDP rewards and transitions. We show that the spanning
capacity is both necessary and sufficient for agnostic PAC
RL with a generative model. However, we also provided a
negative result that spanning capacity is not sufficient for
online RL, thus showing a surprising separation between
RL with a generative model and online interaction.

Our results pave the way for several future lines of inquiry.
In particular, the most interesting direction is to explore
complexity measures that can tightly characterize the mini-
max sample complexity for online RL (c.f. the fundamental
theorem of statistical learning). In our work, we showed
that bounded spanning capacity along with an additional
sunflower structure is sufficient for online RL (and provided
a new algorithm called POPLER that works under these
assumptions), but are they also necessary? Is there a single
tight complexity measure that captures both of them? Other
interesting directions for future research include: sharpen-
ing the rate in the upper bound, developing regret mini-
mization algorithms for agnostic RL, and understanding
issues of computational efficiency, e.g., via oracle efficient
algorithms.
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A. Detailed Comparison to Related Works
Reinforcement Learning (RL) has seen substantial progress over the past few years, with several different directions of work
being pursued for efficiently solving RL problems that occur in practice. The classical approach to solving an RL problem
is to model it as a tabular MDP. With this viewpoint, a long line of work (Sutton and Barto, 2018; Agarwal et al., 2019;
Kearns and Singh, 2002; Brafman and Tennenholtz, 2002; Auer et al., 2008; Azar et al., 2017; Gheshlaghi Azar et al., 2013;
Jin et al., 2018) has studied provably sample-efficient learning algorithms that can find the optimal policy for tabular RL.
Unfortunately, the sample complexity of such tabular algorithms scales with the size of the state / action space, and thus they
fail to be efficient in practical RL problems with large state / action spaces. On the other hand, the key focus of our work is
to develop algorithms for MDPs with large state / action spaces, and towards that end, we take an agnostic viewpoint of RL.
In particular, we assume that the learner is given a policy class Π (which the learner believes contains a good policy for the
underlying MDP), and the goal of the learner is to find a policy that perform as well as the best policy in the given class.

We now provide a detailed comparison of our setup and assumptions with the existing literature.

RL with Function Approximation. A popular paradigm for developing algorithms for MDPs with large state/action
spaces is to use function approximation to either model the MDP dynamics or optimal value functions. Over the last decade,
there has been a long line of work (Jiang et al., 2017; Dann et al., 2018; Sun et al., 2019; Du et al., 2019b; Wang et al.,
2020a; Du et al., 2021; Foster et al., 2021a; Jin et al., 2021a) in understanding structural conditions on the function class,
and the underlying MDP, that allow statistically efficient RL. However, all of these works rely on a crucial realizability
assumption, namely that the true model / value function belong to the chosen class. Unfortunately, such an assumption is too
strong to hold in practice. Furthermore, the prior works using function approximation make additional assumptions like
Bellman Completeness that are difficult to verify for the underlying task.

In our work, we study the problem of agnostic RL to sidestep these challenges. In particular, instead of modeling the
value/dynamics, the learner now models “good policies” for the underlying task, and the learning objective is to find a policy
that can perform as well as the best in the chosen policy class. We note that while a realizable value class / dynamics class
F can be converted into a realizable policy class ΠF by choosing the greedy policies for each value function/dynamics, the
converse is not true. Thus, our agnostic RL objective relies on strictly weaker modeling assumption.

RL with Rich Observations. Various RL problem settings have been studied where the dynamics comprise a simple
latent state space, but instead of observing the latent states directly, the learner gets rich observations corresponding to the
underlying states. These include Block MDP (Krishnamurthy et al., 2016; Du et al., 2019b; Misra et al., 2020; Mhammedi
et al., 2023), Low-Rank MDPs (Uehara et al., 2021; Huang et al., 2023), Exogenous Block MDPs (Efroni et al., 2021; Xie
et al., 2022), Exogenous MDPs (Efroni et al., 2022), etc. However, the prior works on RL with rich observations assume that
the learner is given a realizable decoder class (consisting of functions that map observations to latent states) that contains the
true decoder for the underlying MDP. Additionally, they require strong assumptions on the underlying latent state space
dynamics, e.g. it is tabular or low-rank, in order to make learning tractable. Thus, their guarantees are not agnostic. In fact,
given a realizable decoder class and additional structure on the latent state dynamics, one can construct a policy class that
contains the optimal policy for the MDP, but the converse is not true. Thus, our agnostic RL setting is strictly more general.

Relation to Exponential Lower Bounds for RL with Function Approximation Recently, many statistical lower bounds
have been developed in RL with function approximation. A line of work including (Wang et al., 2020b; Zanette, 2021; Weisz
et al., 2021; Foster et al., 2021b), showed that the sample complexity scales exponentially in the horizon H for learning
the optimal policy for RL problems where only the optimal value function Q

⋆ is linear w.r.t. the given features. Similarly,
Du et al. (2019a) showed that one may need exponentially in H even if the optimal policy is linear w.r.t. the true features.
These lower bounds can be extended to our agnostic RL setting, giving similar exponential in H lower bounds for agnostic
RL, thus supplementing the well-known lower bounds (Krishnamurthy et al., 2016) showing that Agnostic RL is tractable
without additional structural assumptions on the policy class. Note that the entire focus of this paper is to try to come up
with assumptions, like Definition 1 or 3, that circumvent these lower bounds and allow for sample efficient Agnostic RL.

Importance Sampling for RL. Various important sampling based estimators (Xie et al., 2019; Jiang and Li, 2016;
Gottesman et al., 2019; Yin and Wang, 2020; Thomas and Brunskill, 2016; Nachum et al., 2019) have been developed in RL
theory literature to provide reliable off-policy evaluation in offline RL. However, these methods also work under realizable
value function approximation and rely on additional assumptions on the off-policy / offline data, in particular, that the offline
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data covers the state / action space that is explored by the comparator policy. We note that this line of work does not directly
overlap with our current approach but provides a valuable tool for dealing with off-policy data.

Agnostic RL in Low-Rank MDPs. A recent work of Sekhari et al. (2021) explored agnostic PAC-RL in low-rank MDPs,
and showed that one can perform agnostic learning w.r.t. any policy class in MDPs that have a small rank. While their
guarantees are similar to ours, i.e., they compete with the best policy in the given class and they also do not assume access
to a realizable dynamics / value-function class, we remark that the key objective of the two works is complementary. In
particular, Sekhari et al. (2021) explore what assumptions on the underlying MDP dynamics suffice for agnostic learning
with any given policy class, whereas we ask what assumptions on the given policy class are sufficient for agnostic learning
for any underlying dynamics. Exploring the benefits of structure in both the policy class and the underlying MDP in Agnostic
RL is an interesting direction for future research.

Policy Gradient Methods. A significant body of work in RL, in both theory (Agarwal et al., 2021; Abbasi-Yadkori
et al., 2019; Bhandari and Russo, 2019; Liu et al., 2020; Agarwal et al., 2020; Zhan et al., 2021; Xiao, 2022) and practice
(Kakade, 2001; Kakade and Langford, 2002; Levine and Koltun, 2013; Schulman et al., 2015; 2017), studies policy-gradient
based methods that can directly search for the best policy in a given policy class. These approaches often leverage mirror
descent-style analysis, and can deliver guarantees that are similar to ours, i.e. the returned policy can compete with any
policy in the given class, which can be perceived as an agnostic guarantee. However, they are primarily centered around
smooth and parametric policy classes, e.g. tabular and linear policy classes, which limits their applicability for a broader
range of problem instances. Furthermore, they require strong additional assumptions to work, for instance that the learner is
given a good reset distribution that can cover the occupancy measure of the policy that we wish to compare to, and that the
policy class satisfies a certain ”policy completeness assumption”; both of which are difficult to verify in practice. In contrast,
our work makes no such assumptions but instead studies what kind of policy classes are learnable with a few samples.

CPI, PSDP, and Other Reductions to Supervised Learning. Various RL methods have been developed that return
a policy that performs as well as the best policy in the given policy class, by reducing the RL problem from supervised
learning. The key difference from policy gradient based methods (that we discussed earlier) is that these approaches do not
require a smoothly parameterized policy class, but instead rely on access to a supervised learning oracle w.r.t. the given
policy class. Popular approaches include Conservative Policy Iteration (CPI) (Kakade and Langford, 2002; Kakade, 2003;
Brukhim et al., 2022; Agarwal et al., 2023), PSDP (Bagnell et al., 2003), Behavior Cloning (Ross and Bagnell, 2010; Torabi
et al., 2018), etc. We note that these algorithms rely on additional assumptions, including “policy completeness assumption”
and a good sampling / reset distribution that covers the policies that we wish to compare to; in comparison, we do not make
any such assumptions in our work.

Efficient RL via reductions to online regression oracles w.r.t. the given policy class have also been studied, e.g. DAgger
(Ross et al., 2011), AggreVaTe (Ross and Bagnell, 2014), etc. However, these algorithms rely on a much stronger feedback.
In particular the learner, on the states which it visits, can query an expert policy (that we wish to complete with) for its
actions or the value function. On the other hand, in this paper, we restrict ourselves to the standard RL setting where the
learner only gets instantenous reward signal.

Reward-Free RL. From a technical viewpoint, our algorithm (Algorithm 1) share similaries to algorithms developed in
the reward-free RL literature (Jin et al., 2020). In reward-free RL, the goal of the learner is to output a dataset, or set of
policies, after interacting with the underlying MDP, that can be later used for planning (with no further interaction with the
MDP) for downstream reward functions. The key ideas in our Algorithm 1, in particular, that the learner first finds states I
that are O(ε)-reachable and corresponding policies that can reach them, and then outputs datasets {Ds}s∈I that can be later
used for evaluating any policy π ∈ Π, share similarities to algorithmic ideas used in reward-free RL. However, we note that
our algorithm strictly generalizes prior works in reward-free RL, and in particular can work with large state-action spaces
where the notion of reachability as well as the offline-RL objective, is defined w.r.t. the given policy class. In comparison,
prior reward-free RL works compete with the best policy for the underlying MDP, and make structure assumptions on the
dynamics, e.g. tabular structure (Jin et al., 2020; Ménard et al., 2021; Li et al., 2023) or linear dynamics (Wang et al., 2020c;
Zanette et al., 2020; Zhang et al., 2021b; Wagenmaker et al., 2022), to make the problem tractable.

Other Complexity Measures for RL. A recent work by Mou et al. (2020) proposed a new notion of eluder dimension for
the policy class, and provide upper bounds for policy-based RL when the class Π has bounded eluder dimension. However,
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they make various additional assumptions including that the policy class contains the optimal policy for the MDP, the learner
has access to a generative model, and that the optimal value function has a gap. On the other hand, we do not make any
such assumption and characterize learnability in terms of spanning capacity or size of the minimal sunflower in Π. Looking
forward, however, it is interesting to explore the relationship between the complexity measures that we introduced in this
paper, and other well known complexity measures including eluder dimension, star number, threshold dimension, etc (see,
e.g., Li et al., 2022).

B. Examples of Policy Classes
In this section, we will prove that examples in Section 3 have bounded spanning capacity, and also have the sunflower
property. To facilitate our discussion, we define the following notation: for any policy class Π we let

Ch(Π) ≔ max
M∈Mdet

C
reach
h (Π;M),

where C
reach
h (Π;M) is defined in Definition 1. That is, Ch(Π) is the per-layer spanning capacity of Π. Then as defined in

Definition 1, we have
C(Π) = max

h∈[H]
Ch(Π).

Tabular MDP: Since there are at most ∣Sh∣ states in layer h, it is obvious that Ch(Π) ≤ ∣Sh∣A, so therefore C(Π) ≤ SA.
Additionally, if we choose Πcore = {πa ∶ πa(s) ≡ a, a ∈ A} and Sπ = S for every π ∈ Π, then any partial trajectory
which satisfies the condition in Definition 3 is of the form (sh, ah), which is consistent with πah

∈ Πcore. Hence Π is a
(A,S)-sunflower.

Contextual Bandit: Since there is only one layer, any deterministic MDP has a single state with at most A actions
possible, so C(Π) ≤ A. Additionally, if we choose Πcore = {πa ∶ πa(s) ≡ a, a ∈ A}, and Sπ = ∅ for every π ∈ Π, then
any partial trajectory which satisfies the condition in Definition 3 is in the form (s, a), which is consistent with πa ∈ Πcore.
Hence Π is a (A, 0)-sunflower.

H-Layer Contextual Bandit: By induction, it is easy to see that any deterministic MDP has at most Ah−1 states in layer
h, each of which has at most A actions. Hence C(Π) ≤ A

H . Additionally, if we choose

Πcore = {πa1,⋯,aH
∶ πa1,⋯,aH

(sh) ≡ ah, a1,⋯, aH ∈ A}
and Sπ = ∅ for every π ∈ Π, then any partial trajectory which satisfies the condition in Definition 3 is in the form
(s1, a1,⋯, sH , aH), which is consistent with πa1,a2,⋯,aH

∈ Πcore. Hence Π is a (AH
, 0)-sunflower.

ℓ-tons: In the following, we will denote Πℓ ≔ Πℓ−ton. We will first prove that C(Πℓ) ≤ 2H
ℓ. To show this, we will prove

that Ch(Πℓ) ≤ 2h
ℓ by induction on H . When H = 1, the class is a subclass of the above contextual bandit class, hence

we have C1(Πℓ) ≤ 2. Next, suppose Ch−1(Πℓ) ≤ 2(h − 1)ℓ. We notice that any deterministic MDP must have the first
state s1, and for policies taking a = 1 at s1 can only take a = 1 on ℓ − 1 states in the following layers. Such policies arrive
at Ch−1(Πℓ−1) states in layer h. Policies taking a = 0 at s1 can only take a = 1 on ℓ states in the following layers. Such
policies arrive at Ch−1(Πℓ) states in layer h. Hence we get

Ch(Πℓ) ≤ Ch−1(Πℓ−1) + Ch−1(Πℓ) ≤ 2(h − 1)ℓ−1 + 2(h − 1)ℓ ≤ 2h
ℓ
.

This finishes the proof of the induction hypothesis. Based on the induction argument, we get

C(Πℓ) = max
h∈[H]

Ch(Πℓ) ≤ 2H
ℓ
.

Additionally, if we choose
Πcore = {π0} ∪ {πh ∶ 1 ≤ h ≤ H},

where π0(s) ≜ 0, and πh(s) ≜ 1{s ∈ Sh}. For every π ∈ Πℓ, we choose Sπ to be those states that π chooses 1 (the number
of such states is at most ℓ). Then any partial trajectory τ which satisfies π ↝ τ and also the condition in Definition 3 is
in the form τ = (sh, ah⋯, sh′ , ah′) where ∀h + 1 ≤ i ≤ h

′, si /∈ Sπ and we have ai = 0. Hence πh ↝ τ (if ah = 1) or
π0 ↝ τ (if ah = 0), and τ is consistent with some policy in Πcore. Therefore, Πℓ is a (H + 1, ℓ)-sunflower.
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1-active class: We will first prove that C(Π1−act) ≤ 2H . For any deterministic MDP, we use S̄h to denote the set of states
reachable by Π1−act at layer h. We will show that S̄h ≤ h by induction on h. For h = 1, this holds since any deterministic
MDP has only one state in the first layer. Suppose it holds at layer h. Then we have

∣S̄h+1∣ ≤ ∣{(s, π(s))∣s ∈ S̄h, π ∈ Π}∣.

Notice policies in Π1−act must take a = 0 on every s ∉ {1(1),⋯, 1(H)}. Hence ∣{(s, π(s)) ∣ s ∈ S̄h, π ∈ Π}∣ ≤

∣S̄h∣ + 1 ≤ h + 1. Thus, the induction argument is complete. As a consequence we have Ch(Π) ≤ 2h for all h, so

C(Π1−act) = max
h∈[H]

Ch(Π1−act) ≤ 2H.

Additionally, if we choose Sπ = {1(1),⋯, 1(H)} for all π ∈ Π,

Πcore = {π0} ∪ {πh ∶ 1 ≤ h ≤ H},

where π0(s) ≜ 0, and πh(s) ≜ 1{s ∈ Sh}. Then then any partial trajectory which satisfies π ↝ τ and also the condition in
Definition 3 is in the form τ = (sh, ah⋯, sh′ , ah′) where ∀h + 1 ≤ i ≤ h

′, si /∈ {1(1),⋯, 1(H)} hence ai = 0. Hence
πh ↝ τ (if ah = 1) or π0 ↝ τ (if ah = 0). Hence τ is consistent with some policy in Πcore. Therefore, Π1−act is a
(H + 1, H)-sunflower.

All-active class: For any deterministic MDP, there is a single state j(1) in the first layer. Any policy which takes a = 1
at state j(1) must belong to Πj−act. Hence such policies can reach at most Ch−1(Πj−act) states in layer h. For polices
which take action 0 at state h, all these policies will transit to a fix state in layer 2. Hence such policies can reach at most
Ch−1(Πact) states at layer h. Therefore, we get

Ch(Πact) ≤ Ch−1(Πact) +max
j

Ch−1(Πj−act) ≤ Ch−1(Πact) + 2(h − 1).

By telescoping, we get
Ch(Πact) ≤ h(h − 1),

which indicates that
C(Πact) = max

h∈[H]
Ch(Πact) ≤ H(H − 1).

Additionally, if we choose Sπ = {j(1),⋯, j(H)} for all π ∈ Πj ,

Πcore = {π0} ∪ {πh ∶ 1 ≤ h ≤ H},

where π0(s) ≜ 0, and πh(s) ≜ 1{s ∈ Sh}. Then then any partial trajectory which satisfies π ↝ τ and also the condition
in Definition 3 is in the form τ = (sh, ah⋯, sh′ , ah′) where ∀h + 1 ≤ i ≤ h

′, si /∈ Sπ hence ai = 0. Hence πh ↝ τ (if
ah = 1) or π0 ↝ τ (if ah = 0). Hence τ is consistent with some policy in Πcore. Therefore, Πact is a (H + 1, H)-sunflower.

C. Proofs for Section 3
C.1. Proof of Lemma 1

Fix any M ∈ Msto, as well as h ∈ [H]. We claim that

Γh ≔ ∑
sh∈Sh,ah∈Ah

sup
π∈Π

d
π
h(sh, ah;M) ≤ max

M ′
∈Mdet

C
reach
h (Π;M

′). (3)

Here, dπh(sh, ah;M) is the state-action visitation distribution over M .

We will set up some additional notation. Let us define a prefix as any tuple of pairs of the form

(s1, a1, s2, a2, . . . , sk, ak) or (s1, a1, s2, a2, . . . , sk, ak, sk+1).

We will denote prefix sequences as (s1∶k, a1∶k) or (s1∶k+1, a1∶k) respectively. For any prefix (s1∶k, a1∶k) (similarly prefixes
of the type (s1∶k+1, a1∶k)) we let dπh(sh, ah ∣ (s1∶k, a1∶k);M) denote the conditional probability of reaching (sh, ah) under
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policy π given one observed prefix (s1∶k, a1∶k) in MDP M , with d
π
h(sh, ah ∣ (s1∶k, a1∶k);M) = 0 if π /↝ (s1∶k, a1∶k) or

π /↝ (sh, ah).

In the following proof, we assume that the start state s1 is fixed, but this is without loss of generality, and the proof can
easily be adapted to hold for stochastic start states.

Our strategy will be to explicitly compute the quantity Γh in terms of the dynamics of M and show that we can upper bound
it by a “derandomized” MDP M

′ which maximizes reachability at layer h. Let us unroll one step of the dynamics:

Γh ≔ ∑
sh∈Sh,ah∈A

sup
π∈Π

d
π
h(sh, ah;M)

(i)
= ∑

sh∈Sh,ah∈A
sup
π∈Π

d
π
h(sh, ah ∣ s1;M),

(ii)
= ∑

sh∈Sh,ah∈A
sup
π∈Π

{ ∑
a1∈A

d
π
h(sh, ah ∣ s1, a1;M)}

(iii)
≤ ∑

a1∈A
∑

sh∈Sh,ah∈A
sup
π∈Π

d
π
h(sh, ah ∣ s1, a1;M).

The equality (i) follows from the fact that M always starts at s1. The equality (ii) follows from the fact that π is
deterministic, so there exists exactly one a

′
= π(s1) for which d

π
h(sh, ah ∣ s1, a′;M) = d

π
h(sh, ah ∣ s1;M), with all other

a
′′
≠ a

′ satisfying d
π
h(sh, ah∣s1, a′′;M) = 0. The inequality (iii) follows by taking the supremum inside.

Continuing in this way, we can show that

Γh ≤ ∑
a1∈A

∑
sh∈Sh,ah∈A

sup
π∈Π

{ ∑
s2∈S2

P (s2∣s1, a1) ∑
a2∈A

d
π
h(sh, ah ∣ (s1∶2, a1∶2);M)}

≤ ∑
a1∈A

∑
s2∈S2

P (s2∣s1, a1) ∑
a2∈A

∑
sh∈Sh,ah∈A

sup
π∈Π

d
π
h(sh, ah ∣ (s1∶2, a1∶2);M)

. . .

≤ ∑
a1∈A

∑
s2∈S2

P (s2∣s1, a1) ∑
a2∈A

⋅ ⋅ ⋅ ∑
sh−1∈Sh−1

P (sh−1∣sh−1, ah−2) ∑
ah−1∈A

∑
sh∈Sh,ah∈A

sup
π∈Π

d
π
h(sh, ah ∣ (s1∶h−1, a1∶h−1);M).

Now we examine the conditional visitation d
π
h(sh, ah ∣ (s1∶h−1, a1∶h−1);M). Observe that it can be rewritten as

d
π
h(sh, ah ∣ (s1∶h−1, a1∶h−1);M) = P (sh∣sh−1, ah−1) ⋅ 1{π ↝ (s1∶h, a1∶h)}.

Plugging this back into the previous display and taking the supremum inside the sum again,

Γh ≤ ∑
a1∈A

⋅ ⋅ ⋅ ∑
sh∈Sh

P(sh−1∣sh−1, ah−1) ∑
ah∈A

sup
π∈Π

1{π ↝ (s1∶h, a1∶h)}

= ∑
a1∈A

⋅ ⋅ ⋅ ∑
sh∈Sh

P (sh−1∣sh−1, ah−1) ∑
ah∈A

1{∃π ∈ Π ∶ π ↝ (s1∶h, a1∶h)}

Our last step is to apply “derandomization” to the above, simply by taking the sup over transition probabilities:

Γh ≤ ∑
a1∈A

sup
s2∈S2

∑
a2∈A

. . . sup
sh∈Sh

∑
ah∈A

1{∃π ∈ Π ∶ π ↝ (s1∶h, a1∶h)} = max
M ′

∈Mdet
C

reach
h (Π;M

′).

The right hand side of the inequality is exactly the definition of maxM ′
∈Mdet C

reach
h (Π;M

′), thus proving Eq. (3). In
particular, the above process defines the deterministic MDP which maximizes the reachability at level h. Taking the
maximum over h concludes the proof of Lemma 1.
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C.2. Coverability is Not Sufficient for Online RL

We now observe that coverability is not sufficient for agnostic PAC RL in the online setting. In fact, we prove a statement of
this form: Theorem 3 shows there exists a policy class with bounded spanning capacity that is hard to learn in the online
setting. The policy class in question must also have bounded coverability via Lemma 1.

However, we can immediately get a stronger lower bound if we only assume bounded coverability. Specifically, the lower
bound construction of (Sekhari et al., 2021) satisfies Ccov(Π;M) = O(1) for every M ∈ M, yet they show a lower bound
of 2Ω(H) on the sample complexity of any (Θ(1),Θ(1))-PAC learner (by setting the rank of the MDP to d = Θ(H) in their
Theorem 2).

D. Proofs for Section 4
D.1. Proof of Theorem 1

Algorithm 2 Trajectory Tree (Kearns et al., 1999)
Require: Policy class Π, generative access to M , number of samples n

1: Initialize dataset of trajectory trees M = ∅.
2: for t = 1, . . . , n do
3: Initialize trajectory tree M̂t = ∅

4: Sample initial state s
(t)
1 ∼ µ.

/* Sample transitions and rewards for a trajectory tree */
5: while True do
6: Find any unsampled (s, a) s.t. s is reachable by some π ∈ Π in M̂t.
7: if no such (s, a) exists then
8: break
9: end if

10: Sample s
′
∼ P (⋅∣s, a) and r ∼ R(s, a)

11: Add (s, a, r, s′) to M̂t.
12: end while
13: M ← M ∪ M̂t.
14: end for

/* Policy evaluation */
15: for π ∈ Π do
16: Set V̂ π

← 1
n
∑n

t=1 v̂
π
t , where v̂

π
t is the cumulative reward of π on M̂t.

17: end for
18: Return π̂ ← argmaxπ∈Π V̂

π .

We show that the Trajectory Tree algorithm of (Kearns et al., 1999) attains the guarantee in Theorem 1. Pseudocode can be
found in Algorithm 2. The key modification is line 2: we simply observe that only (s, a) pairs which are reachable by some
π ∈ Π in the current tree M̂t need to be sampled (in the original algorithm, they sample all 2H transitions).

Fix any π ∈ Π. For any tree t ∈ [n], we have collected enough transitions so that v̂πt is well-defined, by line 2 of the
algorithm. The cumulative reward v̂

π
t is an unbiased estimate of V π. One can consider an alternative process for the

construction of M̂t as first constructing the path that π takes and then filling out the rest of the tree. The only difference
between this process and the actual one is the order in which the transitions are sampled, so all of the transitions and rewards
are still sampled from the correct distributions. Also, it is easy to see that the v̂

π
t are independent for different t ∈ [n].

Therefore, using Hoeffding’s inequality for [0, 1]-bounded random variables we see that ∣V π − V̂
π∣ ≤

√
log(2/δ)

2n
. Applying

union bound we see that when the number of trajectory trees exceeds n ≳
log(∣Π∣/δ)

ε2
, with probability at least 1 − δ, for all

π ∈ Π, the estimates satisfy ∣V π − V̂
π∣ ≤ ε/2. Thus the Trajectory Tree algorithm returns an ε-optimal policy. Since each

trajectory tree uses at most H ⋅ C(Π) queries to the generative model, we have the claimed sample complexity bound.
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D.2. Proof of Theorem 2

Fix any worst-case deterministic MDP M
⋆ which witnesses C(Π) at layer h⋆. We can also assume that the algorithm knows

M
⋆ and h

⋆ (this only makes the lower bound stronger). Observe that we can embed a bandit instance with C(Π) many
arms by putting rewards only on the (s, a) pairs at level h⋆ which are reachable by some π ∈ Π. The proof concludes by
using existing PAC lower bounds which show that the sample complexity of PAC learning a K-armed multi-armed bandit is
at least Ω(K

ε2
⋅ log 1

δ
) (see, e.g., Mannor and Tsitsiklis, 2004).

D.3. Proof of Corollary 1

The upper bound is obtained by a simple modification of the argument in the proof of Theorem 1. In terms of data collection,
the trajectory tree collected every time is the same fixed deterministic MDP (with different rewards); furthermore, one can
always execute line 2 and line 2 for a deterministic MDP since the algorithm can execute a sequence of actions to get to any
new (s, a) pair required by line 2. Thus in every episode of online interaction we are guaranteed to add the new (s, a) pair
to the trajectory tree.

The lower bound trivially extends because the proof of Appendix D.2 uses an MDP with deterministic transitions (that are
even known to the algorithm beforehand).
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E. Proofs for Section 5
In this section, we prove Theorem 3, which shows a superpolynomial lower bound on the sample complexity required to
learn bounded spanning capacity classes. The theorem is restated below with explicit constants.

Theorem 5 (Lower bound for online RL). Fix any H ≥ 10
5. Let ε ∈ (1/H100

, 1/(100H)) and ℓ ∈ {2, . . . , ⌊logH⌋}.
There exists a policy class Π(ℓ) of size 1/(6εℓ) with C(Π(ℓ)) ≤ O(H4ℓ+2) and a family of MDPs M with state space S of
size H ⋅ 22H+1, binary action space, horizon H such that: for any (ε/16, 1/8)-PAC algorithm, there exists an M ∈ M in
which the algorithm has to collect at least

min{ 1

120εℓ
, 2

H/3−3} online trajectories in expectation.

E.1. Construction of State Space, Action Space, and Policy Class

State and action spaces. We define the state space S . In every layer h ∈ [H], there will be 2
2H+1 states. The states will

be paired up, and each state will be denoted by either j[h] or j ′[h], so Sh = {j[h] ∶ j ∈ [22H]}∪{j ′[h] ∶ j ∈ [22H]}. For
any state s ∈ S , we define the index of s, denoted idx(s) as the unique j ∈ [22H] such that s ∈ {j[h]}h∈[H]∪{j ′[h]}h∈[H].
In total there are H ⋅ 22H+1 states. The action space is A = {0, 1}.

Policy class. For the given ε and ℓ ∈ {2, . . . , ⌊logH⌋}, we show via a probabilistic argument the existence of a large
policy class Π(ℓ) which has bounded spanning capacity but is hard to explore. We state several properties in Lemma 2 which
will be exploited in the lower bound.

We introduce some additional notation. For any j ∈ [2H] we denote

Π
(ℓ)
j ≔ {π ∈ Π

(ℓ)
∶ ∃h ∈ [H], π(j[h]) = 1},

that is, Π(ℓ)
j are the policies which take an action a = 1 on at least one state with index j.

We also define the set of relevant state indices for a given policy π ∈ Π
(ℓ) as

J π
rel ≔ {j ∈ [2H] ∶ π ∈ Π

(ℓ)
j }.

For any policy π we denote π(j1∶H) ≔ (π(j[1]), . . . , π(j[H])) ∈ {0, 1}H to be the vector that represents the actions that
π takes on the states in index j. The vector π(j ′1∶H) is defined similarly.

Lemma 2. For the given ε and ℓ ∈ {2, . . . , ⌊logH⌋}, there exists a policy class Π(ℓ) of size 1/(6εℓ) which satisfies the
following properties.

(1) For every j ∈ [2H] we have ∣Π(ℓ)
j ∣ ∈ [εN/2, 2εN].

(2) For every π ∈ Π we have ∣J π
rel∣ ≥ ε/2 ⋅ 22H .

(3) For every π ∈ Π
(ℓ)
j , the vector π(j1∶H) is unique and always equal to π(j ′1∶H).

(4) Bounded spanning capacity: C(Π(ℓ)) ≤ c ⋅H4ℓ+2 for some universal constant c > 0.

E.2. Construction of MDP Family

The family M = {Mπ⋆,ϕ}π⋆∈Π(ℓ),ϕ∈Φ will be a family of MDPs which are indexed by a policy π
⋆ as well as a decoder

function ϕ ∶ S ↦ {GOOD, BAD}, which assigns each state to be “good” or “bad” in a sense that will be described later on.

Decoder function class. The decoder function class Φ will be all possible mappings which for every j ∈ [22H], h ≥ 2

assign exactly one of j[h], j ′[h] to the label GOOD and the other one to BAD. There are (2H−1)2
2H

such functions. The
label of a state will be used to describe the transition dynamics. Intuitively, a learner who does not know the decoder function
ϕ will not be able to tell if a certain state has the label GOOD or BAD upon visiting a state index j for the first time.
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Transition dynamics. The MDP Mπ⋆,ϕ will be a uniform distribution over 22H combination locks {CLj}j∈[22H] with
disjoint states. More formally, s1 ∼ Unif({j[1]}j∈[22H]). From each start state j[1], only the 2H − 2 states corresponding
to index j at layers h ≥ 2 will be reachable in combination lock CLj .

Now we will describe each combination lock CLj , which forms the basic building block of the MDP construction.

• Good/bad set. At every layer h ∈ [H], for each j[h] and j
′[h], the decoder function ϕ assigns one of them to be

GOOD and one of them to be BAD. We will henceforth denote jg[h] to be the good state and jb[h] to be the bad state.
Observe that by construction in Eq. (6), for every π ∈ Π

(ℓ) and h ∈ [H] we have π(jg[h]) = π(jb[h]).

• Dynamics of CLj , if j ∈ J π
⋆

rel . Here, the transition dynamics of the combination locks are deterministic. We let
T (s, a) denote the state that (s, a) transitions to, i.e., T (s, a) = s

′ if and only if P (s′∣s, a) = 1. We also use
T (s, π) ∶= T (s, π(s)) as shorthand. For every h ∈ [H],

– On good states jg[h] we transit to the next good state iff the action is π⋆:

T (jg[h], π⋆) = jg[h + 1], and T (jg[h], 1 − π
⋆) = jb[h + 1].

– On bad states jb[h] we always transit to the next bad state:

T (jb[h], a) = jb[h + 1], for all a ∈ A.

• Dynamics of CLj , if j ∉ J π
⋆

rel . If j is not a relevant index for π⋆, then the transitions are uniformly random regardless of
the current state/action. For every h ∈ [H],

T (jg[h], a) = T (jb[h], a) = Unif({jg[h + 1], jb[h + 1]}, for all a ∈ A.

• Reward structure. The reward function is nonzero only at layer H , and is defined as

R(s, a) = Ber(1
2
+

1

4
⋅ 1{π⋆ ∈ Π

(ℓ)
j } ⋅ 1{s = jg[H], a = π

⋆(jg[H])})

That is, we get 3/4 whenever we reach the H-th good state for an index j which is relevant for π⋆, and 1/2 reward
otherwise.

Reference MDP M0. We also define a reference MDP M0. In the reference MDP M0, all the combination locks behave
the same and have uniform transitions to the next state. The distribution over all 22H combination locks is again taken to be
the uniform distribution. The rewards for M0 will be Ber(1/2) for every (s, a) ∈ SH ×A.

E.3. Proof of Theorem 5

Now we are ready to prove the lower bound using the construction M.

Value calculation. Consider any Mπ⋆,ϕ ∈ M. For any policy π ∈ AS we use Vπ⋆,ϕ(π) to denote the value of running π
in MDP Mπ⋆,ϕ. By construction we can see that

Vπ⋆,ϕ(π) =
1

2
+

1

4
⋅ Prπ⋆,ϕ[idx(s1) ∈ J π

⋆

rel and π(idx(s1)1∶H) = π
⋆(idx(s1)1∶H)]. (4)

In words, the second term counts the additional reward that π gets for solving a combination lock rooted at a relevant state
index idx(s1) ∈ J π

⋆

rel . By Property (2) and (3) of Lemma 2, we additionally have Vπ⋆,ϕ(π⋆) ≥ 1/2 + ε/8, as well as
Vπ⋆,ϕ(π) = 1/2 for all other π ≠ π

⋆
∈ Π

(ℓ).

By Eq. (4), if π is an ε/16-optimal policy on Mπ⋆,ϕ it must satisfy

Prπ⋆,ϕ[idx(s1) ∈ J π
⋆

rel and π(idx(s1)1∶H) = π
⋆(idx(s1)1∶H)] ≥ ε

4
.
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Averaged measures. We define the following measures which will be used in the analysis. First, let us define Prπ⋆[⋅] =
1
∣Φ∣ ∑ϕ∈Φ Prπ⋆,ϕ[⋅] to be the averaged measure where we first pick ϕ uniformly among all decoders and then consider
the distribution induced by Mπ⋆,ϕ. Also, let the MDP M0,π⋆,ϕ have the same transitions as Mπ⋆,ϕ but with all rewards
at the last layer to be Ber(1/2), the same as the rewards for M0. Then we can define the averaged measure Pr0,π⋆[⋅] =
1
∣Φ∣ ∑ϕ∈Φ Pr0,π⋆,ϕ[⋅] where we pick ϕ uniformly and then consider the distribution induced by M0,π⋆,ϕ. For both averaged
measures the expectations Eπ⋆ and E0,π⋆ are defined analogously.

Algorithm and stopping time. Recall that an algorithm A is comprised of two phases. In the first phase, it collects some
number of trajectories by interacting with the MDP in episodes. We use η to denote the (random) number of episodes after
which A terminates. We also use At to denote the intermediate policy that the algorithm runs in round t for t ∈ [η]. In the
second phase, A outputs a policy π̂. We use the notation Af ∶ {τ (t)}t∈[η] ↦ AS to denote the second phase of A which
outputs the π̂ as a measurable function of collected data.

For any policy π
⋆, decoder ϕ, and dataset D we define the event

E(π⋆, ϕ,Af(D)) ∶= {Prπ⋆,ϕ[idx(s1) ∈ J π
⋆

rel and Af(D)(idx(s1)1∶H) = π
⋆(idx(s1)1∶H)] ≥ ε

4
}.

The randomness in E(π⋆, ϕ,Af(D)) is due to randomness in D, which is the data collection process of A. Note that the
event E is well defined for D that is collected on any MDP, not just Mπ⋆,ϕ.

Under this notation, the PAC learning guarantee on A implies that for every π
⋆
∈ Π

(ℓ), ϕ ∈ Φ we have

Prπ⋆,ϕ[E(π⋆, ϕ,Af(D))] ≥ 7/8.
Moreover via an averaging argument we also have

Prπ⋆[E(π⋆, ϕ,Af(D))] ≥ 7/8. (5)

Lower bound argument. We apply a truncation to the stopping time η. Define Tmax ∶= 2
H/3. Observe that if

Prπ⋆[η > Tmax] > 1/8 for some π
⋆
∈ Π

(ℓ) then the lower bound immediately follows, since

max
ϕ∈Φ

Eπ⋆,ϕ[η] > Eπ⋆[η] ≥ Prπ⋆[η > Tmax] ⋅ Tmax ≥ Tmax/8,

so there must exist an MDP Mπ⋆,ϕ for which A collects at least Tmax/8 = 2
H/3−3 samples in expectation.

Otherwise we have Prπ⋆[η > Tmax] ≤ 1/8 for all π⋆ ∈ Π
(ℓ). This further implies that for all π⋆ ∈ Π

(ℓ),

Prπ⋆[η < Tmax and E(π⋆, ϕ,Af(D))]
= Prπ⋆[E(π⋆, ϕ,Af(D))] − Prπ⋆[η > Tmax and E(π⋆, ϕ,Af(D))] ≥ 3/4.

In this second case, we will show that A requires a lot of samples on M0. This is formalized in the following lemma.
Lemma 3 (Stopping time lemma). Let δ ∈ (0, 1/8]. Let A be an (ε/16, δ)-PAC algorithm. Let Tmax ∈ N. Suppose that
Prπ⋆[η < Tmax and E(π⋆, ϕ,Af(D))] ≥ 1 − 2δ for all π⋆ ∈ Π

(ℓ). The expected stopping time for A on M0 is at least

E0[η] ≥ (∣Π
(ℓ)∣
2

−
4
ε) ⋅

1

7
log( 1

2δ
) − ∣Π(ℓ)∣ ⋅ Tmax

2

2H+3
(Tmax +

1

7
log( 1

2δ
)).

Using Lemma 3 with δ = 1/8 and plugging in the value of ∣Π(ℓ)∣ and Tmax, we see that

E0[η] ≥ (∣Π
(ℓ)∣
2

−
4
ε) ⋅

1

7
log( 1

2δ
) − ∣Π(ℓ)∣ ⋅ Tmax

2

2H+3
(Tmax +

1

7
log( 1

2δ
)) ≥

∣Π(ℓ)∣
20

.

For the second inequality, we used the fact that ℓ ≥ 2, H ≥ 10
5, and ε < 1/107. So therefore the lower bound on the sample

complexity is at least

min{ 1

120εℓ
, 2

H/3}.

This concludes the proof of Theorem 3.
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E.4. Proof of Lemma 2

To prove Lemma 2, we first use a probabilistic argument to construct a certain binary matrix B which satisfies several
properties, and then construct Π(ℓ) using B and verify it satisfies Properties (1)-(4).

Binary matrix construction. First we define a block-free property of binary matrices.

Definition 4. Fix parameters k, ℓ ∈ N. We say a binary matrix B ∈ {0, 1}N×d is (k, ℓ) block-free if the following holds:
for every I ⊂ [N] with ∣I∣ = k, and J ⊂ [d] with ∣J∣ = ℓ there exists some (i, j) ∈ I × J with Bij = 0.

In words, matrices which are (k, ℓ) block-free do not contain a k × ℓ “block” of all 1s.

Lemma 4. Fix any ε ∈ (0, 1/10) and ℓ ∈ N. For any

d ∈ [16ℓ ⋅ log(1/ε)ε ,
1

20
⋅ exp ( 1

48εℓ−1
)],

there exists a binary matrix B ∈ {0, 1}N×d with N = 1/(6 ⋅ εℓ) such that:

1. (Row sum): for every row i ∈ [N], we have ∑j Bij ≥ εd/2.

2. (Column sum): for every column j ∈ [d], we have ∑i Bij ∈ [εN/2, 2εN].
3. The matrix B is (ℓ log d, ℓ) block-free.

Proof of Lemma 4. The existence of B is proven by a probabilistic argument. Let B̃ ∈ {0, 1}N×d be a random matrix
where each entry is i.i.d. chosen to be 1 with probability ε.

By Chernoff bounds, for every row i ∈ [N], we have P[∑j Bij ≤
εd
2
] ≤ exp(−εd/8); likewise for every column j ∈ [d]

we have P[∑j Bij ∉ [ εN
2
, 2εN]] ≤ 2 exp(−εN/8). By union bound, the matrix B̃ satisfies the first two properties with

probability at least 0.8 as long as

d ≥ (8 log 10N)/ε, and N ≥ (8 log 20d)/ε.

One can check that under the choice of N = 1/(6 ⋅ εℓ) and the assumption on d, both constraints are met.

Now we examine the probability of B̃ satisfies the block-free property with parameters (k = ℓ log d, ℓ). Let X be the
random variable which denotes the number of submatrices which violate to the block-free property in B̃, i.e.,

X = ∣{I × J ∶ I ⊂ [N], ∣I∣ = k, J ⊂ [d], ∣J∣ = ℓ, B̃ij = 1 ∀ (i, j) ∈ I × J}∣.

By linearity of expectation we have

E[X] ≤ N
k
d
ℓ
ε
kℓ
.

We now plug in the choice k = ℓ log d and observe that as long as N ≤ 1/(2e ⋅ εℓ) we have E[X] ≤ 1/2. By Markov’s
inequality, P[X = 0] ≥ 1/2.

Therefore with positive probability, B̃ satisfies all 3 properties (otherwise we would have a contradiction via inclusion-
exlusion principle). We can conclude the existence of B which satisfies all 3 properties, proving the result of Lemma 4.

Policy class construction. For the given ε and ℓ ∈ {2, . . . , ⌊logH⌋} we will use Lemma 4 to construct a policy class Π(ℓ)

which has bounded spanning capacity but is hard to explore. We instantiate Lemma 4 with the given ℓ and d = 2
2H , and use

the resulting matrix B to construct Π(ℓ)
= {πi}i∈[N] with ∣Π(ℓ)∣ = N = 1/(6εℓ). One can check that whenever H ≥ 10

5

and ε ∈ [ 1
H100 ,

1
100H

], the requirement of Lemma 4 is met:

d = 2
2H

∈ [16ℓ ⋅ log(1/ε)ε ,
1

20
⋅ exp( 1

48εℓ−1
)].
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Moreover we see that 2εN < 2
H (i.e., the column sum in B does not exceed 2

H ).

We define the policies as follows: for every πi ∈ Π
(ℓ) we set

for every j ∈ [2H] ∶ πi(j[h]) = πi(j ′[h]) = {bith(∑a≤i Baj) if Bij = 1,

0 if Bij = 0.
(6)

The function bith ∶ [2H − 1] ↦ {0, 1} selects the h-th bit in the binary representation of the input.

Verifying Properties (1) - (4). Properties (1) - (3) are straightforward from the construction of B and Π
(ℓ), since πi ∈ Π

(ℓ)
j

if and only if Bij = 1. We require that 2εN < 2
H in order for Property (3) to hold, since otherwise we cannot assign the

behaviors of the policies according to Eq. (6).

We now prove Property (4): that Π(ℓ) has bounded spanning capacity. To prove this we will use the block-free property of
the underlying binary matrix B.

Fix any deterministic MDP M
⋆ which witnesses C(Π(ℓ)) at layer h⋆. To bound C(Π(ℓ)), we need to count the contribution

to C
reach
h⋆ (Π;M⋆) from trajectories τ which are produced by some π ∈ Π

(ℓ) on M . We first define a layer decomposition
for a trajectory τ = (s1, a1, s2, a2, . . . , sH , aH) as the unique tuple of indices (h1, h2, . . . hm), where each hk ∈ [H]. The
layer decomposition satisfies the following properties:

• The layers satisfy h1 < h2 < ⋅ ⋅ ⋅ < hm.

• The layer h1 represents the first layer where ah1
= 1.

• The layer h2 represents the first layer where ah2
= 1 on some state sh2

such that

idx(sh2
) ∉ {idx(sh1

)}.

• The layer h3 represents the first layer where ah3
= 1 on some state sh3

such that

idx(sh3
) ∉ {idx(sh1

), idx(sh2
)}.

• More generally the layer hk, k ∈ [m] represents the first layer where ahk
= 1 on some state shk

such that

idx(shk
) ∉ {idx(sh1

), . . . , idx(shk−1
)}.

In other words, the layer hk represents the k-th layer for where action is a = 1 on a new state index which τ has never
played a = 1 on before.

We will count the contribution to C
reach
h⋆ (Π;M

⋆) by doing casework on the length of the layer decomposition for any τ .
That is, for every length m ∈ {0, . . . ,H}, we will bound Ch⋆(m), which is defined to be the total number of (s, a) at layer
h
⋆ which, for some π ∈ Π

(ℓ), a trajectory τ ↝ π that has a m-length layer decomposition visits. Then we apply the bound

C
reach
h⋆ (Π;M

⋆) ≤
H

∑
m=0

Ch⋆(m). (7)

Note that this will overcount, since the same (s, a) pair can belong to multiple different trajectories with different length
layer decompositions.

We have the following lemma.

Lemma 5. The following bounds hold.

• For any m ≤ ℓ, Ch⋆(m) ≤ H
m ⋅∏m

k=1(2kH) = O(H4m).

• We have ∑m≥ℓ+1 Ch⋆(m) ≤ O(ℓ ⋅H4ℓ+1).
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Therefore, applying Lemma 5 to Eq. (7), we have the bound that

C(Π(ℓ)) ≤ (∑
m≤ℓ

O(H4m)) +O(ℓ ⋅H4ℓ+1) ≤ O(H4ℓ+2).

This concludes the proof of Lemma 2.

Proof of Lemma 5. All of our upper bounds will be monotone in the value of h⋆, so we will prove the bounds for CH(m).

First we start with the case where m = 0. The trajectory τ must play a = 0 at all times; since there is only one such τ , we
have CH(0) = 1.

Now we will bound CH(m), for any m ∈ {1, . . . , ℓ}. Observe that there are (H
m
) ≤ H

m ways to pick the tuple
(h1, . . . , hm). Now we will fix (h1, . . . , hm) and count the contributions to CH(m) for trajectories τ which have this fixed
layer decomposition, and then sum up over all possible choices of (h1, . . . , hm).

In the MDP M , there is a unique state sh1
which τ must visit. In the layers between h1 and h2, all trajectories are only

allowed take 1 on states with index idx(sh1
), but they are not required to. Thus we can compute that the contribution to

Ch2
(m) from trajectories with the fixed layer decomposition to be at most 2H . The reasoning is as follows. At h1, there is

exactly one (s, a) pair which is reachable by trajectories with this fixed layer decomposition, since any τ must take a = 1 at
sh1

. Subsequently we can add at most two reachable pairs in every layer h ∈ {h1+1, . . . , h2−1} due to encountering a state
j[h] or j ′[h] where j = idx(sh1

), and at layer h2 we must play a = 1, for a total of 1+2(h2−h1−1) ≤ 2H . Using similar
reasoning the contribution to Ch3

(m) from trajectories with this fixed layer decomposition is at most (2H) ⋅ (4H), and so
on. Continuing in this way, we have the final bound of ∏m

k=1(2kH). Since this holds for a fixed choice of (h1, . . . , hm) in
total we have CH(m) ≤ H

m ⋅∏m
k=1(2kH) = O(H4m).

When m ≥ ℓ + 1, observe that the block-free property on B implies that for any J ⊆ [2H] with ∣J∣ = ℓ we have
∣∩j∈JΠj∣ ≤ ℓ log 2

2H . So for any trajectory τ with layer decomposition such that m ≥ ℓ we can redo the previous analysis
and argue that there is at most ℓ log 22H multiplicative factor contribution to the value CH(m) due to all trajectories which
have layer decompositions longer than ℓ. Thus we arrive at the bound ∑m≥ℓ+1 CH(m) ≤ O(H4ℓ) ⋅ ℓ log 22H ≤ O(H4ℓ+1).

This concludes the proof of Lemma 5.

E.5. Proof of Lemma 3

The proof of this stopping time lemma follows standard machinery for PAC lower bounds (Garivier et al., 2019; Domingues
et al., 2021; Sekhari et al., 2021). In the following we use KL(P∥Q) to denote the Kullback-Leibler divergence between
two distributions P and Q and kl(p∥q) to denote the Kullback-Leibler divergence between two Bernoulli distributions with
parameters p, q ∈ [0, 1].

For any π
⋆
∈ Π

(ℓ) we denote the random variable

N
π
⋆

=

η∧Tmax

∑
t=1

1{At(idx(s1)1∶H) = π
⋆(idx(s1)1∶H) and idx(s1) ∈ J π

⋆

rel },

the number of episodes for which the algorithm’s policy at round t ∈ [η ∧ Tmax] matches that of π⋆ on a certain relevant
state of π⋆.

In the sequel we will prove upper and lower bounds on the intermediate quantity ∑π⋆∈Π E0[Nπ
⋆

] and relate these quantities
to E0[η].

Step 1: upper bound. First we prove an upper bound. We can compute that

∑
π⋆∈Π

E0[Nπ
⋆

]

=

Tmax

∑
t=1

∑
π⋆∈Π

E0[1{η > t − 1}1{At(idx(s1)1∶H) = π
⋆(idx(s1)1∶H) and idx(s1) ∈ J π

⋆

rel }]
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=

Tmax

∑
t=1

E0[1{η > t − 1} ∑
π⋆∈Π

1{At(idx(s1)1∶H) = π
⋆(idx(s1)1∶H) and idx(s1) ∈ J π

⋆

rel }]

(i)
≤

Tmax

∑
t=1

E0[1{η > t − 1}] ≤ E0[η ∧ Tmax] ≤ E0[η]. (8)

Here, the first inequality follows because for every index j and every π
⋆
∈ Π

(ℓ)
j , each π

⋆ admits a unique sequence of
actions (by Property (3) of Lemma 2), so any policy At can completely match with at most one of the π

⋆.

Step 2: lower bound. Now we turn to the lower bound. We use a change of measure argument.

E0[Nπ
⋆

]
(i)
≥ E0,π⋆[Nπ

⋆

] − Tmax∆(Tmax)

=
1

∣Φ∣ ∑
ϕ∈Φ

E0,π⋆,ϕ[Nπ
⋆

] − Tmax∆(Tmax)

(ii)
≥

1

7
⋅

1

∣Φ∣ ∑
ϕ∈Φ

KL(PrFη∧Tmax

0,π⋆,ϕ ∥Pr
Fη∧Tmax

π⋆,ϕ ) − Tmax∆(Tmax)

(iii)
≥

1

7
⋅KL(PrFη∧Tmax

0,π⋆ ∥Pr
Fη∧Tmax

π⋆ ) − Tmax∆(Tmax)

The inequality (i) follows from a change of measure argument using Lemma 6, with ∆(Tmax) ≔ Tmax
2/2H+3. Here,

Fη∧Tmax
denotes the natural filtration generated by the first η ∧ Tmax episodes. The inequality (ii) follows from Lemma 7,

using the fact that M0,π⋆,ϕ and Mπ⋆,ϕ have identical transitions and only differ in rewards at layer H for the trajectories

which reach the end of a relevant combination lock. The number of times this occurs is exactly N
π
⋆

. The factor 1/7 is a
lower bound on kl(1/2∥3/4). The inequality (iii) follows by the convexity of KL divergence.

Now we apply Lemma 8 to lower bound the expectation for any Fη∧Tmax
-measurable random variable Z ∈ [0, 1] as

E0[Nπ
⋆

] ≥ 1

7
⋅ kl(E0,π⋆[Z]∥Eπ⋆[Z]) − Tmax∆(Tmax)

≥
1

7
⋅ (1 − E0,π⋆[Z]) log( 1

1 − Eπ⋆[Z]) −
log(2)

7
− Tmax∆(Tmax),

where the second inequality follows from the bound kl(p∥q) ≥ (1 − p) log(1/(1 − q)) − log(2) (see, e.g., Domingues
et al., 2021, Lemma 15).

Now we pick Z = Zπ⋆ ≔ 1{η < Tmax and E(π⋆, ϕ,Af(D))} and note that Eπ⋆[Zπ⋆] ≥ 1 − 2δ by assumption. This
implies that

E0[Nπ
⋆

] ≥ (1 − E0,π⋆[Zπ⋆]) ⋅
1

7
log( 1

2δ
) − log(2)

7
− Tmax∆(Tmax).

Another application of Lemma 6 gives

E0[Nπ
⋆

] ≥ (1 − E0[Zπ⋆]) ⋅
1

7
log( 1

2δ
) − log(2)

7
−∆(Tmax)(Tmax +

1

7
log( 1

2δ
)).

Summing the above over π⋆ ∈ Π
(ℓ), we get

∑
π⋆

E0[Nπ
⋆

] ≥ (∣Π(ℓ)∣ −∑
π⋆

E0[Zπ⋆]) ⋅
1

7
log( 1

2δ
) − ∣Π(ℓ)∣ ⋅ log(2)

7
− ∣Π(ℓ)∣ ⋅∆(Tmax)(Tmax +

1

7
log( 1

2δ
)). (9)

It remains to prove an upper bound on ∑π⋆ E0[Zπ⋆]. We calculate that

∑
π⋆

E0[Zπ⋆] = ∑
π⋆

E0[1{η < Tmax and E(π⋆, ϕ,Af(D))}]
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≤ ∑
π⋆

E0[1{Prπ⋆[idx(s1) ∈ J π
⋆

rel and Af(D)(idx(s1)1∶H) = π
⋆(idx(s1)1∶H)] ≥ ε

4
}]

≤
4
ε ⋅ E0[∑

π⋆

Prπ⋆[idx(s1) ∈ J π
⋆

rel and Af(D)(idx(s1)1∶H) = π
⋆(idx(s1)1∶H)]] (10)

The last inequality is an application of Markov’s inequality.

Now we carefully investigate the sum. For any ϕ ∈ Φ, the sum can be rewritten as

∑
π⋆

Prπ⋆,ϕ[idx(s1) ∈ J π
⋆

rel and Af(D)(idx(s1)1∶H) = π
⋆(idx(s1)1∶H)]

= ∑
π⋆

∑
s1∈S1

Prπ⋆,ϕ[s1]Prπ⋆,ϕ[idx(s1) ∈ J π
⋆

rel and Af(D)(idx(s1)1∶H) = π
⋆(idx(s1)1∶H) ∣ s1]

(i)
=

1

∣S1∣
∑

s1∈S1

∑
π⋆

Prπ⋆,ϕ[idx(s1) ∈ J π
⋆

rel and Af(D)(idx(s1)1∶H) = π
⋆(idx(s1)1∶H) ∣ s1]

(ii)
=

1

∣S1∣
∑

s1∈S1

∑
π⋆

1{idx(s1) ∈ J π
⋆

rel and Af(D)(idx(s1)1∶H) = π
⋆(idx(s1)1∶H)}. (11)

The equality (i) follows because regardless of which MDP Mπ⋆ we are in, the first state is distributed uniformly over S1.
The equality (ii) follows because once we condition on the first state s1, the probability is either 0 or 1.

Fix any start state s1. We can write

∑
π⋆

1{idx(s1) ∈ J π
⋆

rel and Af(D)(idx(s1)1∶H)π⋆(idx(s1)1∶H)}

= ∑
π⋆∈Π

(ℓ)
idx(s1)

1{Af(D)(idx(s1)1∶H) = π
⋆(idx(s1)1∶H)} = 1,

where the second equality uses the fact that on any index j, each π
⋆
∈ Π

(ℓ)
j behaves differently (Property (3) of Lemma 2),

so Af(D) can match at most one of these behaviors. Plugging this back into Eq. (11), averaging over ϕ ∈ Φ, and combining
with Eq. (10), we arrive at the bound

∑
π⋆

E0[Zπ⋆] ≤
4
ε .

We now use this in conjunction with Eq. (9) to arrive at the final lower bound

∑
π⋆

E0[Nπ
⋆

] ≥ (∣Π(ℓ)∣ − 4
ε) ⋅

1

7
log( 1

2δ
) − ∣Π(ℓ)∣ ⋅ log(2)

7
− ∣Π(ℓ)∣ ⋅∆(Tmax)(Tmax +

1

7
log( 1

2δ
)). (12)

Step 3: putting it all together. Combining Eqs. (8) and (12), plugging in our choice of ∆(Tmax), and simplifying we get

E0[η] ≥ (∣Π(ℓ)∣ − 4
ε) ⋅

1

7
log( 1

2δ
) − ∣Π(ℓ)∣ ⋅ log(2)

7
− ∣Π(ℓ)∣ ⋅∆(Tmax)(Tmax +

1

7
log( 1

2δ
)).

≥ (∣Π
(ℓ)∣
2

−
4
ε) ⋅

1

7
log( 1

2δ
) − ∣Π(ℓ)∣ ⋅ Tmax

2

2H+3
(Tmax +

1

7
log( 1

2δ
)).

The last inequality follows since δ ≤ 1/8 implies log(1/(2δ)) ≥ 2 log(2).

This concludes the proof of Lemma 3.

E.6. Change of Measure Lemma

Lemma 6. Let Z ∈ [0, 1] be a FTmax
-measurable random variable. Then, for every π

⋆
∈ Π

(ℓ),

∣E0[Z] − E0,π⋆[Z]∣ ≤ ∆(Tmax) ∶=
Tmax

2

2H+3
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Proof. First we note that

∣E0[Z] − E0,π⋆[Z]∣ ≤ TV(PrFTmax

0 ,Pr
FTmax

0,π⋆ ) ≤

Tmax

∑
t=1

E0[TV(Pr0[⋅∣Ft−1],Pr0,π⋆[⋅∣Ft−1])].

Here Pr0[⋅∣Ft] denotes the conditional distribution of the t-th trajectory given the first t − 1 trajectories. Similarly
Pr0,π⋆[⋅∣Ft] is the averaged over decoders condition distribution of the t-th trajectory given the first t − 1 trajectories. The
second inequality follows by chain rule of TV distance (see, e.g., Polyanskiy and Wu, 2022, pg. 152).

Now we examine each term TV(Pr0[⋅∣Ft−1],Pr0,π⋆[⋅∣Ft−1]).

Fix a history Ft−1 and sequence s1∶H where all si have the same index. We want to bound the quantity

»»»»»»Pr0,π
⋆[S(t)

1∶H = s1∶H ∣ Ft−1] − Pr0[S
(t)
1∶H = s1∶H ∣ Ft−1]

»»»»»»,

where it is understood that the random variable S
(t)
1∶H is drawn according to the MDP dynamics and algorithm’s policy At

(which is in turn a measurable function of Ft−1).

We observe that the second term can exactly calculated to be

Pr0[S
(t)
1∶H = s1∶H ∣ Ft−1] =

1

∣S1∣
⋅

1

2H−1
,

since the state s1 appears with probability 1/∣S1∣ and the transitions in M0 are uniform to the next state in the combination
lock, so each sequence is equally as likely.

For the first term, again the state s1 appears with probability 1/∣S1∣. Suppose that idx(s1) ∉ J π
⋆

rel . Then the dynamics of
Pr0,π⋆,ϕ for all ϕ ∈ Φ are exactly the same as M0, so again the probability in this case is 1/(∣S1∣2H−1). Now consider

when idx(s1) ∈ J π
⋆

rel . At some point ĥ ∈ [H + 1], the policy At will deviate from π
⋆ for the first time (if At never deviates

from π
⋆ we set ĥ = H + 1). The layer ĥ is only a function of s1 and At and doesn’t depend on the MDP dynamics. The

correct decoder must assign ϕ(s1∶ĥ−1) = GOOD and ϕ(sĥ∶H) = BAD, so therefore we have

Pr0,π⋆[S
(t)
1∶H = s1∶H ∣ Ft−1]

= Pr0,π⋆[ϕ(s1∶ĥ−1) = GOOD and ϕ(sĥ∶H) = BAD ∣ Ft−1]

If s1 ∉ Ft−1, i.e., we are seeing s1 for the first time, then the conditional distribution over the labels given by ϕ is the same
as the unconditioned distribution:

Pr0,π⋆[ϕ(s1∶ĥ−1) = GOOD and ϕ(sĥ∶H) = BAD ∣ Ft−1] =
1

∣S1∣
⋅

1

2H−1
.

Otherwise, if s1 ∈ Ft−1 then we bound the conditional probability by 1.

Pr0,π⋆[S
(t)
1∶H = s1∶H ∣ Ft−1] ≤

1

∣S1∣
.

Putting this all together we can compute

Pr0,π⋆[S
(t)
1∶H = s1∶H ∣ Ft−1]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

=
1

∣S1∣
⋅ 1
2H−1 if idx(s1) ∉ J π

⋆

rel ,

=
1

∣S1∣
⋅ 1
2H−1 if idx(s1) ∈ J π

⋆

rel and s1 ∉ Ft−1,

≤
1

∣S1∣
if idx(s1) ∈ J π

⋆

rel and s1 ∈ Ft−1,

= 0 otherwise.

Therefore we have the bound
»»»»»»Pr0,π

⋆[S(t)
1∶H = s1∶H ∣ Ft−1] − Pr0[S

(t)
1∶H = s1∶H ∣ Ft−1]

»»»»»»,
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≤
1

∣S1∣
1{idx(s1) ∈ J π

⋆

rel , s1 ∈ Ft−1}.

Summing over all possible sequences s1∶H we have

TV(Pr0[⋅∣Ft−1],Pr0,π⋆[⋅∣Ft−1]) ≤
1

2
⋅
(t − 1) ⋅ 2H−1

∣S1∣
,

since the only sequences s1∶H for which the difference in the two measures are nonzero are the ones for which s1 ∈ Ft−1,
of which there are (t − 1) ⋅ 2H−1 of them.

Lastly, taking expectations and summing over t = 1 to Tmax and plugging in the value of ∣S1∣ = 2
2H we have the final

bound.

The next lemma is a straightforward modification of (Domingues et al., 2021, Lemma 5), with varying rewards instead of
varying transitions.

Lemma 7. Let M and M
′ be two MDPs that are identical in transition and differ in the reward distributions, denote

rh(s, a) and r
′
h(s, a). Assume that for all (s, a) we have rh(s, a) ≪ r

′
h(s, a). Then for any stopping time η with respect

to (F t)t≥1 that satisfies PrM[η <∞] = 1,

KL(PrIηM ∥Pr
Iη

M ′) = ∑
s∈S

∑
a∈A

∑
h∈[H]

EM[Nη
s,a,h] ⋅KL(rh(s, a)∥r′h(s, a)),

where N
η
s,a,h ∶= ∑η

t=1 1{(S
(t)
h , A

(t)
h ) = (s, a)} and Iη ∶ Ω ↦ ⋃t≥1 It ∶ ω ↦ Iη(ω)(ω) is the random vector representing

the history up to episode η.

Lemma 8 (Lemma 1, (Garivier et al., 2019)). Consider a measurable space (Ω,F) equipped with two distributions P1 and
P2. For any F-measurable function Z ∶ Ω ↦ [0, 1] we have

KL(P1∥P2) ≥ kl(E1[Z]∥E2[Z])
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F. Proofs for Section 6
F.1. Algorithmic Details and Preliminaries

In this subsection, we provide the details of the subroutines that do not appear in the main body, in Algorithm 3, Algorithm 4
and Algorithm 5. The reward function in line 5 in Algorithm 5 is computed using (17), which is specified below, after
introducing additional notation.

Algorithm 3 DataCollector

Require: State: s, Reacher policy: πs, Exploration policy: Πcore, Number of samples: n.
/* Uniform sampling for start state s⊤ */

1: if s = s⊤ then
2: for t = 1, . . . , n do
3: Sample π

′
∼ Uniform(Πcore), and run to collect τ = {s1, a1, . . . , sH , aH}.

4: Ds ← Ds ∪ {τ}.
5: end for
6: else
7: /* πs based sampling for all other states s ≠ s⊤ */
8: Identify the layer h such that s ∈ Sh.
9: for t = 1, . . . , n do

10: Run πs for the first h − 1 time steps, and collect trajectory {s1, a1, . . . , sh−1, ah−1, sh}.
11: if sh = s then
12: Sample π

′
∼ Uniform(Πcore), and run to collect remaining {sh, ah, . . . , sH , aH}.

13: Ds ← Ds ∪ {τ = {s1, a1, . . . , sH , aH}}.
14: end if
15: end for
16: end if
17: Return dataset Ds.

Algorithm 4 DP Solver

Require: State space S
tab, Transition P , State s̄ ∈ Stab.

1: Initialize V (s) = 1{s = s̄} for all s ∈ S
tab.

2: Repeat H + 1 times:
3: For all s ∈ S

tab, calculate V (s) ← ∑s′∈Stab Ps→s′ ⋅ V (s′). // Dynamic Programming
4: Return V (s⊤).

We recall the definition of Petals and Sunflowers in Definition 3. In the rest of this section, we assume that Π is a
(K,D)-sunflower with Πcore and Sπ for any π ∈ Π.

Definition 5 (Petals and Sunflowers). For a policy π, policy set Π̄, and states S̄ ⊆ S , π is said to be a S̄-petal on Π̄ if for all
h ≤ h

′
≤ H , and partial trajectories τ = (sh, ah,⋯, sh′ , ah′) that are consistent with π: either τ is also consistent with

some π
′
∈ Π̄, or there exists i ∈ (h, h′] s.t. si ∈ S̄.

A policy class Π is said to be a (K,D)-sunflower if there exists a set Πcore of Markovian policies with ∣Πcore∣ ≤ K such
that for every policy π ∈ Π there exists a set Sπ ⊆ S, of size at most D, so that π is Sπ-petal on Πcore.

Additional notation. Recall that we assumed that the state space is layered. Thus, given a state s, we can infer the layer h
such that s ∈ Sh. In the following, we define additional notation:

(a) Sets Tπ(s → s
′): For any policy π, and states s, s′ ∈ S , we define Tπ(s → s

′) as the set of all the trajectories that are
consistent with π, and that go from s to s

′ without passing through any state in Sπ in between.

More formally, let π ∈ Π, state s be at layer h, and s
′ be at layer h′. Then, Tπ(s → s

′) denotes the set of all the
trajectories τ = (s1, a1, . . . , sH , aH) that satisfy all of the following:

• τ is consistent with π, i.e. π ↝ τ .
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Algorithm 5 Evaluate

Require: Policy set Πcore, Reachable states I, Datasets {Ds}s∈I , Policy π to be evaluated.
1: Compute Srch

π ← S+π ∩ I and S
tab

= Srch
π ∪ {s⊥}.

2: for s, s
′ in S

tab do
3: /* Compute transitions and rewards on S

tab
*/

4: Let h, h′ be such that s ∈ Sh and s
′
∈ Sh′

5: if h < h
′ then

6: Calculate P̂
π
s→s′ , r̂

π
s→s′ according to (16) and (17);

7: else
8: Set P̂π

s→s′ ← 0, r̂πs→s′ ← 0.
9: end if

10: end for
11: Set V̂ (s) = 0 for all s ∈ S

tab.
12: Repeat for H + 1 times: // Evaluate π by dynamic programming

13: For all s ∈ S
tab, calculate V̂ (s) ← ∑Stab P̂

π
s→s′ ⋅ (r̂

π
s→s′ + V̂ (s′)) .

14: Return V̂ (s⊤).

• sh = s, where sh is the state at timestep h in τ .
• sh′ = s

′, where sh′ is the state at timestep h
′ in τ .

• For all h < h̃ < h
′, the state sh̃, at time step h̃ in τ , does not lie in the set Sπ .

Note that when h
′
≤ h, we define Tπ(s → s

′) = ∅. Additionally, we define Tπ(s⊤ → s
′) as the set of all trajectories

consistent with π that go to s
′ (from a start state) without going through any state in Sπ in between. Finally, we define

Tπ(s → s⊥) as the set of all the trajectories that are consistent with π and go from s at time step h to the end of the
episode without passing through any state in Sπ in between.

(b) Sets T(s → s
′
;¬S̄): For any set S̄ , and states s, s′ ∈ S , we define T(s → s

′
;¬S̄) as the set of all the trajectories that

go from s to s
′ without passing through any state in S̄ in between.

More formally, let state s be at layer h, and s
′ be at layer h′. Then, T(s → s

′
;¬S̄) denotes the set of all the trajectories

τ = (s1, a1, . . . , sH , aH) that satisfy all of the following:

• sh = s, where sh is the state at timestep h in τ .
• sh′ = s

′, where sh′ is the state at timestep h
′ in τ .

• For all h < h̃ < h
′, the state sh̃, at time step h̃ in τ , does not lie in the set S̄.

Note that when h
′
≤ h, we define T(s → s

′
;¬S̄) = ∅. Additionally, we define T(s⊤ → s;¬S̄) as the set of all

trajectories that go to s
′ (from a start state) without going through any state in S̄ in between. Finally, we define

T(s → s⊥;¬S̄) as the set of all the trajectories that go from s at time step h to the end of the episode without passing
through any state in S̄ in between.

(c) Using the above notation, for any s ∈ S and set S̄ ⊆ S, we define d̄
π(s; S̄) as the probability of reaching s (from a

start state) without passing through any state in S̄ in between, i.e.

d̄
π(s; S̄) = Pr

π,M(τ reaches s without passing through any state in S̄ before reaching s)
= Pr

π,M(τ ∈ T(⊤ → s;¬S̄))
(13)

We next define the empirical rewards that are calculated in line 5 in Algorithm 5.

Markov Reward Process (MRP). A Markov Reward Process M = MRP(S, P, r,H, s⊤, s⊥) is defined over the state
space S , with the transition kernel P , reward kernel r, start state s⊤, end state s⊥ and trajectory length H + 2. Without loss
of generality, we assume {s⊤, s⊥} ∈ S.
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A trajectory in M is of the form τ = (s⊤, s1, . . . , sH , s⊥), where sh ∈ S for all h ∈ [H]. From any state s ∈ S , the MRP
transitions5 to another state s

′
∈ S with probability Ps→s′ , and obtains the rewards rs→s′ . Thus,

Pr
M(τ) = Ps⊤→s1 ⋅

H−1

∏
h=1

Psh→sh+1 ⋅ PsH→s⊥ ,

and the rewards

R
M(τ) = rs⊤→s1 +

H

∑
h=1

rsh→sh+1 + rsH→s⊥ .

Furthermore, in MRP, we have Ps⊥→s⊥ = 1 and rs⊥→s⊥ = 0.

Policy-Specific Markov Reward Processes. For the rest of the proofs, we will be defining various policy-specific Markov
Reward Processes corresponding to different sets I . Given a set I such that s⊤ ∈ I but s⊥ ∉ I , recall that for any policy π,
we have S+π = Sπ ∪ {s⊤, s⊥}, Srch

π = S+π ∩ I and Srem
π = S+π \ Srch

π .

We define the Markov Reward Process Mπ
I = MRP(S+π , Pπ

, r
π
, H, s⊤, s⊥) where

• Transition Kernel Pπ: For any s ∈ Srch
π and s

′
∈ S+π , we have

P
π
s→s′ = Eτ∼π [1{τ ∈ Tπ(s → s

′)}∣sh = s] , (14)

where the expectation above is w.r.t. the trajectories drawn using π in the underlying MDP, and h denotes the time step
such that sh ∈ Sh (again, in the underying MDP). This transition P

π
s→s′ denotes the probability of taking policy π

from s and directly transiting to s
′ without touching any other states in Sπ. Furthermore, Pπ

s→s′ = 1{s′ = s⊥} for all
s ∈ Srem

π ∪ {s⊥}.

• Reward Kernel rπ: For any s ∈ Srch
π and s

′
∈ S+π , we have

r
π
s→s′ ≜ Eτ∼π [R(τh∶h′)1{τ ∈ Tπ(s → s

′)}∣sh = s] (15)

where the expectation above is w.r.t. the trajectories drawn using π in the underlying MDP, R(τh∶h′) denotes the
reward for the partial trajectory τh∶h′ in the underlying MDP, and h denotes the time step such that sh ∈ Sh (again, in
the underying MDP). The reward r

π
s→s′ denotes the expectation of rewards collected by taking policy π from s and

directly transiting to s
′ without touching any other states in Sπ . Furthermore, rπs→s′ = 0 for all s ∈ Srem

π ∪ {s⊥}.

Since the learner only has sampling access to the underlying MDP, it can not directly construct the MRP M
π
I . Instead, in

Algorithm 1, the learner constructs the following empirical MRP.

Empirical Versions of Policy Specific MRPs Given a set I such that s⊤ ∈ I but s⊥ ∉ I, recall that, for any policy π,
S+π = Sπ ∪ {s⊤, s⊥}, Srch

π = S+π ∩ I and Srem
π = S+π \ Srch

π .

In Algorithm 1, we define an empirical Markov Reward Process M̂π
I = MRP(S+π , P̂π

, r̂
π
, H, s⊤, s⊥) where

• Transition Kernel P̂π: For any s ∈ Srch
π and s

′
∈ S+π , we have

P̂
π
s→s′ =

∣Πcore∣
∣Ds∣

∑
τ∈Ds

1{π ↝ τh∶h′}
∑π′∈Πcore

1{πe ↝ τh∶h′}
1{τ ∈ Tπ(s → s

′)} (16)

where Πcore denotes the core of the sunflower corresponding to Π and Ds denotes a dataset of trajectories collected
via DataCollector(s, πs,Πcore, n2). Furthermore, P̂π

s→s′ = 1{s′ = s⊥} for all s ∈ Srem
π ∪ {s⊥}.

5Our definition of Markov Reward Processes (MRP) deviates from MDPs that we considered in the paper, in the sense that we do not
assume that the state space S is layered in an MRP. This variation is only adapted to simplify the proofs and the notation in the rest of the
paper.
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• Reward Kernel r̂π: For any s ∈ Srch
π and s

′
∈ S+π , we have

r̂
π
s→s′ =

∣Πcore∣
∣Ds∣

∑
τ∈Ds

1{π ↝ τh∶h′}
∑π′∈Πcore

1{πe ↝ τh∶h′}
1{τ ∈ Tπ(s → s

′)}R(τh∶h′), (17)

where Πcore denotes the core of the sunflower corresponding to Π, Ds denotes a dataset of trajectories collected via

DataCollector(s, πs,Πcore, n2), and R(τh∶h′) = ∑h
′−1

i=h ri. Furthermore, r̂πs→s′ = 0 for all s ∈ Srem
π .

Parameters Used in Algorithm 1. Here, we list all the parameters that are used in Algorithm 1, and its subroutines:

N1 =
C1(D + 1)4K2

log(∣Π∣(D + 1)/δ)
ε2

,

N2 =
C2D

3(D + 1)2K2
log(∣Π∣(D + 1)2/δ)
ε3

, (18)

F.2. Supporting Technical Results

We start by looking at the following variant of the classical simulation lemma (Kearns and Singh, 2002; Agarwal et al.,
2019; Foster et al., 2021a).

Lemma 9 (Simulation lemma (Foster et al., 2021a, Lemma F.3) ). Let M = (S, P, r,H, s⊤, s⊥) and M̂ =

(S, P̂ , r̂, H, s⊤, s⊥) be two Markov Reward Processes. Then we have

∣V − V̂ ∣ ≤ ∑
s∈S

dM(s) ⋅ (∑
s′∈S

∣Ps→s′ − P̂s→s′∣ + ∣rs→s′ − r̂s→s′∣) ,

where dM(s) is the probability of reaching s under M , and V and V̂ denotes the value of s⊤ under M and M̂ respectively.

Lemma 10. Let Algorithm 1 be run with the parameters given in (18), and consider any iteration of the while loop in line 1
with the instantaneous set I. Further, suppose that ∣Ds∣ ≥ εN2/24D for all s ∈ I. Then, with probability at least 1 − δ, the
following hold:

(a) For all π ∈ Π, s ∈ Srch
π and s

′
∈ Sπ ∪ {s⊥},

max{∣Pπ
s→s′ − P̂

π
s→s′∣, ∣r

π
s→s′ − r̂

π
s→s′∣} ≤

ε

12D(D + 1) .

(b) For all π ∈ Π and s
′
∈ Sπ ∪ {s⊥},

max{∣Pπ
s⊤→s′ − P̂

π
s⊤→s′∣, ∣r

π
s⊤→s′ − r̂

π
s⊤→s′∣} ≤

ε

12(D + 1)2 .

Proof. We first prove the bound for s ∈ Srch
π . Let s be at layer h. Fix any policy π ∈ Π, and consider any state

s
′
∈ Sπ ∪ {s⊥}, where s

′ is at layer h′. Note that since Π is a (K,D)-sunflower, with its core Πcore and petals {Sπ}π∈Π ,
we must have that any trajectory τ ∈ Tπ(s → s

′) is also consistent with at least one πe ∈ Πcore. Furthermore, for any such
πe, we have

Pr
πe(τh∶h′ ∣ sh = s) =

h
′−1

∏
i=h

Pr(si+1 ∣ si, πe(si), sh = s)

=

h
′−1

∏
i=h

Pr(si+1 ∣ si, π(si), sh = s) = Pr
π(τh∶h′ ∣ sh = s), (19)

where the second line holds because both π ↝ τh∶h′ and πe ↝ τh∶h′ . Next, recall from (14), that

P
π
s→s′ = Eπ[1{τ ∈ Tπ(s → s

′)} ∣ sh = s]. (20)
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Furthermore, from (16), recall that the empirical estimate P̂
π
s→s′ of Pπ

s→s′ is given by :

P̂
π
s→s′ =

1

∣Ds∣
∑

τ∈Ds

1{τ ∈ Tπ(s → s
′)}

1
∣Πcore∣

∑πe∈Πcore
1{πe ↝ τh∶h′}

, (21)

where the dataset Ds consists of i.i.d. samples, and is collected in lines 3-3 in Algorithm 3 (DataCollector), by first running
the policy πs for h timesteps and if the trajectory reaches s, then executing πe ∼ Unif(Πcore) for the remaining time steps
(otherwise this trajectory is rejected). Let the law of this process be q. We thus note that,

E[P̂π
s→s′] = Eτ∼q

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1{τ ∈ Tπ(s → s
′)}

1
∣Πcore∣

∑πe∈Πcore
1{πe ↝ τh∶h′}

∣ sh = s

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= ∑

τh∶h′∈Tπ(s→s′)
Prq(τh∶h′ ∣ sh = s) ⋅ 1

1
∣Πcore∣

∑πe∈Πcore
1{πe ↝ τh∶h′}

(i)
= ∑

τh∶h′∈Tπ(s→s′)

1

∣Πcore∣
∑

πe∈Πcore

Pr
πe(τh∶h′ ∣ sh = s) ⋅ 1

1
∣Πcore∣

∑πe∈Πcore
1{πe ↝ τh∶h′}

(ii)
= ∑

τh∶h′∈Tπ(s→s′)

1

∣Πcore∣
∑

πe∈Πcore

Pr
π(τh∶h′ ∣ sh = s) ⋅ 1{πe ↝ τh∶h′}

1
∣Πcore∣

∑πe∈Πcore
1{πe ↝ τh∶h′}

= ∑
τh∶h′∈Tπ(s→s′)

Pr
π(τh∶h′ ∣ sh = s)

(iii)
= Eπ[1{τ ∈ Tπ(s → s

′)} ∣ sh = s] = P
π
s→s′ ,

where (i) follows from the sampling strategy in Algorithm 3 after observing sh = s, and (ii) simply uses the relation (19).
Finally, in (iii), we use the relation in (20).

The above implies that P̂π
s→s′ is an unbiased estimate of Pπ

s→s′ for any π and s, s
′
∈ S+π . Thus, using Hoeffding’s inequality,

followed by a union bound, we get that with probability at least 1 − δ/4, for all π ∈ Π, s ∈ Srch
π , and s

′
∈ Sπ ∪ {s⊥},

∣P̂π
s→s′ − P

π
s→s′∣ ≤ ∣Πcore∣

√
2 log(4∣Π∣D(D + 1)/δ)

∣Ds∣
,

where the additional factor of ∣Πcore∣ in the above appears because for any τ ∈ Tπ(s → s
′), there must exist some

πe ∈ Πcore that is also consistent with τ (as we showed above), which implies that each of the terms in (21) satisfies the
bound:

»»»»»»»»»»»

1{τ ∈ Tπ(s → s
′)}

1
∣Πcore∣

∑πe∈Πcore
1{πe ↝ τh∶h′}

»»»»»»»»»»»
≤ ∣Πcore∣ ≤ K.

Since ∣Ds∣ ≥ εN2/24D, the above implies that

∣P̂π
s→s′ − P

π
s→s′∣ ≤ K

√
48D log(4∣Π∣D(D + 1)/δ)

εN2
.

Repeating the above for the empirical reward estimation in (16), we get that with probability at least 1 − δ/4, for all π ∈ Π,
and s ∈ Srch

π and s
′
∈ Sπ ∪ {s⊥}, we have that

∣r̂πs→s′ − r
π
s→s′∣ ≤ K

√
48D log(4∣Π∣D(D + 1)/δ)

εN2
.
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Similarly, we can also get for any π ∈ Π and s
′
∈ Sπ ∪ {s⊥}, with probability at least 1 − δ/2,

max{∣r̂πs⊤→s′ − r
π
s⊤→s′∣, ∣P̂

π
s⊤→s′ − P

π
s⊤→s′∣} ≤ K

√
2 log(4∣Π∣(D + 1)/δ)

∣Ds⊤∣

= K

√
2 log(4∣Π∣(D + 1)/δ)

N1
,

where the last line simply uses the fact that ∣Ds⊤∣ = N1. The final statement is due to a union bound on the above results.

Lemma 11. Fix a policy π, for any s ∈ Srem
π , if we use dM1(s) to denote the occupancy of state s in M1, and d̄

π(s;Srem
π )

is defined in (13), then we have
d
M1(s) = d̄

π(s;Srem
π ).

Proof. We use τ̄ to denote a trajectory in M1 and τ to denote a trajectory in the original MDP M , then we have

d
M1(s) = ∑

τ̄ s.t. s∈τ̄

P
M1(τ̄)

= ∑
sh1=s⊤,sh2 ,⋯,sht∈Srch

π

P
M1(τ̄ ≜ (s⊤, sh2

,⋯, sht
, s))

= ∑
sh1=s⊤,sh2 ,⋯,sht∈Srch

π

P
π,M(τ ∶ τ ∩ Sπ = {sh2

,⋯, sht
, s})

= ∑
sh1=s⊤,sh2 ,⋯,sht∈Srch

π

t

∏
i=1

P
π,M(τ ∶ τ ∈ T(shi

→ shi+1
;¬Sπ)∣τ[hi] = shi

) (sht+1
≜ s)

= P
π,M(τ ∶ τ[hi] = shi

,∀1 ≤ i ≤ t + 1, τ[h] /∈ Sπ,∀h ≠ h1,⋯, ht)
= P

π,M(τ ∶ s ∈ τ, sh /∈ Srem
π ,∀1 ≤ h ≤ ht+1) = P

π,M[τ ∶ τ ∈ T(s⊤ → s;¬S̄)]
= d̄

π(s;Srem
π ).

Lemma 12. With probability at least 1−2δ, any (s, π) that is added into T (in line 1 in Algorithm 1) satisfies dπ(s) ≥ ε/12D.

Proof. Note that, for any (s, π) ∈ T , when we collect Ds in Algorithm 3, the probability that a trajectory will be accepted,
i.e. the trajectory would satisfy the “if” condition in line 3, is exactly d

π(s). Thus, using Hoeffding inequality, we get that
with probability at least 1 − δ

D∣Π∣ ,

»»»»»»»»
∣Ds∣
N2

− d
π(s)

»»»»»»»»
≤

√
2 log(D∣Π∣/δ)

N2
.

Since ∣T ∣ ≤ D∣Π∣, taking the union bound over all (s, π) ∈ T , we get that the above holds for all π ∈ Π, s ∈ Sπ , and Ds

with probability at least 1 − δ. The above implies that for any s, for which d
π(s) ≥ ε/12D, we must have that

∣Ds∣ ≥ N2d
π(s) −

√
2N2 log(D∣Π∣/δ) ≥ εN2

12D
−

εN2

24D
=

εN2

24D
, (22)

where the second inequality follows by the bound on d
π(s), and our choice of parameter N2 in (18).

In the following, we prove by induction that every (s, π) that is added into T in the while loop from lines 1-1 satisfies
d
π(s) ≥ ε/12D. This is trivially true at initialization T = {(s⊤,Null)}, since every trajectory starts from s⊤ which implies

that dNull(s⊤) = 1.

We now proceed to the induction hypothesis. Suppose that in some iteration of the while loop, all tuples (s, π) that are
already in T satisfy d

π(s) ≥ ε/12D, and that (s̄, π̄) is a new tuple that will be added to T . We will show that (s̄, π̄) will also
satisfy d

π̄(s̄) ≥ ε/12D.
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Recall that S+π̄ = Sπ̄ ∪ {s⊤, s⊥}, Srch
π̄ = S+π̄ ∩ I, and Srem

π̄ = S+π̄ \ Srch
π̄ . Let M1 = MRP(S+π̄ , P π̄

, r
π̄
, H, s⊤, s⊥) be a

tabular Markov Reward Process, where P
π̄ and r

π̄ are defined in (14) and (15) respectively, for the policy π̄. Note that for
any state s ∈ Srch

π̄ , the bound in (22) holds, using (a) in Lemma 10, we get that

∣P π̄
s→s′ − P̂

π̄
s→s′∣ ≤

ε

12D(D + 1) , for all s
′
∈ Sπ̄ ∪ {s⊥}. (23)

Therefore, noticing that d̂π̄(s̄) ← DP Solver(S+π̄ , P̂ π̄
, s̄), and also P

π̄
s→s′ is the transition function of MRP M

π̄
tab, according

to to Lemma 9, we have

∣d̂π̄(s̄) − d
M1(s̄)∣ ≤ sup

s∈Srch
π̄

(D + 1) ⋅ sup
s′∈Sπ̄∪{s⊥}

∣P̂ π̄
s→s′ − P

π̄
s→s′∣

≤
ε

12D(D + 1) ⋅ (D + 1) = ε

12D

(24)

where the second inequality follows from (23). Additionally, Lemma 11 indicates that dM1(s̄) = d̄
π̄(s̄;Srem

π̄ ). Therefore
we obtain

∣d̄π̄(s̄;Srem
π̄ ) − d̂

π̄(s̄)∣ ≤ ε

12D
.

Hence if a new state-policy pair (s̄, π̄) is added into T , we will have

d̄
π̄(s̄;Srem

π ) ≥ ε

6D
−

ε

12D
=

ε

12D
.

Noticing that
d̄
π̄(s̄;Srem

π ) = P
π̄,M [τ ∶ τ ∈ T(s⊤ → s̄;¬S̄)] ≤ P

π̄,M[τ ∶ s̄ ∈ τ] = d
π̄(s̄),

we have proved the induction hypothesis dπ(s) ≥ ε
12D

for the next round.

Lemma 13. With probability at least 1 − 2δ,

(a) The while loop in line 1 in Algorithm 1 will terminate after at most 12HDC(Π)
ε

rounds.

(b) After the termination of the above while loop, for any π ∈ Π, the remaining states s ∈ Srem
π that are not added in I

(or T ) satisfy d̄
π(s;Srem

π ) ≤ ε/4D.

Notice that according to our algorithm, the same state cannot be added twice into I. Therefore, ∣I∣ ≤ D∣Πcore∣ and the
maximum number of rounds in the while loop is D∣Πcore∣.

Proof. According to Lemma 10 and Lemma 12, (24) holds with probability at least 1 − 2δ.

(a) First note that from Lemma 1 and the definition of coverage in (3), we have

∑
s∈S

sup
π∈Π

d
π(s) ≤ HC

cov(Π;M) ≤ HC(Π).

Furthermore, (24) implies that any (s, πs) ∈ T satisfies dπs(s) ≥ ε/12D. Thus,

∑
s∈I

sup
π∈Π

d
π(s) ≥ ∑

s∈I
d
πs(s) ≥ ∣T ∣ ⋅ ε

12D
,

where we used the fact that I denotes the set of states in T , and ∣I∣ = ∣T ∣. Since, I ⊆ S , the two bound above taken
together indicate that

∣T ∣ ≤ 12HDC(Π)
ε .

Since, every iteration of the while loop adds at least one new (s, πs) to T , the while loop from lines 1-1 will terminate
after at most 12HDC(Π)

ε
many rounds.
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(b) Additionally, we know that after the while loop terminated, for every π ∈ Π and s ∈ Srem
π , we must have that

d̂
π(s) ≤ ε

6D
, or else the condition in line 1 in Algorithm 1 will fail.

Hence according to (24), we get

d̄
π(s;Srem

π ) ≤ ε

6D
+

ε

12D
=

ε

4D
.

Lemma 14. Suppose (a) and (b) in Lemma 10 holds. Fix π ∈ Π, suppose for any s ∈ Srem
π we have

d̄
π(s;Srem

π ) ≤ ε

4D
,

the output of V̂ π in Algorithm 5 satisfies
∣V̂ π

− V
π∣ ≤ ε

Proof. We first notice that the output V̂ π of Algorithm 5 is exact the value function of MRP M̂
π
I defined by (16) and

(17). We further let V π
tab to be the value function of Mπ

I defined by (14) and (15). Then when D = 0, according to (b) in
Lemma 10, we obtain

∣V̂ π
− V

π
tab∣ = ∣r̂πs⊤→s⊥ − r̄

π
s⊤→s⊥∣ ≤

ε

12(D + 1)2 ≤
ε

2
.

When D ≥ 1, we have ε
12D(D+1) ≤

ε
8(D+2) . Additionally, according to Lemma 10, we have

∣rπs⊤→s′ − r̂
π
s⊤→s′∣ ≤

ε

12D(D + 1) , ∣Pπ
s⊤→s′ − P̂

π
s⊤→s′∣ ≤

ε

12(D + 1)2 , ∀s
′
∈ S+π

∣rπs→s′ − r̂
π
s→s′∣ ≤

ε

12D(D + 1) , ∣Pπ
s→s′ − P̂

π
s→s′∣ ≤

ε

12D(D + 1) , ∀s ∈ Srch
π \{s⊤}, s′ ∈ S+π ,

Hence according to the simulation lemma (Lemma 9), we get

∣V̂ π
− V

π
tab∣ ≤ 2(D + 2) max

s,s′∈S+
π

(»»»»»P
π
s→s′ − P̂

π
s→s′

»»»»» + ∣rπs→s′ − r̂
π
s→s′∣)

≤ 2(D + 2) ( ε

8(D + 2) +
ε

8(D + 2)) ≤
ε

2
.

Additionally for any sh1
= s⊤, sh2

,⋯, sht−1
, sht

= s⊥ ∈ {s⊥} ∪ Srch
π , the probability of seeing trajectory τ̄ =

(sh1
, sh2

,⋯, sht
) in M

π
I is

P
M

π
I(τ̄ = (sh1

, sh2
,⋯, sht

)) =
t−1

∏
i=1

P
π
shi→shi+1

=

t−1

∏
i=1

P
π,M(τ ∶ τ ∈ T(shi

→ shi+1
;¬Sπ)∣τ[hi] = shi

)

= P
π,M(τ ∶ τ[hi] = shi

,∀1 ≤ i ≤ t, τ[h] /∈ Sπ,∀h ≠ h1,⋯, ht).

Similarly, the expectation of rewards we collected in M
π
I with trajectory τ̄ is

EM
π
I [R[τ̄]1{τ̄ = (sh1

, sh2
,⋯, sht

)}]
= Eπ,M [R[τ]1{τ[hi] = shi

,∀1 ≤ i ≤ t, τ[h] /∈ Sπ,∀h ≠ h1,⋯, ht}] .

Summing over all possible sh1
,⋯, sht

, we will get

V
π
tab = Eπ,M [R[τ]1{τ ∩ Srem

π = ∅}] .
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Hence since ∀s ∈ Srem
π , d̄

π(s;Srem
π ) ≤ ε

4D
, we get

∣V π
− V

π
tab∣ = Eπ,M [R[τ]] − Eπ,M [R[τ]1{τ ∩ Srem

π = ∅}]
= Eπ,M [R[τ]1{τ ∩ Srem

π ≠ ∅}]
= ∑

s∈Srem
π

Eπ,M [R[τ]1{s ∈ τ, τ[0 ∶ s] ∩ Srem
π = ∅}]

≤ ∑
s∈Srem

π

d̄
π(s;Srem

π ) ≤ D ⋅
ε

4D
=

ε

4
,

which indicates that
∣V̂ π

− V
π∣ ≤ ∣V π

− V
π
tab∣ + ∣V̂ π

− V
π
tab∣ ≤

ε

2
+

ε

4
< ε.

F.3. Proof of Theorem 4

In the following proof, we assume the event defined in Lemma 12 holds (which happens with probability at least 1 − δ).
With our choices of N1, N2:

N1 =
C1(D + 1)4K2

log(∣Π∣(D + 1)/δ)
ε2

, N2 =
C2D

3(D + 1)2K2
log(∣Π∣(D + 1)2/δ)
ε3

,

if further noticing that the while loop runs at most 12HDC(Π)
ε

rounds (Lemma 13), the total number of samples used in our
algorithm is upper bounded by

N1 +N2 ⋅
12HDC(Π)

ε = Õ(( 1
ε2
+ HD

6
C(Π)

ε4
) ⋅K2

log
∣Π∣
δ
).

Additionally, after the termination of while loop, Lemma 12 indicates that for any policy π ∈ Π, and s ∈ Srem
π we have

d̄
π(s;Srem

π ) ≤ ε

4D
.

Therefore, Lemma 14 indicates that for any π ∈ Π, ∣V̂ π − V
π∣ ≤ ε. Hence the output policy π̂ ∈ argmaxπ V̂

π satisfies
that

max
π∈Π

V
π
− V

π̂
≤ 2ε + V̂

π
− V̂

π̂
≤ 2ε.

Rescaling ε by 2ε, and δ by 2δ, the proof of Theorem 4 is complete.


